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To ensure that a program uses its resources in an appropriate manner is vital for program 
correctness. A number of solutions have been proposed to check that programs meet such 
a property on resource usage. But many of them are sophisticated to use for resource 
bug detection in practice and do not take into account the expectation that a resource 
should be used once it is opened or required. This open-but-not-used problem can cause 
resource starvation in some cases, for example, smartphones or other mobile devices where 
resources are not only scarce but also energy-hungry, hence inappropriate resource usage 
can not only cause the system to run out of resources but also lead to much shorter battery 
life between battery recharge. That is the so-call energy leak problem.
In this paper, we propose a static analysis called state-taint analysis to detect resource 
bugs. Taking the open-but-not-used problem into account, we specify the appropriate usage 
of resources in terms of resource protocols. We then propose a taint-like analysis which 
employs resource protocols to guide resource bug detection. As an extension and an 
application, we enrich the protocols with the inappropriate behaviours that may cause 
energy leaks, and use the refined protocols to guide the analysis for energy leak detection. 
We implement the analysis as a prototype tool called statedroid. Using this tool, we 
conduct experiments on several real Android applications and test datasets from Relda and 
GreenDroid. The experimental results show that our tool is precise, helpful and suitable in 
practice, and can detect more energy leak patterns.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Resource usage [1] is one of the most important characteristics of programs. To ensure that a program uses its resources 
in an appropriate manner is vital for program correctness. For example, a memory cell that has been allocated should be 
eventually deallocated (otherwise it may cause resource leak or memory leak), a file should be opened before reading or 
writing (otherwise it may cause program errors), and an opening camera (a popular resource for smartphones nowadays) 
should be closed eventually (or it will drain battery unnecessarily if it remains open after use).

A number of static analyses have been proposed to analyse the correct usages of computer resources [2,3,1,4–7]. Most 
of them adopt a type-based method to ensure a resource-safe property. However, although sound, they either require rather 
complex program annotations to guide the analysis or are rather sophisticated to use for resource bugs detection in practice, 
since one needs to enhance a type system with resource usage information, which may not be an easy task for users to 
follow. Taking the file resource as an example, a possible type annotation is μα. (0&((lRead&lW rite); α))); lClose [1], which 
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involves several usage constructors. When files are accessed through the invocation of a function closure, the type annotation 
could be more complex, for example, μα. (0&((lRead&lW rite); α))); lClose ⊗ U , where U is the usages for the other resources. 
Moreover, few of them concern about that an opening (or required) resource should be used before it’s closed (or released). 
While in some cases it may be just a minor problem or even cause no harm for an opened (obtained) resource to be 
left unused/unattended, in other cases this may lead to more severe problems. For instance, when some resource is very 
limited but is not released timely, it may lead to a major problem, causing resource starvation, severe system slowdown 
or instability. Specifically, for mobile devices, such as tablets and smartphones, which are ubiquitous and hugely popular 
nowadays, some resource can be rather limited, an example being their power energy (i.e., the battery capacity). Most 
resources of mobile devices are not only scarce but also energy-hungry, such as GPS, WiFi, camera, and so on. Leaving these 
resources continuously open could be more expensive, as they would consume energy continuously leading to a shorter 
battery life (before a recharge). This is the so-call energy leak problem [8], that is, energy consumed that never influences 
the outputs of a computer system.

In this paper, we propose a static analysis called state-taint analysis to detect resource bugs, which is easy to use in 
practice and helps detect the open-but-not-used problem. Taking the open-but-not-used problem into account, we specify 
the appropriate usage of resources as resource protocols. A resource protocol describes how a resource should be used or 
which behaviour sequences (on resource usage) are appropriate. Resource protocols can be viewed as a kind of typestate 
properties [2], which can be represented as finite state automata. According to the API documentation of resources, dif-
ferent resources have different specific automata. A behaviour sequence that does not satisfy its corresponding protocol is 
considered as a resource usage bug.

Our proposed static analysis is a combination of typestate analysis [2] and taint analysis [9]. The analysis takes a control 
flow graph (CFG) of a program as input, and is guided by the resource protocols to track the resource behaviours among 
CFG. Following the idea of taint analysis, our analysis propagates the states of resources among CFG. During the propagation, 
our analysis will check whether the resource behaviours confirm to the corresponding resource protocols (i.e., typestate 
checking). In detail, our analysis will verify that (i) whether all the resource behaviours obey the resource protocols before 
the exit of CFG, and (ii) whether the states of resources at the exit of CFG are all accepting ones of their corresponding 
protocols. Our analysis is flow-sensitive, so states for one resource from different paths may be different and are preserved.1

Compared with the existing works [2,3,1,4–7], which adopt type-based approaches, our analysis (i) is easier to use (i.e., 
without the need for complex type annotations), and (ii) helps to detect the open-but-not-used problem.

Furthermore, we enrich the resource protocols with extra information, namely, inappropriate behaviours that may cause 
a specific program bug, and we extend our state-taint analysis to detect these inappropriate behaviours. As an application, 
we use the extended behaviour analysis to detect energy leaks for smartphone applications, since the energy leak problem 
becomes a critical concern for smartphone applications. Usually, a resource bug can cause an energy leak, if the bug keeps 
the resource open unnecessarily. We distinguish the behaviour sequences that may cause energy leaks from the other 
inappropriate ones, and enrich the protocol with them. For example, to open an unneeded resource will cause an energy 
leak, while to use a closed resource will not. With the enriched protocols as a guide, we thus can use the extended behaviour 
analysis to detect energy leaks for smartphone applications. Moreover, sensitive data is essentially a resource. Our analysis 
can also be used to detect information leaks. In that case, our analysis degenerates into taint analysis. The extension of 
protocols with guards is also discussed.

We have also implemented the proposed analysis in a tool called statedroid, and conducted some experiments on many 
Android applications collected from F-Droid, and test datasets from Relda and GreenDroid. The experimental results show 
that our tool is precise and viable in practice. The results also demonstrate that, compared with Relda and GreenDroid, our 
tool can detect more energy leak patterns.

This paper is an extension of [10], and further contains the core language with resource usage, the proof of correctness, 
some possible extensions of the analysis, more experiments and several recent related work. Please note that, in this ex-
tended version, we generalise the analysis of energy leaks in [10] to be an extension of the proposed state-taint analysis 
(see Section 5), which we called as resource behaviour analysis, so as to analyse the behaviours that may lead to a special 
program bug such as energy leaks and information leaks. Therefore, instead of being a direct extension of the previous en-
ergy leak analysis in [10], our new energy leak analysis is an application of the extended state-taint analysis (i.e., resource 
behaviour analysis).

The rest of the paper is constructed as follows: Section 2 gives some backgrounds of taint analysis and typestate analysis 
and the notation list used in the paper. Section 3 illustrates some examples that have potential resource bugs or energy 
leaks. Section 4 presents the main algorithms of our analysis. Section 5 extends our analysis to detect some inappropriate 
behaviours and gives an application of using the extended analysis to detect energy leaks. Section 6 and Section 7 present 
the selected implementations and experiments, respectively. Section 8 reviews related work and Section 9 concludes the 
paper.

1 For simplicity, we do not consider the path conditions, so an infeasible path may lead to a false positive.
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Table 1
Notation list.

