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Abstract. Heap-based memory vulnerabilities are significant contribu-
tors to software security and reliability. The presence of these vulnerabil-
ities is influenced by factors such as code coverage, the frequency of heap
operations, and the specific execution order. Current fuzzing solutions
aim to efficiently detect these vulnerabilities by utilizing static analysis
or incorporating feedback on the sequence of heap operations. However,
these solutions have limited practical applicability and do not compre-
hensively address the temporal and spatial aspects of heap operations. In
this paper, we propose a dedicated fuzzing technique called CtxFuzz to
efficiently discover heap-based temporal and spatial memory vulnerabili-
ties without requiring any domain knowledge. CtxFuzz utilizes context
heap operation sequences (the sequences of heap operations such as allo-
cation, deallocation, read, and write that are associated with correspond-
ing heap memory addresses) as a new feedback mechanism to guide the
fuzzing process. By doing so, CtxFuzz can explore more heap states and
trigger more heap-based memory vulnerabilities, both temporal and spa-
tial. We evaluate CtxFuzz on 9 real-world open-source programs and
compare their performance with 5 state-of-the-art fuzzers. The results
demonstrate that CtxFuzz outperforms most fuzzers in terms of dis-
covering heap-based memory vulnerabilities. Moreover, Our experiments
led to the identification of 10 zero-day vulnerabilities (10 CVEs).

1 Introduction

Heap-based temporal vulnerabilities (e.g., null-pointer dereference, use-after-
free and double-free) and spatial memory vulnerabilities (e.g., buffer-overflow
and allocation failure) pose serious threats to software security and reliabil-
ity [6,20,31]. These vulnerabilities occur when a program performs incorrect
or unsafe operations on heap memory, such as using freed memory, accessing
invalid memory addresses, or consuming a large amount of memory. Such oper-
ations can result in memory corruption, which can cause the program to crash,
behave unpredictably, or execute arbitrary code injected by an attacker.
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Problem and Challenges. Detecting heap-based memory vulnerabilities is
challenging, as they depend on various factors such as the frequency of heap
operations, the specific execution order, and code coverage [14,16,24]. Moreover,
these vulnerabilities can manifest themselves in different ways, such as temporal
errors [4,11,22] and spatial errors [5,26,27]. Hence, it is essential to have a testing
technique that can efficiently and comprehensively detect these vulnerabilities
without necessitating prior knowledge of the program or the heap structure.

In recent years, fuzzing has emerged as a popular and effective testing
technique for detecting and mitigating memory vulnerabilities. This technique
involves supplying random or semi-random inputs to a program and observ-
ing its behavior for any irregularities. However, most fuzzing techniques do not
adequately address heap-based memory vulnerabilities, particularly those that
are temporal in nature. These vulnerabilities are not solely determined by code
coverage, but also depend on the specific order of heap operations. Instead of
being solely influenced by the amount of code exercised, these vulnerabilities
arise from the sequence of heap operations. Consequently, fuzzing techniques
that solely rely on code coverage as feedback may overlook a significant number
of temporal errors. On the other hand, certain fuzzing techniques have been pro-
posed to tackle heap-based memory vulnerabilities by utilizing various types of
feedback, such as operation sequence coverage [28], typestate analysis [23], taint
inference [30], memory usage [26], or user-defined properties [12,15]. However,
these techniques often have limitations, such as focusing on a specific type of heap
operation (e.g., allocation or deallocation) [28], requiring expert knowledge [12],
relying on imprecise static analysis [23], and thus limiting their practical applica-
bility and effectiveness. Furthermore, these techniques frequently disregard the
holistic nature of memory vulnerabilities, impeding a comprehensive approach
to identifying and mitigating both temporal and spatial issues simultaneously.

Approach. We propose a novel fuzzing technique called CtxFuzz that aims to
overcome the limitations of existing fuzzing solutions and efficiently discover both
heap-based temporal and spatial memory vulnerabilities. CtxFuzz is a greybox
fuzzing technique that does not require any domain knowledge. Instead, it uti-
lizes
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��
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�
S equences (CHOS) as a feedback mechanism to

guide the fuzzing process and input generation. CHOS refers to the sequences of
heap operations (e.g., allocation, deallocation, read, and write) associated with
the corresponding heap memory addresses. CtxFuzz monitors the program’s
heap state and heap memory addresses accessed through instrumentation. Mod-
ifying the seed selection strategy by counting the number of generated CHOS
can facilitate the generation of inputs that trigger more potential vulnerabilities.
CtxFuzz is capable of detecting both temporal and spatial errors by manipu-
lating the heap memory addresses and CHOS in various ways.

Evaluation. We evaluated the effectiveness and efficiency of CtxFuzz on 9
widely used real-world open-source programs that have undergone extensive test-
ing by other fuzzers. In our comparison, we assessed CtxFuzz against 5 state-of-
the-art fuzzers, namely AFL [29], AFL++ [7], HTFuzz [28], Memlock [26], and
TortoiseFuzz [25]. The results demonstrate that CtxFuzz outperforms most
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fuzzers in terms of discovering heap-based memory vulnerabilities. Specifically,
CtxFuzz found 1.3x, 1.3x, 1.4x, 4.1x, and 1.7x more vulnerabilities than AFL,
AFL++, HTFuzz, Memlock, and TortoiseFuzz, respectively. Furthermore, Ctx-
Fuzz identified 10 new zero-day vulnerabilities (10 CVEs) that had not been
reported by any other studies. We promptly reported these vulnerabilities to the
respective developers and vendors, receiving positive feedback and acknowledg-
ments.

