
Automatically Inspecting Thousands of Static Bug Warnings
with Large Language Model: How Far Are We?

CHENG WEN, Guangzhou Institute of Technology & ICTT and ISN Laboratory, Xidian University,

Guangzhou, China

YUANDAO CAI, Fermat Labs, Huawei Technologies Co., Ltd, Hong Kong, China

BIN ZHANG, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen,

China

JIE SU, Guangzhou Institute of Technology & ICTT and ISN Laboratory, Xidian University, Guangzhou,

China

ZHIWU XU, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen,

China

DUGANG LIU, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen

University, Shenzhen, China

SHENGCHAO QIN, Guangzhou Institute of Technology & ICTT and ISN Laboratory, Xidian University,

Guangzhou, China

ZHONG MING, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen,

China

TIAN CONG, ICTT and ISN Laboratory & Guangzhou Institute of Technology, Xi’an, China

Static analysis tools for capturing bugs and vulnerabilities in software programs are widely employed in
practice, as they have the unique advantages of high coverage and independence from the execution environ-
ment. However, existing tools for analyzing large codebases often produce a great deal of false warnings over
genuine bug reports. As a result, developers are required to manually inspect and confirm each warning, a
challenging, time-consuming, and automation-essential task.

This article advocates a fast, general, and easily extensible approach called Llm4sa that automatically in-
spects a sheer volume of static warnings by harnessing (some of) the powers of Large Language Models
(LLMs). Our key insight is that LLMs have advanced program understanding capabilities, enabling them to
effectively act as human experts in conducting manual inspections on bug warnings with their relevant code

This work was supported in part by the National Natural Science Foundation of China (Nos. 62372304, 62302375, 62192734),
the China Postdoctoral Science Foundation funded project (No. 2023M723736), and the Fundamental Research Funds for
the Central Universities.
Authors’ addresses: C. Wen, J. Su (Corresponding authors), and S. Qin (Corresponding author), Guangzhou Institute of
Technology & ICTT and ISN Laboratory, Xidian University, Guangzhou, China; e-mail: wencheng@xidian.edu.cn, sujie01@
xidian.edu.cn, shengchao.qin@gmail.com; Y. Cai, Fermat Labs, Huawei Technologies Co., Ltd, Hong Kong, China; e-mail:
ycaibb@cse.ust.hk; B. Zhang, Z. Xu, and Z. Ming, College of Computer Science and Software Engineering, Shenzhen Uni-
versity, Shenzhen, China; e-mails: z343831143@163.com, xuzhiwu@szu.edu.cn, dugang.ldg@gmail.com; D. Liu, Guang-
dong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, China; e-mail:
dugang.ldg@gmail.com; C. Tian, ICTT and ISN Laboratory & Guangzhou Institute of Technology, Xidian University, Xi’an,
China; e-mail: ctian@mail.xidian.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1556-4681/2024/06-ART168
https://doi.org/10.1145/3653718

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

https://orcid.org/0000-0003-1826-6213
https://orcid.org/0000-0001-6340-1416
https://orcid.org/0009-0006-1745-916x
https://orcid.org/0000-0002-5098-8040
https://orcid.org/0000-0001-6727-440x
https://orcid.org/0000-0003-3612-709x
https://orcid.org/0000-0003-3028-8191
https://orcid.org/0000-0001-9310-3460
https://orcid.org/0000-0002-5429-4580
mailto:permissions@acm.org
https://doi.org/10.1145/3653718
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3653718&domain=pdf&date_stamp=2024-06-19

168:2 C. Wen et al.

snippets. In this spirit, we propose a static analysis to effectively extract the relevant code snippets via pro-
gram dependence traversal guided by the bug warning reports themselves. Then, by formulating customized
questions that are enriched with domain knowledge and representative cases to query LLMs, Llm4sa can re-
move a great deal of false warnings and facilitate bug discovery significantly. Our experiments demonstrate
that Llm4sa is practical in automatically inspecting thousands of static warnings from Juliet benchmark pro-
grams and 11 real-world C/C++ projects, showcasing a high precision (81.13%) and a recall rate (94.64%) for a
total of 9,547 bug warnings. Our research introduces new opportunities and methodologies for using the LLMs
to reduce human labor costs, improve the precision of static analyzers, and ensure software trustworthiness

CCS Concepts: • Software and its engineering; • Security and privacy → Software and application

security;

Additional Key Words and Phrases: Large language model, static analysis, AI for program analysis, static bug
warning, false alarms

ACM Reference Format:

Cheng Wen, Yuandao Cai, Bin Zhang, Jie Su, Zhiwu Xu, Dugang Liu, Shengchao Qin, Zhong Ming,
and Tian Cong. 2024. Automatically Inspecting Thousands of Static Bug Warnings with Large Language
Model: How Far Are We?. ACM Trans. Knowl. Discov. Data. 18, 7, Article 168 (June 2024), 34 pages.
https://doi.org/10.1145/3653718

1 INTRODUCTION

Static analysis is a crucial technique for ensuring reliability, security, and maintainability of soft-
ware, the key characteristics of software trustworthiness. It automatically uncovers potential bugs
or vulnerabilities without executing programs. Owing to its high coverage and independence from
the runtime execution environment, static bug finding is one of the paramount practices through-
out the software development process [13–15, 67, 68, 72, 77, 90]. For instance, static bug-finding
tools are widely used in leading internet companies such as Google [64] and Meta/Facebook [5, 21],
preventing hundreds of bugs from infiltrating the codebases daily.

Problem and Its Importance. Despite this remarkable progress, however, since highly precise
static analysis is generally unscalable for large million-line programs, many industrial-strength
tools have to sacrifice high precision, such as context sensitivity [7, 52] and path sensitivity [5, 26,
50, 72], in favor of superior efficiency. As a result, thoroughly scrutinizing the sheer volume of bug
warnings to uncover true bugs remains a laborious process for software practitioners due to the
significant human effort and expertise required [31, 32]. For instance, when analyzing the Tmux

project with approximately 40,000 lines of code, the popular static analysis tool SVF [71] produces
about 2,000 warnings that are hard to inspect and confirm manually [68]. It is widely observed
that software developers often reject static analysis tools, particularly when the bug reports are
flooded with a large number of false positives and require excessive scrutiny time [5, 7, 21].

Existing Techniques. Due to the importance of suppressing false positives, numerous re-
searchers [33, 55] have present techniques aimed at automatically identifying genuine bugs from
a multitude of static warnings. One promising research direction is to resort to dynamic analy-
sis/testing. Specifically, researchers have tried to explore directed grey-box fuzzing [6, 30, 48, 83, 84]
and dynamic symbolic execution [9] to sift through static analysis warnings and trigger the real
bugs. However, it is quite time-consuming and challenging to dynamically trigger a single bug
across different inputs, which can further deteriorate when faced with thousands of bug reports.
For example, directed fuzzing [30, 48] generally requires a few hours or even dozens of hours
to trigger a given bug, considerably hindering it from practical adoption. Additionally, construct-
ing an executable environment for testing software is challenging in many scenarios, particularly
in embedded software systems, due to their strong dependencies on hardware. Furthermore, dy-
namic approaches require appropriate test oracles to identify bugs [89, 94], which are often hard to

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

https://doi.org/10.1145/3653718

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:3

acquire. Another research direction is identifying specific patterns from bug warnings, source code,
and software repositories for predicting false positives [44, 80]. For example, machine learning
techniques are often used to learn what is likely true and false positives [96]. However, the bug
patterns they focus on are generally hard to reflect and capture real-world conditions, and, as a
result, these approaches suffer from a low recall rate when applied to real-world programs [35].

Our Insight. This article advocates a novel and complementary approach called Llm4sa,1 which
automatically inspects a sheer volume of static analysis warnings by harnessing the capabilities of
Large Language Models (LLMs) [98], such as ChatGPT [58, 61]. Our basic idea is that the LLMs
can act as human experts to perform manual inspections on thousands of static bug warnings based
on the relevant calling contexts. Specifically, this is because LLMs have recently demonstrated sig-
nificant potential in comprehending and reasoning about code [46, 49, 74]. Different from the
previous dynamic approaches [9, 30, 48] and static approaches [44, 80, 96], Llm4sa works by in-
specting both the bug reports and their corresponding code snippets through querying LLMs, which
explain the code snippets, reason about the reported warnings, and make a decision on whether a
warning is a false positive based on expertise. Our approach offers several salient advantages that
effectively alleviate the burden of manually confirming numerous static analysis warnings, saving
considerable developer efforts: (1) Llm4sa can automatically inspect thousands of static warnings,
with an average time of less than 30 seconds per warning. Thus, it is easy and effective to integrate
Llm4sa into a static analysis pipeline. (2) Llm4sa is general and can be used to confirm a broad
spectrum of different types of static warnings. (3) Llm4sa is easily extensible and orthogonal to
(or complementary to) the previous approaches, as it derives only bug-related code snippets via
static analysis and inspects warnings with the help of LLMs without executing code.

Our Approach. We develop the Llm4sa framework by identifying and addressing three main
challenges when inspecting static warnings using decoder-only LLMs, such as ChatGPT. The first
challenge is that LLMs have token limitations, so prompting LLMs with the entire project code is
currently impractical. Our basic idea is that manual inspections of bug warnings suffice to focus on
a few critical functions around the calling contexts, instead of the entire code. Based on this idea,
Llm4sa derives the bug-related code snippets through static program-dependence traversal [25],
which enriches the bug warnings with the necessary calling contexts for LLMs to inspect. The
second challenge is that even though LLMs can comprehend the related code snippets and natural
language in bug warnings (e.g., annotations), their capacity to effectively utilize this knowledge
for warning inspection is limited. To improve the effectiveness, we propose prompt engineering
techniques, including Chain-of-Thought (CoT) [82] and few-shot prompting [8], which signifi-
cantly help LLMs understand the static warnings. The third challenge is that LLMs often produce
unreliable and inconsistent responses [98]. To address this issue, Llm4sa performs pre-processing
to convert bug reports from different static analyzers into a uniform format and post-processing to
determine the confidence level of the LLMs’ answers. To sum up, the three challenges are mitigated
by combining code snippet extraction based on program dependency graph, prompt engineering, and
pre-/post-processing techniques, respectively.

Evaluation. We have implemented Llm4sa and successfully integrated it into a practical static
analysis pipeline. We performed a thorough evaluation of Llm4sa on the Juliet Test benchmark,
3 embedded real-time operating systems, and 11 widely used real-world applications, with three
popular open-source static analysis tools (i.e., Cppcheck, Csa, Infer). In total, Llm4sa can inspect
a total of 9,547 static warnings, resulting in a high precision rate (81.13%) and recall rate (94.64%).
In addition, Llm4sa is characterized by its speed, which averages less than 30 seconds per warning,
and affordability, costing only $0.31 per warning.

1The acronym of Large Language Models for(4) Static Analysis

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

168:4 C. Wen et al.

To sum up, this article makes the following contributions:

— Novelty. We propose a fast, general, easily extensible approach for the first time, to the best
of our knowledge, automating the inspection of a sheer volume of static warnings by har-
nessing the capabilities of LLMs.

— Practical Approach. We identify and address several practical challenges by combining the
effective extraction of related code snippets via program dependence traversal, prompt en-
gineering, and customized pre-/post-processing.

— Evaluation. We extensively evaluate Llm4sa on a total of 9,547 static bug warnings from the
Juliet Test benchmark, 3 embedded real-time operating systems, and 11 widely used real-
world applications to show its efficiency, scalability, and practicality.

— Study and New findings. To comprehensively understand the false positives, we conduct an in-
depth characteristic study for the bug reports produced by three popular static bug-finding
tools. We mainly conclude that LLMs are promising in identifying many false alarms in an
affordable way.

We have released the implementation and all associated publicly available data to encourage
comparable and evidence-based studies on automated static warnings inspection: https://doi.org/
10.5281/zenodo.8346515

2 BACKGROUND AND MOTIVATION

In this section, we motivate our approach by employing two real-world examples, providing the
necessary background on static analysis as well as LLMs, and presenting a desired LLMs-powered
static analysis pipeline.

2.1 Motivating Examples

We present two motivating examples of false positives reported by mainstream static analyzers to
illustrate the challenges of employing static analysis in practice.

Figure 1 shows a code snippet from the Zephyr project, an open-source embedded real-time sys-
tem. The code implements a callback function for reading data from a USB endpoint. A null pointer
dereference bug is reported by Cppcheck at line 190 in the acl_read_cb function, specifically in
relation to the buf variable. However, this is a false alarm, because the buf variable was initialized
as NULL at line 187 by passing parameters from a function call at line 230, which also sets the
second parameter (i.e., the size variable) to zero. Therefore, the condition at line 189 cannot be
satisfied, and line 190 is unreachable from the bluetooth_status_cb function.

Figure 2 shows another code snippet from the RIOT project, an embedded operating system for
low-end devices. The code implements a function for dividing two unsigned integers and returning
the remainder. The code intentionally causes a division by zero error at line 83, as the dividend is di-
rectly set to zero at line 79. Almost all mainstream static analyzers are able to report this bug. How-
ever, the code is specifically designed for embedded systems that require a divide-by-zero exception
handler to run into a situation. The developer’s comment at lines 81–82 indicates that this divide-
by-zero is intentional, revealing concealed knowledge that is not captured by static analyzers.

2.2 State of the Practice

In this section, we investigate static bug-finding tools. Specifically, we chose three representative
and well-known static analyzers for C/C++ code, including Cppcheck, Csa, and Infer. These static
analyzers are integrated with various state-of-the-art analysis techniques (e.g., symbolic execution,
separation logic, and pattern matching), are popular among practitioners, and are extensively eval-
uated and used in both the industry and academia [5, 7, 14, 15, 21, 23, 68].

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

https://doi.org/10.5281/zenodo.8346515

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:5

Fig. 1. A null pointer dereference false alarm in zephyr v2.1.0.

Fig. 2. A potential division by zero in RIOT-2020.04.

(1) Cppcheck [52] is a typical pattern matching-based technique combined with a lightweight
data-flow analysis. Specifically, Cppcheck scans C/C++ source code for potential bug pat-
terns with the reports stored in a local database. Although the tool is comprehensive (i.e.,
armed with multiple bug checkers) and highly efficient, Cppcheck can suffer from high false
positives in large codebases, as revealed by the previous work [47].

(2) Csa [41] is based on a typical path-sensitive symbolic execution technique and built on the
LLVM/Clang static analysis toolchain, which, however, is restricted to a single translation
unit (e.g., a single file). In other words, any function call to a function outside the translation

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

168:6 C. Wen et al.

unit is over-approximated, incurring high false positives. For instance, a variant example of
Figure 1 that splits functions acl_read_cb and bluetooth_status_cb into two different
files would lead to a false alarm reported by Csa.

(3) Infer [17] is a typical separation logic-based technique (some checkers may have combined
other static analysis approaches [5, 7]). Specifically, Infer utilizes separation logic and bi-
adduction for reasoning about memory manipulations to prove certain memory safety con-
ditions and create program state summaries for each function in an analyzed program. Like
other static analyzers, Infer is also prone to false positives.

Given a great deal of false positives generated by the static analysis analyzers, developers are
faced with the arduous task of manually reviewing numerous bugs specifically in large programs,
which is time-consuming. Moreover, the abundance of false positives in reports often leads devel-
opers to disregard the use of static analysis, thereby compromising the reliability of their software.
As a result, it is crucial and urgent to introduce automated approaches for reviewing bug warnings.

How Does Manual Inspection Typically Perform? Upon receiving a static warning, developers
typically begin by reviewing the bug report and attempting to locate the error location in the source
code using an Integrated Development Environment (IDE), such as VS Code or Eclipse. To
confirm the presence of bugs, developers typically concentrate on specific function bodies, callers,
and callees associated with error traces. They determine the feasibility of a bug based on a deep
understanding of the code logic and the library implementation, which may not be obvious or easy
for developers unfamiliar with the code or the tool.

