
Model Learning Overview

Outline
1. Introduction
2. Target Automata Type
3. Approach
4. Tools
5. Application
6. Challenge And Discussion

1. Introduction

Ø What ‘s model learning ?

Ø Why learning model ?

Ø How to learn model ？

q!

q" q#

S

q$

Model Learning (Automata Learning)

Ø Model learning aims to construct black-box
state diagram models of software and hardware
systems by providing inputs and observing
outputs.

power off

standby

Why learning model ?

Ø To understand the behavior of a component
without having access to the code.

Ø Generate regression tests
Ø Complementary to model checking
Ø etc.

（We focus on state diagrams）
（We focus on black-box technique）

Model Checking
Ø Model Checker: given a mathematical model M and

specification ϕ, automatically checks whether such
specification holds for that model: M ╞ ϕ

Combining Model Learning

Ø Goal: to check a system satisfies a set of properties
ϕ!, … ,ϕ!

Ø Learn M using model learning
Ø Check whether M satisfies all ϕ"

Angluin-Style Exact Learning Framework

Learner Teacher

System Under Learn(SUL)
Membership queries

Equivalence queries

Make the conjecture

Yes

No +

Yes / No

Model Learning Overview

Outline
1. Introduction
2. Target Automata Type
3. Approach
4. Tools
5. Application
6. Challenge And Discussion

2. Target Automata Type

l Deterministic Finite Automata (DFAs)
l Nondeterministic Finite Automata (NFAs)
l Mealy/Moore Machine
l Register Automata (RAs)
l Büchi Automata (BAs)
l Nominal Automata
l Timed Automata
l Weighted Automata
l …

Examples of Different Automata Type

DFAs NFAs

Mealy machine

Model Learning Overview

Outline
1. Introduction
2. Target Automata Type
3. Approach
4. Tools
5. Application
6. Challenge And Discussion

Goal: Given an unknown regular language L over an
alphabet ∑, generating a DFA M that accepts L by queries.

DFA M is a tuple (𝑄; ∑; 𝐼; δ; 𝐹) where
• Q is a finite set of states
• ∑ is the set of alphabet
• I Í Q is the set of initial states
• δ: Q × ∑ → 𝑸 is the transition relation
• FÍ Q is the set of accepting states

Learning DFA

For a DFA M, we define 𝑥~#𝑦 iff δ(𝑞$,𝑥) = δ(𝑞$,𝑦)
• The relation ~# is an equivalence relation.
• Some states are irrelevant for the accepted language.
• L(M) is the union of

For a language L, we define a relation 𝑥~%𝑦 such that for
each 𝑣 ∈ ∑∗, 𝑥𝑣 ∈ 𝐿 ↔ 𝑦𝑣 ∈ 𝐿
• The relation ~% is an equivalence relation.
• Some equivalence classes are irrelevant for L.
• L is the union of

Right Congruence for DFA

Right Congruence for RE

The following statements are equivalent:
• L is a regular language on ∑
• there exists a right congruence relation over ∑∗ such

that it has finitely many equivalent class, and L can be
expressed as a union of some of the equivalences
• ~% has finitely many equivalent classes
More over, for regular language, ∑∗/~% equals the
number of states of the smallest DFA recognizing L.

Example
Ø the language consisting of binary representations of

numbers that can be divided by 3 is regular.

Myhill-Nerode Theorem

For a given target (minimal) DFA M, we have :
• Access string: M[x] := δ(𝑞$,𝑥)
• we use the access string x to access the state M[x]
• in general, many access strings access the same state
• Distinguishing string: if xv ∉ L and yv∈L or vice versa
• two access strings x, y access different states if such v

exists

Access String

• We maintain an observation table: 𝑇: 𝑆 ∪ 𝑆∑ → {ꓔ, ꓝ}'
where S is prefix closed
• 𝑇 is closed and consistent
• closed: for 𝑒𝑣𝑒𝑟𝑦 𝑤 ∈ 𝑆∑, 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑤(∈ 𝑆,
𝑟𝑜𝑤 𝑤 = 𝑟𝑜𝑤(𝑤().

• consistent: if 𝑤!, 𝑤) ∈ 𝑆, 𝑟𝑜𝑤 𝑤! = 𝑟𝑜𝑤 𝑤) ,
𝑡ℎ𝑎𝑡 𝑟𝑜𝑤 𝑤! · ∑∗ = 𝑟𝑜𝑤(𝑤) · ∑∗).

Approximation by Observation Table

𝑶𝑻𝟏 𝜺
𝜺 ꓔ

0 ꓝ

1 ꓝ

Access string

Distinguishing string

𝑆∑

𝐸

𝑆 ꓔ: s · e ∈ L
ꓝ : s · e ∉ L

Angluin ‘s L* Algorithm

Suppose the unknown regular set U is set of all strings over
{0,1} with an even number of 0’s and an even number of 1’s.

