
CFStra: Enhancing Configurable Program
Analysis Through LLM-Driven Strategy

Selection Based on Code Features

Jie Su1 , Liansai Deng1, Cheng Wen1 , Shengchao Qin1,2(B) ,
and Cong Tian1,2(B)

1 Guangzhou Institute of Technology, Xidian University, Xi’an, China
{sujie01,wencheng}@xidian.edu.cn, 23031212358@stu.xidian.edu.cn,

shengchao.qin@gmail.com, ctian@mail.xidian.edu.cn
2 ICTT and ISN Laboratory, Xidian University, Xi’an, China

Abstract. Configurable Program Analysis (CPA) allows users to cus-
tomize program analysis based on their preferences. However, current
program verification tools like Cpachecker require manual strategy selec-
tion, which can be complex and error-prone. In this paper, we present
a novel approach to efficiently perform program verification tasks by
harnessing the capabilities of Large Language Models (LLMs) to auto-
matically select verification strategies based on code features and speci-
fications. Specifically, we begin by extracting relevant code snippets and
querying LLMs to identify code features. Based on the identified code
features, we propose a strategy selector to automatically choose the ver-
ification strategy. Finally, we execute the Cpachecker with the selected
verification strategy. We evaluated our approach using a diverse set of
600 verification tasks. The results demonstrate the effectiveness of our
approach, surpassing basic strategies and SOTA combination strategies
while also standing out for its simplicity and ease of understanding.

Keywords: Program Verification · Strategy Selection · Large
Language Model · Code Feature

1 Introduction

Background and Problem. Program verification is a complex and tedious task
as it often requires users to specify the desired properties of the program, choose
the appropriate verification technique and tool, and provide the necessary strat-
egy or other configuration parameters. Different verification tools, algorithms,
abstract domains, and configurations, coexist with their different strengths in
terms of approaching a verification problem.

Configurable Program Analysis (CPA) [5,31] is a technique that allows users
to customize the analysis of programs based on their specific needs and pref-
erences. The well-known framework Cpachecker simplifies configuration and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W.-N. Chin and Z. Xu (Eds.): TASE 2024, LNCS 14777, pp. 374–391, 2024.
https://doi.org/10.1007/978-3-031-64626-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64626-3_22&domain=pdf
http://orcid.org/0000-0002-5098-8040
http://orcid.org/0000-0003-1826-6213
http://orcid.org/0000-0003-3028-8191
http://orcid.org/0000-0002-5429-4580
https://doi.org/10.1007/978-3-031-64626-3_22


CFStra: LLM-Driven Strategy Selection Based on Code Features 375

automates analysis and verification tasks, supporting techniques like predicate
abstraction and model checking. Cpachecker also provides a rich set of con-
figuration parameters that can be used to adjust the precision, performance,
and resource consumption of the analysis. However, the default configuration
often inadequate for large and complex programs, requiring manual selection of
advanced verification strategies. This often necessitates a deep understanding of
the target source code and the use of expert knowledge. This process can be
arduous and time-consuming, especially for inexperienced users.

Existing Work. To address the usability issues of existing verification tools,
numerous techniques for verification strategy selection have been proposed. For
example, Dirk et al. [3] presented a strategy selection method that is based on a
straightforward model using a succinct set of Boolean features extracted stati-
cally from source code. This approach involves focusing on simple features while
excluding more intricate ones such as recursion and concurrency, thus limiting its
efficacy in handling complex programs. In addition to this, various techniques uti-
lizing machine learning have been suggested to automatically choose a promising
verification strategy, as demonstrated by recent developments [14,15]. One app-
roach involves using implicit features derived from the input program to forecast
a strategy ranking, eliminating the need to explicitly define these features [14].
The learner is provided with the program dependency graph, a directed graph
capable of illustrating the data, control, and concurrency dependencies within a
program, enabling it to deduce the necessary characteristics. Nevertheless, this
technique is overly burdensome and constrained in its scalability.

Insight. AI-powered Generative Large Language Models (LLMs) routinely make
tremendous progress in software engineering tasks. Examples include program
synthesis from natural language descriptions by GPT-4 [33] or Github Copi-
lot [50], solving competitive programming problems with AlphaCode [29], gen-
erating loop invariant with ChatGPT [10,35], and generating entire proofs of
theorems using fine-tuned LLMs [21], among others. Many of these tasks require
strong reasoning skills over code and code understanding. This raises the ques-
tion of whether we can utilize the reasoning skills of LLMs in the formal set-
ting of software verification and complement existing automatic verifiers such
as Cpachecker. Our key insight is that LLMs possess advanced program com-
prehension capabilities, allowing them to serve as proficient human experts in
identifying code features and selecting verification strategies.

