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Type Learning for Binaries and Its Applications
Zhiwu Xu , Cheng Wen, and Shengchao Qin

Abstract—Binary type inference is a challenging problem due
partly to the fact that during the compilation much type-related
information has been lost. Most existing research work resorts to
program analysis techniques, which can be either too heavyweight
to be viable in practice or too conservative to be able to infer types
with high accuracy. In this paper, we propose a new approach to
learning types for binary code. Motivated by “duck typing,” our
approach learn types for recovered variables from their features
and properties (e.g., related representative instructions). We first
use machine learning to train a classifier with basic types as its
levels from binaries with debugging information. The classifier is
then used to learn types for new and unseen binaries. While for
composite types, such as pointer and struct, a points-to analysis is
performed. Finally, several experiments are conducted to evaluate
our approach. The results demonstrate that our approach is more
precise, both in terms of correct types and compatible types, than
the commercial tool Hex-Rays, the open source tool Snowman, and
a recent tool EKLAVYA using machine learning. We also show
that the type information our proposed system learns is capable of
helping detect malware.

Index Terms—Binary analysis, duck typing, machine learning,
type learning, type recovery.

I. INTRODUCTION

DUE to the significant growth of untrusted code and mal-
ware, such as viruses and worms, there is an increasing

demand for tools to help security analysts and programmers
analyze and understand binary code. A recurring step in many
such tools is binary type inference, which aims to infer high-
level typed variables from binary code. Binary type inference
is required for, and would significantly benefit, many applica-
tions such as binary analysis, binary code rewriting, binary code
reuse, decompilation, game hacking, hooking, protocol reverse
engineering, malware analysis, virtual machine introspection,
vulnerability analysis and detection, and so on. Comparing to
type inference for high-level code, binary type inference is much
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more challenging, largely due to the fact that most program in-
formation is lost during compilation, in particular, information
about variables (which store the data), and their types (which
constrain how the data are stored, interpreted, and manipulated).
Hence, binary type inference involves two tasks: one is to iden-
tify high-level variables from the binary code (called variable
recovery), and one is to give a high-level type to each recovered
variable (called type recovery).

Lots of research works on binary type inference have been
carried out, such as Hex-Rays [1], Retypd [2], REWORD [3],
SecondWrite [4], SmartDec [5], TIE [6], and so on. However,
most of them tend to resort to program analysis techniques,
which are often too conservative to infer types with high accu-
racy. For instance, considering a memory byte (i.e., a variable)
which is only used to store 0 and 1, most existing tools, such as
Hex-Rays and SmartDec, recover for this memory byte the type
byte t (i.e., a type for bytes) or char, which is clearly too conser-
vative or incorrect (some further discussion is given in Section II
later). Furthermore, some of them are too heavyweight to use in
practice, for instance, in the sense that for large-scale programs
they may generate too many constraints to solve. For instance,
“DIVINE [7] spends 2 hours while analyzing programs of the
order of 55 000 assembly instructions” [4]. This is because 1)
there are much more instructions in the low-level code than
in the high-level code in general; and 2) there may be sev-
eral possible constraints for a low-level instruction, such as add
and sub.

This paper aims to propose an approach to learning high-level
types for binary code. Motivated by “duck typing,” we propose
to learn types for recovered variables from their features and
properties (e.g., related instructions). Specifically, we first iden-
tify variables from binary code by analyzing memory accesses.
For instance, parameters and local variables are always accessed
through address expressions of the form “[ebp + offset]” and
“[ebp − offset],” respectively, where ebp is the stack base
pointer register. Then for these recovered variables we extract
their related instructions and some other helpful information as
their features. Next, we train a classifier with basic types as its
levels via various machine-learning methods, based on bina-
ries with debugging information compiled from a dataset of C
programs. After the classifier is trained, we then can use it to
learn the most possible types for the recovered variables. While
for composite types, such as (multilevel) pointer and struct,
we resort to a combination of machine-learning and program-
analysis techniques: we use a points-to analysis first to identify
the possible variables and then use the classifier to learn for
these variables basic types, which form the result type.

We implement our approach in a prototype named BITY,
wherein we use the tool IDA Pro [1] as our front end to
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Fig. 1. Snippet code of the program base64.

disassemble binaries and scikit-learn [8] to implement various
classifiers. Using BITY, a series of experiments are conducted
to evaluate our approach. First, we conduct some experiments
to see how well various machine-learning methods perform.
We have found that the classifiers trained by support vector
machine (SVM) with a linear kernel and Random Forest per-
form better than the others. Second, we conduct experiments
to compare with the commercial tool Hex-Rays [1] and the
open source tool Snowman [9] on the benchmarks coreutils
(v8.4), diffutils (v3.5), and findutils (v4.7). The experimental
results demonstrate that our tool is more precise than Hex-Rays
and Snowman, both in terms of correct types and compatible
types. Third, we also conduct experiments to compare BITY
against EKLAVYA [10], a recent tool that can learn types for
function parameters via machine learning, and the results show
that BITY performs better than EKLAVYA. Fourth, to evaluate
BITY further, we conduct experiments on binaries of different
sizes, which indicates that our prototype BITY is scalable and
suitable in practice. Finally, as an immediate application, we
feed the type information we learn into malware detection and
find that the discovered type information is capable of helping
detect malware.

The contributions of the paper are twofold.
1) An approach to learning types for binary code, using a

combination of machine learning and program analysis,
is proposed.

2) A series of experiments are conducted to evaluate our
approach, which demonstrated that our approach is able
to learn more precise types, with reasonable performance,
and can help detect malware.

This paper extends [11] and further contains the details of the
revised algorithms, a points-to analysis for pointer and struct,
the generation of the type-learning problem, more experiments,
and several recent related work. In more detail, we first revise the
variable recovery algorithm and instruction extraction algorithm
for global variables. Second, we extend the original points-
to algorithm to collect more possible variables, which can be
used to form the possible struct types. Based on the extended
points-to algorithm, an algorithm to recover struct pointer is
then proposed. Third, we generalize the type-learning problem
such that any other machine-learning technique can be applied
here. Finally, we conduct more experiments to evaluate our tool
BITY further.

1) We conduct several cross-validation experiments to eval-
uate how well the classifiers trained by various machine-
learning methods would perform.

Fig. 2. Snippet code for the program debug script.

2) We conduct experiments to compare BITY against Hex-
Rays and Snowman, which recover types via program
analysis on two new dataset diffutils and findutils.

3) We also conduct experiments to compare BITY against
EKLAVYA, a recent tool that can learn types for function
parameters from binaries machine learning.

4) As an immediate application, we conduct experiments to
check the viability of using the type information BITY
learns to help malware detection.

This paper is organized as follows. Section II illustrates some
motivating examples whose types are not recovered correctly
by most of the existing tools and explains our idea. Our type
learning for binary code is introduced in Section III. Section IV
gives the experiments. Section V discusses the limitations and
Section VI presents related work. Section VII concludes the
paper.

II. MOTIVATING EXAMPLES

This section illustrates some motivating examples where it is
difficult to recover types correctly by existing approaches and
based on which we explain our main idea.

The first example, given in Fig. 1, is obtained by compiling a
decode and encode program base64 from C runtime Library with
Microsoft Visual C++ (MSVC) or GNU compiler collection
(GCC) into a binary and then disassemble the binary with IDA
Pro. For comparison, the source code in C is given as well.
In the high-level program, a variable decode is declared with
bool type and is used to record users’ options. While in the
low-level code, a byte in stack, that is [ebp-1], is simply used
to represent the variable decode, without any type information.
In other words, after compiling, the variable and its related
type is lost. Because of the over-conservative program-analysis
techniques they adopt, most existing tools, such as Hex-Rays
and SmartDec, recover the type byte t or char for the recovered
variable [ebp-1], which are clearly too conservative or incorrect.

Second, consider the program debug script from GNU Diff
Utilities [12], which is used to print the changed information.
This program takes as a parameter a variable with type (struct)
pointer, which is represented as [ebp + 8] in assembly codes
and whose related instructions are listed in Fig. 2. According to
the standard typing rules for assembly codes [2], [6], the first
six related instructions infer that the type of [ebp + 8] should
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Fig. 3. Snippet code for the assignments of different types.

be a type of size 32, while the last instruction suggests that the
type of [ebp + 8] is int. Accordingly, both the types recovered
for [ebp + 8] by Hex-Rays and Snowman are int, which is
incorrect.

What’s worse, programs with fewer instructions can be more
difficult for their types to be recovered correctly. Let us consider
the pseudo-assembly code given in Fig. 3, which are compiled
with MSVC1 from three simple assignments for three variables
with different types. Hex-Rays recovers for both the variables i
and f the type Dword* and for the variable d the type Qword*.
While SmartDec infers for all these three variables the same
type int32 t. Again, most of these results are over conservative
or incorrect.

One may note that these assignments for the variables of dif-
ferent types are compiled into different instructions, namely,
mov, movss, and movsd for int, float, and double, respectively.
Accordingly, one may want to improve the program-analysis
approaches by adding three new rules to infer those three dif-
ferent types corresponding to those three different instructions.
However, this will not work since the instruction mov (movsd
resp.) is not only used for the type int (double resp.). Even if it
works, there are too many such kinds of instructions and types;
therefore, it would be difficult to figure out the possible rea-
sonable rules. For instance, in the ×86 instruction set, there are
more than 30 kinds of mov instructions.