Actually, most of the static warnings can be easily confirmed or pruned by experienced devel-
opers through code review. For instance, in Figure 1, the developers would examine buletooth.c
and locate line 190 after a quick view of the bug report. It is obvious that the buf variable is defined
by the third parameter priv at line 187. Therefore, the value of buf depends on its call site. Then,
they would carefully track the error trace reported by the static analyzer or try to examine all the
call site that calls acl_read_cb. By capturing the function’s arguments at line 230, they were able
to simulate symbolic execution and determined that the condition at line 189 always evaluates
to the false branch. This static warning can ultimately be suppressed due to the static analyzer’s
context or path sensitivity. For another instance in Figure 2, it is easy to dismiss by the developers
as long as they understand the high-level code logic. By quickly reviewing the natural language
comment, it becomes evident that this is an insignificant warning.

2.3 A Desired LLMs-powered Static Analysis Pipeline

We begin by presenting a fundamental introduction to LLMs [98] that underpin our approach.
LLMs are neural models trained on extensive text data that encompasses both natural language
and source code, through employing self-supervised learning objectives. Specifically, LLMs have
been trained on tremendous and diverse datasets, allowing them to exhibit proficient capabilities in
simulating human language skills. As a result, they have brought about significant advancements
across multiple domains. Recent advancements in decoder-only LLMs, like ChatGPT [58], a general
LLM released by OpenAI, has demonstrated exceptional proficiency in understanding program
code and is increasingly employed in the realm of program analysis [20, 29, 45, 46, 74, 75]. One
advantageous characteristic of LLMs lies in their adaptability to diverse tasks, facilitated by prompt
engineering techniques [8, 82]. These techniques involve designing effective input prompts to
elicit desired outputs from LLMs. Inspired by this characteristic, we believe that the adaptability
of LLMs provides a promising alternative for comprehending bug reports expressed in natural
languages, analyzing code behavior, and assessing the consistency between code behavior and the
bug description produced by static analysis tools.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:7

Fig. 3. A static analysis pipeline equipped with Llm4sa, improving the precision of Cppcheck, Infer, and Csa.

Our research is driven by the status quo, where the manual inspection of static analysis warn-
ings is laborious and time-consuming for software practitioners due to the sheer volume of false
positives and the discrepancies between tools and their corresponding reports [5, 68]. In light of
this, we propose leveraging the natural language processing and code comprehension capabilities
of LLMs to automate the manual inspection process for thousands of static warnings. Specifically,
we envision an LLM-powered static analysis pipeline called Llm4sa, as depicted in Figure 3, which
could fully automatically inspect each static warning, capturing real bugs with high precision and
efficiency. In general, the most effective approach for validating a potential bug may vary based on
the specific circumstances and the preferences of the developers with their experience. We believe
that, when dealing with large codebases that produce plenty of bug reports, traditional approaches
(e.g., manual inspection) can be challenging to use and often require extensive expertise to max-
imize their effectiveness, limiting their practical applicability. Comparatively, Llm4sa provides a
more practical and intuitive method for examining bug warnings, effectively substituting human
involvement in the process. With its natural language processing and knowledge representation
capabilities, Llm4sa can analyze code snippets, offer bug explanations in a developer-friendly man-
ner, scrutinize bug warnings, and confirm the genuineness of reported bugs Specifically, a compar-
ison of the advantages of Llm4sa with other traditional approaches is presented in Table 1, which
will be further discussed in Section 5.

To illustrate the responses of LLMs, specifically ChatGPT used in Llm4sa, we provide sample
outputs in Figure 4 against the motivating examples mentioned above. Specifically, Llm4sa can
explain static bug warnings and code logic, elucidating the specific reasons behind a bug occur-
rence in a particular piece of code, as well as identifying cases of false alarms. By leveraging its
understanding of the code and the connections between the code and the bug report, Llm4sa gen-
erates explanations when it detects false alarms or genuine bugs in the code. These explanations
are valuable in helping developers comprehend the root cause of the bug and provide guidance on
how to fix it. Ultimately, Llm4sa draws conclusions based on these explanations, and the results
are output as the format “@@@ result @@@” in the last line, facilitating post-processing and
seamless integration into the pipeline.

3 METHODOLOGY

3.1 Overview

We first outline the internal workflow of Llm4sa shown in Figure 5. First, Llm4sa conducts the
pre-processing to unify and convert the bug reports produced by different static bug-finding tools.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

168:8 C. Wen et al.

Table 1. Capability of Llm4sa Compared to Other Approaches (e.g., Manual Inspection, Dynamic

Approaches, Pattern Matching)

Capability Description

Speed
Llm4sa is fast in reasoning, explaining reports, and making conclusions for bug
warnings, compared to traditional approaches like symbolic execution, which
generally requires much time in solving path constraints for generating valid
inputs [11].

Ease of use (developer-friendly) The strong natural language generation capabilities of Llm4sa powered by LLMs can
facilitate developers in comprehending its results, while traditional approaches are
difficult to reach. For example, Infer [21] reports only the program line where the bug
finally triggers, rendering it difficult for users to manually confirm.

Integration with existing tools Llm4sa offers much flexibility and can easily be integrated into a static analysis
pipeline, as it solely operates on the outputs (i.e., bug reports) without intruding into
the internal workings of static analysis tools.

Scalability
Llm4sa can inspect large reports from analyzing large programs, thanks to extracting
relevant code snippets through effective program dependence reasoning. In contrast,
traditional approaches like dynamic testing make it difficult to generate specific
inputs and configurations that trigger bugs in large programs.

Cost of money
Llm4sa leverages readily available (or affordable) LLMs, which are often accessible as
cloud-based services, providing a flexible pricing model. In contrast, traditional
approaches like dynamic symbolic execution can require powerful computer servers
to store and solve complex path constraints.

Applicability
Llm4sa offers the capability to validate bug warnings generated by static tools
without the need for constructing dynamic execution environments. Thus, Llm4sa is
applicable to a wide range of applications, including embedded systems, where
dynamic testing often requires specific hardware preparation.

Precision
Llm4sa is generally precise due to the strong code understanding of LLMs that can be
further improved by using advanced LLMs, superior prompt engineering, and
fine-tuning. Note that previous approaches like dynamic symbolic execution can offer
higher accuracy but come with prohibitive costs and low efficiency.

Fig. 4. Sample results from Llm4sa for the code snippets in Figure 1 and Figure 2.

As the tools can generate numerous warnings for a particular project, Llm4sa splits the whole
report into a single warning as the fundamental unit of automatic inspection. In addition, as
the varying formats of static warnings generated by different tools result in discrepancies in the
reported information, Llm4sa converts these static warnings into a unified and comprehensive

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:9

Fig. 5. The workflow of Llm4sa, consisting of the pre-processing, code snippet extraction, prompt engineer-

ing, and post-processing.

format, whereby encoding the bug type, description, bug location/trace, and other relevant data.
Note that this conversion integrates crucial information that facilitates comprehension for both
sides of LLMs and developers.

Second, Llm4sa employs program dependency analysis to create a code database that stores
code snippets related to bug reports by analyzing the entire project source code under review.
Specifically, extracting the necessary code snippets mitigates the token limitation of LLMs.
By utilizing the information from the formatted bug report (e.g., error trace/location), Llm4sa
conducts a static program dependency analysis to identify the relevant function bodies associated
with the bug. Additionally, Llm4sa identifies the essential calling context, such as callers and
callees, in the code snippet. Consequently, the code snippet extraction algorithm in Llm4sa strives
to generate a concise and comprehensive code snippet, encompassing sufficient information for
LLMs to inspect the bug.

Third, after deriving the code snippets, Llm4sa efficiently constructs prompts that facilitate the
querying of LLMs for the purpose of inspecting static warnings. Specifically, the prompts describe
the task of confirming whether the bug warning represents a real bug or not via a natural language
description. By putting the formatted bug report and the corresponding code snippet together and
leveraging prompt engineering techniques, LLMs are guided to provide improved explanations
and make precise conclusions. We use prompt engineering techniques (e.g., Chain-of-Thought

(CoT) and few-shot prompting) to improve the accuracy and consistency of the LLMs’ answers.
Finally, Llm4sa performs post-processing, which consists of determining the confidence level of

the LLMs’ responses by considering factors including the proportion of consistent answers. Specif-
ically, the post-processing aims to mitigate the problem of unreliable and inconsistent responses
produced by LLMs. Based on the confidence level, Llm4sa is able to classify the static warning into
one of three categories: False Alarm, Real Bug, or Unknown.

We have briefly outlined the internal workflow of Llm4sa. In the following subsection, we will
shed light on how Llm4sa works in detail, covering the four aspects: (1) the pre-processing on
static bug warnings; (2) the code snippet extraction based on program dependency analysis; (3)
the prompt engineering; (4) the post-processing.

3.2 Pre-processing on Static Bug Warnings

At a high level, the initial pre-processing focuses on transforming bug reports generated by various
static bug-finding tools into a standardized format. This enables Llm4sa to handle the reports in
a uniform and streamlined manner. The standardized format captures basic bug characteristics,
which can be easily adapted to accommodate reports from different tools.

Bug type Mapping and Grouping. Static analyzers often use different labels or identifiers to
categorize the types of bugs they analyze, such as Cppcheck employing Common Weakness

Enumerations (CWEs) while others use their own identifiers. As a result, inconsistent bug

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

168:10 C. Wen et al.

Table 2. Bug Type Mapping and Grouping

Bug Type

(abbreviation)
CWE ID CWE Title Bug Identifiers in Different Static Analyzer

Null pointer dereference
(NPD)

CWE-476
CWE-690

NULL Pointer Dereference
Unchecked Return Value to NULL Pointer Dereference

Cppcheck: nullPointer;
Infer: Null Dereference;
Csa: Dereference of null pointer,

Dereference of undefined pointer value.

Uninitialized variable
(UVA)

CWE-457
CWE-824

Use of Uninitialized Variable
Access of Uninitialized Pointer

Cppcheck: uninitvar, uninitdata,
uninitStructMember, legacyUninitvar;

Infer: Uninitialized Value;
Csa: Uninitialized argument value,

Assigned value is garbage or undefined.

Use after free
(UAF)

CWE-415
CWE-416

Double Free
Use After Free

Cppcheck: doubleFree, deallocuse,deallocDealloc;
Infer: Use After Free, Use After Delete;
Csa: Use-after-free.

Divide By Zero
(DBZ)

CWE-369 Divide By Zero
Cppcheck: zerodiv,;
Infer: Divide By Zero;
Csa: Division by zero.

Memory leak
(ML)

CWE-401 Missing Release of Memory after Effective Lifetime
Cppcheck: memleak, memleakOnRealloc;
Infer: Memory Leak;
Csa: Memory leak, Free alloca().

Buffer overflow
(BOF)

CWE-121
CWE-122
CWE-124
CWE-125
CWE-126
CWE-127

Stack-based Buffer Overflow
Heap-based Buffer Overflow

Buffer Underwrite
Out-of-bounds Read

Buffer Over-read
Buffer Under-read

Cppcheck: arrayIndexOutOfBounds,
bufferAccessOutOfBounds,
arrayIndexOutOfBoundsCond;

Infer: Buffer Overrun L2, Buffer Overrun L3,
Buffer Overrun S2;

Csa: Out of bound memory access.

identifiers and prompts can occur even for the same bug across different tools. To address this is-
sue, we have developed a mapping and grouping approach that assigns each specific bug identifier
from different analyzers to a corresponding CWE ID, allowing for automated and easily extensi-
ble pre-processing to assess if the bug types identified by the tools align with the actual bugs in
the code. An example of this mapping is shown in Table 2, which demonstrates how various bug
identifiers from different analyzers are linked to the null-pointer-dereference bug type through
the CWE-476 and CWE-690 identifiers.

A Uniform Format in JSON. Different static analyzers generate bug reports in various formats
that encode various kinds of program information to help developers locate and understand the
bugs. For example, Cppcheck, Csa, and Infer create bug reports in various forms, such as XML,
PLIST, and JSON, respectively. To unify the reports, we convert the bug warning to a customized
format in JSON, including six general information: the bug type, the file path, the function name,
the error location, the error trace, and the corresponding description.

(1) The bug type denotes the category of bugs, such as null pointer dereference, use-after-free,
and so on.

(2) The file path indicates the path of the source code file where the bug is detected.
(3) The function name field specifies the function in which the bug can occur.
(4) The error location field provides the exact line and column number in the source code file

where the bug is detected.
(5) The error trace field presents a stack trace that showcases the execution flow leading up to

the bug.
(6) The description field comprehensively explains the bug in a natural language description for

users.

The detailed information mentioned above serves to assist developers in efficiently identifying
bugs, locating them within the code and comprehending the associated code segments. Further-
more, static analyzers offer natural language descriptions of bugs, which significantly aid develop-
ers in understanding and pinpointing the bugs. In Table 3, various descriptions of a null pointer
dereference bug from different static analyzers are consolidated into a single field within the

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:11

Table 3. Bug Reports from Different Static Analyzers for the Same Bug

Bug

Type

Static

Analyzer

Format

of Report
Description

Null pointer
dereference

Cppcheck .xml
subsys/usb/class/bluetooth:190

Possible null pointer dereference: buf.

Csa .plist
subsys/usb/class/bluetooth:190

Access to field “len” results in a dereference of a null pointer (loaded from variable “buf”).

Infer .json
subsys/usb/class/bluetooth: 190

pointer “buf” last assigned on line 187 could be null and is dereferenced at line 190.

formatted bug report. By converting bug warnings into a standardized JSON format, Llm4sa en-
sures that all bug-related information is organized consistently. As a result, our pre-processing
on static bug warnings facilitates seamless processing, analysis, and sharing of bug data among
developers, LLMs, and other bug management tools.

3.3 Code Snippet Extraction Based on Program Dependency Analysis

As mentioned, manual inspections typically do not costly analyze the entire project code; instead,
the process typically focuses on a few critical functions around the reported bugs. Based on this
observation, Llm4sa derives only bug-related code snippets that are enriched with the necessary
calling contexts. To achieve this, Llm4sa extracts code snippets related to bugs from the analyzed
program by combining bug reports and the traversal of the program dependency graph. At a high
level, the program dependency graph [25] is a directed graph that characterizes the data depen-
dence and control dependence relationships [2] among functions, statements, and variables in a
program. To extract the relevant functions, we begin by identifying the relevant statements that are
data- or control-dependent on the statements described in the bug reports. The relevant functions
are then determined by considering all the functions in which the identified relevant statements
are located. We incorporate the concepts of control dependence and data dependence and define
the program dependence graph G formally as below.

Control dependence and data dependence are two types of dependencies that affect the execu-
tion of program instructions.

Definition 3.1. The program dependence graph of a program can be considered as a triple G =
(N ,Ed ,Ec), where

— N is the node set. Each node is a statement or, equivalently, the variable defined by the
statement.

— Ed ⊆ N × N is a set of directed edges representing data dependence. Each edge is from one
statement to the other, which refers to the variable defined in the source statement.

— Ec ⊆ N × N is a set of directed edges representing control dependence. Each edge is from a
statement to an if-statement—the source statement is reachable at runtime if and only if the
if-statement is reachable and the branch condition defined in the if-statement is true.

To provide more clarity, our code snippet extraction algorithm first focuses on selecting a spe-
cific subset of nodes and edges from the program dependency graph that is directly relevant to
the bug warning. In principle, the relevance is determined based on two criteria: (1) the nodes that
are explicitly mentioned in the bug warning and (2) the nodes that can be reachable transitively
from other relevant nodes (via data-dependent or control-dependent edges). The outcome of our
code snippet extraction is a collection of function bodies encompassing the relevant nodes, pro-
viding a concise representation of the code snippet associated with the bug warning. For instance,
in the example depicted in Figure 1, if a bug warning highlights a null pointer dereference issue
involving the variable buf within the function acl_read_cb, then we collect the nodes that can be

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

168:12 C. Wen et al.