Example

𝑶𝑻𝟏 𝜺
𝜺 ꓔ

0 ꓝ

1 ꓝ

𝑶𝑻" 𝜺
𝜺 ꓔ

0 ꓝ

1 ꓝ

00 ꓔ

01 ꓝ

Initial observation table,
S = E = {𝜺}

Augmented observation table,
S = {𝜺, 0}
E = {𝜺}

The observation table
is consistent, but not
closed, since row(0) is
distinct from row(𝜺)

Suppose the unknown regular set U is set of all strings over
{0,1} with an even number of 0’s and an even number of 1’s.

Example

𝑶𝑻" 𝜺
𝜺 ꓔ

0 ꓝ

1 ꓝ

00 ꓔ

01 ꓝ

Augmented observation table,
S = {𝜺, 0}
E = {𝜺}

The observation table is
consistent and closed,
so L* make a conjecture
of the acceptor 𝑀!

δ 0 1

𝑞0 𝑞1 𝑞1
𝑞1 𝑞0 𝑞1

𝑀!, the first conjecture of L*

𝑞0 𝑞1

0, 1

0

1

Teacher said: No
Counterexample：11
(it is in U but rejected by 𝑴𝟏)

Example

𝑶𝑻# 𝜺
𝜺 ꓔ

0 ꓝ

1 ꓝ

11 ꓔ

00 ꓔ

01 ꓝ

10 ꓝ

110 ꓝ

111 ꓝ

Observation table,
S = {𝜺, 0, 1, 11}
E = {𝜺}

Augmented observation table,
S = {𝜺, 0, 1, 11}
E = {𝜺, 0}

The observation table is
closed, but not consistent,
since row(0) = row(1)
but row(00) ≠ row(10)

𝑶𝑻& 𝜺 0

𝜺 ꓔ ꓝ

0 ꓝ ꓔ

1 ꓝ ꓝ

11 ꓔ ꓝ

00 ꓔ ꓝ

01 ꓝ ꓝ

10 ꓝ ꓝ

110 ꓝ ꓔ

111 ꓝ ꓝ

Example

Observation table,
S = {𝜺, 0, 1, 11}
E = {𝜺, 0}

𝑶𝑻& 𝜺 0

𝜺 ꓔ ꓝ

0 ꓝ ꓔ

1 ꓝ ꓝ

11 ꓔ ꓝ

00 ꓔ ꓝ

01 ꓝ ꓝ

10 ꓝ ꓝ

110 ꓝ ꓔ

111 ꓝ ꓝ

The observation table is
consistent and closed,
so L* make a conjecture
of the acceptor 𝑀"

δ 0 1

𝑞0 𝑞1 𝑞2

𝑞1 𝑞0 𝑞2

𝑞2 𝑞2 𝑞0

𝑀", the second conjecture of L*

𝑞0 𝑞1

0

0

Teacher said: No
Counterexample：011
(it is not in U but accepted by 𝑴𝟐)

𝑞2

1
1

1

0

Example

S = {𝜺, 0, 1, 11, 01, 011}, E = {𝜺, 0}

The observation table is
closed, but not consistent,
since row(1) = row(01)
but row(11) ≠ row(011)