Another challenge in binary type inference, as discussed in
[13], is from equivalent instruction sequences. The equivalent
instruction sequences do not share the same type information
under the typing rules. So the type information obtained from
an instruction sequence can be lost in another equivalent in-
struction sequence. For example, both of the single instruction
“and 0XFFFFFFFC, [ebp]” and the instruction sequence “not
[ebp], or 0X3, [ebp], not [ebp]” produce the same result, that
is, to align a pointer by clearing its lowest two bits. But for the
second sequence, the type of [ebp] (i.e., a pointer type) is lost,
after applying on it the not operation twice.

Generally, the related instructions of a variable reflect how
this variable is stored, interpreted, and manipulated. For in-
stance, just as shown in Fig. 3, variables of different types
can have different instructions. Motivated by “duck typing,”
in which the type of a variable is determined by its features
and properties rather than being explicitly defined, we take the
related instructions of a variable as its feature, and learn the

1When compiling with GCC, the instruction for i remains the same, while
the ones for f and d will be a fld followed by a fstp.

Fig. 4. Framework of our approach.

most possible type from the feature for the variable. Consider
the program base64 given in Fig. 1 again. The related instruc-
tions of the memory byte [ebp-1] is the set “{mov , 0; mov ,
1; movzx eax, },” which is most likely to be a feature of the
type bool, where denotes the concerning variable. Therefore,
we infer for the variable [ebp-1] the type bool, and similarly for
the variables of the program given in Fig. 3. Note that movsd
may be a feature of double, but not all of them belong to double.
Moreover, we believe that the equivalent instruction sequences
can be treated as different possible features of the same type. For
example, the single instruction “and 0XFFFFFFFC, [ebp]” and
the instruction sequence “not [ebp], or 0X3,[ebp], not [ebp]”
could be two possible patterns of pointer types.

III. APPROACH

We present our approach to learning types for binary code in
this section.

As discussed in Section II, our approach is to learn the most
possible type for the recovered variables from their related in-
structions. Fig. 4 shows the framework of our approach, which
consists of two main steps. 1) We first train a classifier with
types as levels from existing binaries with some debugging in-
formation (marked by arrows with solid line). 2) We then use
this classifier to learn the most possible types for new, unseen
binaries (marked by arrows with broken line). In detail, we first
perform some analysis on binaries with some debugging infor-
mation to recover the possible variables and extract the related
features and types for these variables, yielding a training dataset.
Based on the training set, we train a classifier with types as lev-
els via machine-learning methods. Next, we perform a similar
analysis on stripped binaries to recover the variables and extract
their features. We then learn the most possible types for these re-
covered variables, using the trained classifier. To conclude, our
approach involves three tasks: 1) binary analysis; 2) classifier
training; and 3) type learning.

In what follows, we describe the types we used in the classifier
and each task of our approach, using as an illustrative example
the program memchr, given in Fig. 5, from C runtime Library.

A. Types

The types we use in the classifier are the base types without
type quantifiers, namely the labels we are learning in the
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Fig. 5. Snippet code of the program memchr.

Fig. 6. Type lattice.

classifier are the set

L = {char, bool, short, int, f loat, double,

pointer, long long int, long double}.
There are two reasons behind this decision. 1) The other types
can be composed from the base types, for instance, struct. 2) Too
many levels may work against the classifier. Fig. 6 gives the lat-
tice for the types we are learning, where� (⊥ resp.) denotes that
a variable can (cannot resp.) be any type and there is a “pointer”
starting from the type pointer to the lattice itself, namely the
type lattice is level-by-level (see the processing of pointer in

Section III-D). This type lattice describes the hierarchy and the
distance of types, and will be used to measure the precision of
types (see Section IV). Similar to TIE [6], we focus on the sizes
of types such that there are no subtype relations for types with
different sizes, for instance, short is not a subtype of int.

Given a type t, we define its level as the number of the (out-
ermost) levels occurring in it, that is, level(t) is defined as
level(t′) + 1 if t is a pointer to t′, otherwise 0.

B. Binary Analysis

In this paper, we use the assembly code as an intermediate
representation for binaries, which can be obtained by any disas-
sembler such as IDA Pro. And we restrict our study to the ×86
instruction set on Intel platforms, though the techniques pre-
sented here can be extended naturally to the others. Note that,
some existing binary analysis techniques or toolkits, such as
IDA pro [1], can be used here to recover variables from binaries
and/or to extract direct related instructions. But the results may
not be suitable for our analysis for type learning, such as the
indirect related instructions and instruction proceeding. So for
practicability and for completeness, we presented the analysis
that are targeted for our type learning.

After compiling, variables of the high-level source program
and their type information are not included in the resulting bi-
nary. Therefore, the first step is to recover the target variables
in the binaries. Since the types of variables are determined by
their features, the next step is to extract the related features,
namely the related instructions of the recovered variables. In
order to use the features in a classifier, the last step is to select
the instructions that are the most representative and frequently
used as the feature indicators, and represent them as a vector.
In a word, our binary analysis consists of three steps: 1) target
variable recovery; 2) related instruction extraction; and 3) fea-
ture selection and representation. We present the detail of each
step in the following.

1) Target Variable Recovery: As shown in [14], variables
are abstractions of memory blocks, which are accessed by spec-
ifying absolute addresses directly or indirectly through address
expressions of the form “[base + index × scale + offset]” in
binaries, where offset and scale are integer constants, and base
and index are registers. Hence, to recover the target variables in a
binary is to identify the possible memory blocks in it. Similar to
(the first step of) value-set analysis (VSA) [14], we identify the
target variables from functions, global data, and heap memory.
Since every function has its own stack frame to access to both
function parameters and local variables, we proceed this task
function by function. Function boundaries identification is an
independent problem of interest, which is not covered here. Ex-
isting disassemblers or recent approaches [15]–[17] can identify
the functions quite correctly. Even if not, the whole program can
be treated as a single function.

Consider (the stack frame of) a general function. In CDECL
and STDCALL conventions, parameters and local variables are
always accessed through address expressions of the form “[ebp
+ offset]” and “[ebp - offset],” respectively, where ebp is the
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Algorithm 1: Variable Recovery Algorithm varrec(f).
Input: a target function f
Output: the possible variable set V

1: V = ∅
2: D = regmark(f)
3: for each instruction i ∈ f.b do
4: if [ebp ± offset] ∈ i then
5: V = V ∪ {[ebp ± offset]f }
6: end if
7: if regn ∈ D(i).u ∪ D(i).d then
8: V = V ∪ {regf

n}
9: end if

10: if varAddr ∈ i then
11: V = V ∪ {varAddr}
12: end if
13: end for
14: return V

stack base pointer register.2 While in FASTCALL convention,
the first two parameters are passed by the registers ecx and
edx, the other parameters and local variables are handled as the
same as the conventions above. In all the conventions, the return
values are passed by the register eax. So for each function,
we identify variables from its stack frame and the data registers.
Since multiple data registers may be used with possible different
types in a function, we also take different uses of the same data
register as different variables. For simplicity, we only consider
the data registers here. But they are dependent. One can take
some other registers into account as well, such as ESI and EDI.
At last, global memory blocks and blocks in heap, which may
be used by another function, are also considered. For example,
global variables are always defined in the data or bss section,
accessed by the address expression “ds:offset,” while blocks in
heap are accessed by the address expressions involving general
registers, such as “[eax + / − offset].”

Algorithm 1 shows the procedure for variable recovery, which
takes a function in assembly language (ASM) as input, and re-
turns a set of possible variables. The algorithm starts with an
empty set V (Line 1). Then it marks different uses of data reg-
isters (i.e., eax, ebx, ecx, and edx) in the function as static
single assignment (SSA) form does (Line 2), which is given
in Algorithm 2. Finally, the algorithm proceeds with each in-
struction to collect the variables (Lines 3–16): Lines 4–6 and
Lines 7–9, respectively, handle the variables in stack frame and
data registers used only in the target function, where vf de-
notes that the target variable v only belongs to the function f ,
regn denotes the nth definition (see below) of data register reg
and reg ∈ {eax, ebx, ecx, edx}. While Lines 10–12 handle the
other possible variables, where varAddr denotes any other pos-
sible block, such as the global memory blocks accessed by the
address expression “ds:offset” or the blocks in heap accessed

2Under some higher optimization options, the ebp register is often used to
store variables, which will be treated as “[ebp − 0]” (or “[ebp+0]” if one likes)
in our setting.

by “[reg +/− offset].” Note that, due to compiler optimization,
multiple different local variables which is not considered here.

Algorithm 2: Register Marking Algorithm regmark(f).
Input: a target function f
Output: the marked mapping D

1: let cfg be the control-flow graph of f
2: for each node n ∈ cfg do
3: D(n).u = ∅ and D(n).d = ∅
4: end for
5: num = [eax �→ 0, ebx �→ 0, ecx �→ 0, edx �→ 0]
6: enqueue the entry node e and num into queue q
7: while q 
= ∅ do
8: (n, cur) = dequeue q and (ou, od) = D(n)
9: for each r ∈ {eax, ebx, ecx, edx} do

10: if n is a use of r then
11: D(n).u = D(n).u ∪ {rcur[r ]}
12: end if
13: if n is a definition of r and D(n).d = ∅ then
14: num[r] + + and D(n).d = {rnum [r ]}
15: cur[r] = num[r]
16: end if
17: end for
18: if (ou, od) 
= D(n) then
19: for each successor n′ of n do
20: enqueue (n′, cur) into q
21: end for
22: end if
23: end while
24: return D

We say an instruction i is a use (resp. a definition) of a data
register r if i reads data from (resp. writes data into) r. For
example, the instruction “add eax 1” reads data from eax first
and then writes data back to eax, so it is a use as well as a
definition of eax. In particular, a function call is a definition of
eax, since the return value is always stored in it.3 If any other
register is not saved by the function, then the function call is
also a definition for it.

