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ABSTRACT

Rust libraries are ubiquitous in Rust-based software development.
Guaranteeing their correctness and reliability requires thorough
analysis and testing. Fuzzing is a popular bug-finding solution,
yet it requires writing fuzz targets for libraries. Recently, some
automatic fuzz target generation methods have been proposed.
However, two challenges remain: (1) how to generate diverse API
sequences that prioritize unsafe code and interactions to reveal bugs
in Rust libraries; (2) how to provide support for the generic APIs
and verify both syntactic and semantic validity of the fuzz targets to
enable more comprehensive testing of Rust libraries. In this paper,
we propose RPG, an automatic fuzz target synthesis technique
to support Rust library fuzzing. RPG uses a pool-based search to
generate diverse and unsafe API sequences, and synthesizes fuzz
targets with generic support and validity check. The experimental
results demonstrate that RPG enhances both the quality of the
generated fuzz targets and the bug-finding ability through pool-
based generation and generic support, substantially outperforming
the state-of-the-art. Moreover, RPG has discovered 25 previously
unknown bugs from 50 well-known Rust libraries available on
Crates.io.
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1 INTRODUCTION

Rust is a promising programming language that aims to provide
memory safety without sacrificing performance [27, 41]. Neverthe-
less, security bugs may still be present in Rust software due to logic
errors, unsafe code blocks, or external dependencies [19, 26, 34]. An
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interesting phenomenon of these bugs is that most of their host pro-
grams are libraries [24]. Note that the Rust libraries are commonly
used in software development to write code that is safe, efficient,
and expressive across different applications and platforms. There-
fore, assuring the safety and robustness of the Rust libraries remains
paramount because of their expanding and diverse ecosystem.

Existing studies on Rustwidely utilize static analysis (e.g., Rudra [4],
SafeDrop [8], MirChecker [31]) or dynamic analysis (e.g., Miri [35]
and UnsafeFencer [22]) to detect bugs. Note that a library cannot
be executed as a standalone program; instead, it is invoked through
another application, which must provide the correct calling context
to invoke the library functions. This makes it difficult to directly
apply existing static and dynamic analysis techniques due to the
lack of calling contexts.

Fuzzing is a dynamic testing technique that involves passing
random or semi-random inputs to a software system and observing
its behavior for crashes or anomalies [18, 47–50]. To test a library, a
fuzzer requires fuzz targets that can execute certain codes within a
library [3, 29, 43, 52]. Inputs can then be passed into this target for
further testing. Unfortunately, writing fuzz targets remains a pri-
marily manual exercise, a major hindrance to the widespread adop-
tion of library fuzzing. Several recent studies, including RULF [24],
RustyUnit [44] and SyRust [42], propose to automatically synthe-
size a fuzz/test target for testing to detect bugs. However, existing
studies often prioritize API or code coverage, neglecting the detec-
tion of bugs caused by suspicious usage of library functions, such as
invoking functions with unsafe code or involvingmultiple functions
that manipulate the same data. Additionally, these studies either
lack proper support for generics or only offer limited support, lead-
ing to inadequate testing capabilities. The main challenges in this
context are as follows: (1) how to generate diverse API sequences
that prioritize unsafe code and interactions to reveal more bugs in
Rust libraries; (2) how to provide support for the generic functions
and synthesize valid fuzz targets, conforming to the strong type
system [2, 14, 33, 46] and the ownership-based memory manage-
ment scheme [25, 28, 32, 38], to enable more comprehensive testing
of Rust libraries.