Notation Descriptions Notation Descriptions

P Programs S Statements
p,q Variables f , g Filed names
r Resources rid Resource instances
c Classes m Methods
A Actions in automata accepts Accepting states of automata
s States in automata v Variable sets
d Data facts D Data fact mapping
M Memory environment, mapping variables to resource instances
B Behaviour environment, mapping resource instances to behaviour traces
L(rid) The set of appropriate behaviour sequences of rid
MD Method table, mapping method names to their definitions
PD Protocol table, mapping resource instances to their protocols
action(rid, s, A) Returns the state by performing A on s w.r.t. rid
state(rid,d) Returns the set of states of rid in d

1 public class Test {
2 public s t a t i c void main ( s t r i n g [ ] args ) {
3 f = new RandomAccessFile ( " f i l e " , "rw" ) ;
4 i f ( write_cond ) f . write ( " text " ) ;
5 i f ( read_cond ) s t r = f . read ( ) ;
6 i f ( close_cond ) f . c lose ( ) ;
7 }
8 }

Fig. 1. Snippet code of file.

2. Background

Since our analysis is a combination of typestate analysis and taint analysis, we introduce them briefly in this section.
Taint analysis [9], one of the most well-known data-flow analyses, consists of tracking all the variables either which are 

predefined as taint sources such as the ones containing user supplied data (i.e., a “taint”) or whose computations depend on 
some taint sources (i.e., a “taint” propagation) and preventing those variables from being used (i.e., a “sink”) until they have 
been sanitised. This technique is often applied on malware analysis, input filter generation, test case generation, vulnerability 
discovery, and so on.

Typestate analysis [2] is a form of program analysis, which is most commonly applied to object-oriented languages. 
Typestates define valid sequences of operations that can be performed upon an instance of a given type. Typestates associate 
state information with variables of that type, which is used to determine at compile-time which operations are valid to be 
invoked upon an instance of the type. Operations performed on an object that would usually only be executed at run-time 
are performed upon the type state information which is modified to be compatible with the new state of the object.

The notations used in the paper are listed in Table 1.

3. Illustrated examples

In this section, we illustrate some examples that may have potential resource bugs or energy leaks.
As an example, Fig. 1 shows a code snippet about the file resource. This program first opens a file (Line 3). It writes 

(Line 4) and then reads (Line 5) the file under certain conditions. It closes the file when the close_cond condition is met 
(Line 6). The program is not resource-safe. Firstly, it does not always close the opened file, as close_cond (Line 6) may not 
hold. For instance, an I/O exception is generated by the read or write behaviour and programmers forget to close the file 
for that case. Secondly, if neither the write_cond (Line 4) nor read_condition (Line 5) is met, then the opened file will not be 
used at all. In that case, an unneeded file is created and left open causing resources to be wasted.

With respect to energy consumption (i.e., energy leaks), a resource bug may cause an energy leak. Let us consider the 
snippet Android code of network in Fig. 2, which has some potential energy leaks caused by resource bugs.

This program seems correct, but there are several situations that may cause energy leaks. The first scenario is when the 
download_condition (Line 6) is not met, for instance, a user does not click, in which case the program would not download 
any data. This indicates that HTTP connection is left open unnecessarily, in which case unnecessary consumption of energy 
takes place. The second scenario is when the use_condition (Line 9) is not met. In that case, the downloaded data would 
not be used, signifying unnecessary energy consumption (for the unnecessary download). Moreover, if the download_again
(Line 10) condition is met, the variable str would point to the newly downloaded data, leaving the previously downloaded 
one inaccessible. So the former data is never used, leading to an energy leak. Even worse, if the connection and the input 
stream are used only to download the unwanted data, then it is clearly unnecessary to open the connection and the input 
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1 public class T e s t A c t i v i t y extends A c t i v i t y {
2 protected void onCreate ( Bundle b ) {
3 URL ur l = new URL( " http : / /www. android . com" ) ;
4 HttpURLConnection huc =
5 ( HttpURLConnection ) ur l . openConnection ( ) ;
6 i f ( download_condition ) {
7 InputStream out = huc . getInputStream ( ) ;
8 Str ing s t r = Str ing . valueOf ( out . read ( ) ) ;
9 i f ( use_condition ) tv . setText ( s t r ) ;

10 i f ( download_again ) {
11 s t r = Str ing . valueOf ( out . read ( ) ) ;
12 }
13 }
14 }
15 }

Fig. 2. Snippet Android code of network.

stream. In other words, the program may open the unneeded HTTP connection and input stream to cause unnecessary 
energy consumption and hence an energy leak. Finally, even they are needed, the connection and the input stream are not 
closed at last. Thus it remains open to consume energy until the exit of the application. For the benefit of saving energy 
and according to Javadoc for HttpURLConnection, it should be closed eventually.2

4. State-taint analysis

In this section, we present a static analysis called state-taint analysis to help detect resource bugs. We first give a core 
language with (explicit) resource usage commands, and then specify resource usage behaviours in terms of resource pro-
tocols which depict how resources should be used. After that, we present our state-taint analysis, which takes resource 
protocols as a guide, to detect resource usage bugs. We also prove the correctness of the proposed analysis and illustrate 
the analysis via an example.

4.1. A core language with resource usage

To characterise the resource usages in the examples illustrated in Section 3, we consider a core language with resource 
usage. While different resources may have different APIs, for example, openConnection and disconnect are APIs for HTTP 
connections, Open, Write, Read and Close are APIs for Files. These APIs share the same behaviour patterns, namely, open, use, 
and close. For simplicity, we shall focus on these abstract behaviours. Indeed, we can consider that there is a mapping Label
for each resource that maps an API to an (abstract) behaviour. Therefore, the core language with resource usage consists of 
the following (abstract) statements:

S ::= p = open r | use r p | close r p | p = q | p = q. f | p. f = q
| i f cond S else S | while cond S | S; S | q = c.m(a1, . . . ,an)

where p, q ∈ V are variables, f ∈ F is a field name, r ∈ R represents a kind of resource, cond is a boolean expression, 
n is the number of parameters of method m in class c, and ai is an argument of function m. A function definition has the 
following syntax:

f un c.m(p1, . . . , pn) {S; return res}
where pi is a parameter of function m in class c and res is a special variable res that holds the return value of the function. 
A program P consists of a finite number of function definitions and a sequence of statements.

An evaluation environment is a pair (M ,B), where M is a memory environment that maps variables to resource instances, 
and B is a behaviour environment that maps resource instances to behaviour traces. The semantics is defined via the 
evaluation rule (M, B) � S → (M ′, B ′), where (M, B) is an evaluation environment before the execution of the statement 
S , and (M ′, B ′) is the evaluation environment after the execution of S . The evaluation rules are shown in Fig. 3. Rules 
(E-Open), (E-Use) and (E-Close) capture the semantics of the behaviours of resources, collecting the resource behaviours 
into sequences by order: Rule (E-Open) creates a new instance with a single behaviour open, and (E-Use) and (E-Close) 
separately append their behaviours into the behaviour environments of their corresponding resource instances. Similar to 
[1], we assume that opening a resource always succeeds and returns a new instance. This is because (1) it is not easy to 
capture the result of opening a resource by static analysis: a simple solution is to add side conditions to specify success or 
failure into the semantics [7], which may generate too many cases and require guards to be added into our protocols (see 

2 There exists a discussion about this close question in stackoverflow. Interesting reader can refer to [11].
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(M, B) � p = open r → (M[p �→ rid], B[rid �→ open]),where rid is fresh (E-Open)

M(p) = rid

(M, B) � use r p → (M, B[rid �→ B(rid).use]) (E-Use)

M(p) = rid

(M, B) � close r p → (M, B[rid �→ B(rid).close]) (E-Close)

(M, B) � p = q → (M[p �→ M(q)], B) (E-Ass1)