Algorithm 2 shows the procedure for register marking, which
takes a function f as input and returns a marked mapping for
instructions. The algorithm first builds a control flow graph
for function f (Line 1). Then it initializes each node of the
graph with the empty definition set and use set (Lines 2–4),
and set the number of current definitions for each register as 0
(Line 5). After that, the algorithm starts from the entry nodes of
graph with the zero definitions (Line 6), and traverses over the
graph to collect the definition and use information (Lines 7–23).
That is, for each node n in the queue and each register r, the
algorithm collects the definition and use information, according
to n and r. In detail, if n is a use of r, then it updates the use
information of n with the current definition of r (Lines 10–12),
where regn is the same to the one in Algorithm 1; and if n is a

3It is possible that the return value is stored in the other registers, which
should belong to the ones used by the exit node.
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TABLE I
VARIABLES IN THE STACK FRAME OF memchr

Fig. 7. Instructions using [ebp+8] directly in memchr.

definition of r, then it increases the number of definitions of r
and updates the current definition of r, which is added into the
definition information of n (Lines 13–16). If the information is
different from the original one (Line 18), that is, if there are some
definitions of registers that are fresh with respect to n, then the
algorithm propagates the current definitions of registers to all the
successors of n and enqueue them in the queue (Lines 18–22).
This marking procedure is essentially a classic definition-use
and use-definition analysis, wherein only the data registers are
considered.

Let us consider the example memchr given in Fig. 5. Table I
lists the recovered variables in the stack frame, which consist
of three parameters (which conform to the declarations in the C
code) and two more local variables (which are due to the low-
level instructions and are used to temporarily store the values of
the variables *buf and chr). Moreover, there are nine different
definitions of eaxs (i.e., eax0–ebx8), four different definitions
of ecxs (i.e., ecx0–ecx3), and two different definitions of edxs
(i.e., edx0 and edx1). It seems that there are too many variables
for data registers, but they can be reduced by definition-use
chains (see the next section). Please note that compiling with a
different compiler or with different options may generate dif-
ferent assembly code and thus different numbers of recovered
variables.

2) Related Instruction Extraction: The next step of our bi-
nary analysis is to extract for the recovered target variables the
related instructions from the binary code, which reflect how the
variables are stored, interpreted, and manipulated, and will be
used as a feature of the variables when learning their types.

A naive and simple solution is to extract for a variable the
instructions which use it directly. Take the variable [ebp+8] of
the program memchr for example. Fig. 7 lists the instructions
which use [ebp+8] directly. We can see that all these instructions
are a move operation, which can be used by any type of vari-
ables. So these instructions are not enough for us to learn a type
for it. Nevertheless, an instruction of a variable in high-level
code is always compiled into several instructions in low-level
code, some of which may not use the corresponding variable di-
rectly and thus are dropped by the simple solution. For instance,
as shown in the program base64 in Fig. 1, the instruction “if
(decode)” in C is complied to two instructions in ASM code

with the variable [ebp− 1], one of which uses [ebp− 1] directly
(i.e., “movzx eax, byte ptr [ebp− 1]”), while the other does not
(i.e., “test eax, eax”). Obviously, the second instruction is much
more representative for the type bool and should be considered
as well.

On the other hand, as mentioned above, there may be too
many variables for different definitions of the data registers,
namely, eax, ebx, ecx, and edx. This is due to the fact that these
data registers are usually used as an intermediary to temporar-
ily store data, and that at different times may store different
data of different types. So not all of them are interesting. More-
over, according to the classic type system [18], when a variable
is assigned by another variable or an arithmetical expression
involving another variable, the type of assigning variable is a
subtype (denoted by ≤) of one of the assigned variable. This
indicates that the behaviors belonging to the assigned variable
also belong to the assigning variables. In particular, limited by
our type lattice, both variables have the same type, as justified
by Lemma III.1. Therefore, we collect these instructions of both
variables together and learn for the assigning variable a type,
which will be considered as the type for the assigned variable
as well, based on the merged instructions.

Lemma III.1: Let t, s be two types in L. Then t ≤ s ⇐⇒
t = s.

Proof: Since any type in L is not a subtype of another type,
the only solution to a subtype relation is the type itself. �

In detail, we make use of definition-use chains on these data
registers to extract more interesting instructions: the uses of the
data register which is defined by a variable are also considered
as the uses of the variable. For instance, the instruction “test
eax, eax” is considered as an instruction related to the target
variable [ebp− 1] in the program base64 as well, since it is a use
of eax which is defined by [epb− 1]. And we only need to learn
for the variable (e.g., [epb− 1] in base64) a type, which will be
considered as the type for the corresponding data register (e.g.,
eax in base64) as well. This benefits to not only extracting more
interesting instructions for a variable but also reducing the num-
ber of variables for different definitions of data registers. Indeed,
only the initialized registers (e.g., the parameters) and the ones
used by the exit node (e.g., the return variables) are interesting.
Likewise, definition-use chains through function calls are also
considered to extract as much interesting information as possi-
ble. Please note that the variable number for different definition
of data registers can be reduced during variable recovery.4 But
in order to better explain instruction extraction, we present it
here.

The procedure for instruction extraction is shown in
Algorithm 3, which takes a target variable as input, and returns
its related instruction set. The algorithm analyses the function
f if the target variable belongs to f only, otherwise the whole
program (Lines 2–6). Then for each function, the algorithm
marks the definition-use chains, which is recorded in D (Line 8).
At last, for each instruction, if it involves the target variable v,
then it is added to the related instruction set (Lines 10 and 11).
Moreover, if it is a definition of a data register, then the set of

4BITY is implemented in this way.
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Algorithm 3: Instruction Extraction Algorithm insext(v).
Input: a target variable v
Output: the related instruction set I

1: I = ∅
2: if v ∈ f then
3: F = {f}
4: else
5: F = the set of all functions
6: end if
7: for each function f ∈ F do
8: D = regmark(f)
9: for each instruction i ∈ f do

10: if v ∈ i or v ∈ D(i).u then
11: I = I ∪ {i}
12: for regn ∈ D(i).d do
13: I = I ∪ insext(regn )
14: end for
15: end if
16: if i calls function f ′ and v is an argument then
17: I = I ∪ insext(vf ′

)
18: end if
19: end for
20: if v is (stored in) the return variable of f then
21: for f ′ calling f do
22: I = I ∪ insext(eaxf ′

f )
23: end for
24: end if
25: end for
26: return I

instructions that are related to this register is collected as well
(Lines 12 and 13). In addition, our extraction considers the inter-
procedural analysis: 1) if the current instruction calls a function
f ′ and v is one of the arguments, then we also extract the related
instructions for the corresponding parameter vf ′

of f ′ (Lines
16–18); and 2) if v is (stored in) the return variable of f , then
for each function f ′ that calls f , the related instructions for the
variable (i.e., eax) in f ′ that stores the return value from f is
extracted (Lines 20–24).

Take the recovered variable [ebp+8] in the program memchr
for example again. Its related instruction set is given in Fig. 8,
where the number n following a data register corresponds to the
nth definition identified during the variable recovery. Compared
with the instructions listed in Fig. 7, there are four more inter-
esting instructions, which are collected due to the definition-use
chains of these data registers (denoted by “use of ” followed by
a definition of a data register).

3) Feature Selection and Representation: According to the
official document of the ×86 instruction set [19], different in-
structions have different usages. Hence based on the usages,
we perform some preprocessing on these collected instructions.
First, we notice that not all the instructions are of interest to type
learning. For instance, the instructions push and pop are usually
used by the stack, instead of by any variable. Second, different
operands may have different meanings, so we distinguish be-

Fig. 8. Related instructions of [ebp+8] in memchr.

TABLE II
TYPICAL USAGE PATTERNS OF mov

tween these two operands in a dyadic instruction. For instance,
the two operands of the instruction mov represent the source and
the destination, respectively, which are clearly different. Third,
we make abstractions on some operands, since they always lead
to too many instructions: 1) we abstract the data registers with
sizes, due to their interim uses; and 2) we abstract immediate
numbers into 0, 1, and Other, the first two of which are always
used by the type bool. Fourth, we also take the circumstances
where the instructions are used into account. Considering the in-
struction mov again, using it with data registers of different sizes
offers us different meaningful information. Its typical usage pat-
terns we consider are given in Table II, where Regn denotes a
data register with size n, denotes a concerning variable, and
varAddr denotes a memory address (i.e., another variable).

There are more than 600 instructions, but not all the in-
structions are representative or widely used. Therefore, using
the well-known scheme term frequency-inverse document fre-
quency (TF-IDF) [20], we perform a statistical analysis on the
dataset, which consists of source code from textbooks and real-
world programs. According to the results, we select the top N
representatives and frequently used instructions as the feature
indicators. Theoretically, the more instructions, the better. While
in practice, we found 100 instructions are enough.