To address the aforementioned problems, we present RPG1, an
automatic fuzz target synthesis technique to support Rust library
fuzzing. RPG consists of two key contributions: (1) a novel pool-
based method to generate diverse API sequences that prioritize
unsafe code blocks and interactions; (2) fuzz target synthesis with
1The acronym of Rust Pool-based fuzz target Generation.
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generic support and validity checks. Specifically, RPG primarily
leverages static analysis to obtain rich type information and meta-
data available in Rust libraries and constructs an API dependency
graph. It then generates diverse API sequences by prioritizing
unsafe code and dependencies through a pool-based generation.
To support calling generic functions, RPG performs type infer-
ence among API dependencies with the support of a parameter
provider containing library-defined data types and commonly used
data structure types. RPG performs additional checks (i.e., a move-
borrow check and a generic declaration check) on the API sequences
to ensure syntactic and semantic validity, that is, the sequences
do not contain compiler errors related to mutability, moving, bor-
rowing, and generic declaration. Lastly, the API sequence set is
synthesized into the corresponding fuzz targets that can be utilized
by a popular fuzzer (e.g., AFL++ [15] in our experiments) to detect
bugs.

We have implemented a prototype of RPG and performed a
thorough evaluation on 50 popular Rust libraries from crates.io. The
obtained results demonstrate that RPG is able to generate valid fuzz
targets, achieving an API coverage rate of 71.8% and a dependency
coverage rate of 11.1%. By utilizing fuzz targets generated by RPG
for further fuzzing, RPG is able to detect more bugs compared to the
state-of-the-art approaches (i.e., RULF [24], Miri [35] and Rudra [4]).
These bugs include 25 previously unknown bugs, confirmed by the
library maintainers.

Our main contributions are summarized as follows:
• We propose a novel pool-based method to generate diverse API
sequences that expose bugs in Rust libraries. By prioritizing both
unsafe APIs and API dependencies, we construct an API pool
that enables us to generate API sequences capable of uncovering
more bugs.
• We provide generic support and validity checks to synthesize
more fuzz targets. We propose a local type inference approach
that considers API dependencies and utilizes a preset parameter
provider. In addition, we incorporate a move-borrow check and a
generic declaration check to ensure the validity of API sequences.
This comprehensive approach enables us to generate more fuzz
targets for thorough testing of Rust libraries.
• We implement and evaluate RPG on 50 popular Rust libraries. Our
experimental results show that RPG enhances both the quality
of the generated fuzz targets and the bug-finding ability through
pool-based generation and generic support, substantially outper-
forming the state-of-the-art.

2 BACKGROUND AND MOTIVATION

2.1 The Rust Programming Language

Rust is a systems programming language designed for memory
safety and concurrency. With a strongly-typed and compiled nature,
Rust’s strict type system and ownership system enforce rules to
ensure memory safety.

In Rust, each value (e.g., a variable, string, or array) has a unique
owner (the variable binding), which determines the lifetime of the
value. Ownership is moved between owners, making the value no
longer accessible from its original binding [28]. Rust also uses a bor-
rowing mechanism [25, 38], which allows values to be temporarily
borrowed without invalidating the ownership. References are either

mutable or immutable, and the key rule is “no mutable aliasing".
As long as a value is read-only, multiple references are safe. When
a value is writable, only one mutable reference is allowed. These
restrictive rules for moving and borrowing ensure memory safety.
Rust does not require reference counting or garbage collection since
resources’ lifetimes are bounded by the objects’ lifetimes. The Rust
compiler deallocates resources automatically when their owners go
out of scope. All of this is done at compile time, thus introducing
no runtime overhead.

Although Rust’s ownership rules and lifetime system ensure the
safety of code, developers need to use unsafe Rust code to achieve
higher performance or perform low-level operations. Unsafe code
is marked using the “unsafe" keyword, which can violate Rust’s
safety guarantees and result in undefined behavior [39, 51]. By
testing unsafe code first, potential security vulnerabilities can be
discovered earlier, helping to improve the security and quality of
Rust libraries.

2.2 Motivating Example

We give a motivating example to illustrate the challenge of testing
and finding bugs in the Rust library. Specifically, we illustrate our
observation which motivates the design of RPG.