In summary, this paper makes the following contributions.

– Originality. We propose a dedicated fuzzing solution CtxFuzz to efficiently
discover both heap-based temporal and spatial memory vulnerabilities with-
out requiring any domain knowledge.

– Technique. Our approach leverages context heap operation sequences
(CHOS) as a feedback mechanism to guide the fuzzing process and input
generation. CtxFuzz monitors the program’s heap state and heap mem-
ory addresses accessed through instrumentation. Modifying the seed selec-
tion strategy by counting the number of generated CHOS can facilitate the
generation of inputs that trigger more potential vulnerabilities.

– Evaluation. We have implemented CtxFuzz and evaluated its effectiveness
on 9 real-world open-source programs. We demonstrate that CtxFuzz out-
performs 5 state-of-the-art fuzzers in terms of discovering heap-based memory
vulnerabilities.

– Practical Impact. We discover 10 zero-day vulnerabilities (10 CVEs) that
have not been previously reported, and report them to the corresponding
developers and vendors.

2 Motivation

This section highlights the limitations of existing grey-box fuzzing techniques
in detecting heap-based memory vulnerabilities. We also provide an informal
description of how CtxFuzz works, exemplified by a zero-day vulnerability
CVE-2023-49554 that was discovered by CtxFuzz.

Listing 1.1 shows a use-after-free (UAF) vulnerability in the real-world code
processing tool Yasm. The vulnerability is triggered by a specific order of code
execution in the function do directive, which is repeatedly called by the func-
tion nasm parser parse (line 33) along with the function pp getline (line 27).
The function do directive has a switch statement that can execute two cases:
PP REP (line 7) and PP ENDREP (line 9). In the first case, it creates a heap mem-
ory object for a variable named defining (line 8) and stores its address in
another variable named istk→mstk (line 10). In the second case, it uses the
same address to access the memory object (line 10). However, before going back
to do directive, the function pp getline may free the memory object (line
19). This leads to a UAF when do directive tries to use the freed memory
object again (line 3).

Existing mainstream grey-box fuzzers, such as AFL [29] mainly use code
coverage as feedback to guide the fuzzing. In this case, the UAF can be triggered
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1 // from modules/preprocs/nasm/nasm-pp.c
2 static int do_directive(Token *tline){
3 if (... && !istk->mstk->in_progress){ // Crash
4 return NO_DIRECTIVE_FOUND;
5 }
6 switch (i) {
7 case PP_REP:
8 defining = nasm_malloc(sizeof(MMacro)); // Memory allocation
9 case PP_ENDREP:

10 istk->mstk = defining; // Memory access
11 }
12 }
13
14 static char *pp_getline(void){
15 while (...){
16 ...
17 MMacro *m = istk->mstk; // Memory access
18 if (...) {
19 free_mmacro(m); // Memory deallocation
20 }
21 }
22 if (do_directive(tline) == DIRECTIVE_FOUND) {...}
23 }
24
25 // modules/preprocs/nasm/nasm-preproc.c
26 static char *nasm_preproc_get_line(yasm_preproc *preproc){
27 line = nasmpp.getline(); // a function pointer of pp_getline
28 }
29
30 // modules/parsers/nasm/nasm-parse.c
31 void nasm_parser_parse(yasm_parser_nasm *parser_nasm){
32 unsigned char *line;
33 while ((line=(unsigned char*)yasm_preproc_get_line(parser_nasm->preproc))!=NULL){
34 ...
35 }
36 }
37
38 void main(int argc, char *argv[]){
39 ...
40 nasm_parser_parse(...);
41 }

Listing 1.1. A UAF example simplified from CVE-2023-49554

if lines 8→10→17→19→3 are executed temporally. However, code coverage is not
enough to capture the order and amount of heap operation, which is essential
for triggering such heap-based memory vulnerabilities. Some fuzzing techniques
also use heap operation sequences to detect heap-based memory vulnerabilities.
For example, UAFL [23] uses static analysis to identify potential heap operation
sequences and then directs fuzzing to cover them gradually. However, static
analysis can miss some sequences, such as the aliasing between defining (line
8) and istk→mstk (line 10), or the pointees of the function pointer getline
(line 27). HTFuzz [28] improves the diversity of heap operation sequences but
does not take the corresponding memory objects into account. For example,
both memory allocation (line 8) and deallocation (line 19) impact the variable
istk→mstk. Additionally, HTFuzz overlooks memory read and write operations,
exemplified by lines 10 and 17, that are critical in this context, thereby hindering
efficient bug detection. Note that in our experiment, CtxFuzz was able to detect
this bug in 10 h. HTFuzz and AFL took at least an additional 10 h compared to
CtxFuzz. However, TortoiseFuzz [25] and MemLock [26] were unable to detect
this vulnerability.