(M, B) � p = q. f → (M[p �→ M(q. f )], B) (E-Ass2)

(M, B) � p. f = q → (M[p′ �→ M(q)], B),where p′ ∈ alias(p. f ) (E-Ass3)

cond → true (M, B) � S1 → (M1, B1)

(M, B) � i f cond S1 else S2 → (M1, B1)
(E-If1)

cond → f alse (M, B) � S2 → (M2, B2)

(M, B) � i f cond S1 else S2 → (M2, B2)
(E-If2)

cond → true (M, B) � S → (M1, B1) (M1, B1) � while cond S → (M2, B2)

(M, B) � while cond S → (M2, B2)
(E-While1)

cond → f alse

(M, B) � while cond S → (M, B)
(E-While2)

(M, B) � S1 → (M1, B1) (M1, B1) � S2 → (M2, B2)

(M, B) � S1; S2 → (M2, B2)
(E-Seq)

(M[pi �→ ai ], B) � MD(c.m) → (M ′, B ′)
(M, B) � p = c.m(a1, . . . ,an) → (M ′[p �→ M ′(res)], B ′)

(E-Fun)

Fig. 3. Evaluation rules for statements.

i/cstart o

u

O

U
C

U

Fig. 4. Abstract FSA for general resources.

Section 5.3); (2) our analysis focuses on the behaviour sequences of resources rather than the behaviour effect (see resource 
protocols in Section 4.2), although a failed opening can lead to a false positive. Consequently, a behaviour sequence, which 
may open a unique resource several times, is divided into several ones such that each one starts from open. Note that 
this assumption is not too strong for our analysis, since if these divided behaviour sequences cause some resource bugs, 
so would the original one, and vice verse (regardless of the failed opening). The (E-Ass i) (i = 1, 2, 3) rules capture the 
semantics of the assignments. For simplicity, our semantics does not differentiate between stack variables and heap ones. 
That is, a heap variable such as a field q. f acts like a stack one, except that the heap one q. f may have some aliases, which 
are represented by alias(q. f ). The next five rules deal with the control-flow statements, which are routine and thus are not 
elaborated here. Finally, considering the semantics of the function calls, we assume that function definitions are stored in 
a table MD indexed by function names. The evaluation rule for function calls is given by (E-Fun), where p1, .., pns are the 
parameters of function c.m. (E-Fun) first evaluates the function body of c.m, found from the function table MD, and then 
passes to the variable p the result value, held by the special variable res, yielding the final environment.

4.2. Resource protocols

A resource usage protocol specifies how a resource should be used or which behaviour sequences are appropriate. Re-
source protocols can be viewed as a kind of typestate properties [2], which can be represented as finite state automata. 
Concerning the open-but-not-used problem, a resource intuitively has (at least) three possible states, namely i/c (i.e., the 
resource is on the initial state or closed), o (i.e., the resource is opened or required), and u (i.e., the resource is used). An 
abstract automaton for general resource protocols is given in Fig. 4, where O, U and C are abstract behaviours denoting the 
relevant opening (or acquiring), using and closing (or releasing) APIs of resources for short respectively. Behaviour sequences 
that do not satisfy resource protocols lead to resource bugs. Generally, the appropriate behaviour sequences for a resource 
should be in form of “O, U, . . . , U, C”, namely OU+C in regular expressions. Note that there is at least one use behaviour 
between the open and close behaviours.
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(a) Specific FSA for File

i/cstart oO

C

(b) Specific FSA for WakeLock

Fig. 5. Specific FSA for different resources.

Resource Protocols Control Flow Graph

State-Taint Analysis Algorithm

Data facts

Exit Checking Algorithm

Bug Information

Fig. 6. Analysis framework.

Depending on their usages and API documentation, different resources may have different specific automata3 generated 
from the abstract one in Fig. 4. Take the file resource for example. There are two kinds of usage for a file: read and write. In 
some cases, these two behaviours may be regarded as indistinguishable, so the protocol could stay the same as the one in 
Fig. 4. In some other cases, one may want to distinguish between these two usage behaviours, thus the protocol in Fig. 5a 
can be used instead, where the state u is spitted into rd and wr, and the behaviour U into RD (representing read) and WR
(representing write). Another example is WakeLock, which has only two behaviours, namely, open and close. Fig. 5b gives a 
specific protocol for WakeLock, which contains only two states.

Assume that there exists a protocol definition function PD which maps resource instances to their corresponding pro-
tocols. Let action(rid, s, A) denote the action function of the resource instance rid, which returns the state obtained by 
performing the behaviour A on the state s if the behaviour succeeds according to the protocol of rid, or bug otherwise:

action(rid, s, A) =
{

s′ if there exists s′ · s
A−→ s′ ∈ PD(rid)

bug otherwise

We generalise the action function action to a sequence of behaviours as follows.

action(rid, s, A1 A2 . . . An) = action(rid,action(rid, s, A1), A2 . . . An)

Let L(PD(rid)) denote the set of all appropriate behaviour sequences of the resource instance rid. We say a program is 
resource usage correct if all the behaviour sequences of all the resources satisfy their corresponding protocols.

Definition 4.1. Let P be a program. If (∅, ∅) � P → (M, B) and ∀rid ∈ dom(B). B(rid) ∈ L(PD(rid)), then P is resource usage 
correct.

4.3. Main analysis

Aiming to detect those inappropriate behaviour sequences that likely lead to resource bugs, we propose a taint-like 
analysis, consisting of a state-taint analysis algorithm and an exit checking algorithm. Fig. 6 shows the framework of our 
analysis.

The state-taint analysis algorithm combines typestate analysis [2] and taint analysis [9]. Different from taint analysis, our 
analysis propagates the states of resource protocols among the control flow graph (CFG) of a program instead of simple 
source tags. During the propagation, typestate analysis is performed meanwhile, that is, states of resource instances will 

3 In implementation, we use a configure file to define the protocols, so a user can define the protocols as they wish.
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be checked and changed depending on the relevant behaviour according to the corresponding automata. In short, we take 
resource protocols as a guide to perform a taint-like analysis on CFG.

Algorithm 1 State-taint analysis algorithm.
Input: CFG, resource protocols (automata)
Output: the data fact mapping D

1: for each node t ∈ CFG do
2: Let D(t) = ∅
3: end for
4: enqueue each entry point into queue q
5: while q is nonempty do
6: t ← dequeue q
7: d ← apply the transfer function of t on D(t) w.r.t. resource protocols
8: for each successor t′ of t do
9: if d �= D(t′) then

10: D(t′) ← d ∪ D(t′)
11: if t′ /∈ q then
12: enqueue t′ into q
13: end if
14: end if
15: end for
16: end while
17: return D

The state-taint analysis algorithm takes as input the control-flow graph (CFG) of a program and the automata specifying 
the resource usage protocols, and returns a mapping D that maps each node to its data fact. Besides states of the automata, 
the algorithm also tracks which resource instances are handled and which variables and fields are “tainted”. Formally, the 
data fact (or property) that the analysis tracks is a set of tripes (rid, s, v), meaning that the resource instance rid is at the 
state s, and may be managed by the variable set v. We represent variables and fields as access paths [12] up to a fixed 
length. An access path is an expression comprised of a variable followed by a (possibly empty) sequence of field names. 
For instance, p. f .g represents an access path of length 2. Besides, different paths to a node of CFG can obtain different 
states for the same resource. As we would like to identify in which path a resource could cause resource bugs, we include 
different states for the same resource into a set rather than unifying them. That is to say, our analysis is flow-sensitive. 
Therefore, unlike typestate checking, we do not need to impose a partial order on states, although it can be done easily. The 
state-taint analysis algorithm is essentially a classic data flow algorithm, which is shown in Algorithm 1.