Contribution. In this paper, we propose a novel approach to effectively com-
plete the verification task by driving the Cpachecker on selecting verification
strategies based on code features, and harnessing (some of) the powers of Large
Language Models (LLMs). We begin by extracting relevant code snippets from
the target program and querying LLMs to identify their code features. Based on
these identified code features, we propose a strategy selector to automatically
choose the verification strategy that is most suitable for the program. Finally,
we execute the Cpachecker with the configuration corresponding to the selected
verification strategy. Our main contributions are:



376 J. Su et al.

1 int main() {
2 struct node *list = create_list();
3 struct node *low = NULL;
4 struct node *high = NULL;
5 // Split list into low and high
6 struct node *p = list;
7 while (p) {
8 struct node *l = p->value >= 0 ? high : low;
9 struct node *next = p->next;

10 p->next = l;
11 l = p;
12 p = next;
13 }
14 // Check that low and high contain expected elements
15 while (low) {
16 if (!(low->expected_list == LOW))
17 {reach_error();}
18 low = low->next;
19 }
20 ...
21 }

Listing 1.1. An Motivating Example of quick_sort_split.c, from SV-COMP

– Novelty. We present a fast, general, and easily extensible approach to effi-
ciently perform program verification tasks by harnessing the capabilities of
LLMs to automatically select verification strategies based on code features.

– Practical Approach. We identify and address several practical challenges by
combining code feature identification via LLMs, prompt engineering, and cus-
tomized verification strategy selection.

– Open-source Implementation. We have developed and implemented our pro-
posed approach as a tool named CFStra. We have made the implementation,
along with all relevant publicly available data, accessible to facilitate com-
parison: https://sites.google.com/view/cfstra/.

– Evaluation. We extensively evaluate our approach using a diverse set of 600
verification tasks against 8 basic strategies and 4 SOTA combination strate-
gies (i.e., CPA-Seq, BMC-BAMR-PA, VA-BAMR-KI, PIChecker) to demon-
strate its effectiveness, efficiency, and scalability.

2 Background and Motivation

In this section, we motivate our approach by employing a motivating example
for SV-COMP, as well as providing the necessary background on LLMs.

Consider the code snippet that implements a quick sort splitting algorithm
for a linked list, as shown in Listing 1.1. To verify its correctness, users need to
identify the relevant code features like pointers, dynamic memory allocation, and
input-dependent loops. Choosing appropriate verification strategies like predi-
cate abstraction or k-induction significantly impacts precision and performance.
However, manually identifying and selecting strategies can be challenging due
to limited understanding, lack of expert knowledge, and dealing with numerous
verification tasks.

https://sites.google.com/view/cfstra/


CFStra: LLM-Driven Strategy Selection Based on Code Features 377

Fig. 1. The workflow of our approach

Therefore, there is a need for an automated and intelligent approach that
can leverage the program comprehension capabilities of LLMs to drive the
Cpachecker. LLMs are neural network models that are trained on large corpora
of natural and programming languages, and can generate natural language texts
or code snippets based on given inputs or queries. LLMs have shown remarkable
abilities in understanding and generating programs, such as code completion,
code repair, and code synthesis. We hypothesize that LLMs can also serve as
proficient human experts in identifying code features for selecting verification
strategies. By using LLMs, we can reduce the manual effort and the cognitive
load of the users, and improve the efficiency and the effectiveness of the program
verification.

3 Methodology

In this section, we describe the main components and steps of our approach to
automate program verification by driving the Cpachecker based on code features.
Figure 1 shows an overview of our approach, which consists of three phases: code
snippets extraction, code feature identification, and strategy selection.

3.1 Code Snippet Extraction

When manually analyzing a program, it is common not to expensively analyze
the entire source code. Instead, this process typically focuses on some key func-
tions such as the main entry and the relevant functions it invokes. These functions
and their intrinsic dependencies often reflect the structure, semantics, and behav-
ioral features of the entire program. Based on this observation, CFStra derives
only the key functions enriched with necessary calling contexts. To achieve this,
CFStra extracts code snippets of the key functions by performing dependency
analysis on the provided source program.

During the process of dependency analysis, the program dependency graph
[19], denoted as G = (N,E), is utilized to explicitly represent the dependencies
for each operation in the program. It consists of a set of nodes N representing
statements and the variables defined in the program, along with a set of directed
edges E ⊆ N × N corresponding to data and control dependencies [1] between
the nodes. In addition, we also augment the graph with concurrency-related
dependence to extend its applicability: Data dependence: Each edge e ∈ E



378 J. Su et al.

Algorithm 1: Code Snippet Extraction through traversal on program
dependency graph
Input : A program dependency graph G = (N,E), and an initial key function

f .
Output: A code snippet S including a set of key function bodies.

1 begin
2 // Search the graph node corresponding to the given function.
3 n := search_node(G, f);
4 W ← {n}, I ← ∅;
5 // Traverse the dependency graph to collect all the related key functions.
6 while W �= ∅ do
7 n := pop(W );
8 if ¬visited(n) then
9 // Get all the nodes that have data/control/concurrency dependence

with n in G.
10 W := W ∪ {n′|(n, n′) ∈ E};
11 I := I ∪ {n};
12 // Collect all the key functions.
13 S ← ∅;
14 for n ∈ I do
15 // Retrieve the function containing this node.
16 s := retrieve_function(n);
17 if s �∈ S then
18 S := S ∪ {s};
19 return S;

is directed from one statement to the other statements that reference the same
variable; Control dependence: Each edge e ∈ E is directed from one statement
to an if-statements; Concurrency dependence: Each edge e ∈ E directed
from: 1. a thread creation statement (e.g., pthread_create) to the entry node
of the thread template function; 2. the return statement of thread template
function to the statement (e.g., pthread_join) waiting for the thread to finish.