Our key insight is that tracking how heap operations manipulate different
memory objects is crucial for delving into the intricate effects of memory manage-
ment in the program and identifying vulnerabilities related to heap-based mem-
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Fig. 1. The workflow of CtxFuzz

ory. Therefore, triggering various sequences of heap operations can be deemed as
interesting behaviors similar to code coverage. CtxFuzz adheres to this concept
by focusing on distinct heap memory addresses and the corresponding heap oper-
ations. Let us now explore the motivating example mentioned above. Assuming
that we tracked each heap operation using a two-digit binary number repre-
sentation: 00 for allocation, 01 for reading, 10 for writing, and 11 for deallo-
cation. A set of heap operations can be represented as a sequence, and each
sequence may be viewed as a distinct behavior of the programs. For instance,
if the do directive function allocates the heap memory address 0x1234 using
malloc at line 8, we utilize the lower 16 bits of the address (0x1234) as the
array index and record the operation 00 in the corresponding element. Subse-
quently, if a read operation to the address 0x1234 occurs, we append 01 to the
respective element, resulting in 0001. Finally, upon the function releasing the
address 0x1234 with free, we add 11 to the allocated index, resulting in 000111.
This representation helps in identifying new behaviors in the sequence, similar
to tracking code coverage. Our approach aids in maintaining a record of heap
operation sequences for each memory address.

3 Methodology

3.1 Overview of CtxFuzz

The workflow of CtxFuzz is illustrated in Fig. 1. CtxFuzz follows the general
workflow of grey-box fuzzers but introduces improvements in three areas, namely
feedback mechanism, instrumentation, and seed selection. Specifically, CtxFuzz
leverages the new context heap operation sequence (CHOS) feedback by record-
ing a set of recently accessed heap memory addresses and their corresponding last
heap operation sequences (i.e., a new sequence bitmap in Fig. 1) at the entry of
each basic block. To keep track of the CHOS information, CtxFuzz performs an
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Algorithm 1: Tracking CHOS Feedback with Instrumentation
Input: A program P
Output: An instrumented program P ′

1 Function SeqUpdate(SeqArray, RecentObj, Address, Code):
2 SeqArray[Address] = SeqArray[Address] � 2 | Code // Update operation sequence
3 RecentObjUpdate(RecentObj, Address, K) // Update the last K accessed addresses
4 Function SeqFeedback(SeqCov, cur loc, prev loc, SeqArray, RecentObj):
5 Hash = 0
6 for each Address in RecentObj do
7 Hash = Hash ⊕ (SeqArray[Address]&(1 � (L × 2)) − 1))
8 end
9 SeqCov[cur loc ⊕ prev loc ⊕ Hash] + + // non-zero integer

10 Initialize(BranchCov, SeqCov, SeqCount, SeqArray, RecentObj, LastOperation)
11 HeapInstMap = getHeapRelatedInstMap(P)
12 for each BB in each Func do
13 cur loc = RandomInt() // Get a basic block ID as AFL++
14 Insert(BranchCov[cur loc ⊕ prev loc] + +) // Coverage feedback as AFL++
15 for each Inst in each BB do
16 if Inst in HeapInstMap and HeapInstMap[Inst] �= -1 then
17 LastOperationUpdate(LastOperation, Inst, HeapInstMap[Inst])
18 end
19 for each Inst, Code in LastOperation do
20 Insert(SeqUpdate(SeqArray, RecentObj, Inst, Code))
21 Insert(SeqCount + +)
22 end
23 Insert(SeqFeedback(SeqCov, cur loc, prev loc, SeqArray, RecentObj)) // CHOS feedback
24 prev loc = cur loc � 1
25 end

LLVM-instrumentation pass to collect the heap-related operations and their cor-
responding addresses. Additionally, CtxFuzz preserves testcases that actively
contribute to either code coverage or context heap operation sequence coverage.
And the seed selection strategy is refined to prioritize seeds based on the quan-
tity of context heap operation sequences generated after their execution, thus
enhancing the likelihood of uncovering potential vulnerabilities.

3.2 Context Heap Operation Sequence Feedback

Context Heap Operation Sequence (CHOS) feedback is a novel feedback mecha-
nism that we propose for fuzzing. CHOS tracks the sequences of heap operations
(e.g., allocation, deallocation, read, and write) associated with corresponding
heap memory addresses, and uses them to guide the generation and selection of
testcases. CHOS differs from other feedback mechanisms, such as code coverage,
in that it captures the dynamic behavior and state of the heap memory, which is
often the source of memory vulnerabilities. CHOS also addresses the challenge
of sequence record explosion, which occurs when the number of heap operation
sequences grows exponentially with the number of heap memory addresses and
operations. Sequence record explosion can cause significant memory and time
overhead for fuzzing, and reduce the diversity and quality of testcases.

Generally, a simply way to track CHOS is to utilize all the heap operation
sequences for all the heap memory addresses. However, this would be ineffi-
cient and redundant. Instead, we only utilize the last K accessed heap memory
addresses, and their corresponding sequences formed by the last L heap oper-
ations. This is based on the principle of program locality, which states that
programs tend to access the same or nearby memory locations repeatedly. By
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Algorithm 2: Heap-related Instruction Analysis
Input: A program P
Output: Heap-Related Instruction Map HeapInstMap

1 Function getHeapRelatedInstMap(P):
2 HeapInstMap ← {}
3 for each Func in each Module do
4 for each Arg in Func do
5 if isPointerType(Arg) then
6 HeapInstMap[Arg] = −1
7 end
8 for each BB in Func do
9 for each Inst in each BB do