In addition, some other useful information for type inference
are considered as well. First, the memory size is very helpful
for type inference, so we also take it into account as a feature if
we can identify it. Second, when the type of a called function is
known, especially for system functions, if a variable is one of
its arguments, then we can infer for the variable a type easily,
that is (a subtype of) the type of the corresponding parameter,
according to the rule for function calls in classic type system.
Therefore, in Lines 16–18 of Algorithm 3, if the type of f ′ is
known, we represent the related instructions of vf ′

as one feature
“being an argument of t,” where t is the type of vf ′

. In practice,
we can use another feature “being the nth argument of f” for
a system function f to avoid finding the type of f . Likewise,
Lines 20–24 could be simplified as “being the return of t” or
“being the return of f .”
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TABLE III
REPRESENTATION OF [EBP+8]

Finally, similar to information processing, we would like to
encode the selected features of variables into vectors, where only
the numbers of times the selected instructions are performed on
the target variables are considered, leaving the orders out of
consideration. That is, we represent variables as vectors, which
consist of the frequencies of the selected instructions and the
extra useful information. Formally, a representation of a variable
is a vector of the form

v = [t1 : x1 , t2 : x2 , . . . , tn : xn ]

where n is the number of features, ti is a feature term, and xi is
the value of feature term ti . Note that ignoring the instruction
order can give us a simple and easy model, but it may reduce
the precision of the model if there are two different types with
different behavior patterns such that these patterns share the
same instruction set.

Take the variable [ebp+8] of the program memchr for exam-
ple, whose related instructions are given in Fig. 8. The represen-
tation vector of [ebp+8] is given in Table III, where the left-hand
side shows the vector of the specific instructions before proceed-
ing, while the right-hand side gives the vector of the abstracted
instructions after proceeding, and only the nonzero features are
listed. Note that “mov eax, _ ” and “mov ecx, _” are merged
together, since both eax and ecx are data registers of 32 bits.

C. Classifier Training

In our approach, the classifier is trained by supervised learn-
ing. So we need a labeled dataset. To the end, we compile a
dataset of C programs with debugging support and then ex-
tract the related information (i.e., variables, types, and features)
from the compiled binaries, yielding a training set. Let V be
the feature space for all possible vectors. Our classifier train-
ing problem is expressed as follows. Given a labeled dataset
D0 = {(v1 , l1), (v2 , l2), . . . , (vm , lm )}, the goal is to find a clas-
sifier C : V → L that minimizes the sum of the distances of all
the variables, namely

argminC

∑

(v ,l)∈D0

d(C(v), l) (1)

where m is the number of variables, vi is the feature vector of
a variable, li ∈ L is the corresponding type of vi , and d is the
distance function on types. Similar to TIE [6], we define the
distance function d as the distance between them in our lattice

as follows:

d(s, t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 s = t

1 (half maximum height) s, t are pointer

2 (maximum height) otherwise

.

Note that, similar to Elwazeer et al.’s work [4], we can
use the radio min(level(s), level(t))/max(level(s), level(t)) for
pointers in theory, but in practice we consider only three levels
for pointers, so we use the half here. Our classifier C aims to
find the most possible type for a variable, so we define C as

given a variable v, C(v) = argmax
l∈L

P (v, l)

where P (v, l) is the probability that the variable v is assigned
by the type l. Without loss of generality, the probability P (v, l)
can be encoded as follows:

P (v, l) = expScore(v ,l)

/
∑

l∈L

expScore(v ,l)

where Score(v, l) is a function that returns the score of assigning
the type l for the variable v. Assignments with higher scores are
more likely than assignments with lower scores. Since we learn
types from the related features of variables, we express the Score
function as a composition of a sum of n feature functions Fi

associated with the related weights wi as follows:

Score(v, l) =
n∑

i=1

wi × Fi(xi, l) = �w × �F (v, l)

where v = [t1 : x1 , t2 : x2 , . . . , tn : xn ], �w is a vector of
weights wi , and �F is a vector of feature functions Fi . There are
several solutions to the definition of �F , for example, Kullback–
Leibler divergence. But here we reuse the TF-IDF values, com-
puted in Section III-B3, to define the feature function as follows:

Fi(xi, l) = xi × idflti

where idflti
is the IDF value of feature term ti with respecte to

type l. The remaining problem is to find a vector �w of weights
such that Condition (1) is satisfied, which can be solved by
various algorithms of machine learning, such as decision tree,
k-nearest neighbor, native bayes, random forest and SVM. We
have tried these algorithms to solve our training problem in our
implementation. We have also carried out several experiments
with these algorithms and have found that the classifier trained
by SVM with a linear kernel and Random Forest with ten gini
trees perform the best (more details will be given in Section IV).

D. Type Learning

Once it is trained, the classifier C can be used to learn types
for new, unseen binaries. Intuitively, the solution is to return for
a given variable v the type whose probability is the highest one
as its definition, that is

argmax
l∈L

P (v, l).

Take the variable [ebp+8] of the program memchr as an
example again. Its feature instruction set contains “mov Reg32,
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Algorithm 4: Points-to Algorithm point to(v).
Input: a target variable v
Output: the possible points-to variable set V

1: V = ∅
2: if v ∈ f then
3: F = {f}
4: else
5: F = the set of all functions
6: end if
7: for each function f ∈ F do
8: for each instruction i ∈ f do
9: if i is v′ = ∗v or ∗v = v′ then

10: V = V ∪ {∗v, v′}
11: else if ∗v ∈ i or ∗(v + offset) ∈ i then
12: V = V ∪ {∗v}
13: else if i is v′ = v or v = v′ then
14: V = V ∪ point to(v′)
15: end if
16: if i calls function f ′ and ∗v is an argument then
17: V = V ∪ {pf ′

∗v}
18: end if
19: end for
20: if ∗v is (stored in) the return variable of f then
21: for f ′ calling f do
22: V = V ∪ {eaxf ′

f }
23: end for
24: end if
25: end for
26: return V

_; movsx Reg32, [_]” (to read data from an address expression),
“mov Reg32, _; add _, 1” (to increase the address expres-
sion), and “mov Reg32, _; sub _,1” (to decrease the address
expression), which are the typical usages of the type pointer.
Accordingly, the probability of P ([ebp+8], pointer) gets the
highest score, and thus the most possible type the classifier
learns is pointer. Let us consider the variable decode in the
program base64 given in Fig. 1. As discussed in Section II, its
feature instruction set (i.e., “mov _, 0; mov _, 1; movzx Reg32,
_; test _, _”) is one of the typical usages of the type bool, so
our classifier will learn bool as the most possible type.

1) Composite Types: This section presents how to handle
composite types, namely pointer and struct, using a combina-
tion of machine-learning and program-analysis techniques.

Pointer: For a higher accuracy, we handle pointer level-by-
level as shown in our type lattice in Fig. 6. This is because we
would like 1) to learn not only the pointer type itself but also
the type that the pointer type points to, which may be a pointer
type as well; and 2) to handle the multilevel pointers.

We say a variable is indirect if there exists at least one other
variable of pointer type pointing to it.

In detail, our approach proceeds as follows.
1) Once a variable v is learnt to have type pointer by our

classifier, our approach first tries to identify any vari-
able that the pointer variable points to, using a points-to

analysis, which is motivated by Brumley and Newsome’s
work [21] and shown in Algorithm 4.

2) If such indirect variables exist, the approach then collects
the related features for these newly recovered variables
and continues to learn a (next-level) type t for all these
variables with the classifier. Similar to definition-use chain
(i.e., Lemma III.1), we argue that the variables pointed to
by the same variable share the same type. One can think
that the type for an indirect variable is a vote, so t is the
type which gets the most votes.

3) At last, the type for the variable v is a pointer to t if there
exists at least one indirect variable, otherwise a pointer
(to any type).

Our approach can handle pointers with any levels in theory
(and thus may not terminate). But in practice, we have found
that up to three levels are enough.

Algorithm 4 shows our points-to algorithm, which takes a
target variable as input and returns the set of possible variables
pointed to by the target variable. The idea is that whenever a
variable is loaded or stored by the memory location addressed
by the target variable, the variable is pointed to by the target
one (Lines 9–12). Transitivity of variables is taken into account
(Lines 13–15). The proceeding above is quite similar to the
IDB predicates in [21] without the rules for expression opera-
tors, since our analysis considers the possible variables rather
than the (address) values. In addition, our analysis considers the
interprocedural situations (Lines 16–24).

Compared to our conference version [11], there are two minor
differences for the processing for pointer type: one is to take
some possible offsets into account, that is, the address pattern
∗(v + offset) in Line 11; and the other is to extend transitivity
of variables from data registers to any possible variables, that is,
v′ in Line 13 can be any possible variable. Both of them enable
us to find more indirect variables. Theoretically, the more the
indirect variables, the more precise the learnt type. But in our
experiments, we found the results are almost the same. The
reason is that 1) when there is an indirect variable with an
offset, there always exists another indirect variable without an
offset, and transitivity of variables are always passed by data
registers; 2) a (correct) type can always be learnt from some
indirect variables (e.g., the ones found by the original version),
since they share the similar instructions. However, this extended
algorithm benefits struct recovery very well: it enables us to find
more fields (see the struct recovery).