Listing 1 shows a variant example from Rust std library [39],
containing an implementation of the Queue data structure. This
library defines a generic struct called Queue that can store values
of any type T. It has a field called qdata that is a vector of type T. It
also implements some functions (a.k.a, APIs) for the Queue struct,
such as new(), push(), pop(), peek().
• new(): This function creates a new Queue instance with an empty
vector as qdata.
• push(): It takes a mutable reference to self and an item of type
T as parameters. It adds the item to the end of the qdata vector
using the function push() of Vec.
• pop(): This function takes an immutable reference to self as
a parameter and calls the function remove() on the vector to
remove the first i elements, by first converting a reference to the
vector into a raw mutable pointer.
• peek(): It takes a reference to self as a parameter. It uses raw
pointers and unsafe code to get a mutable reference to the first
element of the qdata vector and return it as Some(&mut *raw),
if the qdata vector is not empty. Otherwise, it returns None.

This data structure uses unsafe code to manipulate the qdata vector
without checking its bounds or ownership. This can lead to memory
errors or undefined behavior if used incorrectly.

Current static analysis tools such as Rudra [4], SafeDrop [8], and
MirChecker [31], as well as dynamic analysis tools like Miri [35],
were unable to detect any defects in this particular data structure.
This is due to the lack of a calling context and the absence of defects
within a single function. Several existing Rust library testing tech-
niques, such as SyRust [42] and RULF [24], automatically synthesize
test/fuzz targets for dynamic testing to detect bugs. However, they
are unable to effectively produce sequences of API calls that trigger
vulnerabilities. On the one hand, they mainly focus on the coverage
of a single API instead of API sequences, thus cannot detect any
bugs that arise from interactions within a complex API sequence.
On the other hand, the Queue could store values of any type T, yet
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Listing 1: Unsafe Queue

1 pub struct Queue<T> {
2 qdata: Vec<T>,
3 }
4 impl<T> Queue<T> where T:std::fmt::Display, T:Clone {
5 // Create a Queue
6 pub fn new() -> Self {
7 Queue { qdata: Vec::new() }
8 }
9 // Add item to the Queue
10 pub fn push(&mut self, item: T) {
11 self.qdata.push(item);
12 }
13 // pop the top i item from the Queue
14 // And free the pointer
15 pub fn pop(&self, usize i) {
16 let l = self.qdata.len();
17 if l > i {
18 for n in 0 .. i + 1 {
19 let raw = &self.qdata as *const Vec<T> as *mut

Vec<T>;

20 unsafe { (*raw).remove(0); }

21 }
22 } else { None }
23 }
24 // Get item from Queue and get pointer
25 pub fn peek(&self) -> Option<&mut T> {
26 if !self.qdata.is_empty() {
27 let raw = &self.qdata[0] as *const T as *mut T;

28 unsafe { Some(&mut *raw) }

29 } else { None }
30 }
31 }

Listing 2: An API Sequence that Triggers the Use-After-Free

1 fn test() { /* API Seq: Queue::new() // T -> String
2 Queue::push()
3 Queue::peek()
4 Queue::pop()
5 Use() */
6 let mut q: Queue<String> = Queue::new();
7 q.push(String::from("hello"));
8 let e = q.peek().unwrap();
9 q.pop(0);
10 println!("{}", *e); }// <-use-after-free

these techniques like RULF do not support generating API calls
involving generic types.

However, a use-after-free vulnerability exists in the library be-
cause the function pop() releases the first element of the Queue,
while the function peek() retains a pointer to this element. This
can lead to potential use-after-free memory safety issues if the
pointer is subsequently used. Listing 2 shows an API sequence that
triggers the vulnerability. The functions new() and push() are re-
quired prerequisites for the subsequent callings. peek() retrieves a
pointer to the first element of the Queue, which is then removed
and freed by pop(). Further use of the pointer obtained by peek()
can then result in a use-after-free vulnerability2.

2Due to the encapsulation of unsafe code blocks within the safe function, these unsafe
code blocks in Queue are not visible to the user, which indicates that the library is
responsible for this vulnerability.

2.3 Design Inspiration

The motivation behind this paper is to design a library fuzzing
method that can both detect bugs resulting from complex API
sequence interactions and accommodate strict Rust features, like
generic types. Our approach can easily generate an API sequence,
such as the one shown in Listing 2, and then synthesize it into a
valid fuzz target, enabling us to easily detect the use-after-free bug.