10 if isCallInst(Inst) then
11 if isAllocFunc(Inst → getCalledFunction()) then
12 HeapInstMap[Inst] = ALLOC
13 else if isDeallocFunc(Inst → getCalledFunction()) then
14 HeapInstMap[Inst] = DEALLOC
15 else if isLoadInst(Inst) and Inst → getOperand(0) in HeapInstMap then
16 HeapInstMap[Inst] = LOAD
17 else if isStoreInst(Inst) then
18 if Inst → getOperand(0) in HeapInstMap then
19 HeapInstMap[Inst → getOperand(1)] = −1
20 HeapInstMap[Inst] = STORE
21 else if Inst → getOperand(1) in HeapInstMap then
22 HeapInstMap[Inst] = STORE
23 else if isGetElementPtrInst(Inst) and Inst → getOperand(0) in

HeapInstMap then
24 HeapInstMap[Inst] = −1
25 else if isBitCastInst(Inst) and Inst → getOperand(0) in HeapInstMap

then
26 HeapInstMap[Inst] = −1
27 end
28 end
29 end
30 return HeapInstMap

doing so, we can reduce the memory and time overhead of CHOS feedback, and
focus on the most relevant and interesting heap operation sequences for fuzzing.
This is similar to how AFL, a popular fuzzing system, saves edges to the code
coverage bitmap at the entry of each basic block.

To use the heap operation sequences for fuzzing, we need a way to measure
the difference or novelty of the sequences generated by different testcases. To do
this, we represent each heap operation as a two-digit binary (e.g., 00 for allo-
cation, 01 for reading, 10 for writing, and 11 for deallocation) and use a simple
but effective operation ⊕ (a.k.a., XOR) to concatenate sequences for different
addresses. Specifically, we select K heap memory addresses that are accessed by
the testcase, and XOR the elements of the sequence array corresponding to those
addresses (line 7 of function SeqFeedback in Algorithm 1). The result number
can be considered as a representation for the heap operation sequences of the
testcase. We then use this number as the index for updating the new sequence
bitmap at the beginning of each basic block (line 9 of function SeqFeedback).
The new sequence bitmap records whether a testcase has generated a new or dif-
ferent heap operation sequence compared to the previous testcases. If a testcase
has generated a new sequence, we save the testcase as a seed for further fuzzing.
Otherwise, we discard the testcase.
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3.3 Instrumentation

To keep track of the CHOS information, we perform an instrumentation to
collect the heap-related operations and their corresponding addresses. Algo-
rithm 1 presents the details of our instrumentation. Our approach follows the
general workflow of AFL++. Given that AFL++ already includes an LLVM-
instrumentation pass [18], we have made direct modifications to it to instrument
the target application while preserving the original instrumentation implemented
by AFL++.

Code coverage information is collected by instrumenting the entry of each
basic block using a bitmap named BranchCov (line 14). Prior to the instrumen-
tation for the CHOS feedback, we perform a heap-related instruction analysis to
collect the heap operations (line 11). In order to optimize fuzzing efficiency, we
strategically preserve the last operation for each pointer within each basic block
(lines 15–18) and instrument the preserved operations correspondingly (line 20).
Additionally, we also instrument the target program to track the number of gen-
erated CHOS (line 21), which influences seed selection during fuzzing. Finally, we
instrument the code to update the generated CHOS into an additional bitmap
named SeqCov (line 23).

Our heap-related instruction analysis is presented in Algorithm 2, which takes
a program as input and returns a map recording the heap-related instructions
and their corresponding codes. To collect as many heap operations as possible,
we record the pointer arguments in the map HeapInstMap with an uninterest-
ing code –1 for each function (lines 4–7). The analysis proceeds instruction by
instruction. If the instruction is involved a memory allocation function, such as
malloc() and realloc(), it is recorded with the interesting code ALLOC (lines
11–12). Similarly, if the instruction is involved a memory deallocation function,
such as free, it is recorded with the interesting code DEALLOC (lines 13–14).
If the instruction is a load one (i.e., memory reading operation) and the cor-
responding address is in the map (i.e., interesting address), it is recorded with
the interesting code LOAD (lines 15–16). The store instruction (i.e., memory
writing operations) is similar, but with two cases (lines 17–22). Finally, to avoid
an excessive number of distinct memory addresses, we consider operations on
arrays as operations on their corresponding base addresses (lines 23–24) and
ignore the cast operations (lines 25–26). Note that, this analysis can be merged
into the LLVM-instrumentation pass to optimize instrumentation efficiency. For
better understanding, we keep them separately.

3.4 Fuzzing Loop and Seed Selection

The fuzzing loop of CtxFuzz is presented in Algorithm 3, which takes the
instrumented program P ′ (obtained by Algorithm 1) and a set of initial seeds
S as inputs and returns a set of crashes crashSet. The algorithm initialize the
seed pool Queue as the initial seeds S (line 2). Then the algorithm performs
the following process until interruption: it selects a seed from the seed pool
Queue as the input (line 4) and assigns the input a energy value (line 5), which
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Algorithm 3: Fuzzing Loop of CtxFuzz
Input: Instrumented program P ′, Initial seed inputs S
Output: Set of crashes crashSet

1 crashSet ← ∅

2 Queue ← S
3 while not interruption do
4 input ← SelectSeed(Queue)
5 energy ← AssignEnergy(input)
6 for i = 0 to energy do
7 testcase ← Mutate(input)