The algorithm starts from the entry nodes of CFG with the empty data-fact mapping (Lines 1–4). For each node t , the 
algorithm applies its corresponding transfer function, yielding a data fact d to its successors (Line 7). The transfer functions 
either check whether the resource behaviour conforms to the corresponding resource protocol, or propagate the resource 
information, which are presented in Section 4.3.1. If the data fact d is different from the original data fact D(t′) of a 
successor t′ (Line 9), that is, some data facts are fresh, then the algorithm update D(t′) by unioning D(t′) and d (Line 10), 
and enqueue t′ into the queue q (Line 12). The algorithm traverses over CFG until q is empty, that is, until the data-fact 
mapping is no longer updated (Lines 5–15).

After the data fact mapping is computed, we also check the data fact at the exit node of each function to ensure that the 
resources managed by the local variables are released. The exit checking algorithm is shown in Algorithm 2, where local( f )
returns all the local variables of the function f and PD(rid).accepts denotes the set of accepting states of the protocol 
automaton of the resource instance rid. Note that, the global or static variables are considered as local variables of the main
function. The function statecheck(d) (defined in Table 2) checks whether the bug state occurs in d, and whether a resource 
instance at a non-accepting state and not being accessed by any variables exists in d.

Algorithm 2 Exit checking algorithm.
1: for each exit of each function f do
2: for each (rid, s, v) ∈ D(exit) do
3: if s /∈ PD(rid).accepts ∧ v ⊆ local( f ) then
4: statecheck (rid, s, v)

5: end if
6: end for
7: end for

Due to the fresh instance creating of an open behaviour, for an open behaviour occurring in a loop (e.g., while-statement), 
the algorithm will generate a fresh data fact for this behaviour at each loop, which would cause the algorithm to visit the 
loop again. However, thanks to the regularity of the behaviour sequences, it suffices to visit the open behaviour in a loop 
twice for an identity data fact: one is for the break case and the other for the continue case. Let us consider the statement: 
S1; while cond {S3; p = open r; S4}; S2 and let bi be the behaviours of resource r in Si . The possible behaviour sequence 
of resource r is described by the regular expression b1(b3.open.b4)

∗b2. Divided by open, the possible behaviour sequences 
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Table 2
Auxiliary functions.

Function Output

remove(v, p) v \ {p.π | p.π ∈ v}, π is any access path
kill(d, p) {(rid, s, remove(v, p)) | (rid, s, v) ∈ d}
li f t(d, p) {(rid, s, v) ∈ d | alias(p) ∩ v �= ∅} if li f t(d, p) = ∅ or

∃rid.(rid, s1, v2) ∈ li f t(d, p) ∧ (rid, s2, v2) ∈ d \ li f t(d, p) then report
killalias(d, p, f ) {(rid, s, remove(v,q. f )) | (rid, s, v) ∈ d ∧ q ∈ alias(p)}
statecheck(d) {(rid, s, v) | (rid, s, v) ∈ d ∧ s �= bug ∧ v �= ∅}

if s = bug ∨ (v = ∅ ∧ s /∈ PD(rid).accepts) then report bug

Table 3
Transfer functions for intra-procedural analysis.

Statement Transfer function f (d)

p = open r {(rid,o, {p})} ∪ statecheck(kill(d, p))

use r p statecheck({(rid,action(r, s, U ), v) | (rid, s, v) ∈ li f t(d, p)}) ∪ (d \ li f t(d, p))

close r p statecheck({(rid,action(r, s, C), v) | (rid, s, v) ∈ li f t(d, p)}) ∪ (d \ li f t(d, p))

p = q {(rid, s, (v ∪ {p.π}) | (rid, s, v) ∈ d ∧ q.π ∈ v} ∪ statecheck(kill(d, p))

p = q.f {(rid, s, (v ∪ {p.π}) | (rid, s, v) ∈ d ∧ q. f .π ∈ v} ∪ statecheck(kill(d, p))

p.f = q {(rid, s, (v ∪ {p. f .π}) | (rid, s, v) ∈ d ∧ q.π ∈ v} ∪ statecheck(killalias(d, p, f ))
others d

contain b1b2 (no loops), b1b3 (in the first loop), open.b4b2 (the break case), and open.b4b3 (the continue case). There may 
be several different resource instances of resource r with the same behaviour open.b4b3. Since they belong to the same 
resource r, it is suffice to consider just one instance.

In addition, since the states of the protocol automata, the variables and fields are finite, (and the length of access paths 
is capped), the triples are finite as well. Therefore, the state-taint analysis always terminates.

4.3.1. Transfer functions
Prior to presenting the transfer functions, we introduce some auxiliary functions, which are listed in Table 2, where 

remove(v, p) removes the access paths starting with p in variable set v; kill(d, p) deletes the access paths starting with p
in data fact d; li f t(d, p) selects the data tripes in d that are accessed by p or an alias of p, and checks whether there are no 
resource instances accessed by p in some cases; killalias(d, p, f ) deletes the access paths in d starting with p. f or the alias 
of p. f ; and statecheck(d) checks whether the bug state occurs in d, and whether a resource instance at a non-accepting 
state and not being accessed by any variables exists in d.

Consider the transfer functions for intra-procedural analysis first, which are listed in Table 3. For the open behaviour 
p = openr, it creates a new data tripe (rid, o, {p}) and kills the data tripes that were managed formerly by p, where rid is 
fresh. It also checks the newly generated data fact: if a resource is managed by no variables and its state is not an accepting 
one, then a resource bug is reported. The use and close behaviours change the states of resources managed by p respectively 
according to the resource protocol automata. After that, the states are checked: if it is a bug state, report it. The assign 
statement p = q kills the data fact managed by p, and shares the resource currently managed by q to p (i.e., if q is “tainted”, 
then p is “tainted” as well). Similarly to p = q.f and p.f = q. Note that the alias analysis is triggered by the use or close
behaviours and the assignments to heap variables.

For inter-procedural analysis, we assume that there is a call edge from a call statement to each of the possible callees, 
and there is a return edge from the exit of a callee to each of the call statements that could have invoked it. Consider a call 
statement q = c.m(a1, . . . , an). Generally, the call flow function fcall will transfer a resource r, managed by an argument ai , 
to its corresponding formal parameter pi . If the caller’s context contains a resource r, then fcall will also transfer r to the 
callee’s context by replacing c with this. The call flow function is:

fcall(d) = ∪
{

{(rid, s, this.π) | (rid, s, c.π) ∈ d}
{(rid, s, pi .π) | (rid, s,ai .π) ∈ d}

The return flow function fret will do the opposite thing instead. Besides, if the return value x is “tainted”, then the assign-
ment to q makes it “tainted” as well. The return flow function is given as follows:

fret(d) = ∪

⎧⎪⎨
⎪⎩

{(rid, s, c.π) | (rid, s, this.π) ∈ d}
{(rid, s,ai .π) | (rid, s, pi .π) ∈ d ∧ ¬immut(ai)}
{(rid, s,q.π) | (rid, s, x.π) ∈ d}

where immut(a) returns true iff a is a primitive or immutable data, such as Int, Sting, etc.
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Fig. 7. Control flow graph of file example.

Generally, any alias analysis can be adopted here. The more precise the alias analysis is, the more precise result we can 
get. For instance, with a must-alias analysis fewer but preciser result can be obtained than with a may-alias one. Here we 
use the on-demand alias analysis adopted by flowdroid [9], since it is efficient and context-sensitive.