Algorithm 1 shows the details of extracting the code snippets. It takes two
inputs: an initial key function f and a constructed program dependency graph
G. The initial key function can be the entry function of the entire program or
be determined based on error information such as program exception stacks and
defect reports. In our algorithm, we define the extracted code snippet as S, con-
taining key function bodies associated with input function f . To extract S, we
initiate from the initial entry function node and traverse connected nodes in G
using depth-first search (DFS) manner (lines 6–11) until all reachable nodes are
gathered in set I (line 11). Subsequently, functions corresponding to nodes in
I will be retrieved and stored in set S (lines 14–18), representing the key func-
tions invoked or indirectly related to the initial key function f . The extracted
code snippet S provides the necessary calling context and information for lan-
guage models to analyze code features and mitigates the existing constraint of
mainstream language models in handling lengthy texts.



CFStra: LLM-Driven Strategy Selection Based on Code Features 379

Fig. 2. The simplified prompt template we used

In the above algorithm, although the utilization of precise program depen-
dency graphs can effectively improve the completeness of extracted key functions,
creating precise dependency relationships for a large-scale program is typically
time-consuming and not scalable. Considering the strong correlation between
dependency relationships and intrinsic syntactic structure in source code, we
devise a lightweight and efficient approach to improve the practicality of the code
snippet extraction step. Specifically, CodeQuery [37], a pattern-based static anal-
ysis approach, is employed to construct a comprehensive code database, allowing
for the retrieval of symbol references, global definitions, callee and caller func-
tions. This enables us to efficiently analyze dependency relationships by lever-
aging the retrieved information.

3.2 Code Feature Identification

The second phase of our approach involves identifying the code features within
the target program’s source code utilizing LLMs. Code features are the charac-
teristics or properties of the code that affect the choice of verification strategy,
such as arrays, pointers, floating points, loops, concurrency, recursion, etc. Code
features can be syntactic, semantic, or behavioral, depending on the level of
abstraction and analysis.

To identify code features, we use LLMs that are trained on large corpora of
natural and programming languages, such as ChatGPT [47]. LLMs have shown
remarkable abilities in understanding and generating programs, such as code
completion, code synthesis, and code repair. We hypothesize that LLMs can
also serve as proficient human experts in identifying code features, by using
their natural language and program comprehension capabilities.

To use LLMs, we formulate the code feature identification task as a natural
language query and response problem. For the extracted code snippet, we gen-
erate a natural language query that asks the LLM to list the code features of
the snippet. The prompts mainly comprise three key elements: role declaration,
task description, and code snippet. Specifically, CFStra creates a document with
contents in Markdown format to construct the prompt. As shown in Fig. 2, the



380 J. Su et al.

Fig. 3. The response from LLMs

role declaration statement is provided in the first line, while the instructions
are placed below the “Task Description” section. Besides, the extracted code
snippets are presented in blue text. Furthermore, the “Task Description” section
concludes with a sentence that instructs the desired output format. This output
format is critical as it requires programmatic processing of the LLM’s response.
We then feed the query and the code snippet to the LLM, and expect the LLM to
generate a natural language response that lists the code features of the snippet.
For example, the response for extracting code features of the quick sort splitting
algorithm is shown in Fig. 3.

We then parse the response and extract the code features from it, and store
them in the database along with the code snippet. In order to balance the diver-
sity and randomness of code features extracted from the source code, avoid the
problem of insufficient consideration of the core features that affect strategy
selection due to the high randomness of the output, and the problem of inad-
equate code feature extraction caused by low randomness output. We sample
the query response multiple times by using the same prompt while applying a
relatively high temperature for LLM to capture more comprehensive code fea-
tures. Thereafter, we count and retain the extracted features that appear in more
than half of the query instances. Intuitively, the retained code features appear
frequently in the query results and are highly representative.

3.3 Strategy Selection

The third phase of our approach is to select the verification strategy for the
program to be verified, based on the identified code features. A verification
strategy is a combination of verification techniques and configuration parameters
that are used to analyze and verify the target program.

The description of our four verification strategies will refer to the compo-
nents: VA-NoCEGAR: value analysis without CEGAR [7]; VA-CEGAR:
value analysis with CEGAR [7]; PA: predicate analysis with CEGAR [6]; KI:
k-induction with continuously refined invariant generation [4]; BAMR: block-
abstraction memorization (BAM) for a composite abstract domain of predicate
analysis and value analysis [45]; BMC: bounded model checking (BMC) [9]; C-
Intp: conditional interpolation empowered predicate analysis with CEGAR [39];
PC-DPOR: prioritized constraint-aided partial-order reduction [40]. The first



CFStra: LLM-Driven Strategy Selection Based on Code Features 381

six components are primarily used for verifying sequential programs, while the
last two components are mainly employed for verifying concurrent programs.