8 BranchCov, SeqCov, SeqCount ← Execute(P ′, testcase)
9 if testcase triggers crash then

10 crashSet ← crashSet
⋃ {testcase }

11 else if isInteresting(BranchCov, SeqCov) then
12 Queue ← Queue

⋃ {testcase } // Interesting seed
13 update bitmap score(testcase, SeqCount) // Adjustment of seed order
14 end
15 end
16 return crashSet

determines the number of children (i.e., testcases) to be generated from that
input, following the same heuristics as AFL++ [7]. After that, for each mutated
testcase, it monitors the execution of the instrumented program P ′ (line 8). If
the program crashes or triggers alarms set by sanitizers (line 9), the testcase
is recorded as a Proof of Concept (PoC) (line 10). Otherwise, if the testcase is
interesting (e.g., new code coverage or CHOS coverage) (line 11), the testcase
is added into the seed pool for further testing (line 12) and the score, used to
guide the seed selection, is updated correspondingly (line 13).

As mentioned in Sect. 3.1, CtxFuzz follows the workflow of AFL++, but
introduces new seed selection strategies (lines 12–13). First, a testcase is con-
sidered interesting if and only if it introduces either new code coverage or new
CHOS coverage, as shown in Eq. (1).

isInteresting =

{
True, hasNew(BranchCov) ∨ hasNew(SeqCov)
False, otherwise

(1)

Moreover, we also improve the score-updating API update bitmap score() of
AFL++ (line 13), which allows for the adjustment of the seed queue’s order
and the designation of certain seeds as favored. These favored seeds are then
given priority for mutation in subsequent iterations (line 4). Initially, AFL++
prioritizes seeds based on shorter execution times and smaller file sizes. However,
we enhance this strategy by also favoring seeds that exhibit a greater number of
CHOS during testing. Formally, a favored testcase is defined by Eq. (2).

isFavored =

{
True, isMin(Time × FileSize) ∨ isMax(SeqCount)
False, otherwise

(2)

4 Evaluation

We have implemented a prototype of CtxFuzz based on AFL++ [7] version
4.08c. Our main focus is on modifying the influencing factors in the instrumen-
tation, feedback mechanism, and seed selection. By making these modifications
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Table 1. Objective real-world programs evaluated in our experiment.

Program Version SLoC Input Format Test instruction

Bento4 v1.6.0-639 104K mp4 mp42hls @@
cflow 1.6 80K c cflow @@
cxxfilt 2.41 5.03M text cxxfilt -t
Exiv2 v0.26 386K jpg exiv2 -pX @@
giflib 5.2.1 14K gif gif2rgb @@
mJS 2.20.0 43K js mjs -f @@
OpenH264 8684722 141K text h264dec @@ ./tmp
YARA v3.5.0 62K text yara @@ strings
Yasm 9defefa 173K asm yasm @@

without changing other components, we have successfully improved the overall
performance of heap-based memory vulnerability detection. To foster further
research, more information (e.g., benchmark dataset, initial seed) is available at
https://sites.google.com/view/ctxfuzz.

We conducted comprehensive experiments to evaluate CtxFuzz using a set
of real-world programs, and compare CtxFuzz with state-of-the-art fuzzers, fol-
lowing Klees’s suggestions [8]. In the experiments, we aim to answer the following
questions:

RQ1. How effective is CtxFuzz in discovering heap-based memory vulnerabil-
ities in real-world programs?

RQ2. How does CtxFuzz compare to other state-of-the-art fuzzers?
RQ3. Does the improvements made by CtxFuzz contribute to the efficiency

of fuzzing towards heap-based memory vulnerabilities?

4.1 Experiment Setup

Benchmark Programs. We curated a collection of benchmark applications from
fuzzing papers that focus on heap-based memory vulnerabilities, as shown in
Table 1. The selection process took various factors into consideration, such as
popularity, frequency of testing, and the presence of memory vulnerabilities. In
total, we used 9 widely used real-world programs for our evaluation, all of which
contain memory vulnerabilities. These programs include renowned code analysis
tools (e.g., cxxfilt, cflow), code processing tools (e.g., mJS, Yasm), graphics
processing libraries (e.g., Exiv2, giflib), video processing tools (e.g., Bento4,
OpenH264), and a data processing library (e.g., YARA), among others.
Baseline Fuzzers. We evaluated CtxFuzz by comparing it against 5 state-of-the-
art fuzzers: AFL, AFL++, HTFuzz, Memlock, and TortoiseFuzz. These fuzzers
were selected based on several considerations. AFL++ [7] is an enhanced ver-
sion of AFL, and our work is built upon it. Memlock [26] and TortoiseFuzz [25]

https://sites.google.com/view/ctxfuzz
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Table 2. The number of heap-based memory vulnerabilities found in 48 h.

