
Effective Malware Detection based on
Behavior and Data Features

Zhiwu Xu, Cheng Wen, Shengchao Qin, and Zhong Ming
College of Computer Science and Software Engineering,

Shenzhen University, China

lIntroduction

lApproach

lExperiments

lConclusion

Malware

l Malicious software:
Ø Computer viruses, worms, Trojan

horses, ransomware, spyware, adware,
scareware, and other intrusive codes

l Recent report from McAfee:
Ø More than 650 million malware samples

detected in Q1, 2017, in which more than
30 million ones are new.

Signature-based method

l To compare with the known signatures,
Ø Comodo, McAfee, Kaspersky, Kingsoft, and

Symantec

l Can be easily evaded by the evasion techniques
Ø packing, variable-renaming, and

polymorphism.

Heuristic-based method

l To identity malicious patterns though either
static analysis or dynamic analysis

l However, heavy-weight or Inefficient

Machine learning approaches

lMost of existing work focus on behaviour
features, without data information
Ø binary codes, opcodes and API calls

l Can be easily evaded
Ø previously-unseen behaviors
Ø obfuscate

lIntroduction

lApproach

lExperiments

lConclusion

Our approaches

l Based on machine learning

l Consider both the behaviour information and
the data information.

l Consider the time-split samples and obfuscated
samples

Framework

Feature
Extractor

Feature Extractor

l Decompilation
l Information Extraction
l Feature Selection and representation

Feature Extractor

l Decompilation
l Information Extraction
l Feature Selection and representation

Decompilation

Tool

ASM codes

Feature Extractor

l Decompilation
l Information Extraction
l Feature Selection and representation

Opcode

System call

Data Type：int *

Feature Extractor

l Decompilation
l Information Extraction
l Feature Selection and representation

Selection:
Term Frequency and Inverse Document Frequency (TF-IDF)

Representation:

Framework

Classifier

Classifier

lClassifier Training
Ø An executable 𝑒 can be represented as a vector 𝑥. 𝐷!

represent the available dataset with known categories. Our
training problem is to find a classifier 𝐶: 𝑋 → [0,1] such that

𝑚𝑖𝑛$
!,# ∈%!

𝑑 𝐶 𝑥 − 𝑐

lMalware Detection
Ø Given an executable 𝑒 and its vector representation, the

goal of the detection is to find 𝑐 such that
min𝑑 𝐶 𝑥 − 𝑐

lIntroduction

lApproach

lExperiments

lConclusion

Experiments

Malware dataset (11376 samples)
lBIG 2015 Challenge
ltheZoo aka Malware DB

Benign dataset (8003 samples)
lQIHU 360 software

(with the total size of 250 GB)

Cross Validation Experiments
10-fold cross validation

250GB, 15.6 hours, Decompile 0.22s/MB
182GB, 10.5 hours, Extract features 0.20s/MB

Runtime performance
Classifier Training Time (s) Testing Time (s)

KNN (k = 1) 0 + (16.477) 178.789

KNN (k = 3) 0 + (16.369) 199.474

KNN (k = 5) 0 + (16.517) 207.052

KNN (k = 7) 0 + (16.238) 210.557

DT (criterion = ‘gini’) 23.442 0.067

DT (criterion = ‘entropy’) 13.485 0.066

RF (n = 10, gini) 4.115 0.086

RF (n = 10, entropy) 3.791 0.077

Gaussian Naïve Bayes 3.093 0.480

Multinomial Naïve Bayes 1.535 0.035

Bernouli Naïve Bayes 1.826 0.828

SVM (kernel = ‘linear’) 150.022 14.494

SVM (kernel = ‘rbf’) 799.310 50.196

SVM (kernel = ‘sigmoid’) 1303.607 130.178

SGD Classifier 22.569 0.048

Feature Experiment

Time-Split Experiment

We use some fresh malware samples, which
were collected dated from January 2017 to July
2017, from the DAS MALWERK website.

Obfuscation Experiments

Obfuscation tools：Obfuscator
l Change code execution flow

Obfuscation tools：Unest
l rewriting digital changes equivalently
l confusing the output string
l pushing the target code segment into the stack and jumping

to it to confuse the target code
l obfuscating the static libraries

lIntroduction

lApproach

lExperiments

lConclusion

Conclusion

lMachine learning methods based on the opcodes,
data types and system libraries.

lCarried out some interesting experiments.

lCapable of detecting some fresh malware

lHas a resistance to some obfuscation techniques

That ’s all.
Thank you very much!