Compared to the existing works, we have made advances and
improvement in the following three ways:

(1) Unsafe APIs and Dependencies. Prioritizing the testing
of unsafe code blocks can expose hidden vulnerabilities in Rust
libraries more effectively as such code often exceeds Rust’s safety
limitations and can result in potential security risks. Therefore, it
is necessary to pay more attention to APIs containing unsafe code
blocks (referred to as unsafe APIs), such as pop() and peek() in
listing 1. Moreover, Existing approaches mainly focus on API cover-
age, and thus cannot detect bugs that arise from interactions within
a complex API sequence. In this paper, we will prioritize testing the
unsafe API and the API interactions. Firstly, we construct a labeled
version of the API dependency graph to capture the presence of un-
safe code and the interactions between APIs. Secondly, we attempt
to initiate the generation process using unsafe APIs, according to
the dependency graph. Finally, we give priority to unsafe APIs or
APIs with more dependencies if there are multiple suitable options.

(2) Pool-based Generation and Validity Checks. To ensure
the comprehensiveness and accuracy of testing, it is necessary to
pay attention to the generation of fuzz/test targets, especially to
consider the generation of long sequences to cover all possible
scenarios. In this paper, we propose a novel pool-based sequence
generation method and several sequence checks to effectively solve
the above problems. Firstly, we construct an API pool, where an API
is consumed from the API pool if it is generated, and the number of
(occurrences of) each API depends on the presence of unsafe code
and its number of potential interactions. Secondly, we introduce
a heuristic algorithm to select APIs from the pool, and the greater
the number of API, the higher the priority to be selected. If the
proportion of the consumed APIs exceeds an exploration thresh-
old, the pool will be reset to facilitate the generation of longer
API sequences. Finally, we perform additional checks on the API
sequences to ensure syntactic and semantic validity.

(3) Generic Support. Generics parameterize data structures
and functions to enable different types can reuse the same code,
which is widely employed in library and framework development
in Rust [12, 53]. However, existing automated methods for gen-
erating fuzz targets are ineffective in calling generic functions.
Handling generics is challenging as it requires inferring various
suitable concrete types for generic type parameters and ensuring
their consistency in an API sequence with the least cost.

We propose a scheduling method for calling generic functions.
Specifically, during sequence generation, we employ type class con-
straints to limit the input and output types of each generic function.
We then utilize a type inference engine that incorporates a parame-
ter provider to infer the concrete types of generic parameters and
transmit them to other functions. Throughout the sequence, the
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Figure 1: Workflow of Our Approach RPG

type of the generic parameter remains consistent. Our approach en-
hances polymorphic handling and generates more comprehensive
tests.

3 APPROACH

3.1 Overall Framework

Our RPG adopts a novel pool-based fuzz target generation approach
for Rust libraries. As illustrated in Figure 1, the main workflow of
RPG consists of the following steps:

• Rust Crate Analysis: RPG utilizes static analysis to extract infor-
mation on functions and data types from Rust libraries (a.k.a.
crates), based on which an API dependency graph and a parame-
ter provider are constructed for a given library. The graph records
the information of functions (i.e., APIs) that can be invoked in the
library, which is then used to guide the API sequence generation;
and the provider contains the data types defined in the library as
well as a number of commonly used data structure types, which
is then used to provide type candidates for generic functions.
• API Sequence Generation: this step is crucial in RPG, as an API
sequence directly reflects the quality of its corresponding fuzz
target. RPG starts with a sequence set, created with consideration
of unsafe APIs, and generates API sequences based on the API
dependency graph as well as an API pool, which consists of the
currently available APIs, which may have multiple occurrences.
In particular, when working with generic functions, RPG takes
the data types from the provider and maintains the consistency
of generic type parameters to ensure validity.
• API Sequence Optimization: To ensure the syntactic and semantic
validity of the fuzz targets, RPG employs a move-borrow check
and a generic declaration check to remove invalid API sequences.
RPG also performs sequence filtering to obtain a minimal set
of sequences that cover the most APIs and their dependencies.
Finally, the remaining API sequences are synthesized individually,
yielding fuzz targets.