The set of four verification strategies that we use in our strategy classifier
are based on components from the above list: CPA-Seq sequentially combines
VA-NoCEGAR, VA-CEGAR, PA, KI, and BAMR. Any of the components may
terminate early if it detects that it cannot handle the task. If none of the four
components VA-NoCEGAR, VA-CEGAR, PA and KI can handle the task, and
if KI fails due to the task requires handling of recursion, the BAMR compo-
nent runs. If either VA-NoCEGAR or VA-CEGAR find a bug, the feasibility of
error path will be checked; if the check passes, the bug is reported, otherwise,
the component result is disregarded and the subsequent component is executed.
BMC-BAMR-PA is a sequential combination of BMC, BAMR, and PA. As
above, any of the components may terminate early if it detects that it cannot
handle the task. If the first component BMC fails because the task requires han-
dling of recursion, the BAMR component runs; if the reason why BMC fails was
not recursion or if BAMR fails to solve the task, PA runs. In this strategy, BAMR
and PA are only used as fallback components if the BMC components fails due
to recursion or other unsupported features. VA-BAMR-KI sequentially com-
bines VA-NoCEGAR, VA-CEGAR, BAMR, and KI. Any of the components may
terminate early if it detects that it cannot handle the task. As in CPA-Seq, if
either VA-NoCEGAR or VA-CEGAR find a bug, the feasibility of error path
will be checked; if the check passes, the bug is reported. If the reason why VA-
CEGAR failed was not recursion or if BAMR also fails to solve the task, KI
runs. PIChecker [41] is a sequential combination of PC-DPOR, C-Intp (Math-
SAT5 back-end [12]), C-Intp (SMTInterpol back-end [11]). If a counterexample
is reported by PC-DPOR, the feasibility of this error path will be checked. If
PC-DPOR fails due to some unsupported features such as array operations, the
verification will continue by using the other two C-Intp based components with
different back-end solvers.

To determine the verification strategy of a program, we employ a strategy
classification based on the extracted code features. The strategy classifier is a
function comprises the four verification strategies mentioned above:

Strategy =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PIChecker, if hasConcurrency
BMC-BAMR-PA, if not hasLoop
VA-BAMR-KI, if hasLoop ∧ hasComplexType
CPA-Seq, Otherwise

(1)

It is defined to always choose the strategy PIChecker if ‘Concurrency’ is present
in the extracted code features, since PIChecker is the only composite strategy
used for verifying concurrent programs. If ‘Loop’ is not in the code features,
the strategy BMC-BAMR-PA will be chosen, as there is no need to perform
any potentially expensive invariant-generating algorithm if no loop exists in the
program. If ‘Loop’ is in the code features and there are complex data types
(e.g., struct, union, array, and floating point type), it chooses VA-BAMR-KI. If
‘Loop’ is in the code features and there are no complex data types, it chooses
the CPA-Seq strategy.



382 J. Su et al.

4 Evaluation

We have developed a prototype tool called CFStra and conducted a comprehen-
sive evaluation to evaluate its effectiveness. This study aims to compare CFStra
with various fixed strategies, including basic strategies and sequential combi-
nation strategies. This study also highlights the implications of each proposed
improvement through an ablation study.

Table 1. Detail information of Benchmark

No. Dataset Files #KLOC
1 ReachSafety 366 1668.2
2 MemSafety 164 236.0
3 ConcurrencySafety 70 55.7
Total 600 1959.9

4.1 Experimental Setup

Benchmark Set. The set of verification tasks that we use in our experiments
is taken from the benchmark collection that is also used in SV-COMP. We use
all verification tasks from the benchmark collection for which we have identified
different strategies. We conducted the experiments on the 600 verification tasks
in the ReachSafety, MemSafety, ConcurrencySafety from SV-COMP 2023. The
detailed information is presented in Table 1.

Comparation Among Existing Strategies. We first selected 8 widely used
basic strategies to demonstrate their diverse performance. Subsequently, we com-
pared CFStra with 4 existing SOTA sequential combination strategies (i.e.,
CPA-Seq, BMC-BAMR-PA, VA-BAMR-KI, and PIChecker) for comparison,
which incorporate various basic verification strategies. In the ablation study,
we also include two simplified versions of CFStra.

Performance Metrics. We evaluate the performance of all competitors based
on the verification correctness rate, time efficiency, and memory efficiency.

Configuration of LLMs. All interactions with LLMs, including sending
requests and receiving responses, are conducted through ChatGPT’s API. We
specifically employ version gpt-3.5-turbo of ChatGPT. Various hyperparameters
are involved in utilizing the APIs offered by ChatGPT [25]. For our configura-
tion, we have set the values of max_token to 2048, temperature to 0.7, and
query times to 7.

Experiment Infrastructure. All our experiments were conducted by version
2.3 of CPAchecker on machines equipped with 2.2GHz CPU(AMD EPYC 7773x),
featuring 128 processing units and 503.7 GB of RAM, using OpenJDK 17 and



CFStra: LLM-Driven Strategy Selection Based on Code Features 383

Table 2. Results for all 600 verification tasks, for 8 widely used basic strategies

Approach VA-NoCEGAR VA-CEGAR PA KI BAMR BMC CIntp PC-DPOR

Score 75 53 143 255 −452 40 −685 58

Correct results 67 49 103 201 41 35 43 81

Correct proofs 24 20 56 150 19 21 8 41

Correct alarms 43 29 47 51 22 14 35 40

Wrong proofs 0 0 0 2 0 0 1 1

Wrong alarms 1 1 1 2 32 1 44 2

Timeouts 163 106 107 125 168 21 308 208

Out of memory 25 14 1 11 2 1 1 1

Other inconlusive 344 430 388 261 357 542 204 258

Times for correct results

Total CPU Time(h) 1.5 1 1 1.3 1.2 0.5 2.2 2.3

Avg. CPU Time(s) 9 6 6 7.8 7.2 3 13 14

Total Wall Time(h) 1.5 1 1 1.3 1.2 0.5 2.2 2.3

Avg. Wall Time(s) 9 6 6 7.8 7.2 3 13 14

running on a 64-bit Ubuntu LTS 20.04.5. Each verification run was restricted to
two CPU cores, with a maximum runtime of 15min and a memory allocation of
15 GB. The benchmarking framework BenchExec [8] was employed to oversee
the experiments, ensuring precise and dependable measurements.