Let us carry on with the variable [ebp+8] of the program mem-
chr. In Section III-D, we have learnt for the variable [ebp+8] the
most possible type pointer. So our approach goes on to iden-
tify any possible indirect variable, yielding the variable set “{
byte ptr [eax], ecx1}.” Then our approach extracts the following
feature vector for it:

[mov Addr, : 1; movsx Reg32, : 1; Size8 : 1]

which covers the data move with sign extension. There are two
types with 8 bits, that is, char and bool. According to the known
binaries, the feature above more likely belongs to char than
to bool. Therefore, the final type for the variable [ebp+8] is a
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Fig. 9. Snippet code for simple struct programs.

pointer to char, which is exactly the same as the one in the
high-level code.

Struct: Another common composite type is struct, which con-
sists of several possible different types. For example, Fig. 9
shows a definition of struct Point in C language, which consists
of two components of type int. Let us consider two simple func-
tions that perform on the struct Point. The first one func1
defines a variable of type struct Point and initializes all its
members, while the second one func2 does the similar opera-
tions, except that the variable is defined with type struct Point
pointer. Fig. 9 also gives the snippet assembly codes of these two
functions. From the assembly codes, we can see that the struct
Point variable in func1 is encoded into two memory blocks
[ebp-8] and [ebp-4] in statck, corresponding to two components
of the struct Point. In other words, this struct variable is com-
piled into two different variables and thus the struct information
is lost. While in func2, the variable of type struct Point pointer
is represented as a single block [ebp-8] in stack, and through
this block, two other blocks [eax] and [eax+4] (i.e., [[ebp-8]+0]
and [[ebp-8]+4]) in heap can be accessed, which corresponds to
two components of the struct Point. Compared to func1, it is
easier to recover the struct information from func2.

In this paper, we only consider the structs that are accessed
indirectly (i.e., through a pointer), since structs that are accessed
directly are always compiled into several different variables
corresponding to their components, which is difficult to recover.
That is, the form of struct type we learn is of the form *struct. So
the first problem is to distinguish struct pointer from the other
pointers, which is also a classifier problem. But, instead of the
machine-learning methods used above, our solution here is to
take advantage of the points-to analysis above and to seek the
common pattern used for *struct in low-level code: the indirect
access pattern [base + offset] with the same base (i.e., variables
pointed to by the same variable). Arrays can be handled in a
similar way.

Our struct recovery proceeds as follows:
1) Once a variable v is learnt to have type pointer by our

classifier, assume that the variable set it points to is V .
Then our approach tries to collect the variables whose
bases are in V , yielding a variable set V ′

2) If |V ′| > 1, we infer that the type of v is a struct pointer.
Then we continue to learn a type ti for each variable vi in
V ′. After that, we order the variables in V ′ and construct
the following struct type:

struct anyname {
offset1 : t1
...
offsetn : tn
}
where there exists a basei ∈ V such that [basei +
offseti ] ∈ V ′.

3) If |V ′| ≤ 1, we proceed as the pointer recovery.
Consider func2 in Fig. 9 again. The type of [ebp-8] is

learnt to be pointer, according to its instructions. By applying
the points-to algorithm, we get the points-to variable set
V = {[eaxn ], [eaxn+1]}, where eaxi denotes the ith defini-
tion of eax in func2. Note that, without the extension of
points-to algorithm, [eaxn+1] cannot be identified. Based on
V , we found two variables that share the same base: [eaxn + 0]
and [eaxn+1 + 4], and both of their types are learnt to be int.
Accordingly, we obtain the following struct type:

struct anyname {
0 : int
4 : int
}

IV. EXPERIMENTS

We have implemented our approach in a prototype named
BITY, wherein we use the tool IDA Pro [1] as our front end
to disassemble binaries and scikit-learn [8] to implement vari-
ous classifiers. Using BITY, several experiments are conducted
to evaluate our approach. First, several cross-validation experi-
ments are conducted to evaluate how well the classifiers trained
by various machine-learning methods would perform. Second,
to evaluate our tool BITY, we conduct experiments to compare
BITY against Hex-Rays and Snowman, which recover types
via program analysis. Third, we also conduct experiments to
compare BITY against EKLAVYA, a recent tool that can learn
types for function parameters from binaries via machine learn-
ing. Fourth, experiments on evaluating the scalability of BITY
are also conducted. Finally, as an immediate application, we
conduct experiments to check the viability of using the type
information BITY learns to help malware detection.

The experiments were conducted on a personal computer with
Intel Processor i5-4590 (3.30 GHz) and 8 GB memory.

A. Training Dataset

For a high precision, we consider a training dataset that should
contain different possible usages of different types. For that, we
collect binaries with debug information obtained from programs
that are used in teaching materials and from commonly used
algorithms and real-world programs. Programs of the first kind
always cover all the types and their possible usages; in particular,
they demonstrate how types and their corresponding operations
are used for beginners. While programs of the second kind reflect
how (often) different types or usages are used in practice, which
help us to select the most possible type. In detail, our training
dataset consists of the binaries obtained from the following
programs via MSVC and GCC:

1) source codes of the C programming language (K&R);



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: TYPE LEARNING FOR BINARIES AND ITS APPLICATIONS 11

TABLE IV
RESULTS OF DIFFERENT CLASSIFIERS

2) source codes of basic algorithms in C programming lan-
guage [22];

3) source codes of commonly used algorithms [23];
4) C Runtime Library;
5) some C programs collected from GitHub randomly.

B. Performance of Different Classifiers

As mentioned in Section III-C, there are various machine-
learning algorithms to train our classifier. For that, we conduct
a series of experiments to compare the performance of various
classifiers here, wherein 5-fold cross validation is performed.
First of all, the dataset is divided into five equal folds randomly,
each of which is taken as the testing set and the others as the
training set. Then, based on the training set, we train the classifier
using a machine-learning algorithm. At last, we test the classifier
on the testing set. The machine-learning algorithms we use here
are decision trees (DT for short), where the metrics Gini impurity
and information gain are used; k-nearest neighbour (KNN for
short), where the value of k ranges in {1, 3, 5, 7}; native Bayes
(NB for short), including the models Gaussian naive Bayes
(GNB for short), multinomial naive Bayes (MNB for short), and
Bernoulli naive Bayes (BNB for short); SVM, where the linear
function kernel, the radial basis function kernel (RBF for short),
and the sigmoid function kernel are used; and random forest (RF
for short), which consists of ten decision trees. The performance
measures we use to validate the results quantitatively are as
follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

=
2 ∗ TP

2 ∗ TP + FP + FN
.

The experimental results are shown in Table IV. From the
results, we can see that most of the classifiers, except for GNB
and SVM with sigmoid kernel, work quite well: the precision,
recall, and F1-measure are all over 90%. In particular, SVM with
a linear kernel obtains the best precision (94.66%), while RF

Fig. 10. Type lattice for Hex-Rays and BITY.

with ten Gini trees gets the best recall (94.57%) and F1-measure
(94.53%). One of the main reasons for RF to outperform others
is that RF is an ensemble learning method which may correct
the decision tree’s habit of overfitting to the training set, while
SVM with a linear kernel tries to transform the original input set
into a high-dimensional feature space by using a linear kernel
function, and then construct an n-dimensional hyperplane that
optimally separates the variables into categories. Theoretically,
we can obtain a correct classifier if the dimension n is large
enough. So we suggest to use the classifier trained by SVM
with a linear kernel.

C. Comparison Against Hex-Rays and Snowman

This section presents the experiments to compare BITY
against Hex-Rays (v2.2.0.15), which is a plug-in of the com-
mercial tool IDA Pro [1], and Snowman (v0.1.0), which is an
open source C/C++ decompiler [9].

In order to quantitatively validate the result types recovered
by different tools, we extend the distance function d given in
Section III-C such that it still works on the types recovered by
Hex-Rays and Snowman. For that, we extend the lattice in Fig. 6
with the types recovered by these two tools. Fig. 10 gives the
extended lattice, where Hex-Rays and Snowman consider all the
types except � and ⊥, while BITY considers only the types in
bold. Note that the types recovered by Snowman are similar to
Hex-Rays but with different names, for example, Snowman uses
int32 t for int and uint32_t for unsigned int. It seems that the
distance function d can be easily and naturally extended on this
new extended lattice. However, due to the types we imported for
Hex-Rays and Snowman, there are more options for us to predict
for a variable. For example, we can predict the types dword, �,
or float for a variable of type int. Clearly, with respect to the type
int, the type dword is better than the type �, and both of them
are better than the type float. But the original distance function
d does not tell us the differences among these three types. So to
express the differences and validate the results more precisely,
we borrow the notation compatible types from TIE [6]. Given
two types, if one type is a subtype of the other one, we said they
are compatible. Now the distance function d between two types
t and s is extended as follows:

1) If t and s are pointers to t′ and s′, respectively, then d(t, s)
is defined as the half of the maximum hierarchy height 2
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TABLE V
COMPARISON RESULTS OF BITY, HEX-RAYS AND SNOWMAN ON COREUTILS

multiplied by 1, 0.5, and 0, according to whether t′ and s′

are incompatible, compatible, or the same, respectively.
2) Otherwise, d(t, s) is defined as the number of hierarchies

between t and s in the top-level lattice if they are compat-
ible, otherwise the maximum hierarchy height 4.

For instance, both d(∗dword, ∗int) and d(dword, int) are
1, while the distance d(∗dword, int) is 4. Note that, compared
with the original one, the extended distance function returns a
higher value if BITY gives a wrong answer.