ALGORITHM 1: Code Snippet Extraction through traversal on program dependency graph

Input: A bug warningW and a constructed program dependency graph G
Output: a code snippet S including a set of function bodies that are relevant toW

1 errorTrace = extract_trace_info(W) ; // extract the error trace from a bug warning W

2 Worklist ← ∅ ; // initialize a worklist W orklist that is used to collect relevant nodes in W

3 for each l in errorTrace do
4 n = find_mapped_node(G, l) ; // l denotes a program line; find the node n in G that

corresponds to the l

5 Worklist ←Worklist ∪ n ; // put the relevant nodes described in a report to W orklist

6 N ← ∅ ; // initialize a set N that is used to collect all nodes related to W

7 whileWorklist ! = ∅ do
8 n ← select_and_remove_a_node (Worklist) ; // We transitively collect all reachable

(relevant) nodes

9 if n is not visited then
10 for n′ is data-dependent on n in G do
11 Worklist ←Worklist ∪ n′ ; // get the reachable node n

′ through data-dependent edge

e, e ∈ Ed

12 for n′ is control-dependent on n in G do
13 Worklist ←Worklist ∪ n′ ; // get the reachable node n

′ through control-dependent

edge e, e ∈ Ec

14 N ← N ∪ n ; // Collect all reachable n to N

15 S ← ∅ ; // initialize an empty set S

16 for each n in N do
17 f ← retrive_function (n) ; // Collect all the functions that contain each node

18 if f is not in S then
19 S ← f ∪ S ; // Avoid collecting repeated nodes

20 return S

transitively reached based on the data and control dependence relationships encoded within the
graph, outputting the two functions acl_read_cb and bluetooth_status_cb.

Formally, our code extraction algorithm is presented in Algorithm 1, which takes two inputs:
a bug warning W generated by a bug-finding tool and a program dependency graph G. The bug
warningW includes details about the bug’s type, message, and the specific program location within
the source code that is of interest. In our algorithm, we denote a program line as l . The output of the
algorithm is a code snippet S , which consists of a collection of relevant function bodies associated
with the bug warningW . In detail, the algorithm works as follows:

(1) Lines 1–6: To begin, we gather the error trace errorTrace from the bug warningW , which is
a sequence of program locations (each one is denoted as l) indicating where the bug occurs
and the path it takes in the source code. It is important to note that, in certain cases, the
trace might only provide the error location (i.e., a single l) due to the limitations of the static
analyzer. Using this error trace, we gather the corresponding program nodes mentioned in
the trace by retrieving the graph G and adding each node n to a worklistWorklist .

(2) Lines 6–15: Next, we proceed with traversing the program dependency graph G to gather
additional nodes that are relevant to the initial nodes mentioned in the bug reportW . This
is done by iterating over each node n that is removed from theWorklist later. From node n,
we collect all nodes in the graph G that can be reachable through either control-dependent
edges (Ec) or data-dependent edges (Ed). The purpose of collecting these reachable nodes is

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:13

Fig. 6. Example of prompt used to inspect bug warnings.

to capture any nodes that are connected to the occurrence of the bugs. We also gather all
the reachable nodes n and store them in the set N .

(3) Lines 15–20: Finally, we retrieve the functions (each one is denoted as f) that encompass the
nodes collected in the previous step and include them in the code snippet S . Intuitively, the
retrieved functions are those relevant functions where the relevant statements are located.
To ensure that there are no duplicate entries, we avoid adding functions that have already
been included in S . The code snippet S thus comprises the relevant function bodies associated
with the bug warning, along with any annotations. This code snippet provides the essential
information for language models to comprehend the warning effectively.

Performing precise program dependency analysis via pointer analysis on a large-scale codebase
is widely recognized as time-consuming and not scalable. To offer a more practical alternative, our
observation is that developers often rely on IDE environments for source code comprehension, as
the syntax in the source code strongly implies control dependence and data dependencies; these
IDE environments take advantage of fast scans to assist in locating relevant function definitions.
Based on this insight, we develop a lightweight and efficient approach that shares similarities
with the code scanning analysis employed by IDEs. Specifically, CodeQuery [63] is a pattern-based
static analysis approach [97] that employs regular expressions and various strategies to extract
additional information from program texts, including syntax and type information. CodeQuery en-
ables us to conduct thorough code searches including symbol references, global definitions, func-
tion calls, and reverse function calls. For more details, please refer to our implementation.

Once we have extracted the relevant code snippet corresponding to a bug report, our next step
involves constructing a customized question specifically designed to query LLMs for the purpose
of validating the bug reports.

3.4 Prompt Engineering

In this section, we describe how Llm4sa harnesses LLMs to validate the code snippet obtained from
a bug report by employing prompt engineering. It is worth noting that prior research has shown
that the effectiveness of LLMs considerably depends on the way they are prompted to address a
particular problem [40]. The process of determining the effective query formulation for a specific
task is commonly known as prompt engineering [8, 82].

Llm4sa aims to generate effective prompts for LLMs, thereby guiding them to examine bug warn-
ings and produce reliable and precise answers. Specifically, a prompt in our framework refers to a
natural language query containing essential information about the bug warning and code snippets.
The prompts typically comprise four key elements: instruction, context, input data, and output in-
dicator, which are depicted in Figure 6, where a prompt is illustrated for inspecting bug warnings

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

168:14 C. Wen et al.

in a code snippet. Specifically, Llm4sa creates a Markdown document to construct the prompt.
The context is provided in the first line (i.e., “I am an expert C/C++ programmer.”), while the in-
structions are placed below the “Task Description” section. Besides, the input data is presented in
blue text, which is based on templates that can be programmatically populated with specific bug
reports and code snippets. Furthermore, the “Task Description” section concludes with a sentence
that instructs the desired output format. This output format is critical, as it requires programmatic
processing of the LLM’s response.

We introduce two prompt engineering techniques, namely, Chain-of-Thought (CoT) [19, 81,
82, 91] and few-shot prompting [8, 66, 87, 93], to construct customized and effective prompts in
Llm4sa:

— Chain-of-Thought. CoT prompting offers two key advantages as an approach to facilitate
reasoning in language models. First, it enables models to break down complex problems
into intermediate steps, allocating additional computation to tasks requiring more reason-
ing steps. Second, a chain of thought provides an interpretable insight into the model’s be-
havior. It allows us to understand how the model arrived at a specific answer and presents
opportunities to debug the reasoning process. To encourage stepwise reasoning, we prompt
the language models to “think step by step.” This approach not only helps generate more
comprehensive and extended responses but also breaks down intricate problems into man-
ageable steps, allowing for an interpretable view of the code’s behavior. Consequently, we
incorporate the CoT strategy into our prompt.

— Few-shot Prompting. Few-shot prompting, also referred to as few-shot learning (or in-
context learning) with prompt, involves using a limited number of demonstrations that can
be accommodated within the model’s context window without allowing any weight updates.
This approach allows us to guide LLMs by providing them with a small set of question-
answer examples, which helps them generate the desired outputs. By doing so, we can lever-
age previous knowledge and experiences to effectively handle new and unfamiliar situations.
In our specific case, this involves providing code snippets, bug warnings (as questions), and
corresponding explanations obtained through manual inspection (as answers). As a result,
we incorporate the few-shot prompting strategy into our prompt.

In the workflow of Llm4sa, LLMs are first required to analyze the behavior of the code, present
an explanation regarding the presence or absence of a bug, and finally make an appropriate conclu-
sion. By incorporating CoT, LLMs can decompose complex reasoning problems into intermediate
steps, facilitating a better understanding of the code’s behavior. In addition, by combining CoT
with few-shot prompting, Llm4sa achieves improved results for more intricate tasks that require
reasoning prior to generating a response. For example, in the case of inspecting a null pointer deref-
erence bug, Llm4sa provides two code snippets demonstrating null pointer dereference warnings
along with their explanations. The LLMs are subsequently prompted to explain a new code snippet
that exhibits a similar warning. Through few-shot prompting, LLMs can leverage their knowledge
from previous cases and apply it to address novel situations effectively.

3.5 Post-processing

Post-processing plays a crucial role in ensuring the quality and reliability of the answers gen-
erated by LLMs. We propose the notion of a confidence level for each bug warning, which rep-
resents a numerical score indicating the certainty of the LLMs regarding their answers. This
confidence level, ranging from 0 (low confidence) to 1 (high confidence), is derived from the
LLMs’ internal probability distribution over the potential answers, reflecting their estimation of
uncertainty.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:15

To calculate the confidence level, Llm4sa employs LLMs to generate a set of answers. These
answers are then aggregated, and the probability of each answer is computed within the overall
answer set. By comparing each answer’s probability with a predefined threshold value, we can
filter out unreliable or inconsistent answers. In our approach, the threshold is set to 0.7, meaning
that only answers with a confidence level of 0.7 or higher are classified as either real bugs or false
alarms. Answers below this threshold are labeled as unknown, which ensures that Llm4sa provides
reliable and trustworthy answers.

The presence of unknown results can be attributed to two situations: first, when the information
within the provided code snippet is insufficient to confirm the presence or absence of a bug, such
as missing data structure definitions or calling contexts; second, when LLMs produce inconsistent
results. During the post-processing stage, users of Llm4sa have the flexibility to decide whether
to prune away the results labeled as “unknown” or include them in the final output, based on their
preference for false positives or false negatives. Our experience indicates that adopting a conser-
vative approach by including the unknown results in the final output proves effective, particularly
when applying Llm4sa to real-world software. If the objective is to minimize false alarms detected
by the static analyzer, then removing all unknown results would be appropriate. However, if the
goal is to identify real bugs as precisely as possible, then it is advisable to retain the results marked
as unknown for subsequent manual review.

4 IMPLEMENTATION

We implement the prototype of Llm4sa based on CodeQuery [63] and OpenAI’s API (or Llama-2’s
API).

Code Extraction. Implementing code extraction faces practical challenges and requires signifi-
cant engineering efforts. Performing precise pointer analysis and dependency analysis on a large-
scale code base is well established as a time-consuming and non-scalable task. In search of a more
practical alternative, our solution is based on the observation that developers heavily rely on IDE
environments for source code reading. These environments utilize fast scans to assist in locating
relevant function definitions. Therefore, we opted to develop our solution utilizing CodeQuery, a
lightweight implementation that shares similarities with the code scanning analysis employed by
IDEs. This part, which involves pre-processing static bug warnings, is implemented in Python and
consists of roughly 1,500 lines of code. CodeQuery is employed to build a comprehensive code
database. This enables us to conduct comprehensive code searches, including symbol references,
global definitions, function calls, and reverse function calls. Consequently, managing function call
dependencies becomes effortless for us.

Interaction with LLMs. The interaction between Llm4sa and LLMs is facilitated by a basic Python
agent, which consists of approximately 900 lines of code. All interactions are fully automated via
OpenAI’s API. The study utilizes a basic zero-shot prompt, which excludes bug warnings and code
snippets, consisting of approximately 500 tokens. It also utilizes six distinct few-shot prompts, each
with three examples, addressing bug warning inspection on null pointer dereference, uninitialized
variable, use-after-free, divide by zero, memory leak, and buffer overflow, respectively.

Hyper-parameters. There are several hyper-parameters in calling the APIs provided by Chat-
GPT [39] and Llama-2. For ChatGPT, we set the values of max_token and temperature to 2,048
and 0.7, respectively. The parameter max_token controls the length of the output. Since LLMs pre-
dict the next words based on the previous output, longer outputs can provide more comprehensive
reasoning. However, using too many tokens can quickly exhaust the context window. Therefore,
we chose 2,048 as a balanced option. We also include the result of average prompts tokens in our
evaluation. The temperature regulates both randomness and the capacity for reasoning. Ideally,
we aim for the analysis to exhibit minimal randomness by decreasing the temperature (ranging

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

168:16 C. Wen et al.

from 0 to 2 for GPT models). Nevertheless, excessively low temperatures may lead to repetitive or
overly simplistic responses. Following prior work [1, 36, 37, 73], we employed a temperature of 0.7
to adjust the model settings, aiming to generate a wide range of output for the target code snippet
and bug warning. For Llama-2, we simply use its default setting.

5 EMPIRICAL EVALUATION

This section presents a comprehensive evaluation of the effectiveness and usefulness of Llm4sa.
The experiments conducted aim to answer the following research questions:

RQ1. How effective can Llm4sa be in inspecting different types of static bug warnings in
benchmark programs?

RQ2. To what extent can Llm4sa effectively operate alongside static analyzers by automati-
cally inspecting static warnings in real-world software?

RQ3. Can Llm4sa benefit from few-shot prompting?
RQ4. How does Llm4sa compare to other SOTA static warnings scrutinizing methods?
RQ5. What overhead is incurred by Llm4sa in terms of execution time and token cost?

5.1 Evaluation Setup

Static analyzers. We experimentally select three state-of-the-art static analyzers, including Cp-
pcheck (v2.9), Csa (llvm v12.0.1), and Infer (v1.1.0). The commands for each static analyzer used
in our evaluation are shown in Table 10 in the Appendix.

Types of Bugs. Our evaluation examines six representative categories of harmful bugs, including
null pointer dereference (NPD), uninitialized variable (UVA), use-after-free (UAF), divide

by zero (DBZ), memory leak (ML), and buffer overflow (BOF). As described in Table 2, bug
identifiers from different static analysis techniques can be mapped and grouped into distinct cate-
gories. We use abbreviations to represent them when presenting the evaluation results.

Benchmark Programs. To understand the capability of Llm4sa in automatically inspecting bug
warnings, we evaluate it on both benchmark programs and real-world software. We first evaluate
Llm4sa by utilizing a collection of benchmark programs from the Juliet test suite that encompass
a diverse range of bugs and for which ground truth data is available. We then use 3 embedded
real-time operating systems and 11 well-maintained open-source C/C++ projects to evaluate the
bug warning inspection ability of Llm4sa in real-world software.

Large Language Models. All interactions with LLMs, such as sending requests to LLMs or receiv-
ing responses from LLMs, are performed via API. The LLama-2 version of our tool, referred to as
Llm4saL , utilizes the Llama-2-70b model, which is currently the largest parameter model available
in the Llama-2 series. Similarly, the ChatGPT version of our tool employs the gpt-3.5-turbo-16k-0613

model, which supports the longest input and ensures that the token limit is not exceeded during our
evaluation. For comparison, We also include two versions of Llm4sa, one with few-shot prompting
(referred to as Llm4saF) and another with zero-shot prompting (referred to as Llm4saZ).