3.2 Rust Crate Analysis

This section presents our analysis on Rust libraries, which is com-
prised of three components, namely, Information Collection, De-
pendency Analysis, and Reachability Filter.

Information Collection. RPG leverages rustdoc [11] to extract
relevant information from Rust libraries. Specifically, we gather
a comprehensive list of the public APIs present in the library, in-
cluding their respective names, inputs and outputs. Moreover, we
conduct static analysis to detect any unsafe code in each API. Addi-
tionally, to facilitate the invocation of generic APIs, we also collect
data structure types defined in Rust libraries, since these types are
more likely to be compatible with the generic functions in their
corresponding library. Coupled with a number of commonly used
data structure types, we construct a parameter provider, which is
then used to generate type candidates for generic functions.

Definition 3.1 (Dependency). Given two functions 𝑓 and 𝑔, if the
return value of 𝑓 can be used as the 𝑖-th non-basic parameter of 𝑔,
then there is a dependency from 𝑓 to 𝑔 with respective to the 𝑖-th
parameter.

Dependency Analysis. We characterize the interactions be-
tween functions as their dependency relationship, which is defined
in Definition 3.1. However, we determine the dependency relation-
ships via the input and output types of APIs conservatively. If the
output type of an API 𝑓 is compatible with one of the input types of
another API 𝑔, then we label a dependency between 𝑓 and 𝑔. Table 1
shows all the compatible cases (referred to as dependency kinds) be-
tween the two involved types of two APIs, which are grouped into
three levels, namely, Basic Dependency, Composite Dependency
and Wrapper Dependency. Basic Dependency signifies a normal
dependency or a generic dependency without any reference or
wrapping operations (e.g., the return value of 𝑓 may be directly
used as an input for 𝑔), and it is essential to Composite Dependency
and Wrapper Dependency. Note that, only non-basic types are con-
sidered for dependency analysis, since values of basic types (e.g.,
Int, Boolean) can be automatically generated during fuzz testing.
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Table 1: Dependency Kinds Grouped by Type Compatibility

Dependency Level Dependency Kind Pattern

Basic Dependency
Normal Dependency 𝐶 ⇒ 𝐶

Generic Dependency 𝐶 ⇒ 𝑇 or 𝑇 ⇒ 𝑇 or 𝑇 ⇒ 𝐶

Composite Dependency
Immutable Ref 𝐴⇒ &𝐴
Mutable Ref 𝐴⇒ &𝑚𝑢𝑡𝐴

Constant Raw Pointer 𝐴⇒ const ∗ A
Mutable Raw Pointer 𝐴⇒ mut ∗ A

Deref &𝐴⇒ 𝐴

Wrapper Dependency
Unwrap Result Result<A,E>⇒ 𝐴

Unwrap Option Option<A>⇒ 𝐴

To Option 𝐴⇒ Option<A>
To Box 𝐴⇒ Box<A>

C: (Non-Basic) Concrete Type; E: Error Type; T: Generic Type; A: Any Type

On the other hand, the other two levels denote a dependency that
needs either a reference operation or a wrapping operation, and
may be applied multiple times (e.g., Option<A>⇒ 𝐴⇒ &𝑚𝑢𝑡𝐴).
Specifically, for generic function calls, we consider a type variable
is compatible with another type if their trait bounds are locally
satisfiable, without checking the global consistency of generic type
parameters, which will be checked during API sequence genera-
tion. Based on these dependencies, an API dependency graph is
constructed.

Considering the motivating example in Listing 1, the dependency
graph for Queue library is shown in Figure 2, where each node
represents an API, including its non-basic input types, output types,
name, trait bounds for generic types, and whether unsafe code is
present (annotated in red). Meanwhile, each edge captures the type
of dependency between two APIs, as well as the dependency kind.
Any candidates from the parameter provider for generic types are
also highlighted in red boxes.