4.2 Performance of Different Strategies

Table 2 shows the results of applying 8 different basic strategies to 600 verifica-
tion tasks. These verification strategies are: VA-NoCEGAR, VA-CEGAR, PA,
KI, BAMR, BMC, C-Intp, and PC-DPOR. The table assesses each strategy’s
performance based on score, correctness, time, and memory.

The results from Table 2 demonstrate that the basic verification strategies
yield different outcomes for the same verification task. For instance, KI exhibits
the highest score and the highest number of correct proofs, but also the highest
number of incorrect proofs. On the other hand, BMC has the fewest timeouts
and out of memory, but also the lowest number of correct results. The high
frequency of inaccurate outcomes produced by BAMR and C-Intp, along with
the consequent low scores, can be attributed to the absence of support for pointer
alias processing. Hence, selecting the appropriate strategy is crucial to strike a
balance between accuracy, efficiency, and comprehensiveness.

Figure 4 displays the quantile functions for the 8 basic strategies examined. It
is evident that KI significantly outperforms the other strategies in these exper-
iments. However, the performance of KI based combination strategy (i.e., VA-
BAMR-KI) still lags behind our proposed approach, CFStra, and other sequen-
tial combination strategies, as depicted in Fig. 5. This is why our approach
focuses on selecting existing combination strategies only, as demonstrated in For-
mula 1. The subsequent section will delve into a detailed analysis of the results
obtained with CFStra and compare them with other sequential combination
strategies.



384 J. Su et al.

Fig. 4. The quantile plot of time consumption in logarithmic scale

Table 3. Results for all 600 verification tasks for combination strategies

Approach CFStra PIChecker CPA-Seq BMC-BAMR-PA VA-BAMR-KI

Score 469 278 225 111 224
Correct results 315 228 144 103 144
Correct proofs 202 146 97 40 96
Correct alarms 113 82 47 63 48
Wrong proofs 0 1 0 0 0
Wrong alarms 3 4 1 2 1
Timeouts 224 319 187 234 186
Out of memory 13 2 24 8 25
Other inconclusive 45 47 244 253 244
Times for correct results
Total CPU Time(h) 1.4 2.3 1.5 2 1.5
Avg. CPU Time(s) 8.4 14 9 12 9
Total Wall Time(h) 2.2 2 1.5 2 1.5
Avg. Wall Time(s) 13 14 9 12 9

4.3 Compared to Other SOTA Combination Strategies

Table 3 displays the results of CFStra, comparing it with four SOTA combi-
nation strategies (i.e., PIChecker, CPA-Seq, BMC-BAMR-PA, VA-BAMR-KI).
Even though the sequential combination strategy significantly outperformed
individual basic strategies, it remains a fixed approach. CFStra achieved notably
higher scores than each of the other combination strategies. The adoption of the
LLM-driven strategy proved to be advantageous, resulting in a superior score
compared to competitors. While this method may lead to more false alarms
than other strategies, it enhances the accuracy of results significantly, effectively
resolving this issue. These findings suggest that utilizing the strategy selector
based on the code features identified by LLMs can lead to favorable outcomes,
even when choices are limited. Furthermore, CFStra exhibits enhanced efficiency
in task identification, with only 45 inconclusive tasks out of 600. The results indi-
cate that the use of LLM-driven strategy selection is more effective than consis-
tently selecting a fixed strategy. As a result, the strategy selector employed in
CFStra strikes a balance between accuracy, efficiency, and comprehensiveness.



CFStra: LLM-Driven Strategy Selection Based on Code Features 385

Fig. 5. The quantile plot of CFStra, compared with 4 combination strategies.

Table 4. Results for all 600 verification tasks for 3 version of CFStra

Approach CFStradirect CFStrallm CFStra
Score 224 229 469
Correct results 143 147 315
Correct proofs 97 98 202
Correct alarms 46 49 113
Wrong proofs 0 0 0
Wrong alarms 1 1 3
Timeouts 180 183 224
Out of memory 24 25 13
Other inconlusive 252 244 45
Times for correct results
Total CPU Time(h) 2.3 1.2 1.4
Avg. CPU Time(s) 14 7.2 8.4
Total Wall Time(h) 2.5 1.5 2.2
Avg. Wall Time(s) 15 9 13

Figure 5 depicts the quantile functions of CFStra in comparison with four
combination strategies. It is clearly evident from the curves in the plot that
PIChecker outperforms BMC-BAMR-PA and VA-BAMR-KI significantly, but
still trails behind CFStra. Upon comparing the experimental results, it was dis-
covered that within the 95 tasks in the ReachSafety dataset, PIChecker failed
to achieve effective verification outcomes due to verification timeouts and other
reasons. Conversely, CFStra selected more appropriate strategies based on the
extracted code features, making these tasks can be effectively verified with lim-
ited resources. Therefore, the superiority of CFStra over the other combination
strategies is clearly evident.