Program CtxFuzz AFL AFL++ HTFuzz MemLock TortoiseFuzz

Unique Average Unique Average Unique Average Unique Average Unique Average Unique Average

Bento4 3 3.00 2 1.88 3 3.00 3 2.88 2 2.00 1 1.00
cflow 2 2.00 2 1.12 3 2.12 3 1.75 1 0.62 1 0.38
cxxfilt 1 0.12 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
Exiv2 2 2.00 1 1.00 1 1.00 2 2.00 1 1.00 1 1.00
giflib 1 0.88 1 0.12 1 0.62 1 0.38 1 0.12 1 0.25
mJS 11 3.25 10 5.25 4 1.50 4 1.75 0 0.00 4 3.38
OpenH264 5 2.38 2 1.00 3 2.25 2 2.00 0 0.00 1 0.62
YARA 5 3.88 4 2.88 5 3.88 5 4.12 3 1.00 5 3.25
Yasm 11 6.88 9 7.88 11 8.50 9 8.50 2 0.88 9 7.00
Sum/Sum 41 24.39 31 21.13 31 22.87 29 23.38 10 5.62 23 16.88

specifically focus on memory operations, including memory allocation, dealloca-
tion, and usage. HTFuzz [28] targets memory vulnerabilities through candidate
heap operation sequences. All of these fuzzers are partially related to CtxFuzz,
and we ran them with their default parameters.
Performance Metrics. Instead of considering unique crash numbers reported by
the fuzzers, We evaluate the performance of the fuzzers based on the number
of heap-based memory vulnerabilities. To compare the vulnerability findings
of different fuzzers, we also conduct the Mann-Whitney U-test for statistical
evaluation.

Configuration. To ensure accurate results, we implemented two measures to mit-
igate performance jitter during the fuzzing process. Firstly, we conducted exten-
sive testing by running each program for a duration of 48 h, allowing the fuzzer to
reach a relatively stable state. Secondly, we repeated each experiment 8 times to
minimize random noises that may occur during fuzzing. The applications were
compiled using clang and AddressSanitizer [19,32], and we executed them in
various fuzzers using the command options outlined in Table 1.

Experiment Infrastructure. All our experiments are performed on machines with
an Intel(R) Xeon(R) Gold 6132 CPU @ 2.60 GHz and 252 GB of RAM under
64-bit Ubuntu LTS 20.04.

4.2 RQ1. Vulnerability Detection Capability

Table 2 presents the statistical results of CtxFuzz in detecting heap-based mem-
ory vulnerabilities. As shown in the column labeled CtxFuzz, CtxFuzz suc-
cessfully detected 41 heap-based memory vulnerabilities in our eight 48-hour
experiments, out of a total of 46 vulnerabilities. We manually reviewed these
41 bugs to assess their authenticity and severity. These vulnerabilities, classified
by bug type, include stack buffer overflow, heap buffer overflow, use-after-free,
and double-free vulnerabilities, many of which are critical and can have severe
consequences. Among the vulnerable programs, mJS and Yasm stand out with
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Table 3. The zero-day vulnerabilities found by CtxFuzz.

Bug ID Program Version Type

CVE-2023-49554 Yasm 9defefa use-after-free
CVE-2023-49551 mJS 2.20.0 null-pointer dereference
CVE-2023-49555 Yasm 9defefa null-pointer dereference
CVE-2023-49557 Yasm 9defefa null-pointer dereference
CVE-2023-49558 Yasm 9defefa null-pointer dereference
CVE-2023-49549 mJS 2.20.0 null-pointer dereference
CVE-2023-49550 mJS 2.20.0 null-pointer dereference
CVE-2023-49553 mJS 2.20.0 null-pointer dereference
CVE-2023-49556 Yasm 9defefa heap-buffer-overflow
CVE-2023-49552 mJS 2.20.0 stack-overflow

11 and 11 identified bugs, respectively. We promptly reported these previously
unknown bugs to the respective maintainers.

Security Impact of Newly Found Vulnerabilities. CtxFuzz showcases its
effectiveness and efficiency in discovering heap-based vulnerabilities by employ-
ing guided fuzzing of CHOS. At the time of writing, 10 zero-day vulnerabilities
have already been identified, resulting in the assignment of 10 CVEs by Mitre,
as shown in Table 3. Out of these 10 CVEs, 9 are heap-based memory vulnera-
bilities, while one is a stack overflow. These heap-based memory vulnerabilities
discovered by CtxFuzz pose serious threats to the security and reliability of the
affected applications. These include 7 null-pointer dereferences, one use-after-free
vulnerability, and one heap-buffer-overflow vulnerability, which may result in
memory corruption, denial-of-service, or arbitrary code execution [10,21]. Fur-
thermore, some of these vulnerabilities are challenging to detect and exploit,
with 5 of them requiring more than 48 h for successful exploitation, particularly
if they involve complex heap operations or meta-operations. Consequently, it is
crucial for software developers and security researchers to identify and address
these vulnerabilities promptly.

4.3 RQ2. Compare with Other SOTA Fuzzers

Table 2 also presents the number of heap-based memory vulnerabilities detected
by each baseline fuzzer (e.g., AFL, AFL++, HTFuzz, MemLock, TortoiseFuzz)
during a period of 48 h. CtxFuzz identified a total of 41 unique vulnerabilities,
surpassing the second-best performers AFL++ which only uncovered 31 unique
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Fig. 2. Unique heap-based memory vulnerabilities accumulated over time

vulnerabilities. This represents a significant improvement, as CtxFuzz demon-
strates a 32.26% enhancement over AFL++ in terms of detecting heap-based
memory vulnerabilities. It is worth noting that, in some programs with frequent
heap memory operations like OpenH264, CtxFuzz has a particularly significant
impact, discovering over 100% more vulnerabilities than most baseline fuzzers. In
terms of the average number of detected vulnerabilities, CtxFuzz slightly sur-
passes AFL++ and HTFuzz, while still significantly outperforming MemLock
and TortoiseFuzz. In addition, although CtxFuzz detect a lower average num-
ber of vulnerabilities for some programs (e.g., Yasm) than some baseline fuzzers
(e.g., AFL++ and HTFuzz), CtxFuzz is able to detect more or not less than
the number of unique vulnerabilities. This could be partly attributed to the fact
that CtxFuzz explores diverse CHOS across different runs, which highlights the
necessity of exploring CHOS.