4.4. Correctness

Since we focus on the resource usage analysis, assume that the transformation from programs to CFGs is correct and 
the alias analysis is correct.4 Under that assumption, we prove the correctness of our analysis: if our analysis on a program 
reports no bug information, then the program is resource usage correct.

We use analysis(P ) �E D to denote the whole analysis on a program P , yielding the data fact mapping D and the 
bug information E , and use state(d, rid) to denote the set of states of the resource instance rid in the data fact d, that is 
state(d, rid) = {s | ∃v. (rid, s, v) ∈ d}.

Definition 4.2. Given a behaviour environment B and a data fact d, we say d entails B , denoted as d � B , if 
action(rid, i, B(rid)) ∈ state(d, rid) for all rid ∈ dom(B), where i is the initial state of the protocol automaton of rid.

Lemma 4.1. Let Sn
1 be a sequence of statements S1; . . . Sn. If (∅, ∅) � Sn

1 → (M, B) and analysis(Sn
1) �∅ D, then D(Sn) � B.

Proof. By induction on n. It is trivial when n = 0. Assume that n > 0. In that case, we have Sn
1 = Sn−1

1 ; Sn . According to the 
semantics, we have that (∅, ∅) � Sn−1

1 → (M ′, B ′) and (M ′, B ′) � Sn → (M, B) for some M ′ and B ′ . By induction on Sn−1
1 , we 

have D(Sn−1) � B ′ . Let us consider Sn by cases.

• p=open r: By the semantics, B = B ′[rid �→ open], where rid is fresh. So we only need to consider the resource 
instance rid. According to the transfer functions, (rid, o, {p}) ∈ D(Sn) and for any other rid′ , state(D(Sn), rid′) =
state(D(Sn−1), rid′) (since no bug information is reported). It is clear that action(rid, i, open) = o. Hence D(Sn) � B .

• use r p: Since (M ′, B ′) � Sn → (M, B) , then there exists rid such that M ′(p) = rid and B = B ′[rid �→ B ′(rid).use]. So we 
just consider the resource instance rid. Since D(Sn−1) � B ′ , we have action(rid, i, B ′(rid)) ∈ state(D(Sn−1), rid). Accord-
ing to the transfer functions, a behaviour use is performed on rid. As no bug information is reported, rid is accessed 
by p for all cases and this succeeds. Thus action(rid, i, B ′(rid).use) ∈ state(D(Sn), rid), that is, action(rid, i, B(rid)) ∈
state(D(Sn), rid).

• close r p: Similar to the case of use r p.
• assignments: It is trivial for the stack variables. For the heap variables, the alias information is ensured by the correct-

ness of the alias analysis alias().
• others: Trivial. �

Theorem 4.2. Let P be a program. If analysis(P ) �∅ D, then P is resource usage correct.

Proof. Let the statements in P be Sn
1. Assume (∅, ∅) � Sn

1 → (M, B). By Lemma 4.1, we have D(Sn) � B . As no bug infor-
mation is reported, according to the exit algorithm, all the states in D(Sn) are accepting ones, that is, for all rid ∈ dom(B), 
action(rid, i, B(rid)) ∈ PD(rid).accepts. Therefore, for all rid ∈ dom(B). B(rid) ∈ L(PD(rid)). �
4.5. Example

Consider the file example illustrated in Section 3 again, where the protocol for the file resource is the one in Fig. 5a. For 
convenience, we focus on the resource behaviours and represent them in our abstract statements presented above. Fig. 7
gives the CFG of the file example, where di s are data facts to be computed.

4 Many resource instances are managed by stack variables in practice.
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Table 4
Data facts for file example.

di Data fact

d1 {(F ile,o, { f })}
d2 {(F ile, w, { f })}
d3 {(F ile, r, { f })}
d4 {(F ile, c, { f }), (F ile,bug, { f })}
d5 {(F ile,o, { f }), (F ile, w, { f }), (F ile, r, { f }), (F ile, c, { f }), (F ile,bug, { f })}

The open behaviour generates (F ile, o, { f }) (i.e., d1), which flows to d2 − d5. While the write and read behaviours change 
any state to w and r respectively. For d4, there are three sources: d1, d2 and d3. According to the protocol in Fig. 5a, the 
close behaviour closes d2 and d3 normally except for d1, since the state of d1 is o, indicating that the open file has not been 
used yet. Finally, all the data facts above flow to the exit node, thus d5 is the union of d1 −d4, that is, d5 = d1 ∪d2 ∪d3 ∪d4. 
All the data facts are shown in Table 4.

Let us check the data fact of the exit node. Only the triple (F ile, c, { f }) is accepting. The data fact indicates that (i) the 
file may be opened but not used or closed in some situation (i.e., at the state o); (ii) the file may be opened and then 
used to read or write, but not closed eventually (i.e., at the state r or w); (iii) the file may be opened and closed correctly 
without using (i.e., bug). These are the possible resource bugs illustrated in Section 3.

In addition, assuming that a type-based method is adopted, one needs to give the type annotations explicitly to all the 
resource related statements in the program. For this example, a type annotation for files can be μα.(0&((lR &lW ); α)); lC [1], 
which involves several usage constructors and is not easy to follow. Type annotations could be more complex, when a 
resource is accessed through the invocation of a function closure. Even worse, one may need to understand the whole type 
system and/or the complex usage constructors to write the annotations correctly.

5. Extension: resource behaviour analysis

The resource protocols presented in Section 4 capture the appropriated behaviour sequences. Any sequence not accepted 
by the protocols would be considered as a potential resource bug. However, different resource bugs may lead to different 
program bugs. For example, to use an unopened resource may lead to a program crash while reopening an open resource 
may not. In this section, by enriching the resource protocols with some inappropriate behaviours, we extend our analysis to 
analyse these behaviours that may lead to special program bugs, for example, energy leaks and information leaks.

5.1. Application: energy leaks

Over the last decade, the popularity of smartphones has increased dramatically. This has led to widespread availability of 
smartphone applications. Since energy is a scarce resource for smartphones, mobile applications should be energy efficient. 
However, many applications are energy inefficient and can suffer from energy leaks. Existing studies show that eliminating 
energy leaks can result in a good reduction in energy consumption [8,13]. Therefore, to detect energy leaks is a meaningful 
task for smartphone applications. As an application, we show our proposed state-taint analysis can be easily adapted to 
detect energy leaks for smartphone applications.

Enriched protocols with behaviours. As discussed in Section 1, a resource bug can cause an energy leak, for example, a 
resource is left open to consume energy unnecessarily. As also illustrated in the Android code for network in Section 3, the 
HTTP connection is kept open to consume unnecessary energy. But not all resource bugs lead to energy leaks, for instance, 
to use a closed resource is a resource bug but may not cause a noticeable energy leak. Therefore, we shall distinguish 
behaviours that may cause energy leaks from other inappropriate behaviours, and enrich our resource usage protocol with 
such a distinction.

Fig. 8a shows an abstract automaton for the enriched protocol, where el denotes there may be an energy leak caused 
by the corresponding behaviour. Generally, if a non-accepting state of a resource reaches the exit node, an energy leak is 
then caused by this resource, since it is not closed eventually. Moreover, an (already opened) resource should not be opened 
again, since it is currently not yet used and may remain open to consume energy. Finally, an opened resource should be 
used before closing. Otherwise, it is an energy waste to leave it open but not used.