386 J. Su et al.

Fig. 6. The number of verification tasks successfully verified by CFStradirect,
CFStrallm and CFStra across different categories.

4.4 Ablation Study

To evaluate the effectiveness of our proposed approach, we performed an ablation
study to compare the performance of CFStra with its two simplified versions:
CFStradirect and CFStrallm. CFStradirect directly utilizes LLM for strategy
selection, without analyzing code features. CFStrallm decomposes the strategy
selection process into two steps: first, analyzing code features using LLM, and
then predicting the strategy using LLM. We used the same set of 600 verifica-
tion tasks as in the previous section, where the results are shown in Table 4.
We can observe that CFStra significantly outperforms both CFStradirect and
CFStrallm. This indicates that CFStra can effectively select the most appropri-
ate verification strategy for each verification task, based on the code features and
specifications. Moreover, CFStra achieves comparable or better CPU and wall
time than CFStradirect, demonstrating that CFStra is efficient and scalable.

Figure 6 presents the comparison of the success of the verification task among
three versions of CFStra in various categories in Table 1: ReachSafety, Con-
currencySafety. The results indicate that CFStra consistently outperforms the
other versions across all categories, particularly excelling in ConcurrencySafety
and MemSafety by successfully verifying a notable number of tasks. This demon-
strates that CFStra can effectively choose the appropriative strategy to handle
complex and challenging verification tasks that involve concurrency and memory
issues. On the other hand, CFStrallm slightly outperforms CFStradirect in veri-
fying tasks within the ConcurrencySafety category, attributed to the decomposed
strategy selection process into two steps. Nevertheless, the overall performance
between CFStradirect and CFStrallm remains comparable. This suggests a need
for integrating code features and specifications into the independent strategy
selection process, as CFStra does in the formula 1.

The ablation study also reveals the limitations of CFStradirect and
CFStrallm. CFStradirect suffers from low accuracy and high inconclusiveness,
as it does not take into account the code features that are crucial for strategy
selection. CFStrallm improves slightly over CFStradirect, as it analyzes code fea-
tures using LLM, but it still fails to select the best strategy for many verification
tasks, as it relies on LLM for the final prediction. This suggests that LLM alone
is not sufficient for strategy selection, and that a more sophisticated strategy



CFStra: LLM-Driven Strategy Selection Based on Code Features 387

selector is needed. In summary, the ablation study confirms the superiority of
CFStra over its two simplified versions, and validates the design choices of our
approach.

4.5 Threats to Validity

There are three major validity threats. First, One potential threat is the selection
bias that may arise from using only 600 verification tasks from SV-COMP, which
could limit the diversity of our dataset. To address this concern, we made sure
to select diverse programs from various domains with different characteristics.
Second, the generalizability of different LLMs is also a concern. We have also
implemented CFStrato a popular and open-source LLM called Llama-2. Sim-
ilar results were observed in our preliminary experiments. Third, due to their
inherent randomness, LLMs generate varied answers for identical programs to be
verified with the same prompts. A potential threat to the validity of our study is
that conclusions drawn from random results may be misleading. To address the
above three potential threads, future works involve conducting multiple experi-
ments on a substantial dataset.

5 Related Work

In this section, we review the existing literature on program verification, as well
as LLMs for program analysis and verification, and explain how our work is
different from or builds upon them.

Program Verification and its Strategies. Program verification is a well-
studied and active research area, that aims to ensure the correctness and relia-
bility of software systems [20,38]. There are various techniques and tools for
program verification, such as static analysis [31,49], model checking [13,26],
theorem proving [32,34], runtime verification [2,16], etc. Several studies have
sought to combine various verification strategies sequentially, (e.g., CPA-Seq
and PeSCo) [31,36], which prove to be more effective than each strategy used
alone. However, these methods are either limited in scope or scalability, or rely
on external sources. Moreover, these methods do not exploit the program com-
prehension capabilities of LLMs, which can serve as proficient human experts in
identifying code features and selecting verification strategies.

LLMs for Program Analysis and Verification. LLMs are neural network
models that are trained on large corpora of natural and programming lan-
guages [30,51]. LLMs have demonstrated impressive capabilities in comprehend-
ing and producing code, leading to a surge in interest in utilizing LLMs for
aiding in program analysis and verification tasks [17,22]. These tasks include
static analysis [28,43], program testing [27,42], program verification [44,46], bug
reproduction [23,24] and bug repair [18,48]. Recent advancements in LLMs for
verification have led to the development of Baldur [21], a proof-synthesis tool



388 J. Su et al.

that utilizes transformer-based pre-trained LLMs, fine-tuned proofs, to gener-
ate and repair complete proofs. In contrast, our approach centers on leveraging
LLMs to detect code features and guide the verification tool in selecting strate-
gies, whereas Baldur primarily automates the generation of proofs for theorems.
Moreover, to the best of our knowledge, there is no comparable existing work
that tries to drive program verification by using LLMs to identify code features
and select verification strategies, which are the key steps of our approach.