5.2 Effectiveness of Llm4sa in Benchmark Programs (RQ1)

The Juliet C/C++ Test Suite2 released by NIST contains a collection of test cases, which are clas-
sified based on MITRE’s Common Weakness Enumeration (CWE) classification system. This
test suite has been widely used to evaluate both static analysis and dynamic testing approaches.
Each test case can run as an independent program and contains two variants: a bad variant that
contains a flaw and a good one that does not. All bad variants can be used to evaluate the bug

2https://samate.nist.gov/SARD/test-suites/112

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

https://samate.nist.gov/SARD/test-suites/112

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:17

Table 4. The Results of Bug Warnings Inspection on the Juliet Test Suites (ChatGPT)

Llm4saZ on Cppcheck’s warnings Llm4saZ on Csa’s warnings Llm4saZ on Infer’s warningsBug
Type TP+TN FP+FN (UK) Accuracy Precision Recall TP+TN FP+FN (UK) Accuracy Precision Recall TP+TN FP+FN (UK) Accuracy Precision Recall
NPD 158 10 (10) 94.05% 100.00% 94.05% 156 25 (3) 86.19% 87.64% 100.00% 227 34 (2) 86.97% 87.64% 99.13%
UVA 326 12 (1) 96.45% 96.74% 100.00% 279 132 (9) 67.73% 39.34% 99.28% 145 223 (1) 39.24% 69.25% 100.00%
UAF 14 0 (0) 100.00% 100.00% 100.00% 18 0 (0) 100.00% 100.00% 100.00% – – – – –
DBZ 35 3 (3) 92.11% 100.00% 92.11% 49 1 (1) 98.00% 100.00% 98.00% – – – – –
ML 39 13 (1) 75.00% 76.47% 97.50% 507 187 (3) 73.08% 73.40% 99.80% – – – – –
BOF 935 383 (81) 70.94% 84.28% 83.30% – – – – – 2,604 389 (245) 87.00% 95.30% 92.59%
All 1,507 421 (96) 78.16% 88.43% 88.22% 1009 345 (16) 74.52% 75.39% 99.60% 2976 646 (248) 82.25% 88.46% 93.41%

*The bug type follows the abbreviations shown in Table 2; the special symbol “–” indicates that this item is not
available due to either meaningless or nonexistent data.

detection rate of a tool, while good variants can be used to evaluate the false positive rate of a
tool. Thus, we have ground truth to evaluate the effectiveness of Llm4sa in these benchmark pro-
grams. We analyze each test with Cppcheck, Csa, and Infer and get a total of 6,904 bug warnings
(for a more comprehensive breakdown of the results from the static analysis tools, please refer to
Table 11 in the Appendix).

Llm4sa automatically processes each bug warning one-by-one. The bug warnings can be clas-
sified by Llm4sa as real bugs, false alarms, or unknown. Table 4 shows the classification results of
Llm4sa, where all the unknown results are conservatively considered as wrong answers, that is,
false negatives (FN) if the unknown warnings are real or false positives (FP) if not. Note that the
“Accuracy” column measures the accuracy of bug warning classifications by Llm4sa, capturing the
proportion of correctly identified real bugs and false alarms. The “Precision” column quantifies the
percentage of all real bugs correctly identified by Llm4sa among all positives. The “Recall” column
quantifies the percentage of all real bugs correctly identified by Llm4sa among all real bugs.

In total, Llm4sa inspected 6,904 bug warnings and correctly identified 5,492 of them as either
real bugs or false alarms. This corresponds to an accuracy rate of 79.5%, surpassing the precision
of the static analyzer itself. Llm4sa has also demonstrated its effectiveness in accurately identify-
ing nearly all legitimate bugs, resulting in a high recall rate. While this result is encouraging, it
does not imply that Llm4sa can completely replace human inspection of bug warnings. Detailed
data analysis reveals that: (1) There is a significant difference in the performance of Llm4sa on
static warnings generated by different static analyzers. For example, in the UVA category, Llm4sa
achieves precision rates of 96.74%, 39.34%, and 69.25%. (2) Llm4sa can achieve high precision and
recall rates on certain bug types, specifically NPD, UAF, and DBZ. However, it performs relatively
poorly on ML and BOF bugs, as analyzing long traces or loops is often required in these cases.
For example, on static warnings generated by the Cppcheck, Llm4sa achieves a high accuracy of
94.05% for NPD, while the accuracy for ML is 75%. This also appears on static warnings generated
by CSA.

We have also included the number of unknown results (UK) in parentheses within the FP+FN
column. In some cases, false positives can arise when Llm4sa categorizes a bug warning as “un-
known” because it needs additional context for analysis or due to inconsistent results. Thus, in
practice, unknown results can be approximated as either real bugs or false alarms, depending on
the individual’s objective to improve precision or recall rate. If we consider those unknown results
as bugs, then the precision in inspecting bug warnings reported by Cppcheck, Csa, and Infer is up
to 81.95%, 74.74%, and 87.30%, while the recall can be up to 92.50%, 99.90%, and 99.39%, respectively.

A similar result is also obtained by running Llm4saL , which utilizes the open-source large lan-
guage model Llama-2. Llm4saL can correctly identify 4,847 bug warnings as either real bugs or
false alarms, achieving an accuracy rate of 70.2%, as shown in Table 5. The results demonstrate that
Llm4sa can easily be generalized to other popular open-source LLMs, even if this result (70.2%)
is lower than the accuracy rate of 79.5% achieved by Llm4saZ . Note that we can also observe
that when examining the warnings provided by Cppcheck, Llama-2-70b achieved a high precision

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

168:18 C. Wen et al.

Table 5. The Results of Bug Warnings Inspection on the Juliet Test Suites (LLama-2)

Llm4saL on Cppcheck’s warnings Llm4saL on Csa’s warnings Llm4saL on Infer’s warningsBug
Type TP+TN FP+FN (UK) Accuracy Precision Recall TP+TN FP+FN (UK) Accuracy Precision Recall TP+TN FP+FN (UK) Accuracy Precision Recall
NPD 81 87 (84) 48.21% 100.00% 48.21% 114 67 (15) 62.98% 91.23% 66.67% 147 114 (36) 56.32% 98.43% 54.59%
UVA 305 33 (3) 90.24% 96.21% 93.56% 232 179 (44) 56.45% 74.14% 77.06% 95 273 (73) 25.82% 26.20% 49.31%
UAF 14 0 (0) 100.00% 100.00% 100.00% 18 0 (0) 100.00% 100.00% 100.00% – – – – –
DBZ 30 8 (1) 78.95% 100.00% 78.95% 29 21 (3) 58.00% 100.00% 58.00% – – – – –
ML 41 11 (0) 78.85% 78.43% 100.00% 501 193 (10) 72.19% 82.51% 79.25% – – – – –
BOF 978 340 (43) 74.20% 87.88% 80.89% – – – – – 2,274 719 (422) 75.98% 96.51% 77.83%
All 1,437 491 (143) 75.16% 90.29% 90.66% 894 460 (72) 66.03% 81.70% 76.11% 2,516 1,106 (531) 69.46% 89.29% 74.80%

Table 6. Comparison Results of Different Variants of Llm4sa on IoT Embedded OSes

Project Name
Cppcheck

(npd,uva,bof,dyz,uaf)

+ Llm4saZ

(npd,uva,bof,dyz)

+ Llm4saF

(npd,uva,bof,dyz)

Infer

(npd,uva,bof,dyz)

+ Llm4saZ

(npd,uva,bof,dyz)

+ Llm4saF

(npd,uva,bof,dyz)

Found bugs 95 (24,48,22,1,0) 62 (18,31,12,1,0) 39 (16,15,7,1,0) 141 (23,118,0,0) 86 (14,72,0,0) 72 (8,64,0,0)
Zephyr

Real bugs 2 (1,0,1,0,0) 2 (1,0,1,0,0) 2 (1,0,1,0,0) 1 (1,0,0,0) 1 (1,0,0,0) 1 (1,0,0,0)
Found bugs 57 (33,10,13,1,0) 21 (10,1,10,0,0) 15 (5,1,9,0,0) 32 (5,10,17,0) 13 (3,1,9,0) 11 (2,0,9,0)

RIOT
Real bugs 2 (2,0,0,0,0) 2 (2,0,0,0,0) 2 (2,0,0,0,0) 1 (1,0,0,0) 1 (1,0,0,0) 1 (1,0,0,0)

Found bugs 424 (110,277,26,9,2) 247 (53,177,10,5,2) 151 (49,77,17,4,2) – – –
TencentOS-tiny

Real bugs 7 (3,4,0,0) 7 (3,4,0,0) 7 (3,4,0,0) – – –
Real bugs/Found bugs (TPR%) 11/576 (1.72%) 11/330 (3.33%) ⇑ 11/205 (5.37%) ⇑ 2/173 (1.20%) 2/99 (2.00%) ⇑ 2/83 (2.40%) ⇑

Precision/Recall of staticAnalyzer +Llm4sa – 44.62% / 100% 66.32% / 100% – 43.90% / 100% 53.20% / 100%

*The bug type follows the abbreviations shown in Table 2; The special symbol “–” indicates that this item is not
available due to either meaningless or nonexistent data.

rate and recall rate (over 90%), slightly surpassing the performance of ChatGPT-3.5. Comparatively,
when evaluating the warnings from Infer and Csa, Llama-2-70b has lower performance. We an-
ticipate that through the advancement of open-source LLMs and the optimization of prompts, the
outcomes of this experiment will be improved.

� Finding 1: Static analyzers demonstrate an impressive bug detection rate, ranging from 27.67% to

54.63% across various analyzers, while maintaining a low rate of false positives, ranging from 4.08%

to 9.76%, in benchmark programs.

� Finding 2: The reasoning ability of Llm4sa for different types of bugs is not the same, as described

previously.

Answer to RQ1: Llm4sa demonstrates potent capabilities in automatically inspecting six
types of bug warnings that are generated by three static analyzers, showcasing high accuracy,
precision, and recall rates.

5.3 Effectiveness of Llm4sa in Real-world Software (RQ2)

In this part, we evaluate the static bug warnings inspection capability of Llm4sa in real-world
software.

Target projects. Table 12 provides comprehensive details of all the selected target projects. All
of these targets have been extensively studied and are commonly used in the static analysis and
dynamic testing community. These projects encompass a diverse range of functionalities, such
as binary file analyzers, multimedia file processing, programming language implementations, net-
work packet analyzers, compression algorithms, and so on. The sizes of these projects vary from
12k to 5,647k source lines of code (SLoC), highlighting their extensive diversity.

Results on embedded OSes. Table 6 shows the comparison results of different variants of Llm4sa
on three open-source IoT-embedded OSes (Zephyr, RIOT, and TencentOS-tiny). Note that Csa
reports many compilation errors when checking IoT-embedded OSes, as their compilation scripts
are unsuitable to the Makefiles of IoT OSes. Similarly, Infer reports many compilation errors when
checking the TencentOS-tiny. Both Cppcheck and Infer identified a substantial number of po-
tential bugs (a total of 749). Following our comprehensive review, which involved a Ph.D. student
who invested six hours in manually inspecting the bug warnings, we determined that only 13 of

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:19

Table 7. Comparison Results of Different Variants of Llm4sa on Real-world Applications

Id
Project

Name

Cppcheck

(n,u1 ,b ,d ,u2 ,m)

+Llm4saZ

(n,u1 ,b ,d ,u2 ,m)

+Llm4saF

(n,u1 ,b ,d ,u2 ,m)

Csa

(n,u1 ,b ,d ,u2 ,m)

+Llm4saZ

(n,u1 ,b ,d ,u2 ,m)

+Llm4saF

(n,u1 ,b ,d ,u2 ,m)

Infer

(n,u1 ,b ,d ,u2 ,m)

+Llm4saZ

(n,u1 ,b ,d ,u2 ,m)

+Llm4saF

(n,u1 ,b ,d ,u2 ,m)

F 7 (1,2,0,0,0,2) 4 (1,2,0,0,0,1) 6 (1,2,0,0,0,2) 67 (59,0,0,1,6,1) 58 (50,0,0,1,6,1) 30 (26,0,0,1,2,1) 91 (68,23,0,0,0,0) 69 (49,20,0,0,0,0) 16 (14,2,0,0,0,0)
1 gawk

R 0 0 0 1 (1,0,0,0,0,0) 1 (1,0,0,0,0,0) 1 (1,0,0,0,0,0) 1 (1,0,0,0,0,0) 1 (1,0,0,0,0,0) 1 (1,0,0,0,0,0)

F 4 (1,1,0,0,1,1) 4 (1,1,0,0,1,1) 3 (0,1,0,0,1,1) 56 (6,27,0,17,0,6) 47 (5,21,0,15,0,6) 37 (4,13,0,14,0,6) 30 (13,17,0,0,0,0) 16 (9,7,0,0,0,0) 10 (4,6,0,0,0,0)
2 tiff

R 0 0 0 0 0 0 0 0 0
F 686 (673,8,5,0,0,0) 279 (272,4,3,0,0,0) 216 (205,7,4,0,0,0) 4 (0,0,0,0,0,4) 4 (0,0,0,0,0,4) 4 (0,0,0,0,0,4) 195 (60,135,0,0,0,0) 121 (41,80,0,0,0,0) 123 (24,99,0,0,0,0)

3 binutils
R 0 0 0 0 0 0 0 0 0
F 5 (1,2,0,0,0,2) 3 (1,1,0,0,0,1) 3 (0,1,0,0,0,2) 16 (8,3,0,0,1,4) 15 (8,3,0,0,1,3) 15 (8,2,0,0,1,4) 57 (0,51,6,0,0,0) 35 (0,34,1,0,0,0) 22 (0,20,2,0,0,0)

4 diffutils
R 1 (0,1,0,0,0,0) 1 (0,1,0,0,0,0) 1 (0,1,0,0,0,0) 1 (0,1,0,0,0,0) 1 (0,1,0,0,0,0) 1 (0,1,0,0,0,0) 1 (0,1,0,0,0,0) 1 (0,1,0,0,0,0) 1 (0,1,0,0,0,0)

F 6 (3,1,0,0,0,2) 6 (3,1,0,0,0,2) 3 (1,1,0,0,0,1) 12 (1,2,0,0,5,4) 12 (1,2,0,0,5,4) 10 (1,1,0,0,4,4) 10 (7,3,0,0,0,0) 7 (5,2,0,0,0,0) 2 (0,2,0,0,0,0)
5 sed

R 0 0 0 0 0 0 0 0 0
F 10 (3,1,0,0,0,6) 6 (0,0,0,0,0,6) 6 (0,0,0,0,0,6) 34 (12,18,0,0,2,2) 22 (11,7,0,0,2,2) 10 (6,0,0,0,2,2) 6 (2,4,0,0,0,0) 2 (1,1,0,0,0,0) 3 (2,1,0,0,0,0)

6 apr
R 0 0 0 0 0 0 0 0 0
F 25 (2,13,4,0,0,6) 15 (2,5,3,0,0,5) 14 (1,5,4,0,0,4) 66 (36,18,0,0,0,9) 47 (23,15,0,0,0,9) 47 (28,10,0,0,0,9) 296 (62,164,70,0,0,0) 211 (44,120,47,0,0,0) 155 (62,36,57,0,0,0)

7 bash
R 3 (1,0,0,0,0,2) 3 (1,0,0,0,0,2) 3 (1,0,0,0,0,2) 2 (1,0,0,0,0,1) 2 (1,0,0,0,0,1) 2 (1,0,0,0,0,1) 1 (1,0,0,0,0,0) 1 (1,0,0,0,0,0) 1 (1,0,0,0,0,0)

F 20 (6,6,0,0,0,8) 20 (6,6,0,0,0,8) 17 (6,3,0,0,0,8) 13 (0,2,0,0,0,11) 9 (0,2,0,0,0,7) 12 (0,2,0,0,0,10) 36 (10,20,6,0,0,0) 31 (5,20,6,0,0,0) 13 (4,5,4,0,0,0)
8 combine

R 5 (0,2,0,0,0,3) 5 (0,2,0,0,0,3) 4 (0,1,0,0,0,3) 5 (0,2,0,0,0,3) 2 (0,1,0,0,0,1) 5 (0,2,0,0,0,3) 1 (0,1,0,0,0,0) 1 (0,1,0,0,0,0) 1 (0,1,0,0,0,0)

F 6 (2,2,0,0,0,2) 2 (1,1,0,0,0,0) 4 (0,2,0,0,0,2) 25 (19,2,0,0,0,4) 22 (16,2,0,0,0,4) 18 (13,1,0,0,0,4) 16 (6,10,0,0,0,0) 12 (6,6,0,0,0,0) 3 (1,2,0,0,0,0)
9 grep

R 0 0 0 0 0 0 0 0 0
F 6 (1,3,0,0,0,2) 4 (1,1,0,0,0,2) 5 (0,3,0,0,0,2) 12 (7,0,0,0,1,4) 8 (3,0,0,0,1,4) 9 (4,0,0,0,1,4) 55 (2,45,8,0,0,0) 44 (2,37,5,0,0,0) 21 (2,16,3,0,0,0)

10 m4
R 3 (0,3,0,0,0,0) 1 (0,1,0,0,0,0) 3 (0,3,0,0,0,0) 0 0 0 9 (0,9,0,0,0,0) 3 (0,3,0,0,0,0) 9 (0,9,0,0,0,0)

F 3 (0,0,0,0,0,3) 3 (0,0,0,0,0,3) 3 (0,0,0,0,0,3) 7 (0,1,0,0,0,6) 6 (0,0,0,0,0,6) 6 (0,0,0,0,0,6) 12 (7,4,1,0,0,0) 8 (5,3,0,0,0,0) 4 (2,1,1,0,0)
11 trueprint

R 3 (0,0,0,0,0,3) 3 (0,0,0,0,0,3) 3 (0,0,0,0,0,3) 3 (0,1,0,0,0,2) 2 (0,0,0,0,0,2) 2 (0,0,0,0,0,2) 1 (0,1,0,0,0,0) 1 (0,1,0,0,0,0) 1 (0,1,0,0,0,0)

R/F (TPR%) 15/778 (1.93%) 13/346 (3.76%) ⇑ 14/279 (5.02%) ⇑ 12/312 (3.85%) 8/250 (3.20%) 11/198 (5.56%) ⇑ 14/804 (1.74%) 8/555 (1.44%) 13/372 (3.49%) ⇑
Precision/Recall – 56.94% / 86.67% 65.81% / 93.33% – 21.54% / 66.67% 39.74% / 91.67% – 31.22% / 57.14% 55.22% / 92.86%

*F means “Found bugs,” R means “Real bugs,” n means null-pointer dereference, u1 means uninitialized variable, b

means buffer overflow, d means divide by zero, u2 means use-after-free, m means memory leak.

them were real bugs. Specifically, 11 real bugs were found by Cppcheck with a precision of 1.72%,
and another two bugs were found by Infer with a precision of 1.20%, respectively.