In particular, we also consider the usage of downloaded data, since 70% of energy consumption of network resources is 
due to downloads [8]. The protocol of downloaded data can be represented as a two-states FSA in Fig. 8b, where there are 
no states corresponding to a close behaviour and D is the abstract behaviour denoting the download APIs for short.

We extend the action function with energy leaks as follows:

action(rid, s, A) =

⎧⎪⎪⎨
⎪⎪⎩

s′ if there exists s′ · s
A−→ s′ ∈ PD(rid)

s′/el if there exists s′ · s
A/el−−→ s′ ∈ PD(rid)

bug otherwise
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Fig. 8. Enriched FSA with energy leaks.

Fig. 9. Control flow graph of network example.

Analysis algorithms. The proposed algorithms would still work for the enriched protocols, with a minor change: the 
extended action function is used instead and whenever there is an energy leak, it gets reported. Indeed, the extended 
analysis is exactly the same as the original one, except that the extended one reports more specific bugs than the original 
one does. That is, if a resource bug is reported by the original analysis, then the extended analysis reports the same bug or 
a more specific one (e.g., energy leaks). Moreover, if there are no bugs reported by the original one, so does the extended 
one. This leads to a conclusion that the extended analysis is correct as well.

Theorem 5.1. If the extended analysis on a program P reports no bug information, then there are no specific bugs (e.g., energy leaks) 
in P .

Proof. Similarly to Theorem 4.2, we can prove P is resource usage correct. Hence there are no specific bugs in P . �
Example. Let us apply the resource behaviour analysis to detect energy leaks of the network example illustrated in Section 3, 
where the enriched protocols for HTTP connection (HC for short) and input stream (IS for short)5 are in Fig. 8a and the one 
for downloaded data (DD for short) is in Fig. 8b. Similarly, we focus on the resource behaviours and represent them in our 
abstract statements for convenience. Fig. 9 gives the CFG of the network example, where di are data facts corresponding to 
each node and are shown in Table 5. Note that the statement out = huc.getInputStream() (respectively str = out.read()) is a 
use behaviour for HTTP connection (respectively input stream) as well as an open behaviour for input stream (respectively 
downloaded data).

Consider the data in Table 5. First, the analysis will generate an energy leak for the second download behaviour, since 
the variable str may point to some downloaded but unused data. Next, let us check the data fact d6 at the exit node, where 
only the triple (D D, u, {str}) is accepting. This data fact d6 indicates that (i) the HTTP connection may be opened but not 
used ((HC, o, {huc})) or closed ((HC, u, {huc})) in some situation; (ii) the input stream is not closed ((I S, u, {out})); (iii) the 
download data may not be used in some situation ((D D, o, {str}), (D D ′, o, {str}), where two different instances correspond 
to two different download behaviours in the program). All these are the possible energy leaks illustrated in Section 3 earlier.

5 By present, we consider each resource separately. We left the embedded resources for future work.
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Table 5
Data facts for network example.

Node Data fact

d1 {(HC,o, {huc})}
d2 {(HC, u, {huc}), (I S,o, {out})}
d3 {(HC, u, {huc}), (I S, u, {out}), (D D,o, {str})}
d4 {(HC, u, {huc}), (I S, u, {out}), (D D, u, {str})}
d5 {(HC, u, {huc}), (I S, u, {out}), el(D D,o,{str}), (D D ′,o, {str})}
d6 {(HC,o, {huc}), (HC, u, {huc}), (I S, u, {out}), (D D,o, {str}), (D D, u, {str}), (D D ′,o, {str})}

istart o leak
OPEN

USE

LEAK

Fig. 10. Protocol for information leaks.

istart o
OPEN : 1

OPEN : 0

Fig. 11. Partial file protocol with effects.

5.2. Application: information leaks

Another issue for smartphone applications is the information leak problem: apks leak sensitive user data without the 
user’s permission. According to existing studies, there are dozens of popular Android apps that leak sensitive user data. So 
to detect information leak is also a meaningful task for smartphone applications.

Indeed, sensitive data is essentially a resource, whose protocol is shown in Fig. 10, where OPEN is an abstract behaviour 
that gets the sensitive data (e.g., getIMEI) and LEAK is an abstract behaviour that may leak sensitive data (e.g., sendSMS). 
The protocol states that once there is a LEAK behaviour following an OPEN behaviour, there may be an information leak.

According to the protocol, to detect information leaks is reduced to find whether there is a path between OPEN and LEAK
in CFG. If we treat OPEN behaviours as sources and LEAK behaviours as sinks, our analysis becomes the taint analysis.

5.3. Protocols with guards

The semantics presented in Section 4.1 does not take the effects of the behaviours into account. We should consider 
the effects for the semantics. For example, if an attempt to open a file fails, the file remains closed, and thus the read
or write behaviour cannot be performed. On the other hand, some behaviours can only be performed conditionally, an 
example being that the sensitive data can be assessed only by the authorised users. Therefore, another possible extension 
is to enrich the resource protocols with the performed conditions or the effects of the behaviours, which are described as 
guards. For example, Fig. 11 gives a partial protocol for file that takes the effect of open behaviour into account, where 0
and 1 denote failure and success respectively.

As a result, during the analysis, there are two cases for an open behaviour: the success case and the failure case. Ac-
cordingly, two data triples are generated by x = open r: (rid, o, {x}, success) and (rid, i, ∅, f ailure), where both success and 
f ailure are guards describing the possible results of open. A more precise solution would take into account the satisfiability 
of guards in the analysis, which is left as future work.

6. Implementation

We have implemented our analysis as a tool called statedroid and used it to detect energy leaks for Android applications. 
The tool consists of a front-end and a back-end, as shown in Fig. 12. The front-end parses an apk file and then builds a 
control flow graph, which is passed to the back-end as input. Our tool’s front-end is very similar to that of flowdroid, whose 
front-end provides almost the same functionalities as ours. Interesting readers can refer to [9] for more details. While the 
back-end takes as input the control flow graph built by the front-end and the resource protocols, and performs state-taint 
analysis and exit checking presented in Section 4. Our state-taint analysis is implemented upon the IFDS framework [14].

7. Experimental evaluation

To evaluate our analysis, we have conducted a series of experiments on real Android applications to detect energy leaks 
by using statedroid, where the applications are collected from F-Droid, a test dataset of Relda [15] and a test dataset of 
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Fig. 12. Architecture of statedroid.

Table 6
Results for selected Apks from F-droid.

APK O U C T FP R APK O U C T FP R

antennapod 1 4 0 5 0 HC bible 3 0 2 5 2 HC
coolreader 2 1 0 3 0 HC cordova 12 2 2 16 0 HC
derbund 14 0 0 14 0 HC gearshift 3 1 1 5 1 HC
giga 1 0 0 1 0 HC goblim 1 1 0 2 0 HC
impeller 21 1 0 22 0 HC kontalk 6 1 2 9 1 HC
lico 2 0 0 2 0 HC mirakel 2 2 0 4 0 HC
mirrored 1 2 1 4 4 HC movement 2 0 0 2 1 HC
muzei 2 0 0 2 2 HC openmensa 0 3 0 3 0 HC
remote 0 1 0 1 0 HC tether 1 1 0 2 2 HC
adbwireless 1 – – 1 1 WL androbe 1 – – 1 1 WL
betterwifi 1 – – 1 0 WL fbreader 1 – – 1 1 WL
smarterwifi 1 – – 1 1 WL ttrssreader 1 – – 1 0 WL
hydromemo 1 0 0 1 0 MP impeller 1 0 0 1 0 MP
tasks 1 0 0 1 0 MP smspopup 1 0 0 1 1 MP
babymonitor 0 1 0 1 1 MP imcktg 1 1 0 2 0 MP

Total 85 22 8 115 19 – Ratio 73.9% 19.1% 7.0% 1 16.5% –

GreenDroid [16]. All the experiments have been conducted on a machine with Intel core I5 CPU and 4 GB RAM, running 
Ubuntu 14.04.