Reachability Filter. If some parameters of an API could not
be provided, then this API cannot be invoked. Consequently, such
APIs are not generated during our API sequence generation. Thus,
there is no need to traverse those APIs. Filtering them out can
significantly enhance the efficiency of the generation process. To
achieve this, we introduce the following definitions and employ
the classic reachability analysis on graphs to filter the unreachable
APIs out.

Definition 3.2 (Starting API). An API is said to be a starting API
if all its inputs are of basic types.

Definition 3.3 (Reachable API). An API is said to be reachable if
(𝑖) it is a starting one, or (𝑖𝑖) every its required non-basic parameter
has at least one reachable dependency.

3.3 API Sequence Generation

Our API sequence generation method involves two steps: Sequence
Initialization and Pool-based Generation. Prior to presenting our
generation, we introduce the following definitions.

Definition 3.4 (Calling Sequence). A calling sequence of an API
represents the sequence of APIs that are required to provide all the

Figure 2: Dependency Graph for Queue with Generic Support

non-basic parameters for the API to be called successfully. An API
may have multiple calling sequences.

Definition 3.5 (API Depth). The depth of an API is defined as the
minimum length of its calling sequences.

Definition 3.6 (API Pool). An API pool is a collection of APIs,
with each API potentially having multiple occurrences. Whenever
an API is successfully called, it is consumed from the API pool, that
is, its quantity is decreased by one.

Sequence Initialization. Our pool-based sequence generation
is optimized based on the breadth-first search (BFS). However, the
breadth-first search always starts with the starting APIs, so some
unsafe APIs may not be generated. To address this issue, RPG in-
corporates the original starting APIs with the expanded calling
sequences of the unsafe APIs to form the starting set for the BFS
search. This enhances both the breadth of the traversal search and
the importance of the unsafe APIs. The generation of calling se-
quences for an (unsafe) API is primarily based on the backtracking
approach on the dependency graph. The process involves contin-
uously identifying APIs that are capable of satisfying the input
parameters of the target API and adding them to the calling se-
quence until all non-basic parameters in the calling sequence can
be satisfied. Once this is achieved, the calling sequence is considered
to be generated successfully.

Pool-based Generation. When invoking an API in a sequence,
each of its input parameters is assessed according to three criteria
to determine if the API can be invoked. Firstly, if the parameter is
of a basic data type, it is provided through a fuzzing mechanism.
Secondly, the parameter is examined against the return values of
the previously-called APIs to check whether a callable dependency
exists between them and the target API. Finally, for generic type
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Algorithm 1: Pool-based Sequence Generation
Input: Dependency graph 𝐺 , API pool 𝑃𝐴𝑃𝐼 , starting

sequence set 𝑆𝐼𝑛𝑖𝑡
Output: Sequences set 𝑆𝑅𝑃𝐺

1 𝑆𝑅𝑃𝐺 ← 𝑆𝐼𝑛𝑖𝑡 ;
2 𝑆𝐷𝑒𝑝𝑡ℎ [0] ← 𝑆𝐼𝑛𝑖𝑡 ;
3 𝑑𝑒𝑝𝑡ℎ ← 0 ;
4 while true do
5 foreach 𝑠 in 𝑆𝐷𝑒𝑝𝑡ℎ [𝑑𝑒𝑝𝑡ℎ] do
6 foreach 𝑓 in 𝐺 do

7 if 𝑓 can be called by 𝑠 and 𝑓 ∈ 𝑃𝐴𝑃𝐼 then
8 𝑛𝑒𝑤_𝑠 ← 𝑠 .𝑐𝑎𝑙𝑙 (𝑓 ) ;
9 𝑃𝐴𝑃𝐼 .𝑐𝑜𝑛𝑠𝑢𝑚𝑒 (𝑓 ) ;

10 𝑆𝐷𝑒𝑝𝑡ℎ [𝑑𝑒𝑝𝑡ℎ + 1] .𝑝𝑢𝑠ℎ(𝑛𝑒𝑤_𝑠) ;