We utilize Llm4sa to filter the bug warnings produced by static analyzers. If Llm4sa identifies
the bug warnings as false alarms, then we exclude them from the reported bugs. Otherwise, they
will be included in the reported bugs for further manual inspection. For instance, Cppcheck reports
a total of 576 bug warnings across these three operating systems. Llm4sais able to deduce that
371 of these warnings are false alarms, leaving only 205 warnings that are likely to be real bugs.
This significantly reduces the need to inspect the remaining warnings manually, thus minimizing
human labor costs. Importantly, it should be noted that the automatic inspection process does not
miss any real bugs, resulting in a 100% recall rate for those warnings produced by Cppcheck and
Infer. Hence, Llm4sa is highly effective and valuable in its ability to inspect static warnings in
real-world software.

Results on real-world applications. Table 7 shows the comparison results of different variants of
Llm4sa on 11 real-world applications. In contrast to the three previously mentioned embedded op-

erating systems (OSes), which may not be able to undergo checks with the Infer and Csa tools
due to numerous compilation errors, these 11 applications can be successfully analyzed by all three
static analyzers through appropriate modifications to the Makefile scripts. The three static analyz-
ers produced a total of 1,894 bug warnings, requiring an investment of 8 hours from a Ph.D. student
to confirm the existence of real bugs. From the table, we can observe that: (1) The bug detection
rates of the three static analysis tools are relatively low. Cppcheck, Csa, and Infer all reported a
large number of warnings, with Infer reporting the most at 804. However, only 1.74% (i.e., 14 warn-
ings) of the reports are real bugs. (2) Llm4sa has the ability to reduce the number of warnings that
necessitate manual inspection significantly. On average, Llm4saZ reduces the number of warnings
by 38.28%, while Llm4saF reduces the number of bug warnings by 53.73%. Notably, for the warn-
ings generated by Cppcheck, Llm4saF filters out 64.14% of the warnings. (3) Llm4saF achieves
a high recall rate of more than 90% across three static analyzers. However, this result, although
encouraging, does not necessarily imply that Llm4saF is effective. The cost of missing real bugs
could exceed the expense of inspecting bug warnings with human labor, especially if these real
bugs result in serious issues. In summary, Llm4sa has consistently shown practicality in inspecting
static warnings across various functionalities and levels of complexity in real-world applications.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

168:20 C. Wen et al.

Table 8. Zero-shot Prompting vs. Few-shot Prompting of Llm4sa on the Juliet Test Suite

Llm4saZ Llm4saFBug
Type

Bug
Numbers TP+TN FP+FN(UK) Accuracy Precision Recall

Average
tokens

Average
time (s)

TP+TN FP+FN (UK) Accuracy Precision Recall
Average
tokens

Average
time (s)

NPD 610 541 69 (15) 88.69% 90.92% 97.83% 3,107 26.97 551 59 (12) 90.33% 97.15% 92.59% 6,527 7.68
UVA 1,117 750 367 (11) 67.14% 67.75% 99.73% 3,542 21.09 1,014 103 (45) 90.78% 98.83% 90.39% 4,721 7.92
UAF 32 32 0 100.00% 100.00% 100.00% 3,636 18.64 32 0 100.00% 100.00% 100.00% 5,148 7.92
DBZ 88 84 4 (0) 95.45% 100.00% 95.45% 3,277 21.44 85 3 (0) 96.59% 100.00% 96.59% 5,354 10.05
ML 746 546 200 (4) 73.19% 73.61% 99.63% 3,540 20.79 638 108 (1) 85.52% 97.74% 94.87% 7,486 12.04
BOF 4,311 3,539 772 (326) 82.09% 92.06% 89.89% 3,536 34.72 3,868 443 (209) 89.72% 95.52% 95.65% 6,541 15.96
All 6,904 5,492 1,412 (360) 79.55% 85.70% 95.10% 3,508 29.06 6,188 716 (265) 89.63% 96.36% 94.64% 5,975 10.25

� Finding 3: Static analyzers demonstrate a low rate of bug detection, typically ranging from 1.2%

to 3.85% across different analyzers while producing a substantial number of false alarms in real-world

software that are extremely larger than in benchmark programs.

Answer to RQ2: Llm4sa significantly improves the precision of static analyzers by reducing
nearly half of the false alarms, all the while upholding high recall rates.

5.4 Improvement through Prompt Engineering (RQ3)

Table 6 and Table 7 provide a comparative analysis between two versions of Llm4sa in real-world
software: Llm4saF , which utilizes few-shot prompting, and Llm4saZ , which employs zero-shot
prompting. Both Llm4saZ and Llm4saF achieve a recall rate of 100% in the bug warnings of
embedded OSes. Moreover, Llm4saF significantly improves the precision of Llm4saZ across all
three static analyzers. Llm4saF also demonstrates significant improvement over Llm4saZ regard-
ing both precision and recall across 11 real-world applications. Llm4saZ improved the true pos-
itive rate from 1.93% to 3.76% on reports generated by the Cppcheck tool. In contrast, Llm4saF

enhances the analysis precision of all three static analysis tools with six different few-shot prompts.
In addition, Llm4sa significantly reduces the number of warnings that require manual inspection.
Llm4saZ reduces the number of warnings by an average of 38.28%, and Llm4saF reduces the num-
ber of bug warnings by 53.73%. Notably, Llm4saZ filters out 53.21% of the warnings generated by
Cppcheck, while Llm4saF filters out 64.14%. Table 8 presents the experimental results of Llm4saZ

and Llm4saF on the Juliet Test Suites, respectively. Llm4saF can still improve the precision of
Llm4saZ while maintaining a high recall rate. Based on the above analysis, we can positively con-
clude that Llm4sa can greatly benefit from few-shot prompting.

Answer to RQ3: Llm4sa can benefit from few-shot prompting, as it significantly improves
the precision of Llm4sa while maintaining a high recall rate compared to zero-shot prompt-
ing.

5.5 Compared with SOTA (RQ4)

Table 9 gives a comprehensive comparison of Llm4sa with three state-of-the-art (SOTA) tech-
niques. Note that GPT-C [38] and DSE [10] are not publicly available, and Helium [33], which is
a dynamic approach, requires 15 minutes to confirm each warning, which is difficult to scale to a
large number of warnings. Therefore, we directly compare these techniques with Llm4sa in five
key aspects using the data statistics provided in their papers.

Techniques. DSE [10] utilizes error traces generated by static analyzers to guide the search pro-
cess of dynamic symbolic execution for efficient bug confirmation. Helium [33] generates seman-
tically equivalent executable code fragments and verifies if the corresponding bug warnings can
be triggered using established testing tools. In contrast to these two dynamic methods, Llm4sa
accomplishes code inspection by utilizing LLMs equipped with natural language processing and

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:21

Table 9. Compared Llm4sa with SOTA

SOTA LLM4SA GPT-C (ICSE’22) DSE (ISSTA’22) Helium (ISSTA’21)

Techniques LLMs-powered Machine learning Dynamic symbolic Testing Code Fragments

Benchmarks
Juliet Test Suite

+ 3 embedded OSes
+ 11 real-world applications

5 open-source projects
+ 2 proprietary projects

10 applications from GNU
Coreutils Suite (synthetic bugs)

12 real-world projects

Evaluated
Warnings

6,904 + 749 + 1,894 539 + 108 55 1,955

Precision
Llm4saZ : 69.09%
Llm4saF : 81.13%

RL: 60.6%, NPD: 85.4% – 83%

Recall
Llm4saZ : 92.82%
Llm4saF : 94.64%

RL: 64.5%, NPD: 83.7% –
unknown (only successfully
built 68% code fragments)

Time (s) <30 s/warning – 9.15 min/warning
16.8 s/warning (unit test generation)
15 min/warning (dynamic testing)

Tool
Accessibility

✓ ✗ ✓ ✗

*RL means “Resource Leak warnings,” NPD means “Null-Pointer Deference warnings.”

code comprehension capabilities. This enables it to easily apply to real-world software, while also
enhancing its efficiency in handling thousands of bug warnings. The GPT-C [38] utilizes both
feature-based and Transformer-based learning approaches to identify false alarms. However, this
approach primarily emphasizes model training and has limited analytical capabilities due to the
utilization of a small-scale dataset that only consists of null-pointer deference and memory leak
reports. In contrast, Llm4sa focuses on harnessing the powerful capabilities of LLMs to facilitate
bug report inspection. It achieves this by combining code extraction, prompt engineering, and
pre-/post-processing. This approach provides greater flexibility in expanding the inspection capa-
bilities to different types of bug warnings.

Benchmarks & Evaluated Warnings. The benchmarks utilized by Llm4sa offer a more compre-
hensive and in-depth evaluation compared to GPT-C, DSE, and Helium. We conduct a thorough
evaluation of Llm4sa on a total number of 9,547 warnings across six types of bugs from the three
major categories of datasets (i.e., the Juliet test suite with ground truth data available, 3 embed-
ded real-time operating system, and 11 well-maintained open-source C/C++ projects). DSE [10]
failed to apply to all the real-world projects they have evaluated (among which, 9 projects were
also used to evaluate Llm4sa). Specifically, DSE only analyzed 55 injected synthetic bugs of two
types (null-pointer dereference and use-after-free) from the GNU Coreutils Suite. However, these
injected synthetic bugs are not publicly available. GPT-C [38] examined 647 warnings across two
bug types (null-pointer dereference and resource leak) within 7 proprietary projects. Compara-
tively, Llm4sa can be easily extended to support other types of bugs, such as use-after-free, buffer
overflow, and so on. Helium [33] analyzed 1,955 bug warnings from 12 projects, whose focus was
on dynamic checking, specifically excluding the warnings that were not yet supported by KLEE,
Valgrind, or their respective assertions. Comparatively, Llm4sa is a static and LLM-empowered
method that can analyze warnings without the need for environment setup and runtime execu-
tion. In addition, Llm4sa can provide support for a wide range of warning types.

Precision & Recall. The analysis precision of Llm4sa shows substantial variations across differ-
ent benchmarks. For instance, its variant Llm4saF achieves an average precision of 81.13% on 9,547
bug warnings. For instance, when considering the ML and NPD bug warnings, Llm4sa attained a
minimum precision of 73.40% and 87.64% respectively. These values are slightly higher compared
to the 60.60% (RL) and 88.46% (NPD) achieved by the GPT-C tool. This difference can be attributed
to the variation in evaluation datasets. However, it is important to note that our evaluation dataset
is more diverse and comprehensive, and we obtained these results based on a large quantity of
bug warnings. Additionally, it can be observed from Table 9 that the recall rate of Llm4sa is no-
tably higher than that of GPT-C. Excluding the lowest recall rate of 88.22% on the Juliet test suite
benchmark, Llm4saF consistently achieves recall rates of 94.64% on all other benchmarks.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

168:22 C. Wen et al.

Time. Regarding the analysis time for each warning, DSE takes an average of 9.15 minutes to
identify each injected synthetic bug, while Helium requires 16.8 seconds for generating unit test
cases and 15 minutes for dynamic testing. Compared to approaches that typically require a sig-
nificant amount of time to solve path constraints to generate valid inputs, Llm4sa demonstrates
high efficiency in reasoning, interpreting, and drawing conclusions for bug warnings. On average,
it analyzes each warning in less than 30 seconds.

Tool Accessibility. We have made the implementations of Llm4sa and associated experimental
data publicly available, except for the querying of LLMs, which is currently done via ChatGPT’s
API call. This design choice allows for easy integration with other out-of-the-box LLMs. Among the
three SOTA techniques that we compared, only DSE has released their implementations, enabling
comparisons between different tools. However, utilizing DSE requires performing instrumentation
based on Csa’s error trace and employing KLEE for symbolic execution. This approach is not
suitable for real-world applications, which is why DSE was only evaluated on 55 injected synthetic
bugs. In contrast, GPT-C and Helium have not released their implementation.

Answer to RQ4: Llm4sa outperforms the state-of-the-art techniques in terms of the compre-
hensiveness and diversity of evaluation benchmarks, the recall rate of analysis results, as well
as the time cost required for inspecting bug warnings.

5.6 Overhead Analysis (RQ5)

Time. On average, Llm4sa is capable of automatically inspecting bug warnings in less than 30 sec-
onds per warning, as shown in Table 8, which is substantially faster than a human engineer. Specif-
ically, the code extraction and running scripts can be completed in a few seconds. Since Llm4sa
queries LLMs for every bug warning and completion in a single round, the query time remains
relatively constant. In our experiments, the exact time for querying LLMs may vary, depending on
the workload of the OpenAI infrastructure.

Cost. The current cost of the gpt-3.5-turbo-16k-0613 model is $0.003 per 1,000 tokens for prompts
and $0.004 per 1,000 tokens for outputs. Note that the number of prompt tokens in the zero-shot
version average consumes 4,200 tokens (Llm4saZ ranges from 1,609 to 4,560 tokens) in our evalua-
tion, while in the few-shot version Llm4saF , it average consumes 7,800 tokens (ranged from 4,560
to 14,000 tokens). We set the maximum number of output tokens for LLMs to 2,048 in response.
On average, the cost of analyzing each bug warning is $0.2 for Llm4saZ and $0.31 for Llm4saF .

Answer to RQ5: Llm4sa is characterized by its speed, as it averages less than 30 seconds per
warning, and affordability, costing only $0.31 per warning.

5.7 Case Studies

In this section, we pick three interesting cases demonstrating the effectiveness of Llm4sa in in-
specting bug warnings. All of these cases are uninitialized value bugs that were reported as bugs
by the static analyzers, but for various reasons.