6 Conclusions

This paper presents a novel approach for automating program verification by
selecting verification strategies based on code features. Our approach leverages
the program comprehension abilities of Large Language Models (LLMs) to recog-
nize code features. Subsequently, a selection model is then developed to automat-
ically choose appropriate verification strategies. We evaluated the effectiveness
and efficiency of our approach using a substantial collection of verification tasks
from SV-COMP. The outcomes indicate that our approach not only surpasses
basic strategies and SOTA combination strategies but also stands out for its
simplicity and ease of understanding.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their constructive comments. This work was supported in part by the National Natural
Science Foundation of China (Nos. 62302375, 62192734, 62193273024), the China Post-
doctoral Science Foundation funded project (No. 2023M723736), and the Fundamental
Research Funds for the Central Universities.

References

1. Allen, J.R., Kennedy, K., Porterfield, C., Warren, J.: Conversion of control depen-
dence to data dependence. In: Proceedings of the 10th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pp. 177–189 (1983)

2. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime ver-
ification. In: Lectures on Runtime Verification: Introductory and Advanced Topics,
pp. 1–33 (2018)

3. Beyer, D., Dangl, M.: Strategy selection for software verification based on boolean
features. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp.
144–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03421-4_11

4. Beyer, D., Dangl, M., Wendler, P.: Boosting k -induction with continuously-refined
invariants. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
622–640. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_42

5. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_16

6. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Formal Methods in Computer Aided Design, pp. 189–197. IEEE
(2010)

https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16


CFStra: LLM-Driven Strategy Selection Based on Code Features 389

7. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp.
146–162. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37057-
1_11

8. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. Int. J. Softw. Tools Technol. Transfer 21, 1–29 (2019)

9. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. In: Handbook of Satisfiability, vol. 185, no. 99, pp. 457–481 (2009)

10. Chakraborty, S., et al.: Ranking LLM-generated loop invariants for program veri-
fication. arXiv preprint arXiv:2310.09342 (2023)

11. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating SMT solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31759-0_19

12. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–
107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7

13. Clarke, E.M.: Model checking. In: Ramesh, S., Sivakumar, G. (eds.) FSTTCS 1997.
LNCS, vol. 1346, pp. 54–56. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0058022

14. Czech, M., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Predicting rankings of
software verification tools. In: Proceedings of the 3rd ACM SIGSOFT International
Workshop on Software Analytics, pp. 23–26 (2017)

15. Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software metrics for
benchmarking of verification tools. Formal Methods Syst. Des. 50, 289–316 (2017)

16. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. Eng.
Dependable Softw. Syst. 141–175 (2013)

17. Fan, A., et al.: Large language models for software engineering: survey and open
problems. arXiv preprint arXiv:2310.03533 (2023)

18. Fan, Z., Gao, X., Mirchev, M., Roychoudhury, A., Tan, S.H.: Automated repair of
programs from large language models. In: 45th IEEE/ACM International Confer-
ence on Software Engineering, ICSE 2023, Melbourne, Australia, 14–20 May 2023,
pp. 1469–1481. IEEE (2023)

19. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987).
https://doi.org/10.1145/24039.24041

20. Fetzer, J.H.: Program verification: the very idea. Commun. ACM 31(9), 1048–1063
(1988)

21. First, E., Rabe, M., Ringer, T., Brun, Y.: Baldur: whole-proof generation and
repair with large language models. In: Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 1229–1241 (2023)

22. Hou, X., et al.: Large language models for software engineering: a systematic lit-
erature review. arXiv preprint arXiv:2308.10620 (2023)

23. Kang, S., Yoon, J., Askarbekkyzy, N., Yoo, S.: Evaluating diverse large lan-
guage models for automatic and general bug reproduction. arXiv preprint
arXiv:2311.04532 (2023)

24. Kang, S., Yoon, J., Yoo, S.: Large language models are few-shot testers: exploring
LLM-based general bug reproduction. In: 45th IEEE/ACM International Confer-
ence on Software Engineering, ICSE 2023, Melbourne, Australia, 14–20 May 2023,
pp. 2312–2323. IEEE (2023)

https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
http://arxiv.org/abs/2310.09342
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/BFb0058022
https://doi.org/10.1007/BFb0058022
http://arxiv.org/abs/2310.03533
https://doi.org/10.1145/24039.24041
http://arxiv.org/abs/2308.10620
http://arxiv.org/abs/2311.04532


390 J. Su et al.

25. Kocoń, J., et al.: Chatgpt: jack of all trades, master of none. Inf. Fusion 101861
(2023)

26. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_26

27. Lemieux, C., Inala, J.P., Lahiri, S.K., Sen, S.: Codamosa: escaping coverage
plateaus in test generation with pre-trained large language models. In: 45th
IEEE/ACM International Conference on Software Engineering, ICSE 2023, Mel-
bourne, Australia, 14–20 May 2023, pp. 919–931. IEEE (2023)

28. Li, H., Hao, Y., Zhai, Y., Qian, Z.: Assisting static analysis with large language
models: a chatgpt experiment. In: Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 2107–2111 (2023)