7.1. Energy leaks from F-droid

The first experiment is to address how precise our tool is. For that, we have collected 100 real Android applications from 
F-Droid, a well-known open source Android application repository. We have used our tool statedroid to detect energy leaks 
for each application, taking as a guide the resource protocols for HTTP connection (Fig. 8a), WakeLock (Fig. 5b) and Media 
Player (Fig. 8a) respectively. We have also performed manual analysis on the high-level source codes of these applications 
where energy bugs are reported. Please note that, since we use the soot framework to analyse Android applications in our 
implementation, there exist too many bugs caused by exceptions. By now, as they are not easy to check by hand, we decide 
not to take exceptions into account at the current stage but leave it to future work.

Table 6 summarises our findings of these 100 applications, where O denotes an opened resource which is neither used 
nor closed, U denotes an opened resource which is used but not closed, C denotes a resource that is closed eventually 
without using, T denotes the total resource bugs reported by our tool, FP denotes the resource bugs reported by our tool 
but cannot be rediscovered manually, R denotes the resource kind that causes the energy leak, and HC,WL and MP represent 
HTTP connection, WakeLock and Media Player for short respectively. Note that there are no use behaviours for WakeLock.

The results show that among these 100 applications, our tool reports that (1) 18 applications have 102 energy leaks 
caused by HTTP connection; (2) 6 applications have 6 energy leaks caused by WakeLock; (3) 6 applications have 7 energy 
leaks caused by Media Player; and (4) the precision rating of our tool is about 83.5%. From the results, we also can see 
that lots of bugs are due to the unclosed-ness (i.e., O and U). We believe the main reason is that programmers are prone to 
forget to close/release the resource for every exit. For example, the application hydromemo creates a Medie Player but does 
not release it finally, while the application betterwifionoff creates two WakeLocks (i.e., one for wifi and the other for screen) 
but only releases the one for screen. Moreover, there are also many bugs due to the unused-ness (i.e., O and C). This is 
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Fig. 13. Overhead for different apks.

mainly because programmers are likely to open the resource in advance and close the resource at the last minute without 
considering it is in need or not. For example, the application bib opens the HTTP connection just to check the connection 
without using it.

Through the manual analysis on the high-level source codes of these applications where energy bugs are reported, we 
found that 19 energy bugs turn out to be false positives. There are several reasons for these 19 false positives. The first one 
is the null pointer checking, due to which 57.9% (i.e., 11) false positives are generated. However, since we maintain some 
relations between resources and variables, we can improve our analysis to check the null pointer for some variables by 
these relations, which would reduce the false positives and is left for future work. The second reason is that a variable such 
as state is used to simulate the status of resources, and different actions are allowed to depend on this variable, such as the 
applications adbwireless and fbReader. Our analysis does not catch this variable in its current form. The third reason is that 
a type checking is performed before closing, for example, con instanceof HttpURLConnection is performed before closing con
in application mirrored. Another reason is due to the lifecycle of Android. For example, in the application babymonitor, the 
callback function onCompletion, which will release the Media Player, is invoked when the Media Player finishes the playing, 
but our tool can not catch this callback relation at the current stage.

Moreover, we have investigated the precision rates of several static analyses on energy leaks from their experimental 
studies: (1) the precision rate of the work of Pathak et al. on no-sleep bugs [17] is about 76.4% (55 no-sleep bugs with 
13 false positives found in 86 apks), which is lower than ours. (2) the precision rate of Relda [15] is about 88.0% (92
energy leaks with 81 true positives found in 43 apks), which is slightly higher than ours. But Relda is flow-insensitive. (3) 
Relda2 [18] supports both flow-sensitive analysis and flow-insensitive analysis. Their precision rates are about 68.1% (69
energy leaks with 47 true positives found in 76 apks) and about 55.4% (121 energy leaks with 67 true positives found in 
76 apks) respectively, both of which are lower than ours. We also compare our tool and Relda2 on a same dataset, and the 
result shows that our tool is more precise than Relda2 (see Section 7.3 for detail). (4) The work of Wu et al. [19] summarises
two precise patterns for run-time GUI-related energy-drain behaviours and performs their analysis on 15 apks which are 
known to suffer from energy leaks, thus it has a high precision: about 90.9% for the first pattern (11 energy leaks with 10
true positives found in 15 apks) and almost 100% for the second pattern (17 real energy leaks found in 15 apks). Some 
of 15 apks are from GreenDroid, which can be detected by our tool as well (see Section 7.3). Although our tool seems to 
be less precise than this one, we consider more usage patterns. In a nutshell, our tool is reasonably precise and can detect 
more usage patterns, and thus would be very helpful in practice.

7.2. Performance

The second experiment is to address the performance of our tool. To do that, we have selected applications whose lines 
of code (LOC) range from 300 to 300000 from F-droid and performed our tool statedroid to analyse each application, taking 
as a guide the resource protocols for HTTP connection. During the analysis, we calculate the running time in seconds and 
the memory overhead in MBs that are needed by each application.

Fig. 13 shows the overhead only for those applications reported to suffer from energy leaks. The running time for these 
applications ranges from 0.69 s to 811.71 s with an average of 98.10 s, and the memory overhead is from 68.6 MB to 
1325.41 MB with an average of 675.25 MB. It signifies that our tool does not cost too much time or memory, which 
indicates that our tool is quite suitable in practice. The figure also shows the overall trend of the overhead: the larger the 
application, the more the time and memory overhead. Note that there are some anomalous cases, due to fewer resource 
behaviours occurring in the applications. Indeed, if an application contains no resource-related behaviours, the tool returns 
with no bugs immediately.
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Table 7
Comparison with Relda2.

APK statedroid Relda2

E FP R E FP R

ase 2 0 WL, BT 2 2 MR
chess 1 0 MP 3 0 MP
myAudioManager 1 0 MP 2 0 MP
myBluetooth 1 0 BT 1 0 BT
myCamera 1 0 CM 4 0 CM
myLocation 1 0 LM 1 0 LM
myMusicPlayer 1 0 MP 2 0 MP
myMusicPlayOnline 1 0 MP 3 0 MP
myRecord 1 1 MR 2 2 MR
mySdcardMusicPlay 1 0 MP 7 0 MP
mySdcardVideoPlay 1 0 MP 3 0 MP
mySeekPlay 1 0 MP 3 0 MP
myVideoMake 1 0 MR 2 0 MR
myVideoPlayOnline 1 0 MP 3 0 MP
myWifi 1 0 WM 1 0 WM

Total 16 1 – 39 4 –

Table 8
Result on dataset from GreenDroid.

APK R E APK R E

DroidAR LM 1 ecycle-locator LM 0
Sofia Public Transport Nav LM 1 Ushahidi LM 1
EbookDroid WL 1 AndTweet WL 1
BabbleSink WL 1 CWAC-Wakeful WL 1

7.3. Experiments on datasets from Relda and GreenDroid

Both Relda [15,18] and GreenDroid [16], two recent tools for detecting energy leaks for Android applications, consider 
partial usages of resources, hence, they cannot detect the energy leaks caused by some other usages like open-but-not-used
(such energy leaks are denoted by C in Table 6). In the following, we perform our tool on the datasets from Relda and 
GreenDroid under the same resource usage patterns used by Relda and GreenDroid to compare them more.

