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Malware

l Malicious software:
Ø Computer viruses, worms, Trojan 

horses, ransomware, spyware, adware, 
scareware, and other intrusive codes

l Recent report from McAfee: 
Ø More than 650 million malware samples 

detected in Q1, 2017, in which more than 
30 million ones are new.



Signature-based method

l To compare with the known signatures, 
Ø Comodo, McAfee, Kaspersky, Kingsoft, and 

Symantec 

l Can be easily evaded by the evasion techniques
Ø packing, variable-renaming, and 

polymorphism.



Heuristic-based method

l To identity malicious patterns though either 
static analysis or dynamic analysis 

l However, heavy-weight or Inefficient



Machine learning approaches

lMost of existing work focus on behaviour 
features, without data information
Ø binary codes, opcodes and API calls

l Can be easily evaded 
Ø previously-unseen behaviors
Ø obfuscate
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Our approaches

l Based on machine learning

l Consider both the behaviour information and 
the data information.

l Consider the time-split samples and obfuscated 
samples
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Feature Extractor

l Decompilation
l Information Extraction
l Feature Selection and representation



Feature Extractor

l Decompilation
l Information Extraction
l Feature Selection and representation

Decompilation

Tool

ASM codes



Feature Extractor

l Decompilation
l Information Extraction
l Feature Selection and representation

Opcode

System call

Data Type：int *



Feature Extractor

l Decompilation
l Information Extraction
l Feature Selection and representation

Selection:
Term Frequency and Inverse Document Frequency (TF-IDF) 

Representation:
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Classifier

lClassifier Training
Ø An executable 𝑒 can be represented as a vector 𝑥. 𝐷!

represent the available dataset with known categories. Our 
training problem is to find a classifier 𝐶: 𝑋 → [0,1] such that

𝑚𝑖𝑛$
!,# ∈%!

𝑑 𝐶 𝑥 − 𝑐

lMalware Detection
Ø Given an executable 𝑒 and its vector representation, the 

goal of the detection is to find 𝑐 such that
min𝑑 𝐶 𝑥 − 𝑐
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Experiments

Malware dataset (11376 samples)
lBIG 2015 Challenge
ltheZoo aka Malware DB

Benign dataset (8003 samples)
lQIHU 360 software

(with the total size of 250 GB)



Cross Validation Experiments
10-fold cross validation



250GB, 15.6 hours,  Decompile            0.22s/MB
182GB, 10.5 hours,  Extract features   0.20s/MB

Runtime performance
Classifier Training Time (s) Testing Time (s)

KNN (k = 1) 0 + (16.477) 178.789

KNN (k = 3) 0 + (16.369) 199.474

KNN (k = 5) 0 + (16.517) 207.052

KNN (k = 7) 0 + (16.238) 210.557

DT (criterion = ‘gini’) 23.442 0.067

DT (criterion = ‘entropy’) 13.485 0.066

RF (n = 10, gini) 4.115 0.086

RF (n = 10, entropy) 3.791 0.077

Gaussian Naïve Bayes 3.093 0.480

Multinomial Naïve Bayes 1.535 0.035

Bernouli Naïve Bayes 1.826 0.828

SVM (kernel = ‘linear’) 150.022 14.494

SVM (kernel = ‘rbf’) 799.310 50.196

SVM (kernel = ‘sigmoid’) 1303.607 130.178

SGD Classifier 22.569 0.048



Feature Experiment



Time-Split Experiment

We use some fresh malware samples, which 
were collected dated from January 2017 to July 
2017, from the DAS MALWERK website.



Obfuscation Experiments

Obfuscation tools：Obfuscator
l Change code execution flow

Obfuscation tools：Unest
l rewriting digital changes equivalently
l confusing the output string
l pushing the target code segment into the stack and jumping 

to it to confuse the target code
l obfuscating the static libraries
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Conclusion

lMachine learning methods based on the opcodes, 
data types and system libraries.

lCarried out some interesting experiments. 

lCapable of detecting some fresh malware

lHas a resistance to some obfuscation techniques



That ’s all.
Thank you very much!