29. Li, Y., et al.: Competition-level code generation with alphacode. Science 378(6624),
1092–1097 (2022)

30. Liu, Y., et al.: Summary of chatgpt-related research and perspective towards the
future of large language models. Meta-Radiol. 100017 (2023)

31. Löwe, S., Mandrykin, M., Wendler, P.: CPAchecker with sequential combination
of explicit-value analyses and predicate analyses. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014. LNCS, vol. 8413, pp. 392–394. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54862-8_27

32. Matthews, J., Moore, J.S., Ray, S., Vroon, D.: Verification condition generation
via theorem proving. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 362–376. Springer, Heidelberg (2006). https://doi.org/10.
1007/11916277_25

33. OpenAI: GPT-4 technical report. arxiv:2303.08774. View in Article, vol. 2, p. 13
(2023)

34. Ouimet, M., Lundqvist, K.: Formal software verification: model checking and the-
orem proving. Embedded Systems Laboratory Technical Report ESL-TIK-00214,
Cambridge USA (2007)

35. Pei, K., Bieber, D., Shi, K., Sutton, C., Yin, P.: Can large language models reason
about program invariants? In: International Conference on Machine Learning, pp.
27496–27520. PMLR (2023)

36. Richter, C., Wehrheim, H.: PeSCo: predicting sequential combinations of verifiers.
In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS,
vol. 11429, pp. 229–233. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17502-3_19

37. Ruben: A code-understanding, code-browsing or code-search tool. This is a tool to
index, then query or search C, C++, java, python, ruby, go and javascript source
code. https://github.com/ruben2020/codequery. Accessed 04 Mar 2024

38. Sieber, K.: The Foundations of Program Verification. Springer, Wiesbaden (2013).
https://doi.org/10.1007/978-3-322-96753-4

39. Su, J., Tian, C., Duan, Z.: Conditional interpolation: making concurrent program
verification more effective. In: Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 144–154 (2021)

40. Su, J., Tian, C., Yang, Z., Yang, J., Yu, B., Duan, Z.: Prioritized constraint-
aided dynamic partial-order reduction. In: Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, pp. 1–13 (2022)

https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_27
https://doi.org/10.1007/11916277_25
https://doi.org/10.1007/11916277_25
http://arxiv.org/abs/2303.08774
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-17502-3_19
https://github.com/ruben2020/codequery
https://doi.org/10.1007/978-3-322-96753-4


CFStra: LLM-Driven Strategy Selection Based on Code Features 391

41. Su, J., Yang, Z., Xing, H., Yang, J., Tian, C., Duan, Z.: PIChecker: a POR and
interpolation based verifier for concurrent programs (competition contribution). In:
Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023. LNCS, vol. 13994, pp.
571–576. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30820-8_38

42. Tsigkanos, C., Rani, P., Müller, S., Kehrer, T.: Large language models: the next
frontier for variable discovery within metamorphic testing? In: 2023 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 678–682. IEEE (2023)

43. Wen, C., et al.: Automatically inspecting thousands of static bug warnings with
large language model: How far are we? ACM Trans. Knowl. Discov. Data (2024)

44. Wen, C., et al.: Enchanting program specification synthesis by large language mod-
els using static analysis and program verification. In: International Conference on
Computer Aided Verification. Springer, Cham (2024)

45. Wonisch, D., Wehrheim, H.: Predicate analysis with block-abstraction memoiza-
tion. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 332–347.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34281-3_24

46. Wu, H., Barrett, C., Narodytska, N.: Lemur: integrating large language models in
automated program verification. arXiv preprint arXiv:2310.04870 (2023)

47. Wu, T., et al.: A brief overview of ChatGPT: the history, status quo and potential
future development. IEEE/CAA J. Automatica Sinica 10(5), 1122–1136 (2023)

48. Xia, C.S., Wei, Y., Zhang, L.: Automated program repair in the era of large pre-
trained language models. In: 45th IEEE/ACM International Conference on Soft-
ware Engineering, ICSE 2023, Melbourne, Australia, 14–20 May 2023, pp. 1482–
1494. IEEE (2023)

49. Xu, Z., Wen, C., Qin, S.: State-taint analysis for detecting resource bugs. Sci.
Comput. Program. 162, 93–109 (2018)

50. Yetistiren, B., Ozsoy, I., Tuzun, E.: Assessing the quality of github copilot’s code
generation. In: Proceedings of the 18th International Conference on Predictive
Models and Data Analytics in Software Engineering, pp. 62–71 (2022)

51. Zhao, W.X., et al.: A survey of large language models. arXiv preprint
arXiv:2303.18223 (2023)

https://doi.org/10.1007/978-3-031-30820-8_38
https://doi.org/10.1007/978-3-642-34281-3_24
http://arxiv.org/abs/2310.04870
http://arxiv.org/abs/2303.18223

	CFStra: Enhancing Configurable Program Analysis Through LLM-Driven Strategy Selection Based on Code Features
	1 Introduction
	2 Background and Motivation
	3 Methodology
	3.1 Code Snippet Extraction
	3.2 Code Feature Identification
	3.3 Strategy Selection

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance of Different Strategies
	4.3 Compared to Other SOTA Combination Strategies
	4.4 Ablation Study
	4.5 Threats to Validity

	5 Related Work
	6 Conclusions
	References