Relda. We have performed our tool and Relda2 (with flow-sensitive setting) on a data set from Relda, the set of 55
applications from an Android application development book [20], taking as a guide the same resources as Relda2, where the 
use behaviours of resources are omitted. Both Relda2 and our tool report the same applications which may possibly suffer 
from energy leaks.6 The detailed results are shown in Fig. 7, where E denotes the number of the energy leaks reported by 
our tool or Relda2, BT , CM, LM, MR and WM represent Bluetooth, Camera, LocationManager, MediaRecorder and WifiManager 
for short respectively, the other notations are the same as Table 6. The results show that: (1) our tool is more precise than 
Relda2: through the manual analysis, there are 4 false positives for Relda2, while our tool has only 1. (2) our tool detects 
two more energy leaks in ase, one of which is caused by WakeLock and the other by Bluetooth. Note that Relda2 also detects 
two energy leaks caused by MediaRecoder in ase, but they are false positives. (3) Relda2 seems to report more bugs than 
our tool does, but indeed these bugs are almost the same. This is due to the different measurements: Relda2 counts the 
bugs by resource behaviours (i.e., APIs), while our tool counts by paths, which contain as many behaviours as possible.

In addition, taking several use behaviours of resources into account, our tool can detect two more real energy leaks: one 
is from ase, due to that Bluetooth is opened and used, but not closed (which can be detected by Relda); the other is from 
mySeekPlay, due to that MediaPlayer is opened and later closed, but has never been used (which cannot be detected by 
Relda).

GreenDroid. We have also performed our tool on the Android applications that suffer from energy leaks due to Lock and 
sensors detected by GreenDroid7 [21]. The results are shown in Table 8, where the notations are the same as Table 7. Our 
tool can detect almost all the energy leaks that are detected by GreenDroid, except for the one in ecycle-locator, which is 
because the class MapView can not be resolved by the soot framework used in our tool. This is an implementation problem.

GreenDroid adopts a dynamic analysis, and thus it can detect the underutilisation problem quite well. While our tool 
adopts a static analysis instead so that it cannot capture this underutilisation problem. However, our tool considers more 

6 Relda1 only detects four energy leaks from this dataset [15], while our tool can detect two more real energy leaks than Relda1 under the resources 
that Relda1 detects.

7 We have asked for GreenDroid but are not able to run it on our dataset.
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resource usages than GreenDroid, consequently it can detect more energy leaks caused by inappropriate resource usages, 
for example, the energy leaks denoted by C in Table 6 and the one due to the unused MediaPlayer in mySeekPlay.

8. Related work

There are many related works about resource usage analysis, such as resource management, API usages, and energy bugs. 
Here we discuss some of the most related ones.

Resource usage analysis. DeLine and Fähndrich [3] proposed a type system to keep track of the state (called a key) of 
a resource. The state of a resource determines what operations can be performed on the resource, and the state changes 
after operations are performed. Therefore, keys in their type system roughly correspond to the states of protocols in our 
state-taint analysis. However, their keys did not consider the open-but-not-used issue, that is, an opened resource should be 
used. Moreover, their type system requires programmers to provide explicit type annotations (including keys) to guide an 
analysis, which is not so easy to give.

Igarashi and Kobayashi [1] formalised a general problem of how each resource is accessed as a resource usage analysis 
problem, and proposed a type-based method to check whether the inferred resource usage matches the programmer’s 
intention. As a follow-up, Kobayashi refined their type-based analysis by introducing a new notion of time regions [6], which 
can express how often an action can perform in a region of time. Their type system is powerful and can deal with concurrent 
access to a resource. However, the type system is too complex to use in practice for detecting resource bugs or energy leaks.

Kang et al. [7] presented a path sensitive type system for resource usage verification. They introduced typing rules 
for conditions in branches to determine the boolean value of condition as possible. In contrast, our analysis just union 
branches simply, thus is approximated. For example, if (f != null) then f.close() is correct for their type system, but is considered 
problematic in our analysis. Nevertheless, we can improve our analysis to handle some branches with the consistent checking 
in [22]. Our price is very low, while their price is that they have to put lots of information into types.

Marriott et al. [5] specified the resource usage policy as an automaton and the program as a context-free grammar, and 
then checked whether the language of the grammar is contained in the automaton. This is very similar to our analysis. But 
our approach can analyse several resources at the same time while their analysis does one resource at a time. Besides, they 
did not consider the open-but-not-used issue.

Torlak and Chandra [22] presented an effective data analysis to detect resource leaks. Their analysis is very close to our 
analysis, but our analysis can detect not only resource leaks, but also other resource bugs and energy leaks.

Fink et al. [23] proposed an effective typestate verification in the presence of aliasing to check correct API usage for 
various Java standard libraries. Their verification tracks a must-alias set, a may-alias set and a must-not-alias set meanwhile, 
thus it can handle aliasing very well. In contrast, our approach considers just one must or may alias set. Although less 
precise, ours incurs lower cost and is simpler to use for detecting resource bugs. Moreover, their verification did not ensure 
that a close API should be called for a resource eventually nor that a use API should be called for an opened resource.

Besides, there are some other works that analyse or verify the bound usage or size property of resources [24–28], while 
our analysis concerns about the correct usage of resource (e.g., to avoid energy leaks).

Energy bugs. There are many solutions proposed to detect energy bugs for applications. Most of them rely on energy 
profilers to record resource usage and relevant events or codes. Although they can identify some energy leaks and energy 
hots, they may not find the root causes for the bugs. Interesting readers can refer to [29] for more detail. Here we discuss 
several latest solutions that adopt program analysis, and consider the root causes of energy leaks.

Pathak et al. [17] proposed a data flow analysis to check Wakelock API (i.e., on and off ) to find no sleep bugs. Guo et 
al. [15] built a function call graph and then checked whether require and release actions are matched, which is extended by 
Wu et al. [18,30] to an inter-procedural and callback-aware one. The resource protocols considered by these methods are 
simper than our analysis, with only open and close states.

Zhang et al. [8] presented a dynamic taint-tracking to detect energy leaks resulting from unnecessary network com-
munication. Liu et al. [16] used Java Path Finder not only to monitor sensor and wakelock operations to detect missing 
deactivation of sensors and wakelocks, but also tracked the utilisation of sensory data. Compared to our analysis, these 
methods considered partial usages of network, sensors and wakelocks. Wu et al. [19] defined two precise patterns of run-
time energy-drain behaviours (i.e., lifetime containment and long-wait state) and presented a static analysis to detect these 
two patterns. The first pattern indeed is a require-but-not-released behaviours and thus can be encoded by our protocols, 
while the second one concerns the lifecycle and cannot be encoded by our protocols.

9. Conclusion

We have proposed a state-taint analysis, guided by user-specified resource usage protocols, for easy detection of resource 
usage bugs. The analysis is general as it can work with different customised resource usage protocols. As an application, 
we have shown the proposed state-taint analysis can be readily extended to detect energy leaks for Android applications. 
To demonstrate the viability of the approach, we have implemented the analysis in a prototype tool and carried out some 
interesting experiments.

As for future work, we may consider the null pointer checking to reduce false positives. We can improve the protocols 
and/or the analysis to take into account the guards and the relations between resources. We can also improve the current 
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analysis by introducing partial orders on states to merge the data fact for same resource but different states, which may 
benefit the analysis for large applications.
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