Discovered Vulnerabilities Over Time. To facilitate the comparison of dif-
ferent fuzzers, we also use a plot to illustrate the number of identified vulnerabili-
ties in all 9 evaluated programs. This representation is depicted in Fig. 2. Within
the initial 10-hour timeframe, CtxFuzz promptly identified nearly 27 vulnera-
bilities, showcasing its superior efficiency in vulnerability detection compared to
other competitors. However, as the duration exceeds 30 h, the performance of the
competing fuzzers gradually stagnates, with new vulnerabilities being uncovered
at a slow pace. In contrast, CtxFuzz continues to discover new vulnerabili-
ties. In summary, the plot clearly shows a consistent and robust growth trend
in the discovery of vulnerabilities by CtxFuzz, surpassing other fuzzers and
maintaining a leading position.

Statistical Test. According to the p-value of the Mann-Whitney U-test using
CtxFuzz as the basis in Table 4, CtxFuzz outperforms the 5 compared fuzzers
in 23 out of the 45 comparisons with a significant difference (i.e., p-value is
smaller than 0.05 [2]).
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Table 4. P-values of Table 2. P-values below 0.05 are in bold.

Program AFL AFL++ HTFuzz MemLock TortoiseFuzz

Bento4 1.03e-04 1.00e+00 1.91e-01 6.88e-05 6.88e-05

cflow 3.97e-04 7.56e-01 8.50e-02 1.55e-04 1.55e-04

cxxfilt 1.91e-01 1.91e-01 1.91e-01 1.91e-01 1.91e-01
Exiv2 6.88e-05 6.88e-05 1.00e+00 6.88e-05 6.88e-05

giflib 2.23e-03 1.47e-01 2.63e-02 2.23e-03 8.69e-03

mJS 9.98e-01 3.29e-03 1.01e-02 1.87e-04 6.10e-01
OpenH264 4.45e-03 4.72e-01 8.55e-02 1.35e-04 2.68e-04

YARA 2.29e-03 5.00e-01 9.28e-01 2.44e-04 6.43e-02
Yasm 9.42e-01 9.86e-01 9.87e-01 2.60e-04 6.09e-01

Table 5. Results of tests with different hyperparameter settings.

Program AFL++ K = 2, L = 3 K = 2, L = 8 K = 5, L = 3 K = 5, L = 8 CtxFuzz-wo
CHOS Bug CHOS Bug CHOS Bug CHOS Bug CHOS Bug CHOS Bug

Bento4 19675 3 22235 3 21005 3 20883 3 19914 3 21586 3
cflow 19607 3 23129 2 23363 2 21619 2 21323 2 24062 2
cxxfilt 16091 0 20638 1 19702 0 19333 0 16795 0 21680 0
Exiv2 2170 1 3176 2 3300 2 2851 2 2576 2 3271 2
giflib 1719 1 3524 1 3698 1 3103 1 3088 1 3738 1
mJS 21381 4 27246 11 26256 8 25676 6 24749 2 26823 7
OpenH264 37423 3 40809 5 39707 3 38061 3 38855 2 42066 6
YARA 19611 5 22108 5 21493 5 20992 4 19940 5 23284 5
Yasm 45485 11 44088 11 41176 7 41917 9 37267 8 45665 9
Avg/Sum 20351 31 22995 41 22189 31 21604 30 20501 25 23575 35

4.4 RQ3. Ablation Studies

Hyperparameter Settings. As described in Sect. 3, the number K of the last
accessed heap memory addresses and the number L of the last heap operations
are configurable. To determine suitable values for K and L, we conducted experi-
ments with different settings. As our testing goal is to explore more context heap
operation sequences and discover more heap-based memory vulnerabilities, we
naturally consider these two metrics. The results of tests conducted with dif-
ferent hyperparameter settings can be found in Table 5, where”CHOS” denotes
the number of different CHOS found during runtime. We collect CHOS with afl-
showmap [29] and map the CHOS found by other settings into the ones found
by the setting of K = 2 and L = 3 for better comparasion. According to Table 5,
we set the default configuration for CtxFuzz as K = 2 and L = 3 since it gives
the best results.
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Effectiveness of CHOS Feedback Mechanism. In the evaluation of CHOS
feedback mechanism, we compared the performance of AFL++ and CtxFuzz
without seed selection strategy (denoted as CtxFuzz-wo) in Table 5. The results
show that CtxFuzz-wo explores over 15% more CHOS and discovering over 12%
more vulnerabilities. In particular, it is able to detect more than nearly twice
as many heap-based vulnerabilities as AFL++ on mJS and OpenH264. This
indicates that the incorporation of CHOS feedback mechanism leads to more
effective and targeted fuzzing, resulting in the discovery of additional heap-based
vulnerabilities as compared to the baseline AFL++.