𝑶𝑻(𝜺 0

𝜺 ꓔ ꓝ

0 ꓝ ꓔ

1 ꓝ ꓝ

11 ꓔ ꓝ

01 ꓝ ꓝ

011 ꓝ ꓔ

00 ꓔ ꓝ

10 ꓝ ꓝ

110 ꓝ ꓔ

111 ꓝ ꓝ

010 ꓝ ꓝ

0110 ꓔ ꓝ

0111 ꓝ ꓝ

𝑶𝑻) 𝜺 0 1

𝜺 ꓔ ꓝ ꓝ

0 ꓝ ꓔ ꓝ

1 ꓝ ꓝ ꓔ

11 ꓔ ꓝ ꓝ

01 ꓝ ꓝ ꓝ

011 ꓝ ꓔ ꓝ

00 ꓔ ꓝ ꓝ

10 ꓝ ꓝ ꓝ

110 ꓝ ꓔ ꓝ

111 ꓝ ꓝ ꓔ

010 ꓝ ꓝ ꓔ

0110 ꓔ ꓝ ꓝ

0111 ꓝ ꓝ ꓝ

S = {𝜺, 0, 1, 11, 01, 011}, E = {𝜺 , 0, 1}

Example
𝑶𝑻) 𝜺 0 1

𝜺 ꓔ ꓝ ꓝ

0 ꓝ ꓔ ꓝ

1 ꓝ ꓝ ꓔ

11 ꓔ ꓝ ꓝ

01 ꓝ ꓝ ꓝ

011 ꓝ ꓔ ꓝ

00 ꓔ ꓝ ꓝ

10 ꓝ ꓝ ꓝ

110 ꓝ ꓔ ꓝ

111 ꓝ ꓝ ꓔ

010 ꓝ ꓝ ꓔ

0110 ꓔ ꓝ ꓝ

0111 ꓝ ꓝ ꓝ

S = {𝜺, 0, 1, 11, 01, 011}, E = {𝜺 , 0, 1}

The observation table is
consistent and closed,
so L* make a conjecture
of the acceptor 𝑀#

δ 0 1

𝑞0 𝑞1 𝑞2

𝑞1 𝑞0 𝑞3

𝑞2 𝑞3 𝑞0
𝑞3 𝑞2 𝑞1

𝑀#, the second conjecture of L*
Teacher said: Yes

𝑞0

𝑞1

1

𝑞2
1

1

0

𝑞3

0

1

0 0

Algorithm Publication

Angluins et al.
1987

Angluin's L* Learning regular sets from queries and counterexamples

Rivest and Schapire
1993

R & S 's
Algorithm

Inference of Finite Automata Using Homing Sequences

Kearns and Vazirani
1994

K & V 's
Algorithm

An introduction to computational learning theory

Parekh et al.
1997 ID and IID A polynomial time incremental algorithm for regular

grammar inference
Denis et al.
2001

DeLeTe2 Learning regular languages using RFSAs

Bongard et al.
2005

Estimation-
Exploration

Active Coevolutionary Learning of Deterministic Finite
Automata

Isberner et al.
2014

The TTT
Algorithm

The TTT Algorithm: A Redundancy-Free Approach to
Active Automata Learning

Volpato et al.
2015

LearnLTS Approximate Active Learning of Nondeterministic Input
Output Transition Systems

Deterministic Finite Automata (DFAs)

Algorithm Publication

Georgios et al.
2016

MooreMI
algorithm

Learning Moore Machines from Input-Output Traces

Moerman et al.
2017

Product L*
Algorithm

Learning Product Automata

Moore Machine

Mealy Machine

Algorithm Publication

Shahbaz et al.
2009

LM* and LM+
Algorithm

Inferring Mealy Machines

Aarts et al.
2010

IOA Algorithm Learning I/O Automata

Steffen et al.
2011

DHC and LM*
Algorithm

Introduction to Active Automata Learning from a
Practical Perspective

Algorithm Publication

Oncina et al.
1992

RPNI
Algorithm

Inferring Regular Languages in Polynomial Updated
Time

Dupont et al.
1996

RPNI2
Algorithm

Incremental regular inference

Nondeterministic Finite Automata (NFA)

Register Automata (RA)

Algorithm Publication

Howar et al.
2012

RAL Algorithm Inferring Canonical Register Automata

Cassel et al.
2014

SL* Algorithm Active learning for extended finite state machines

Aarts et al.
2015

A Mapper-Based
Algorithm

Learning Register Automata with Fresh Value
Generation

Algorithm Publication

Maler and Pnueli
1995

Lω Algorithm On the learnability of infinitary regular sets

Farzan et al.
2008

L* based for Büchi
automaton

Extending Automated Compositional Verification to
the Full Class of Omega-Regular Languages

Angluin et al.
2014

FDFAs-based
Algorithm

Learning Regular Omega Languages

Li et al.
2017

A Tree-based
Algorithm for
Büchi automaton

A Novel Learning Algorithm for Büchi Automata
Based on Family of DFAs and Classification Trees

Büchi Automata

Other Automata Learning apporach

Ø Event-Recording Automata
• Grinchtein et al. 2008. Learning of Event-Recording Automata.

Ø deterministic finite cover automaton (DFCA)
• Ipate et al. 2012. Learning finite cover automata from queries.

Ø Timed Automata
• Maier et al. 2014. Online passive learning of timed automata for cyber-physical

production systems.

Ø Weighted Automata
• Balle et al. 2015. Learning Weighted Automata.

Ø Hybrid Automata
• Medhat et al. 2015. A framework for mining hybrid automata from input/output traces.

Ø Visibly Pushdown Automata
• Isberner et al. 2015. Foundations of Active Automata Learning: An Algorithmic

Perspective.

Ø Symbolic Automata
• Drews et al. 2017. Learning Symbolic Automata.

Ø Nominal Automata
• Moerman et al. 2017. Learning nominal automata.