1) Experiments on Coreutils: The first test programs we
used for comparison are from GNU core utilities, namely
coreutils-v8.4, which is a benchmark used for evaluation by

several existing work [3], [6], [24]. The experiments proceed as
follows. 1) The test programs are compiled into binaries with
debugging support, from which the type information is extracted
and used as a reference for the tools. 2) We perform our tool
BITY on the stripped binaries, obtained from the test programs
by compiling without debugging support, to identify the target
variables in stack and learn for them types, and compare the
types learned by BITY against the reference types. 3) We use
Hex-Rays to decompile the stripped binaries, and compare the
recovered types against the reference types. 4) Similar to Hex-
Rays, Snowman is used as well. But due to the different front
ends, the corresponding relation between the variables recovered
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TABLE VI
RESULTS OF POINTERS ON COREUTILS

by our tool and the ones by Snowman is unclear. So we have to
analyze the decompiled code by Snowman to build this corre-
spondence manually. And it is more difficult for global variables
to figure out this correspondence than local variables. Due to
time limitation, we perform only on 42 programs in coreutils and
consider only local variables and parameters for comparison.

As pointed out in [25], we also found that there are some
duplicate functions in coreutils, so we eliminate some common
functions, such as usage and emit functions. Moreover, dur-
ing experiments, we only counted the functions whose related
types can be recovered by all the tools. The experimental re-
sults are given in Table V, where Variables is the number of
the target variables, R, C, and F are the number of variables,
whose types are respectively recovered correctly, compatibly,
and incorrectly, and P is the percentage of the correct types and
the compatible types, both of which together are called proper
types, among all the types. From the results, we can see that
1) BITY can learn 80% above proper types for most of the
programs (i.e., 44 programs among 45 ones), while Hex-Rays
and Snowman can, respectively, recover 26 and 19 programs
with 80% above proper types; 2) on the whole, among the types
learned by our tool BITY, 1356 (58.12%) types are correct,
729 (31.25%) types are compatible, and 2085 types (89.37%)
in total are proper, while Hex-Rays recovers 1276 correct ones
(54.69%), 589 compatible ones (25.25%), and in total 1865
proper ones (79.94%), and Snowman recovers 995 correct ones
(42.65%), 713 compatible ones (30.56%), and in total 1708
proper ones (73.21%); 3) on average, the proper accuracy rating
of BITY, Hex-Rays, and Snowman are 90.32%, 82.96%, and
74.28%. In conclusion, BITY performs better than Hex-Rays
and Snowman, all in terms of correct types, compatible types,
or proper types.

According to the reference type information, we have found
that there are 1021 variables that are typed by pointer. Table VI
gives the type results recovered for these variables by our tool
BITY, Hex-Rays, and Snowman, where the notation is the same
as the ones in Table V. Among the types learned by BITY, 444
(43.49%) ones are correct, 397 (38.88%) ones are compatible,
and in total 841 (82.37%) ones are proper. Whereas for Hex-
Rays, 397 (38.88%) ones are correct, 203 (19.88%) ones are
compatible, and in total 600 (58.77%) ones are proper; and for
Snowman, 238 (23.31%) ones are correct, 399 (39.08%) ones
are compatible, and in total 637 (62.39%) ones are proper. The
main reason for BITY to learn compatible types is the lack of
the type quantifiers such as unsigned and signed, while the main
reason for Hex-Rays and Snowman is to use the conservative
types. The results indicate that in terms of pointer types, BITY
also performs better than Hex-Rays and Snowman.

Among the variables of type pointer, we have found that
there are 350 of them that are typed by struct*. Table VII

TABLE VII
RESULTS OF STRUCT POINTERS ON COREUTILS

shows the results for these struct pointers recovered by BITY,
Hex-Rays, and Snowman. For these variables, our tool can
learn pointer as the type for 296 (84.57%) variables, among
which 130 (37.14%) ones are learned correctly with the type
struct*.5 While Hex-Rays recovers 146 (41.71%) variables with
pointer, among which 60 (17.14%) ones are recovered cor-
rectly; and Snowman recovers 216 (61.71%) variables with
pointer, among which 182 (52.0%) ones are recovered cor-
rectly. This indicates that, on struct pointers, our tool performs
better than Hex-Rays as well, but a litter worse than Snowman.
Although Snowman can recover more struct pointers, it tends to
infer the pointer into a struct pointer even a pointer of the basic
type.

Moreover, we have analyzed some failure cases manually,
and found that there are three main reasons: 1) some variables
have too few related instructions for us to learn the right types,
particularly the variables typed by pointer, which contribute
to most of the failures as shown in Tables V and VI (72.58%,
89.96%, and 61.44% for BITY, Hex-Rays, and Snowman, re-
spectively); 2) there are some variables typed of composed types
like array and (direct) struct, which are not easy to recover and
not considered by BITY yet; 3) for a variable typed of struct*,
if only one field is accessed, then BITY would learn a pointer
pointing to the type of the accessed field, rather than struct*.

At last, concerning the distance, Fig. 11 gives the average
distances of each program for BITY, Hex-Rays, and Snowman,
from which we can see that BITY can learn types with a shorter
distance for most programs than both Hex-Rays and Snowman.
On average, the average distances of the types recovered by
BITY, Hex-Rays, and Snowman for the test programs are 0.715,
1.014, and 1.372, respectively, indicating that BITY can learn
more precise types than both Hex-Rays and Snowman.

2) Experiments on Diffutils and Findutils: The second
benchmark we used for comparison are from GNU Diffutils and
GNU Find Utilities, namely diffutils-v3.5 and findutils-v4.7.0,
which is a benchmark used by EKALVYA [10]. For conve-
nience, we collect the data of findutils and diffutils from the
dataset of EKALVYA, which are obtained from GCC compiler
without optimization and have eliminated the duplicated func-
tions. Here, we focus on the function parameters, as EKALVYA
can only learn types for them. The experiments proceed as the
same as the one on coreutils.

Table VIII shows the experimental results, where the nota-
tions are the same as the ones in Table V. The experimental
results show that 1) BITY can learn 75% above proper types
for most of the programs, while Hex-Rays and Snowman can
only recover 65% above proper types; 2) On the whole, among
the types learned by our tool BITY, 566 (43.81%) types are

5For simplicity, types for fields are not considered here.
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TABLE VIII
COMPARISON RESULTS OF BITY, HEX-RAYS, AND SNOWMAN ON DIFFUTILS AND FINDUTILS

Fig. 11. Distances of BITY, Hex-Rays, and Snowman on Coreutils.

correct, 334 (25.85%) types are compatible, and 900 types
(69.66%) in total are proper; While Hex-Rays recovers 489
correct ones (37.85%), 118 compatible ones (09.13%), and in
total 607 proper ones (46.98%); and Snowman recovers 393 cor-
rect ones (30.42%), 322 compatible ones (24.92%), and in total
715 proper ones (55.34%); 3) On average, the proper accuracy

Fig. 12. Distances of BITY, Hex-Rays, and Snowman on Diffutiils and
Findutils.

TABLE IX
RESULTS OF POINTERS ON DIFFUTILS AND FINDUTILS

rating of BITY, Hex-Rays, and Snowman are 77.52%, 64.34%,
and 63.49%. To sum up, BITY performs better than Hex-Rays
and Snowman, all in terms of correct types, compatible types,
or proper types in the benchmarks diffutils and findutils as well.

Concerning pointer types, we have found that there are 992
variables that are typed by pointer from the reference type
information. The results for these variables recovered by our tool
BITY, Hex-Rays, and Snowman are given in Table IX, where
the notations are the same as the ones in Table VIII. Among
the types learned by BITY, 301 (30.34%) ones are correct, 332
(33.47%) ones are compatible, and in total 633 (63.81%) ones
are proper. While for Hex-Rays, 244 (24.60%) ones are correct,
113 (11.39%) are compatible, and in total 357 (35.99%) ones
are proper; and for Snowman, 161 (16.23%) ones are correct,
317 (31.96%) are compatible, and in total 478 (48.19%) ones
are proper. The results indicate that BITY also performs better



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: TYPE LEARNING FOR BINARIES AND ITS APPLICATIONS 15

TABLE X
RESULTS OF STRUCT POINTERS ON DIFFUTILS AND FINDUTILS

than Hex-Rays and Snowman on diffutils and findutils, in terms
of pointer types.

Let us consider struct pointer types. There are 420 variables
that are typed by struct pointers among the variables identified in
diffutils and findutils. Table X shows the results for these struct
pointers recovered by BITY, Hex-Rays, and Snowman. From
the results, we can see that BITY can learn pointer as the type
for 272 (64.76%) variables, among which 110 (26.19%) ones
are learned correctly with the type struct*. Whereas, Hex-Rays
recovers 68 (16.19%) variables with pointer, among which 60
(14.29%) ones are recovered correctly; and Snowman recov-
ers 224 (53.33%) variables with pointer, among which 205
(48.81%) ones are recovered correctly. This indicates that, on
diffutils and findutils, BITY still performs better than Hex-Rays
on struct pointers as well, but a litter worse than Snowman.
Through manual analysis, we found that one of the reasons
that the accuracy of our struct pointer recovery is low, is that
our interprocedural analysis is relatively weak. For example,
many functions just pass the variables of type pointer to other
functions or checks the pointer variables, without accessing
any fields.

Finally, we compute the (average) distances of each variables
in the programs for BITY, Hex-Rays, and Snowman. Fig. 12
gives the average distances of each program. The results shows
BITY can learn types with a shorter distance for most programs
than both Hex-Rays and Snowman. That is to say, BITY can
learn more precise types than both Hex-Rays and Snowman on
diffutils and findutils as well.