Insensitive to mutex condition. Figure 7 shows a code snippet from the sed application, a
non-interactive command-line text editor. The code implements a function for getting a line from
a stream. Infer and Csa, two static analyzers, report uninitialized variable access false alarms at
line 273 in the ck_getline function. They make this error because they assume that the two mutex
conditions at line 267 and line 270 are both false. However, LLMs can correctly determine that the
variable result is only assigned a value when the stream has no errors, and remains uninitialized
otherwise. This is possible because LLMs can analyze the code context under mutually exclusive

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:23

Fig. 7. An uninitialized value false alarm in sed-4.2.

Fig. 8. An uninitialized value false alarm in apr-1.5.2.

conditions. This demonstrates that LLMs have strong contextual summarization, analysis, and
reasoning abilities.

Imprecise analysis in path condition. Figure 8 shows a code snippet from the apr project,
which creates and maintains software libraries. The code implements a function for finding the
length of the required string from inputs and then copying the argument strings into the result
space. The array saved_lengths is not initialized at line 126, which causes an uninitialized vari-
able access error at line 158 in the apr_pstrcat function. This false alarm is reported by Infer,
Csa, and other mainstream static analyzers, because they assume that the condition at line 136 is
false. However, this assumption is incorrect, as the conditional statements in lines 136∼138 and
156∼157 are identical, except for the assigned variables. This means that if line 158 is reachable,
then line 139, which initializes the array saved_lengths, is also reachable. Unlike mainstream
static analysis tools, which only construct counterexamples based on the control flow of a pro-
gram in imprecise contexts, LLMs can leverage the code context, the comments from lines 129
and 151, and the domain knowledge about the semantics of functions like va_arg. This enables
LLMs to divide the function apr_pstrcat into two phases, namely, “Pass one” and “Pass two,” and
analyze them separately. As a result, it can verify that the array saved_lengths has been correctly
initialized in the “Pass one” phase before its usage.

Difficulty in handling complex code. Figure 9 shows a code snippet from bash, a popular
Unix shell and command-line interface (CLI) program. The function glob_vector is reported
to have an uninitialized variable access false alarm at line 748. However, this is incorrect, as the
variable isdir is initialized at line 738, which is always executed before line 748 according to the
code in lines 732 and 746. The function glob_vector is very long and complex, with over 360 lines
of code, numerous conditional statements, and bitwise operations. As a result, LLMs face difficulty
in comprehending and reasoning about the pertinent code, since the zero-shot prompting query
would exceed 3,800 tokens. Furthermore, the complex program control flow hinders LLMs from

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

168:24 C. Wen et al.

Fig. 9. An uninitialized value false alarm in bash-4.3.

comprehending the crucial aspects of the code, consequently impeding their ability to generate
precise inspection results.

� Finding 4: False positives generated by static analysis can occur due to multiple reasons. LLMs are

effective in addressing issues such as their insensitivity to mutex conditions and imprecise analysis in

path conditions, However, they still lack the ability to handle long and complex program control flow.

6 DISCUSSION

6.1 Threats to Validity

Our evaluation can be subject to several validity threats.
Threats to Internal Validity. One possible threat could be data leakage. Data leakage refers to the

problem that an evaluation is conducted on a dataset that has been used in the training dataset
of LLMs. This can lead to overfitting and introduce bias in the evaluation results. We believe that
the data leakage threat in our case should not be a significant concern. Specifically, bug warnings
generated by different static analysis tools suffer from low quality and variations, rendering them
unsuitable for training LLMs. Our research also tackles the data leakage issue from four distinct
perspectives: (1) We have evaluated Llm4sa on two different LLMs (ChatGPT and Llama-2); (2) We
have used a diverse range of benchmarks in our evaluation; (3) We have evaluated bug warnings
from three different static analyzers; (4) Our specific template format makes it highly unlikely that
the prompts we generated exist word-for-word within the training data of LLMs. By doing so, we
have, to some extent, mitigated the data leakage concerns. We also plan to evaluate Llm4sa on
more open-source or closed-source commercial software in our future work.

Threats to External Validity. LLMs generate varied answers for identical code snippets and bug
reports with the same prompts due to their inherent randomness. One threat to the validity of our
study is that conclusions drawn from random results may be misleading. To mitigate this threat, On
one hand, we calculate the confidence level and perform post-processing to ensure output quality.
On the other hand, we conduct our experiments on a large dataset that includes both benchmarks
and real-world software, thereby mitigating the influence of randomness to some extent.

Threats to Construct Validity. LLMs are currently under active development. The LLMs we
selected to evaluate are based on the GPT-3.5 models, a closed-source API subject to frequent
updates. The reproducibility of Llm4sa might be potentially compromised due to the future
deprecation of the model, which could lead to the inability to reproduce the presented evaluation
results. We believe that Llm4sa’s improvement over existing approaches is not limited to specific
LLMs. The results presented in this article may have underestimated the potential, as they could
be further enhanced by more powerful LLMs. Therefore, the results and findings of our article
can still serve as valuable references, even in the event of gpt-3.5-turbo-16k-1613 being deprecated.
In future studies, we plan to investigate other promising LLMs and apply fine-tuning techniques
to enhance their performance.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:25

6.2 Limitations and Future Directions

Static bug warning inspection via large LLMs is still a rich research field. Our approach reveals
some limitations, indicating the potential for further advancements in automated bug warning
inspection.

Fine-tuning. With current LLMs typically embodying millions of parameters and further ex-
pected to grow in scale, it is crucial to gather a large amount of diverse training data to retrain
LLMs for specific tasks [78]. Our study employs representative and widely recognized examples for
prompt engineering instead of relying on large datasets for fine-tuning. This choice is influenced
by the significant costs associated with analyzing extensive data for fine-tuning and analysis pur-
poses. Furthermore, the challenge of addressing the insufficiency of training datasets for retraining
LLMs and improving their capability in static warning inspection persists. Our future research will
revolve around this topic.

Combining with dynamic analysis. While LLMs exhibit promise in precisely inspecting bug warn-
ings, there is a slight decrease in recall rate, resulting in the potential omission of real bugs. We
believe that combining LLMs with traditional dynamic analysis methods can help mitigate this
recall reduction. Dynamic analysis methods, such as DSE [10] and Helium [34], can theoretically
provide a soundness guarantee. Using an automatic dynamic analysis method is a possible ap-
proach to validate bug warnings. Then, Llm4sa can be employed on these undecided warnings.
This advantage of using Llm4sa is easily extendable and complementary to dynamic analysis.

Code extraction filled with enough context. Our code snippet extraction scheme prioritizes prac-
ticality and efficiency by sacrificing precise data dependency analysis. This tradeoff is made to
prevent performance penalties while accepting a certain degree of precision loss. This can make it
challenging to accurately manage dependencies in code fragments that involve lengthy paths and
complex function calls, resulting in code snippets that lack sufficient context. As a result, this diffi-
culty in making decisions based on insufficient code snippets can lead to unknown outcomes when
using LLMs. In addition to utilizing more precise dependency analysis techniques, another viable
solution is to implement an iterative process. This process enables LLMs to request supplementary
information, such as function definitions.

Deploying on Open-source LLMs. Because of limited access to ChatGPT weights, we employ a
black-box analysis approach utilizing LLMs, like recent studies conducted on “LLMs for software
engineering.” At the time of writing, Meta introduced Llama 2 [22]. Additionally, other open-source
language models such as ChatGLM and Alpaca have also been developed, and these models may
possess capabilities that rival GPT-3.5 in certain scenarios. Based on our initial assessments, Llama
2 demonstrates an understanding of our prompts and appears suitable for supporting Llm4sa.
Moreover, the open-source nature of Llama 2 offers us opportunities to deploy further and refine
the model. Our future studies will involve leveraging these opportunities.

7 RELATED WORK

Static Bug Finding. Static bug finding has achieved significant success in both industry and
academia over the past few decades. Existing static analysis techniques can be generally catego-
rized into data flow analysis [3, 28, 62, 65, 69, 70], value flow analysis [14, 23, 67, 71, 72, 90], sym-
bolic execution [41], model checking [42], and pattern matching [57, 86, 97]. For instance, many
data-flow analyses are embodied into the IFDS (Interprocedural, Finite, Distributive, Subset)

framework, which has a wide range of application areas, including bug detection [51], security
analysis [56], and taint analysis [3, 88]. However, data-flow analyses generally have performance
issues due to the dense data flow propagation along control flows [18, 27]. Most recently, sparse
value flow analysis [14, 23, 68, 72, 79] has been proposed to improve the performance, which tracks

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

168:26 C. Wen et al.

how the values of variables are propagated efficiently along data dependence. Despite the semi-
nal progress, efficient static analysis is still imprecise, where thousands of analysis reports can
be generated when dealing with large codebases. Therefore, we believe that Llm4sa can enhance
the effectiveness and precision of these static analysis techniques as a cheap and fully automatic
post-processing step.

Notably, recent studies [5, 43] have investigated under-approximate static bug analysis. These
approaches embrace the generation of high-confidence bug reports at the expense of potentially
missing some bugs. For instance, RacerD [5] favors high-confidence data races to prevent devel-
opers from disregarding static analysis reports due to excessive false warnings. Similarly, Pulse-
X [43] employs under-approximate abstractions of Incorrectness Separation Logic to uncover high-
confidence bugs. In contrast, our work focuses on improving the precision of over-approximate
static bug-finding tools. While these tools may lack precision, they offer higher code coverage and
the ability to uncover more bugs. It is shown that these two merits have been a significant driving
force for developers to prefer static analysis over dynamic analysis and have led to the widespread
adoption of over-approximate static analysis in the industry [4, 53].

Static Warning Validating. Several research works have tried to perform automatic static
warning validating by using different methods and features to identify and reduce false posi-
tives [10, 33, 35, 38, 54, 80]. Muske et al. [55] reviewed 130 studies on postprocessing of alarms
generated by static analysis tools and categorized them into six main approaches (i.e., clustering,
ranking, pruning, automated elimination of false positives, combination of static and dynamic anal-

yses, and simplification of manual inspection), which provide guidelines and directions for users
and researchers. Joshy et al. [33] proposed a method to validate static warnings by conducting dy-
namic unit testing on code fragments that encapsulate the reported buggy paths. This method is
effective but not scalable due to the challenging and costly nature of constructing code fragments
that can be compiled and executed. Busse et al. [10] propose converting potential bug reports into
concrete test inputs that can trigger the bugs, using a form of dynamic symbolic execution that
explores paths compatible with the trace obtained from the static analyzer. However, the authors
were unable to find real-world bugs for evaluating the proposed technique, so they only evaluated
it by injecting faults into applications, resulting in negative results. Kharkar et al. [38] augmented
static analyzers with a variety of machine learning models, including both feature-based model
and Transformer-based neural models, to identify false positive bug warnings. However, they pri-
marily focus on training various machine learning models, and their applicability is constrained by
the small-scale dataset comprising NPD and memory leak, thereby restricting its generalizability.

Assisting Program Analysis with LLMs. In recent years, there has been a growing interest
in applying LLMs to assist program analysis tasks, such as software testing [20, 45, 73, 76], static
analysis [6, 74], bug reproduction [36, 37], and bug repair [1, 24, 59, 85]. Ye et al. [92] use LLMs to
generate interrupt specifications for interrupt-based deadlock detection. Li et al. [46] investigated
the potential of LLMs in enhancing static analysis by posing relevant queries. They specifically
focused on UBITest [95], a bug-finding tool for detecting use-before-initialization bugs. The study
revealed that those false positives can be significantly reduced by asking precisely crafted ques-
tions related to function-level behaviors or summaries. In contrast, Llm4sa incorporates LLMs
directly for various bug report inspection tasks and successfully integrates them into a static anal-
ysis pipeline that supports multiple static analyzers. Ma et al. [49] and Sun et al. [74] explore the
capabilities of LLMs when performing various program analysis tasks such as control flow graph
construction, call graph analysis [12, 16], and code summarization. Pei et al. [60] use LLMs to rea-
son about program invariants with decent performance. These diverse applications underline the
vast potential of LLMs in program analysis. Llm4sa complements these efforts by demonstrating

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:27

the efficacy of LLMs in understanding and automatically inspecting thousands of static analysis
reports in the real world.

8 CONCLUSION

In this article, we have studied the problem of excessive false positives in static analysis tools, hin-
dering the effectiveness of practical adoption. Specifically, we have described the causes and char-
acteristics of the false positives reproduced by four popular open-source static analysis tools and
presented the studies of representative cases to illustrate the limitations of these tools. To address
this problem, we have proposed a novel platform called Llm4sa that harnesses Large Language

Models (LLMs) to sift through numerous static warnings automatically, thereby significantly sav-
ing valuable developer time. Our solution can construct related code snippets based on the calling
context and design questions with many typical case studies to query LLMs, which can provide ac-
curate and reliable answers for static warnings. We evaluated our solution on a large set of static
warnings from Juliet benchmark programs and 11 real-world C++ projects, demonstrating that
our solution can automatically identify bug warnings into real bugs or false alarms with a high
precision and recall rate. Our work opens up new possibilities for enhancing static analysis tools
with the power of LLMs. It provides valuable insights for developers and researchers interested in
applying LLMs to static program analysis.

A APPENDIX

A.1 Data Availability

We provide a reproduction package with a unique DOI to facilitate future research. The package
includes (1) an available tool; (2) detailed information on the evaluation dataset; (3) bug warning
inspection results; (4) experimental scripts. A standard X86 Linux machine with Ubuntu 18.04 LTS
or a newer operating system is necessary to evaluate this artifact.

A.1.1 Artifact Check-list (Meta-infomation).

— Dataset: A list of download addresses for evaluation datasets with a specific version or com-
mit ID.

— Runtime environment: Linux.
— Hardware: X86.
— How much disk space is required (approximately)?: 500 MB for our uploaded package, and an

additional 30 GB for the static analyzers and evaluation dataset.
— Publicly available?: Yes.
— Code licenses (if publicly available)?: MIT.
— Archived (provide DOI)?: Yes.

A.1.2 Description.

— How to access: The artifact can be downloaded from the following link: https://doi.org/10.
5281/zenodo.8346515

— Hardware dependencies: A standard X86 machine.
— Software dependencies:

– Packages: cscope codequery libjansson-dev libjansson4 wget autoconf automake pkg-
config cmake unzip tzdata libncurses5

– Python: xmltodict openai.

A.1.3 Installation.

— Please refer to the README.md file in the artifact.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

https://doi.org/10.5281/zenodo.8346515

168:28 C. Wen et al.

A.2 Additional Experimental Information

We attach some additional experimental information related to the article here.

Table 10. Commands for Static Analyzer Used in Our Evaluation

Static Analyzer Executed commands

Cppcheck cppcheck –enable=warning $project_folder (./) –output-file=cppcheck_err.xml –xml –force
Csa scan-build –plist -o report $build_command (make/cmake/...)

Infer infer –keep-going –biabduction –bufferoverrun –liveness –quandary –siof –uninit run – project $build_command (make/cmake/...)

Table 11. Bug Warnings Reported by Different Static Analyzers on the Juliet Test Suite

Cppcheck Csa Infer
Bug Type

TP FP TPR (%) FPR (%) TP FP TPR (%) FPR (%) TP FP TPR (%) FPR (%)
NPD 168 0 84.00% 0.00% 156 25 87.15% 13.97% 229 32 90.51% 12.03%
UVA 326 12 50.00% 3.06% 279 132 72.47% 32.27% 144 224 90.00% 86.82%
UAF 14 0 93.33% 0.00% 18 0 45.00% 0.00% 0 0 0.00% 0.00%
DBZ 38 0 52.78% 0.00% 50 0 12.66% 0.00% 0 0 0.00% 0.00%
ML 40 12 16.60% 1.18% 506 188 79.81% 27.01% 0 0 0.00% 0.00%
BOF 1,120 198 24.32% 5.23% 0 0 0.00% 0.00% 2,738 255 64.82% 6.44%
All 1,706 222 27.67% 4.08% 1,009 345 29.20% 9.76% 3,111 511 54.63% 9.22%

*The bug type follows the abbreviations shown in Table 2. TP, FP, TPR, and FPR are abbreviations of true positive, false
positive, true positive rate, and false positive rate, respectively. The false positive rate is of incorrect reports (or false
alarms) out of all reports produced by a tool.