Effectiveness of Seed Selection. In evaluating the effectiveness of seed selec-
tion strategies, we compared the performance of CtxFuzz and CtxFuzz-wo
in Table 5. The results indicate that CtxFuzz explores slightly fewer CHOS
than CtxFuzz-wo. This difference can be attributed to the fact that Ctx-
Fuzz focuses on specific seeds that exhibit a greater number of CHOS to trigger
potential vulnerabilities, which may sacrifice some diversity in CHOS generation.
However, CtxFuzz is able to detect 6 more vulnerabilities. This suggests that
the seed selection strategy contributes positively to the effectiveness of CtxFuzz
in discovering heap-based vulnerabilities in real-world programs.

4.5 Discussion

Additional Experiments. The three aforementioned research questions illus-
trate the effectiveness and efficiency of CtxFuzz in detecting heap-based mem-
ory vulnerabilities. Additionally, we evaluated other secondary indicators, includ-
ing code coverage, runtime overhead, and vulnerabilities beyond heap-based
memory vulnerabilities. In the following, we provide a succinct and compre-
hensive explanation of the experimental findings. To estimate code coverage,
we utilized gcov to obtain line coverage. The results showed that the cover-
age of CtxFuzz is comparable to that of baseline fuzzers. With respect to
runtime overhead, we compared the total number of each baseline fuzzer’s exe-
cutions. CtxFuzz is slower in 32 out of 45 comparisons, ranging from 1.12 to
4.34 times. Although CtxFuzz does introduce some runtime overhead, we con-
sider it worthwhile as it has been successful in discovering more vulnerabilities,
even in resource-intensive scenarios. Furthermore, CtxFuzz primarily empha-
sizes the analysis of the heap operation sequence, which may limit its ability
to detect other types of vulnerabilities (e.g., the stack-overflow in Table 3 is a
stack-based memory vulnerability). For readers interested in more detailed infor-
mation, additional experimental results can be found on CtxFuzz’s website.

Threat to Validity. We discuss the potential threats to the validity and general-
izability of our study, as well as the measures we have taken to mitigate or control
them. One potential threat is the selection bias that may arise from using only 9
open-source programs, which could limit the diversity of our dataset. To address
this concern, we made sure to select diverse programs from various domains and
with different characteristics. We are continuously working on improving and
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evaluating CtxFuzz. Another potential concern entails the sampling error that
may arise when utilizing a restricted number of seeds and inputs for each pro-
gram and fuzzer. This limitation has the potential to impact the comprehensive
nature of our testing process and introduce factors that create noise or variance
in our findings. To address this, we employed an identical set of seeds for each
fuzzer and conducted a 48-hour runtime. We repeated each experiment 8 times
and reported the average and standard deviation to account for any potential
variations. A third threat to consider is the possibility of statistical errors. In
order to compare CtxFuzz with other testers, we utilized statistical tests and
significance levels. However, it is important to acknowledge that these tests have
certain assumptions and limitations. To address this concern, we thoroughly
checked the assumptions and conditions before applying the tests, ensuring that
we used the appropriate test for each specific scenario.

5 Related Work

Existing fuzzing solutions that aim to detect heap-based memory vulnerabilities
can be broadly categorized into two groups: temporal memory vulnerabilities
and spatial memory vulnerabilities. Use-after-free is a common temporal mem-
ory vulnerability, and there exist dedicated fuzzing techniques designed to detect
Use-after-free vulnerabilities. UAFL [23] employs typestate analysis to detect
operation sequences that may violate typestate properties. It utilizes operation
sequence coverage as feedback to direct test generation and gradually cover the
operation sequences. UAFuzz [15] relies on user-defined UAF sites to guide the
fuzzer during exploration. However, these approaches rely on expert knowledge
or imprecise static analysis, which presents challenges for their widespread adop-
tion and effectiveness in practical scenarios. There are also some fuzzing tech-
niques that can test for a wider range of temporal memory vulnerabilities. For
example, HTFuzz [28] introduces heap operation sequences as new feedback, in
addition to code coverage, to increase the diversity of heap operation sequences.
However, these tools primarily concentrate on memory allocation and deallo-
cation, neglecting the significant aspects of memory read and write operations.
Many techniques primarily focus on identifying spatial memory vulnerabilities.
Memlock [26] identifies statements and operations that are relevant to memory
consumption and is guided by memory usage. Concolic execution-based smart
fuzzing [13] only focuses on detecting heap-based buffer overflows as spatial mem-
ory vulnerabilities. However, it is important to note that CtxFuzz is capable
of efficiently discovering both spatial and temporal memory vulnerabilities.

While there are other fuzzing techniques that target temporal and spatial vul-
nerabilities, they mainly focus on algorithm complexity vulnerability rather than
memory vulnerability [1,3,9,17]. For instance, HotFuzz [3] is a framework that
utilizes a genetic algorithm to generate inputs that lead to the worst-case perfor-
mance of Java methods. In contrast, CtxFuzz specifically focuses on memory
safety vulnerabilities, distinguishing it from HotFuzz’s primary focus on algo-
rithmic complexity vulnerabilities.



CtxFuzz 221

6 Conclusion

We proposed CtxFuzz, a fuzzing technique that leverages context heap opera-
tion sequences as a new feedback mechanism to efficiently discover heap-based
temporal and spatial memory vulnerabilities. We evaluated CtxFuzz on 9 real-
world programs and showed that it outperformed 5 state-of-the-art fuzzers in
terms of discovering heap-based memory vulnerabilities. We also reported 10
new zero-day vulnerabilities (10 CVEs) to the corresponding vendors. CtxFuzz
demonstrates its utility for testing real-world programs that are susceptible to
heap-based memory vulnerabilities.
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