D. Comparison Against EKLAVYA

To evaluate BITY further, we also compare BITY against
EKLAVYA [10], a recent tool that can learn types for func-
tion parameters from binaries via machine learning. For that,
we perform two experiments, wherein findutils and diffutils,
collecting from the dataset of EKLAVYA, are still used as the
benchmarks. In the first experiment, we, respectively, train BITY
and EKLAVYA on their own dataset, namely BITY is trained
on the dataset presented on Section IV-A (dubbed BITY-Own),
while EKLAVYA is trained on the data in EKLAVYA dataset
obtained from GCC compiler (dubbed EKLAVAY-Own), ex-
cept for the benchmark findutils and diffutils. Then we perform
BITY and EKLAVYA on the benchmark. Whereas, in the second
experiment, we train BITY and EKLAVAY on the same dataset,
namely coreutils (dubbed BITY-Core and EKLAVAY-Core,
respectively), and proceed on as the same as the first one.

In these experiments, we focus on function parameters, since
EKLAVAY only considers these variables. And we take into
account the functions whose parameter types that can be learnt
by both BITY and EKLAVYA. The experimental results are

shown in Table XI, where Variables denotes the number of the
target variables, RV denotes the number of variables that are
recovered by the tools, CV denotes the number of variables that
are recovered correctly, PT denotes the number of variables,
whose types are recovered properly, and PP is the percentage
of the proper types among all the types. Note that the numbers
of variables for some functions are different from the ones in
Table VIII, because different tools use different front ends or
generate different high-level codes.

First, from the results we can see that among the 1367 vari-
ables, BITY (both BITY-Own and BITY-Core) can identify
1364 variables with a total num 1373, while EKLAVAY-Own
(EKLAVAY-Core, resp.) predicts 1274 (1240 resp.) variables
with a total num 1294 (1298 resp.). That is to say, BITY can
identify more correct number of variables than EKLAVYA, and
has a higher accuracy than EKLAVAY. This is mainly because
BITY identifies parameters via pattern analysis, which enables
us to recover almost all the parameters; while EKLAVAY pre-
dicts the number of parameters via machine learning, so some
parameters are still lost, although the accuracy is high.

In the first experiment, we found that EKLAVYA-Own learns
a little more proper types than BITY-Own, while BITY-Core
performs more better than EKLAVYA-Core in terms of proper
types in the second experiment. The main reason is that pro-
grams in the dataset of EKLAVYA, including diffutils and
findutils, are almost commonutils such that they share many
similar features, which make the type learning perform bet-
ter. Moreover, the results also show that BITY-Core performs
best in term of proper types, with an accuracy of 85.74%. This
is because BITY learns types for variables from their related
instructions, while EKLAVYA predicts types or numbers for
functions from all the instructions in the functions or all the
call instructions of the functions. In conclusion, we believe
that BITY performs better than EKLAVYA, as the features
characterized by BITY is more representative.

Concerning pointer types, we have found that there are 1070
variables that are typed by pointer from the reference type
information. As EKLAVYA can only learn the pointer type for a
pointer variable without the type information the variable points
to, we focus on pointer type itself here. Table XII gives the results
for these variables recovered by BITY and EKLAVYA, where
the numbers in table denote the numbers of variables whose
types are learnt to be pointers. Due to the same reason discussed
above, BITY-Own performs a litter worse than EKLAVYA-Own
in terms of pointer types in the first experiment, while BITY-
Core performs much better than EKLAVYA-Core in the second
experiment. So when trained on the same dataset, we believe
that BITY also performs better than EKLAVYA in terms of
pointer types.

Finally, let us consider the distances. Fig. 13 shows the av-
erage distances of each program for BITY and EKLAVYA.
From the results, we can see that BITY can learn types with
a shorter distance for most programs than EKLAVYA for both
experiments. It is worth noting that BITY-Own learns a little
less proper types than EKLAVYA-Own in the first experiment
as shown in Table XI. This is because BITY can learn types that
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TABLE XI
COMPARISON RESULTS OF BITY AND EKLAVYA ON DIFFUTILS AND FINDUTILS

TABLE XII
RESULTS OF POINTERS FOR BITY AND EKLAVYA

Fig. 13. Distances of BITY and EKLAVYA on Diffutiils and Findutils.

are more close to the correct ones such that the distances are
smaller. The results indicate that BITY can learn more precise
types than EKLAVYA on diffutils and findutils.

TABLE XIII
RESULTS ON BINARIES OF DIFFERENT SIZES

E. Performance

This section presents the experiments to evaluate the scalabil-
ity of BITY. For that, we perform BITY on binaries of different
sizes. The experimental results are given in Table XIII, where
LOC is the lines of the assembly code, Size is the size of the file
in MB, Var is the number of target variables in stack, Time-L
and Time-P denotes the type-learning time and the preprocess-
ing time excluding the disassembling time by IDA Pro, respec-
tively. From the results, we can see that 1) the preprocessing
time accounts for a great proportion and is linear on LOC and
variable numbers; 2) the predicting time does not cost too much
and is linear on variable numbers; and 3) BITY learns types in
just a few seconds for binaries of sizes ranging from 7 KB to
1341.44 MB, which indicates that BITY is scalable and viable
for practical use.

F. Application on Malware Detection

On the Internet, one of the most serious security threats is
malware. Various machine-learning algorithms have been used
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TABLE XIV
RESULTS OF DIFFERENT FEATURES

TABLE XV
RESULTS OF CLASSIFIERS WITH AND WITHOUT TYPE

to detect malware recently. Most of them use opcode and sys-
tem library as features, while few of them consider the data
information such as types. In this section, as an immediate ap-
plication, we conduct experiments to test the ability of the type
information that BITY learns to detect malware.

The training dataset is taken from [26] and consists of 11 376
malware samples and 8003 benign samples. On this dataset,
we perform 10-fold cross validation experiments using various
machine-learning algorithms listed in Section IV-B, and taking
opcode, system library, types, and their possible combinations
as features separately, wherein we just consider their data sizes
for the composite types for simplicity as their encoding into vec-
tor is not straightforward. The results are shown in Table XIV,
where O, L, and T are short for opcode, library, and type, re-
spectively, AUC is short for the area under the receiver operating
characteristic curve (ROC), and the number in the table denotes
the average value of classifiers trained by NB, KNN, RF, and
SVM.

From the results, we can see that type information is also
effective to help detect malware with the average precision
84.83%, the average accuracy 84.96%, and the average AUC
0.9427. Compared with the other two features, the performance
of the type feature is quite close to system library, although it is a
little worse than opcode. We believe that considering composite
types fully, especially structs, could obtain a better accuracy.
Moreover, we have also found that type information would im-
prove the malware detection which does not take it into account:
the average accuracy of classifiers, which consider not only op-
code (resp., library and opcode plus library) but also type, is
0.34% (resp., 6.18% and 0.85%) higher than that of classifiers
with only opcode (resp., library and opcode plus library).

To see whether type information can improve the malware
detection in practice, we conduct experiments to compare the
performance between the classifier learned with type feature
and the one without type feature on the recent malware samples
collected from the DAS MALWERK website [27], which are
new to the training dataset above. Table XV gives the results,
which show that the classifier trained with type feature can detect
two more malware samples than the one without. Moreover, the
classifier trained with only type feature can detect 287. Although
the number is less than the one (295) of the samples detected

TABLE XVI
COMPARISON BETWEEN PROGRAM ANALYSIS AND MACHINE LEARNING

by the classifier trained without type feature, it can enhance the
confidence of the detection.

V. DISCUSSION

In this section, we discuss some limitations of our approach.

A. Program Analysis and Machine Learning

Different from most existing work, our approach employs
machine learning, rather than program analysis. So we first
discuss the limitations of these two approaches in binary type
inference.

Table XVI shows the comparisons between program analysis
and machine learning in binary type inference. Generally,
machine-learning approach is easier to start than program
analysis approach, since program analysis approach requires
much prior knowledge, such as control-flow and typing rules
(i.e., the behavior patterns for types). In particular, there may
be too many patterns for a type or too many possible types
for some patterns to figure out manually. Another limitation
for program analysis approach is the scalability. As mentioned
in Section I, “DIVINE [7] spends 2 h analyzing programs of
the order of 55 000 assembly instructions” [4], while for the
machine-learning approach, once a classifier is trained, it can
learn the types efficiently.

However, one limitation of the machine-learning approach is
that it requires rich samples to train or mine a classifier. More
samples always can get a better classifier. Moreover, different
samples (i.e., dataset) affect the performance of the classifier. As
demonstrated in our experiments in Section VI-D, training BITY
on coreutils can get a better classifier with respect to diffutils
and findutils than training BITY on our own dataset. Another
problem of the machine-learning approach is explainable. It is
hard to reason why the result type is learnt in the machine-
learning approach.

Concerning accuracy, program analysis approach always in-
fers types in over-approximate or under-approximate mode.
Thus, it may be too conservative or incorrect (see examples
in Section II). While machine-learning approach uses types as
labels of the classifier, and does not take any approximated
mode. Generally, if samples are rich enough, the classifier can
learn types quite accurately.