Table 12. Details of Selected Target Projects

Id Projcet Name Type Version SLoC Description

01 Zephyr Embedded OS 2.1.0 493k A scalable real-time operating system supporting multiple hardware architectures.
02 RIOT Embedded OS 2020.04 1,689k A real-time multi-threading operating system that supports a range of IoT devices.
03 TencentOS-tiny Embedded OS 23313e 5,674k A real-time IoT operating system developed by Tencent.
04 gawk Applications 4.1.2 81k A special-purpose programming language that handles data-reformatting jobs.
05 tiff Applications 3.9.7 77k This software provides support for the Tag Image File Format (TIFF).
06 binutils Applications 2.25.1 1,988k The GNU Binary Utilities, or binutils, are a collection of binary tools.
07 diffutils Applications 3.3 95k A package of several programs related to finding differences between files.
08 sed Applications 4.2 35k A non-interactive command-line text editor
09 apr Applications 1.5.2 89k A project to create and maintain software libraries.
10 bash Applications 4.3 152k Bash is the GNU Project’s shell—the Bourne Again SHell.
11 combine Applications 0.4.0 36k A tool for working with record-oriented data files.
12 grep Applications 2.21 101k Grep searches one or more input files for lines containing a match to a specified pattern.
13 m4 Applications 1.4.17 115k GNU M4 is an implementation of the traditional Unix macro processor.
14 trueprint Applications 5.4 12k GNU Trueprint takes C source files and other text files and prints them on postscript printers.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their constructive comments.

REFERENCES

[1] Toufique Ahmed and Premkumar Devanbu. 2023. Better patching using LLM prompting, via self-consistency. In Pro-

ceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE’23). IEEE, 1742–1746.
[2] John R Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. 1983. Conversion of control dependence to data

dependence. In Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages.
177–189.

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’14). ACM, New York, NY, 259–269. DOI:https://doi.org/10.1145/2594291.2594299
[4] Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles-Henri Gros, Asya Kamsky,

Scott McPeak, and Dawson R. Engler. 2010. A few billion lines of code later: Using static analysis to find bugs in the
real world. Commun. ACM 53, 2 (2010), 66–75. DOI:https://doi.org/10.1145/1646353.1646374

[5] Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2018. RacerD: Compositional static race de-
tection. Proc. ACM Program. Lang. 2, OOPSLA, Article 144 (Oct. 2018), 28 pages. DOI:https://doi.org/10.1145/3276514

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/3276514

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:29

[6] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. 2017. Directed greybox fuzzing. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS’17), Bhavani Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 2329–2344. DOI:https://doi.org/10.1145/3133956.3134020

[7] James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max I. Kanovich. 2021. A compositional deadlock detector
for Android Java. In Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering

(ASE’21). IEEE, 955–966. DOI:https://doi.org/10.1109/ASE51524.2021.9678572
[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Proceedings of the An-

nual Conference on Neural Information Processing Systems (NeurIPS’20), Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). Retrieved from https://proceedings.neurips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[9] Frank Busse, Pritam Gharat, Cristian Cadar, and Alastair F. Donaldson. 2022. Combining static analysis error traces
with dynamic symbolic execution (experience paper). In Proceedings of the 31st ACM SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA’22), Sukyoung Ryu and Yannis Smaragdakis (Eds.). ACM, 568–579. DOI:https://
doi.org/10.1145/3533767.3534384

[10] Frank Busse, Pritam Gharat, Cristian Cadar, and Alastair F. Donaldson. 2022. Combining static analysis error traces
with dynamic symbolic execution (experience paper). In Proceedings of the 31st ACM SIGSOFT International Symposium

on Software Testing and Analysis. ACM, 568–579. DOI:https://doi.org/10.1145/3533767.3534384
[11] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and automatic generation of high-

coverage tests for complex systems programs. In Proceedings of the 8th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’08), Richard Draves and Robbert van Renesse (Eds.). USENIX Association, 209–224.
Retrieved from http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf

[12] Yuandao Cai, Yibo Jin, and Charles Zhang. 2024. Unleashing the power of type-based call graph construction by
using regional pointer information. In Proceedings of the 33rd USENIX Security Symposium (USENIX Security’24), Da-
vide Balzarotti and Wenyuan Xu (Eds.). USENIX Association. Retrieved from https://www.usenix.org/system/files/
sec23winter-prepub-350-cai.pdf

[13] Yuandao Cai, Peisen Yao, Chengfeng Ye, and Charles Zhang. 2023. Place your locks well: Understanding and de-
tecting lock misuse bugs. In Proceedings of the 32nd USENIX Security Symposium (USENIX Security’23), Joseph A.
Calandrino and Carmela Troncoso (Eds.). USENIX Association. Retrieved from https://www.usenix.org/conference/
usenixsecurity23/presentation/cai-yuandao

[14] Yuandao Cai, Peisen Yao, and Charles Zhang. 2021. Canary: Practical static detection of inter-thread value-flow bugs.
In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implemen-

tation (PLDI’21), Stephen N. Freund and Eran Yahav (Eds.). ACM, 1126–1140. DOI:https://doi.org/10.1145/3453483.
3454099

[15] Yuandao Cai, Chengfeng Ye, Qingkai Shi, and Charles Zhang. 2022. Peahen: Fast and precise static deadlock detection
via context reduction. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering (ESEC/FSE’22). Association for Computing Machinery, New York, NY,
784–796. DOI:https://doi.org/10.1145/3540250.3549110

[16] Yuandao Cai and Charles Zhang. 2023. A cocktail approach to practical call graph construction. Proc. ACM Program.

Lang. 7, OOPSLA2 (2023). DOI:https://doi.org/10.1145/3622833
[17] Cristiano Calcagno and Dino Distefano. 2011. Infer: An automatic program verifier for memory safety of C programs.

In Proceedings of the NASA Formal Methods Symposium. Springer, 459–465. DOI:https://doi.org/10.1007/978-3-642-
20398-5_33

[18] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Practical memory leak detection using guarded value-
flow analysis. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation,
Jeanne Ferrante and Kathryn S. McKinley (Eds.). ACM, 480–491. DOI:https://doi.org/10.1145/1250734.1250789

[19] Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang Yu, Tao He, Haotian Wang, Weihua Peng, Ming Liu, Bing
Qin, and Ting Liu. 2023. A survey of chain of thought reasoning: Advances, frontiers and future. arXiv preprint

arXiv:2309.15402 (2023).
[20] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang. 2023. Large language models

are zero-shot fuzzers: Fuzzing deep-learning libraries via large language models. In Proceedings of the 32nd ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’23), René Just and Gordon Fraser (Eds.).
ACM, 423–435. DOI:https://doi.org/10.1145/3597926.3598067

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1109/ASE51524.2021.9678572
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1145/3533767.3534384
https://doi.org/10.1145/3533767.3534384
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://www.usenix.org/system/files/sec23winter-prepub-350-cai.pdf
https://www.usenix.org/conference/usenixsecurity23/presentation/cai-yuandao
https://doi.org/10.1145/3453483.3454099
https://doi.org/10.1145/3540250.3549110
https://doi.org/10.1145/3622833
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1145/1250734.1250789
https://doi.org/10.1145/3597926.3598067

168:30 C. Wen et al.

[21] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling static analyses at Face-
book. Commun. ACM 62, 8 (2019), 62–70. DOI:https://doi.org/10.1145/3338112

[22] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen,
Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie,
Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith,
Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2: Open foundation and fine-tuned chat models. CoRR

abs/2307.09288 (2023).
[23] Gang Fan, Rongxin Wu, Qingkai Shi, Xiao Xiao, Jinguo Zhou, and Charles Zhang. 2019. SMOKE: Scalable path-

sensitive memory leak detection for millions of lines of code. In Proceedings of the 41st International Conference on

Software Engineering (ICSE’19), Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE/ACM, 72–82. DOI:https://
doi.org/10.1109/ICSE.2019.00025

[24] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei Tan. 2023. Automated repair of programs
from large language models. In Proceedings of the 45th IEEE/ACM International Conference on Software Engineering

(ICSE’23). IEEE, 1469–1481. DOI:https://doi.org/10.1109/ICSE48619.2023.00128
[25] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The program dependence graph and its use in optimiza-

tion. ACM Trans. Program. Lang. Syst. 9, 3 (1987), 319–349. DOI:https://doi.org/10.1145/24039.24041
[26] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi. 2018. K-Miner: Uncovering memory corrup-

tion in Linux. In Proceedings of the 25th Annual Network and Distributed System Security Symposium (NDSS’18).
The Internet Society. Retrieved from https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_05A-
1_Gens_paper.pdf

[27] Ben Hardekopf and Calvin Lin. 2009. Semi-sparse flow-sensitive pointer analysis. In Proceedings of the 36th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’09), Zhong Shao and Benjamin C. Pierce
(Eds.). ACM, 226–238. DOI:https://doi.org/10.1145/1480881.1480911

[28] Dongjie He, Haofeng Li, Lei Wang, Haining Meng, Hengjie Zheng, Jie Liu, Shuangwei Hu, Lian Li, and Jingling Xue.
2019. Performance-boosting sparsification of the IFDS algorithm with applications to taint analysis. In Proceedings of

the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE’19). IEEE, 267–279. DOI:https://
doi.org/10.1109/ASE.2019.00034

[29] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John C. Grundy, and Haoyu
Wang. 2023. Large language models for software engineering: A systematic literature review. CoRR abs/2308.10620
(2023).

[30] Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles Zhang. 2022. BEACON: Directed grey-
box fuzzing with provable path pruning. In Proceedings of the 43rd IEEE Symposium on Security and Privacy (SP’22).
IEEE, 36–50. DOI:https://doi.org/10.1109/SP46214.2022.9833751

[31] Nasif Imtiaz, Brendan Murphy, and Laurie Williams. 2019. How do developers act on static analysis alerts? An empiri-
cal study of coverity usage. In Proceedings of the IEEE 30th International Symposium on Software Reliability Engineering

(ISSRE’19). IEEE, 323–333. DOI:https://doi.org/10.1109/ISSRE.2019.00040
[32] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. 2013. Why don’t software developers

use static analysis tools to find bugs? In Proceedings of the 35th International Conference on Software Engineering

(ICSE’13). IEEE, 672–681. DOI:https://doi.org/10.1109/ICSE.2013.6606613
[33] Ashwin Kallingal Joshy, Xueyuan Chen, Benjamin Steenhoek, and Wei Le. 2021. Validating static warnings via testing

code fragments. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA’21), Cristian Cadar and Xiangyu Zhang (Eds.). ACM, 540–552. DOI:https://doi.org/10.1145/3460319.3464832
[34] Ashwin Kallingal Joshy, Xueyuan Chen, Benjamin Steenhoek, and Wei Le. 2021. Validating static warnings via testing

code fragments. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis (IS-

STA’21). Association for Computing Machinery, New York, NY, 540–552. DOI:https://doi.org/10.1145/3460319.3464832
[35] Hong Jin Kang, Khai Loong Aw, and David Lo. 2022. Detecting false alarms from automatic static analysis tools:

How far are we? In Proceedings of the 44th International Conference on Software Engineering. 698–709. DOI:https://
doi.org/10.1145/3510003.3510214

[36] Sungmin Kang, Juyeon Yoon, Nargiz Askarbekkyzy, and Shin Yoo. 2023. Evaluating diverse large language models for
automatic and general bug reproduction. arXiv preprint arXiv:2311.04532 (2023).

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

https://doi.org/10.1145/3338112
https://doi.org/10.1109/ICSE.2019.00025
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1145/24039.24041
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_05A-1_Gens_paper.pdf
https://doi.org/10.1145/1480881.1480911
https://doi.org/10.1109/ASE.2019.00034
https://doi.org/10.1109/SP46214.2022.9833751
https://doi.org/10.1109/ISSRE.2019.00040
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/3460319.3464832
https://doi.org/10.1145/3460319.3464832
https://doi.org/10.1145/3510003.3510214

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:31

[37] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large language models are few-shot testers: Exploring LLM-based
general bug reproduction. In Proceedings of the 45th IEEE/ACM International Conference on Software Engineering

(ICSE’23). IEEE, 2312–2323. DOI:https://doi.org/10.1109/ICSE48619.2023.00194
[38] Anant Kharkar, Roshanak Zilouchian Moghaddam, Matthew Jin, Xiaoyu Liu, Xin Shi, Colin B. Clement, and Neel Sun-

daresan. 2022. Learning to reduce false positives in analytic bug detectors. In Proceedings of the 44th IEEE/ACM 44th

International Conference on Software Engineering (ICSE’22). ACM, 1307–1316. DOI:https://doi.org/10.1145/3510003.
3510153

[39] J. Kocoń, I. Cichecki, O. Kaszyca, M. Kochanek, D. Szydło, J. Baran, J. Bielaniewicz, M. Gruza, A. Janz, K. Kanclerz, A.
Kocoń, B. Koptyra, W. Mieleszczenko-Kowszewicz, P. Miłkowski, M. Oleksy, M. Piasecki, Ł. Radliński, K. Wojtasik, S.
Woźniak, P. Kazienko, ChatGPT: Jack of all trades, master of none. Information Fusion. 99 (2023) 101861.