Model Learning Overview

Outline
1. Introduction
2. Target Automata Type
3. Approach
4. Tools
5. Application
6. Challenge And Discussion

4. Tools
Open Source

l LearnLib https://learnlib.de/
l Libalf http://libalf.informatik.rwth-aachen.de/
l Tomte http://tomte.cs.ru.nl/
l ROLL http://iscasmc.ios.ac.cn/roll/doku.php
l Symbolicautomata https://github.com/lorisdanto/symbolicautomata

Not found
l Next Generation LearnLib (NGLL)
l RALT
l RALib

https://learnlib.de/
http://libalf.informatik.rwth-aachen.de/
http://tomte.cs.ru.nl/
http://iscasmc.ios.ac.cn/roll/doku.php
https://github.com/lorisdanto/symbolicautomata

LearnLib

Ø LearnLib is a free and open source Java framework for automata learning.

Algorithm Target model
Active learning algorithms
ADT Mealy
DHC Mealy
Discrimination Tree DFA、Mealy、VPDA
Kearns & Vazirani DFA、Mealy
L* DFA、Mealy
NL* NFA
TTT DFA、Mealy、VPDA
Passive learning algorithms
RPNI DFA、Mealy
RPNI – EDSM DFA
RPNI – MDL DFA

Libalf

Algorithm Passive Active Target model
Angluin's L* √ DFA

L* (adding counter-examples to columns) √ DFA

Kearns / Vazirani √ DFA

Rivest / Schapire √ DFA
NL* √ NFA

Regular positive negative inference (RPNI) √ DFA

DeLeTe2 √ NFA

Biermann & Feldman's algorithm √ NFA

Biermann & Feldman's algorithm (using
SAT-solving) √ DFA

Tomte
Ø This tool can only learn a restricted class of extended finite state

machines (EFSM), i.e. Register Automata.

ØA Library of learning algorithms for ω-regular languages.
Ø It consists of two kinds of ω-regular learning algorithms:

the learning algorithm for FDFAs
the learning algorithm for Büchi automata

ØA symbolic automata library
ØThis efficient automata library allows you to represent large (or infinite)

alphabets succinctly.

ROLL

Symbolicautomata

Model Learning Overview

Outline
1. Introduction
2. Target Automata Type
3. Approach
4. Tools
5. Application
6. Challenge And Discussion

Related work Approach Tool Application

Chalupar et al. 2014 L* for Mealy LearnLib SmartCard

Fiter et al. 2014 L* for Mealy Tomte TCP Network Protocol

Tijssen et al. 2014 L* for Mealy LearnLib SSH implementations

Shahbaz et al. 2014 LM+ RALT testing black-box system

Xiao et al. 2014 L* (Lazy Alphabet) TzuYu Learn Stateful Typestates

Ruiter et al. 2015 L* LearnLib TLS Protocol state fuzzing

Smeenk et al. 2015 Lee & Yannakakis' LearnLib Embedded Control Software

Ipate et al. 2015 Ll Testing

Meller et al. 2015 L* Model Checking of UML Systems

He et al. 2015 L* based (MTBDD) Verification of XXX

Fiter et al. 2016 L* for Mealy LearnLib TCP Implementations

Schuts et al. 2016 L* , TTT LearnLib Legacy Software

Chen et al. 2017 various L* libalf PAC verification & model synthesis

Weiss et al. 2017 L* RNN

Aichernig et al. 2017 improved L* Mealy LearnLib Mutation Testing

Tappler et al. 2017 TTT LearnLib Testing IoT Communication

Model checking & Conformance testing

Learner Teacher

Membership queriesMake the
conjecture M

Yes / No

Conformance testing

Model checker
M ╞ ϕ ?

Counterexample

Counterexample

Yes

No
Cannot be
reproduced
on the SUL

Can be reproduced on the SUL

We have demonstrated a bug
in SUL and we stop learning

Approach to compare Legacy component and refactored
implementation.

Legacy Software

Gail et al. use Angluin’s L* algorithm to elicit an
automaton from any type of recurrent neural network,
using the network as the teacher.

Extracting Automata from RNN

Termination problem: we require that a terminating tool
returns answers that are correct, but we donot necessarily
require an answer.
l Trivial to build a tool: returns unknown simply
l Goal: keeping the unknown answers as low as possible
l Turing49: classical approach for proving termination
• Termination argument search
• Termination argument checking (easy)

Program Termination

Büchi automaton with rank Certificate (PLDI’18)

Model Learning Overview

Outline
1. Introduction
2. Target Automata Type
3. Approach
4. Tools
5. Application
6. Challenge And Discussion

Challenge And Discussion

Ø Equivalence query
Ø Beyond DFAs/Mealy machines
Ø Quality of models
Ø Predicates and operations on data
Ø Opening the box