In fact, we employ both program analysis and machine learn-
ing in our approach: we use program analysis techniques to
extract semantic information for variables, which can charac-
terize the behavior pattern of types and improve the accuracy,
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Fig. 14. Snippet code for nested struct programs.

and use machine-learning technique to train a classifier based
on these semantic information, which enables us to learn types
efficiently. This enables us to make full use of the advantages of
machine learning and program analysis and to strike a balance
between accuracy and scalability.

In addition, taking explainable into account, similar to Yang
et al.’s work [28], we can learn the typing rules in logic form
rather then types, by combing program analysis and machine
learning, which is left as a future work.

B. Struct and Struct Pointer

One drawback of BITY is that it cannot recover structs
that are in global memory regions and the stack, which is an
open challenge in binary type inference [29]. As explained in
Section III-D1, a variable of type struct in global memory re-
gions or the stack is always complied into several ones corre-
sponding to its components, acting like it were the definition of
these component variables rather then the single struct variable.
Therefore, in this paper, we focus on structs in the heap area,
that is, struct pointers.

It is worth noting that, although our variable recovery and
points-to analysis work well in practice, there are still some
limitations on struct pointers, such as the nonaccessed fields
and nested structs. Moreover, as shown in our experiments in
Section IV-C, there are still 62.9% variables of type *struct that
cannot be recovered correctly.

Let us consider the example shown in Fig. 14, where struct
Point is defined with a nested struct Nest. But after compiling,
the nested struct information is lost in the assembly codes. From
the assembly codes, BITY can only recover a whole struct with
all the three components.

In fact, we can enhance our analysis to recover the tree lay-
out of memory more precisely with a structure analysis, such
as value-set analysis (VSA) [14] and DIVINE [7] [a combined
analysis consisting of VSA and aggregate structure identifica-
tion (ASI) [30]]. Once the tree layout of memory is constructed,
the leaf nodes are identified as target variables. Then we can
carry on to extract their features to learn their types with the
classifier. At last, composite types like struct and array are con-
structed according to the tree layout. This is left as a future
work.

C. Type Cast

By now, we do not handle type casts in BITY. Our approach
is motivated by “duck types,” that is, the type of a variable

Fig. 15. Snippet code for type cast programs.

is determined by its features and properties rather than being
explicitly defined. If a variable needs a type cast and succeeds,
we believe that it can be operated as well as if it were defined
by the casted type.

Nevertheless, let us discuss how to revise our approach for
type casts. For that, let us consider the programs shown in
Fig. 15, which contains two assignments with type casts, namely
the converting from int to double and the converting from char
to int, and two assignments without type casts, where the as-
sembly codes are obtained via MSVC, and the member block
v$[ebp] in the assembly codes corresponds to the variable v in
C codes. As discussed in Section III, we will treat the variables
through assignments as a single special variable and merge the
behaviors together to learn a type for it. Thus, type cast informa-
tion are lost. For example, the variables a and c will be treated as
the same variable. Let us see the assembly codes. We found that
the converting from integer to double (the converting from char
to int, resp.) is encoded with the opcode cvtsi2sd (movsx resp.).
Moreover, compared to the assignments without type casts, both
of which are represented as “mov, mov,” the assignments with
type casts are compiled into the instruction sequence “cvtsi2sd,
movsd,” and “movsx, mov,” respectively.

This indicates that there are some differences for assigne-
ments with type casts. We have also tried different compilers
such as MSVC, GCC, G++, clang and clang++ and found that
the instructions used for type casts are similar. So for type casts,
a solution is to revise our approach: not to merge the vari-
ables and their related instructions for such kinds of assignments
“cvtXX2XX, movXX” or “movXX, movXX,” where X denotes
a character.

D. Function Boundaries

In our variable recovery, we assume that function boundaries
are recovered correctly, since we recover variables function by
function. Let us assume that there are two functions in a program,
both of which have a parameter with different types. Without
loss of generality, the parameters of both functions are repre-
sented as [ebp+8]. If the function boundary cannot be recovered,
then we have to treat the whole program as a single function as
mentioned in Section III. In that case, all the [ebp+8] would be
treated as an identity variable. So there is at least one parameter
lost. Moreover, the learnt type is not correct, since all the related
instructions, belonging to different types, are collected, similar
to the case where function boundaries are recovered incorrectly.
In a word, the wrong function boundaries can affect our variable
recovery and instruction extraction, and thus type learning.
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In this paper, we focus on type learning and resort to IDA Pro
to solve the function boundaries.

E. Architecture, Compiler, and Optimization

One challenge of binary analysis is that binaries are architec-
ture and compiler dependent, plus the compiler optimizations
specific to the architecture. Generally, binaries with similar con-
figurations share similar features, such as instructions. As dis-
cussed in Section V-A, BITY is sample dependent, and thus
is configuration dependent in some sense. Our dataset are col-
lected from binaries which are complied by GCC and MSVC
with none optimization on ×86_64 platforms. So we think it
would perform better on the binaries with similar configura-
tions than others. For example, another reason why BITY-Core
performs better than BITY-Own on diffutils and findutils is that
both the training dataset and the test dataset used by BITY-
Core are collected via GCC, while the training dataset used by
BITY-Own is via MSVC and GCC but the test dataset is via
GCC.

F. Obscured or Encrypted Binaries

Nowadays, there are many binaries that are obscured or en-
crypted, and antiobfuscation and binary decryption can be re-
garded as independent research topic [31]. This paper focuses
on type learning, and we assume that binaries are not obscured
or encrypted in this paper.

In our tool BITY, we use IDA Pro as our front end. One can
try to handle these obscured or encrypted binaries with IDA
Pro; if they can be disassembled, then BITY can be apply on
them. Otherwise, one can use any antiobfuscation or binary-
decryption tools to disassemble these binaries, and then pass
the assembly codes to BITY.

VI. RELATED WORK

There have been a large body of work on binary type infer-
ence. In this section, we discuss a number of recent related work.
Interested readers can refer to [29] for a more comprehensive
survey.

TIE [6] is a static tool to infer primitive types for variables in
binaries, which are limited to integer and pointer types. More-
over, rather than the specific types, its output is the upper bounds
or the lower bounds, which may not be accurate enough for bi-
nary engineers. Binary type inference in PointerScope [13], a
tool to detect the pointer misuses, focuses on the pointer types.
Aiming for scalability, SecondWrite [4] combines a best-effort
VSA variant for points-to analysis with a unification-based type
inference engine, but the accuracy depends on high-quality
points-to data. Robbins et al. [24] reduce the binary type in-
ference problem into a rational-tree constraint problem, which
is then solved through an satisfiability modulo theories (SMT)
solver. Yan and McCamant’s work [32] proposes a graph-based
algorithm to check whether the variables typed by int are de-
clared with unsigned or signed. Retypd [2] is a novel static tool
for type inference on machine code, which supports subtyping,
recursive types, and polymorphism. Hex-Rays [1] is a popular
commercial tool for binary code analysis, whose exact algorithm

is proprietary. All these tools above resort to static program anal-
ysis techniques, which are too heavy-weight for practical use or
too conservative to recover types with high accuracy.

Howard [33] and REWARDS [3] adopt a dynamic approach
to detect data structures, by generating type constraints from
execution traces. ARTISTE [34], another tool to detect data
structures dynamically, takes a combination of value invariants,
cycle invariants, and points-to relationships to generate hybrid
signatures that minimize false positives. MemPick [35], [36]
focuses on the high-level data structures such as singly or dou-
bly linked lists, graphs, and many types of trees like B-trees
and AVL. DSIbin [37] uses a combination of DSI and the type
excavator Howard for the inspection of C/C++ binaries to iden-
tify dynamic data structures. However, as approaches based on
dynamic analysis, these tools cannot achieve full coverage of
variables defined in a program.

Some tools concern recovering object-oriented features from
C++ binaries [5], [38]–[40]. Most of them adopt program anal-
ysis techniques, except for Katz et al.’s work [40], which uses
object tracelets to capture potential runtime behaviors of objects
and ranks the possible types based on object tracelets. Similar to
this work, we use the related instruction set to capture potential
behaviors of variables, without considering the order, yielding
a simpler solution.

Moreover, Raychev et al. [41] propose a new approach to
predict from “big code” program properties, including types.
Their approach leverages program structures to create depen-
dencies and constraints, which are used for probabilistic rea-
soning. As lots of program structures can be easily discovered
at high-level source code, this approach works well. However,
less program structures can be recovered for stripped binaries.
Recently, Zheng et al. [10] presented the system EKLAVYA
which trains a recurrent neural network to recover function type
signatures from disassembled binary code. While our solution
recovers types for not only parameters of functions but also lo-
cal and global variables. Moreover, our solution considers the
multilevel pointer such that our types are more expressive than
theirs.

VII. CONCLUSION

Binary type inference is valuable for binary analysis. In this
paper, we proposed a new approach to learning the most possible
type for a recovered variable. Different from existing work, our
approach is based on classifiers, without resorting to program
analysis techniques such as constraint solving techniques. To
demonstrate the viability of our approach, we implemented our
approach in a prototype tool BITY and carried out some inter-
esting experiments. Our experiments showed that BITY returns
more precise results than the commercial tool Hex-Rays, the
open source tool Snowman, and a recent tool EKLAVYA using
machine learning, and can help detect malware.

As for future work, we will take type quantifiers (e.g., signed)
into account. We can enhance our analysis with VSA or DIVINE
to recover more structures for composite types. We can imple-
ment our approach in some open source tools or as a plus-in.
We can also try to learn some typing rules in logic form rather
than type to improve interpretability.
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