[40] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large language
models are zero-shot reasoners. In Proceedings of the Annual Conference on Neural Information Processing Systems

(NeurIPS’22). Retrieved from http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-
Abstract-Conference.html

[41] Ted Kremenek. 2008. Finding software bugs with the clang static analyzer. Apple Inc (2008), 2008–08.
[42] Daniel Kroening and Michael Tautschnig. 2014. CBMC - C bounded model checker—(competition contribution). In

Proceedings of the 20th International Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’14), Held as Part of the European Joint Conferences on Theory and Practice of Software (ETAPS’14) (Lecture Notes

in Computer Science), Erika Ábrahám and Klaus Havelund (Eds.), Vol. 8413. Springer, 389–391. DOI:https://doi.org/10.
1007/978-3-642-54862-8_26

[43] Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. 2022. Finding real bugs
in big programs with incorrectness logic. Proc. ACM Program. Lang. 6, OOPSLA1 (2022), 1–27. DOI:https://doi.org/10.
1145/3527325

[44] Seongmin Lee, Shin Hong, Jungbae Yi, Taeksu Kim, Chul-Joo Kim, and Shin Yoo. 2019. Classifying false positive
static checker alarms in continuous integration using convolutional neural networks. In Proceedings of the 12th IEEE

Conference on Software Testing, Validation and Verification (ICST’19). IEEE, 391–401. DOI:https://doi.org/10.1109/ICST.
2019.00048

[45] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen. 2023. CodaMosa: Escaping coverage
plateaus in test generation with pre-trained large language models. In Proceedings of the 45th IEEE/ACM International

Conference on Software Engineering (ICSE’23). IEEE, 919–931. DOI:https://doi.org/10.1109/ICSE48619.2023.00085
[46] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2023. Poster: Assisting static analysis with large lan-

guage models: A ChatGPT experiment. In Proceedings of the 44th IEEE Symposium on Security and Pri-

vacy (SP’23). IEEE. Retrieved from https://www.ieee-security.org/TC/SP2023/downloads/SP23-posters/sp23-posters-
paper39-final_version_2_page_abstract.pdf

[47] Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu. 2022. Path-sensitive and alias-aware typestate analysis for detecting OS
bugs. In Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS’22), Babak Falsafi, Michael Ferdman, Shan Lu, and Thomas F. Wenisch (Eds.). ACM,
859–872. DOI:https://doi.org/10.1145/3503222.3507770

[48] Changhua Luo, Wei Meng, and Penghui Li. 2023. SelectFuzz: Efficient directed fuzzing with selective path exploration.
In Proceedings of the 44th IEEE Symposium on Security and Privacy (SP’23). IEEE, 2693–2707. DOI:https://doi.org/10.
1109/SP46215.2023.10179296

[49] Wei Ma, Shangqing Liu, Wenhan Wang, Qiang Hu, Ye Liu, Cen Zhang, Liming Nie, and Yang Liu. 2023. The scope of
ChatGPT in software engineering: A thorough investigation. CoRR abs/2305.12138 (2023)

[50] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher Kruegel, and Giovanni Vigna. 2017. DR.
CHECKER: A soundy analysis for linux kernel drivers. In Proceedings of the 26th USENIX Security Symposium (USENIX

Security’17), Engin Kirda and Thomas Ristenpart (Eds.). USENIX Association, 1007–1024. Retrieved from https://www.
usenix.org/conference/usenixsecurity17/technical-sessions/presentation/machiry

[51] Roman Manevich, Manu Sridharan, Stephen Adams, Manuvir Das, and Zhe Yang. 2004. PSE: Explaining program fail-
ures via postmortem static analysis. In Proceedings of the 12th ACM SIGSOFT International Symposium on Foundations

of Software Engineering, Richard N. Taylor and Matthew B. Dwyer (Eds.). ACM, 63–72. DOI:https://doi.org/10.1145/
1029894.1029907

[52] Daniel Marjamäki. Cppcheck: A tool for static C/C++ code analysis. Retrieved ACCESSED: 2024 from https://cppcheck.
sourceforge.io

[53] Scott McPeak, Charles-Henri Gros, and Murali Krishna Ramanathan. 2013. Scalable and incremental software bug de-
tection. In Proceedings of the Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Sym-

posium on the Foundations of Software Engineering (ESEC/FSE’13), Bertrand Meyer, Luciano Baresi, and Mira Mezini
(Eds.). ACM, 554–564. DOI:https://doi.org/10.1145/2491411.2501854

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1145/3510003.3510153
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1145/3527325
https://doi.org/10.1109/ICST.2019.00048
https://doi.org/10.1109/ICSE48619.2023.00085
https://www.ieee-security.org/TC/SP2023/downloads/SP23-posters/sp23-posters-paper39-final_version_2_page_abstract.pdf
https://doi.org/10.1145/3503222.3507770
https://doi.org/10.1109/SP46215.2023.10179296
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/machiry
https://doi.org/10.1145/1029894.1029907
https://cppcheck.sourceforge.io
https://doi.org/10.1145/2491411.2501854

168:32 C. Wen et al.

[54] Aniruddhan Murali, Noble Saji Mathews, Mahmoud Alfadel, Meiyappan Nagappan, and Meng Xu. 2023. FuzzSlice:
Pruning false positives in static analysis warnings through function-level fuzzing. In Proceedings of the IEEE/ACM

46th International Conference on Software Engineering (ICSE’24). IEEE Computer Society, 767–779.
[55] Tukaram Muske and Alexander Serebrenik. 2022. Survey of approaches for postprocessing of static analysis alarms.

ACM Comput. Surv. 55, 3, Article 48 (Feb. 2022), 39 pages. DOI:https://doi.org/10.1145/3494521
[56] Damien Octeau, Patrick D. McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques Klein, and Yves Le Traon.

2013. Effective inter-component communication mapping in Android: An essential step towards holistic security
analysis. In Proceedings of the 22nd USENIX Security Symposium, Samuel T. King (Ed.). USENIX Association, 543–558.
Retrieved from https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/octeau

[57] Mads Chr. Olesen, René Rydhof Hansen, Julia L. Lawall, and Nicolas Palix. 2014. Coccinelle: Tool support for auto-
mated CERT C secure coding standard certification. Sci. Comput. Program. 91 (2014), 141–160. DOI:https://doi.org/10.
1016/j.scico.2012.10.011

[58] OpenAI. ChatGPT: Optimizing language models for dialogue. Retrieved ACCESSED: 2024 from https://chat.openai.
com

[59] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan Dolan-Gavitt. 2023. Examining zero-
shot vulnerability repair with large language models. In Proceedings of the 44th IEEE Symposium on Security and Privacy

(SP’23). IEEE, 2339–2356. DOI:https://doi.org/10.1109/SP46215.2023.10179420
[60] Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. 2023. Can large language models rea-

son about program invariants? In Proceedings of the 40th International Conference on Machine Learning (ICML’23).
JMLR.org, Honolulu, Hawaii, USA.

[61] Partha Pratim Ray. 2023. ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics,
limitations and future scope. Internet Things Cyber-Phys. Systems. https://doi.org/10.1016/j.iotcps.2023.04.003

[62] Thomas W. Reps. 1997. Program analysis via graph reachability. In Proceedings of the International Symposium on Logic

Programming, Jan Maluszynski (Ed.). MIT Press, 5–19.
[63] Ruben. A code-understanding, code-browsing or code-search tool. This is a tool to index, then query or search C, C++,

Java, Python, Ruby, Go and JavaScript source code. Retrieved ACCESSED: 2024. from https://github.com/ruben2020/
codequery

[64] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. 2018. Lessons from building
static analysis tools at google. Commun. ACM 61, 4 (2018), 58–66. DOI:https://doi.org/10.1145/3188720

[65] Shmuel Sagiv, Thomas W. Reps, and Susan Horwitz. 1996. Precise interprocedural dataflow analysis with appli-
cations to constant propagation. Theor. Comput. Sci. 167, 1&2 (1996), 131–170. DOI:https://doi.org/10.1016/0304-
3975(96)00072-2

[66] Timo Schick and Hinrich Schütze. 2022. True few-shot learning with prompts—A real-world perspective. Trans. Assoc.

Computat. Ling. 10 (2022), 716–731.
[67] Qingkai Shi, Rongxin Wu, Gang Fan, and Charles Zhang. 2020. Conquering the extensional scalability problem for

value-flow analysis frameworks. In Proceedings of the 42nd International Conference on Software Engineering (ICSE’20)

, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 812–823. DOI:https://doi.org/10.1145/3377811.3380346
[68] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang. 2018. Pinpoint: Fast and precise

sparse value flow analysis for million lines of code. In Proceedings of the 39th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation. 693–706. DOI:https://doi.org/10.1145/3192366.3192418
[69] Johannes Späth, Karim Ali, and Eric Bodden. 2017. IDEal: Efficient and precise alias-aware dataflow analysis. In

Proceedings of the International Conference on Object-Oriented Programming, Languages and Applications (OOPSLA/S-

PLASH’17). ACM Press. Retrieved from https://bodden.de/pubs/sab17ideal.pdf
[70] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016. Boomerang: Demand-driven flow- and

context-sensitive pointer analysis for Java. In Proceedings of the European Conference on Object-Oriented Programming

(ECOOP’16). Retrieved from https://www.bodden.de/pubs/sna+16boomerang.pdf
[71] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural static value-flow analysis in LLVM. In Proceedings of the 25th

International Conference on Compiler Construction (CC’16), Ayal Zaks and Manuel V. Hermenegildo (Eds.). ACM, 265–
266. DOI:https://doi.org/10.1145/2892208.2892235

[72] Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static memory leak detection using full-sparse value-flow analysis. In
Proceedings of the International Symposium on Software Testing and Analysis (ISSTA’12), Mats Per Erik Heimdahl and
Zhendong Su (Eds.). ACM, 254–264. DOI:https://doi.org/10.1145/2338965.2336784

[73] Maolin Sun, Yibiao Yang, Yang Wang, Ming Wen, Haoxiang Jia, and Yuming Zhou. 2023. SMT solver validation empow-
ered by large pre-trained language models. In Proceedings of the 38th IEEE/ACM International Conference on Automated

Software Engineering (ASE’23). IEEE, 1288–1300.
[74] Weisong Sun, Chunrong Fang, Yudu You, Yun Miao, Yi Liu, Yuekang Li, Gelei Deng, Shenghan Huang, Yuchen Chen,

Quanjun Zhang, Hanwei Qian, Yang Liu, and Zhenyu Chen. 2023. Automatic code summarization via ChatGPT: How
far are we? CoRR abs/2305.12865 (2023).

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

https://doi.org/10.1145/3494521
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/octeau
https://doi.org/10.1016/j.scico.2012.10.011
https://chat.openai.com
https://doi.org/10.1109/SP46215.2023.10179420
https://doi.org/10.1016/j.iotcps.2023.04.003
https://github.com/ruben2020/codequery
https://doi.org/10.1145/3188720
https://doi.org/10.1016/0304-3975(96)00072-2
https://doi.org/10.1145/3377811.3380346
https://doi.org/10.1145/3192366.3192418
https://bodden.de/pubs/sab17ideal.pdf
https://www.bodden.de/pubs/sna+16boomerang.pdf
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/2338965.2336784

Automatically Inspecting Thousands of Static Bug Warnings with LLM: How Far Are We? 168:33

[75] Nigar M. Shafiq Surameery and Mohammed Y Shakor. 2023. Use Chat GPT to solve programming bugs. Int. J. Inf.

Technol. Comput. Eng. 3, 01 (2023), 17–22.
[76] Christos Tsigkanos, Pooja Rani, Sebastian Müller, and Timo Kehrer. 2023. Large language models: The next frontier

for variable discovery within metamorphic testing? In Proceedings of the IEEE International Conference on Software

Analysis, Evolution and Reengineering (SANER’23). IEEE, 678–682.
[77] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Harald C. Gall, and Andy Zaidman.

2020. How developers engage with static analysis tools in different contexts. Empir. Softw. Eng. 25 (2020), 1419–1457.
DOI:https://doi.org/10.1007/s10664-019-09750-5

[78] Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao. 2022. Bridging pre-trained
models and downstream tasks for source code understanding. In Proceedings of the 44th IEEE/ACM 44th International

Conference on Software Engineering (ICSE’22). ACM, 287–298. DOI:https://doi.org/10.1145/3510003.3510062
[79] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao Qin, Hongxu Chen, and Yulei Sui. 2020.

Typestate-guided fuzzer for discovering use-after-free vulnerabilities. In Proceedings of the ACM/IEEE 42nd Interna-

tional Conference on Software Engineering. 999–1010.
[80] Junjie Wang, Song Wang, and Qing Wang. 2018. Is there a “golden” feature set for static warning identification?: An

experimental evaluation. In Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineer-

ing and Measurement (ESEM’18), Markku Oivo, Daniel Méndez Fernández, and Audris Mockus (Eds.). ACM, 17:1–17:10.
DOI:https://doi.org/10.1145/3239235.3239523

[81] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny
Zhou. 2022. Self-consistency improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171

(2022).
[82] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny

Zhou. 2022. Chain-of-thought prompting elicits reasoning in large language models. In Proceedings of the Annual

Conference on Neural Information Processing Systems (NeurIPS’22). Retrieved from http://papers.nips.cc/paper_files/
paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

[83] Cheng Wen, Mengda He, Bohao Wu, Zhiwu Xu, and Shengchao Qin. 2022. Controlled concurrency testing via peri-
odical scheduling. In Proceedings of the 44th International Conference on Software Engineering. 474–486.

[84] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu, Zhiwu Xu, Hongxu Chen, Xiaofei Xie, Geguang
Pu, and Ting Liu. 2020. MemLock: Memory usage guided fuzzing. In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering. 765–777.
[85] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated program repair in the era of large pre-

trained language models. In Proceedings of the 45th IEEE/ACM International Conference on Software Engineering

(ICSE’23). IEEE, 1482–1494. DOI:https://doi.org/10.1109/ICSE48619.2023.00129
[86] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, and Zhiqiang Ma. 2010. Ad hoc synchronization considered

harmful. In Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI’10),
Remzi H. Arpaci-Dusseau and Brad Chen (Eds.). USENIX Association, 163–176. Retrieved from http://www.usenix.
org/events/osdi10/tech/full_papers/Xiong.pdf

[87] Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang Gan. 2022. Prompting
decision transformer for few-shot policy generalization. In Proceedings of the International Conference on Machine

Learning. PMLR, 24631–24645.
[88] Zhiwu Xu, Cheng Wen, and Shengchao Qin. 2018. State-taint analysis for detecting resource bugs. Sci. Comput. Pro-

gram. 162 (2018), 93–109.
[89] Zhiwu Xu, Bohao Wu, Cheng Wen, Bin Zhang, Shengchao Qin, and Mengda He. 2024. RPG: Rust library fuzzing with

pool-based fuzz target generation and generic support. In Proceedings of the 46th International Conference on Software

Engineering.
[90] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2018. Spatio-temporal context reduction: A pointer-analysis-

based static approach for detecting use-after-free vulnerabilities. In Proceedings of the 40th International Conference

on Software Engineering (ICSE’18), Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM,
327–337. DOI:https://doi.org/10.1145/3180155.3180178

[91] Mengjiao Sherry Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. 2022. Chain of thought imitation with
procedure cloning. Adv. Neural Inf. Process. Syst. 35 (2022), 36366–36381.

[92] Chengfeng Ye, Yuandao Cai, and Charles Zhang. 2024. When threads meet interrupts: Effective static detection
of interrupt-based deadlocks. In Proceedings of the 33rd USENIX Security Symposium (USENIX Security’24), Davide
Balzarotti and Wenyuan Xu (Eds.). USENIX Association.

[93] Xi Ye and Greg Durrett. 2022. The unreliability of explanations in few-shot prompting for textual reasoning. Adv.

Neural Inf. Process. Syst. 35 (2022), 30378–30392.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1145/3510003.3510062
https://doi.org/10.1145/3239235.3239523
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1109/ICSE48619.2023.00129
http://www.usenix.org/events/osdi10/tech/full_papers/Xiong.pdf
https://doi.org/10.1145/3180155.3180178

168:34 C. Wen et al.

[94] Joobeom Yun, Rustamov Fayozbek, Juhwan Kim, and Youngjoo Shin. 2023. Fuzzing of embedded systems: A survey.
ACM Comput. Surv. 55, 7 (2023), 137:1–137:33. DOI:https://doi.org/10.1145/3538644

[95] Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng Wang, Chengyu Song, Zhiyun Qian, Mohsen Lesani, Srikanth V. Krishna-
murthy, and Paul L. Yu. 2020. UBITect: A precise and scalable method to detect use-before-initialization bugs in linux
kernel. In ESEC/FSE’20: Proceedings of the 28th ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE’20, Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann
(Eds.). ACM, 221–232. DOI:https://doi.org/10.1145/3368089.3409686

[96] Xin Zhang, Radu Grigore, Xujie Si, and Mayur Naik. 2017. Effective interactive resolution of static analysis alarms.
Proc. ACM Program. Lang. 1, OOPSLA (2017), 57:1–57:30. DOI:https://doi.org/10.1145/3133881

[97] Xiaowen Zhang, Ying Zhou, and Shin Hwei Tan. 2023. Efficient pattern-based static analysis approach via regular-
expression rules. In Proceedings of the IEEE International Conference on Software Analysis, Evolution and Reengineering

(SANER’23), Tao Zhang, Xin Xia, and Nicole Novielli (Eds.). IEEE, 132–143. DOI:https://doi.org/10.1109/SANER56733.
2023.00022

[98] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Jun-
jie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li,
Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A survey of large language models. CoRR

abs/2303.18223 (2023).

Received 15 September 2023; revised 30 January 2024; accepted 3 March 2024

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 168. Publication date: June 2024.

https://doi.org/10.1145/3538644
https://doi.org/10.1145/3368089.3409686
https://doi.org/10.1145/3133881
https://doi.org/10.1109/SANER56733.2023.00022