11 if 𝑃𝐴𝑃𝐼 .isExplorationSufficient(𝑑𝑒𝑝𝑡ℎ) then
12 𝑃𝐴𝑃𝐼 .𝑟𝑒𝑠𝑒𝑡 () ;
13 if 𝑆𝐷𝑒𝑝𝑡ℎ [𝑑𝑒𝑝𝑡ℎ + 1] .𝑖𝑠𝐸𝑚𝑝𝑡𝑦 () then
14 break ;
15 𝑆𝑅𝑃𝐺 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑆𝐷𝑒𝑝𝑡ℎ [𝑑𝑒𝑝𝑡ℎ + 1]) ;
16 𝑑𝑒𝑝𝑡ℎ ← 𝑑𝑒𝑝𝑡ℎ + 1 ;
17 return 𝑆𝑅𝑃𝐺 ;

parameters, a compatible data type is chosen from the parameter
provider to satisfy the call. If any of the above cases meets the input
parameter requirements, the parameter is deemed as satisfied. Once
all API parameters are satisfied, the API can be called3.

To maximize the number of APIs and their dependencies that
can be covered, RPG imposes limits on the number of each API to
be called. Intuitively, for APIs in a larger library (i.e. a larger API
dependency graph), they can be called more frequently. Moreover,
RPG prioritizes both the unsafe APIs and the API dependencies,
so that an API that is unsafe or with more potential dependencies
may be called more frequently. Based on these, we construct an API
pool, wherein the number of an API indicates the maximum time it
can be called. That is to say, the greater the API number, the more
frequently the API will be called. The original number of an API is
determined by the information of both the Rust library it belongs to
and the API itself, as shown in Formula (1). The first factor, the basic
call volume (BCV), is determined by the API dependency graph of
the Rust library, which is calculated using Formula (2), where 𝛼 and
𝛽 are constants, 𝑁 is the number of reachable APIs, and 𝑀 is the
number of API dependencies. The second factor, the function call
volume (FCV), depends on a coefficient and the basic call volume,
as shown in Formula (3). The coefficient 𝐼 is calculated based on
whether unsafe code or potential dependencies are present: (𝑖) 𝐼 is
initialized to 0; (𝑖𝑖) 𝐼 is increased by 1, if the API involves unsafe
operations; (𝑖𝑖𝑖) 𝐼 is increased by 𝑛, if 𝑛 parameters of the API are
of non-basic types; (𝑖𝑣) 𝐼 is increased by 2, if the return type of the
API is non-basic.

𝐶𝑉 = 𝐵𝐶𝑉 + 𝐹𝐶𝑉 (1)

3Beside the type checking, it should also pass the move-borrow checking, which will
be presented in Sec 3.4.

𝐵𝐶𝑉 = 1 + 𝛼 · tanh
(
𝑁𝑀

𝛽

)
(2)

𝐹𝐶𝑉 = 𝐼 · 𝐵𝐶𝑉 (3)

Algorithm 1 illustrates the workflow of the pool-based genera-
tion. The algorithm takes the dependency graph, the API pool, and
the starting sequence set as input, which are obtained beforehand.
The primary portion of the pool-based generation is highlighted
in lines 5-10, which examines whether there is an API that can be
called by the current sequence and whether the API exists in the
API pool, and if so, extends the sequence by consuming the corre-
sponding API from the API pool. After the sequence generation at
the current depth is complete, in order to explore the possibility
of generating longer/deeper sequences, RPG runs an exploration
sufficiency test. When the proportion of consumed APIs exceeds
the exploration threshold of the current depth (lines 11-12), RPG
resets the API pool as the original setting. The calculation of the
exploration threshold Φ is done through Formula (4), where 𝛾 is a
constant. If no new sequence is generated at the current depth, it
indicates that the API pool has been depleted or there is no API
that can be called, and thus the algorithm terminates (lines 13-14).

Φ = 𝑙𝑜𝑔𝛾 (𝑑𝑒𝑝𝑡ℎ + 1) (4)
Generic Support. To support calling generic functions, RPG

performs a lightweight type inference to infer the concrete types for
generic parameters locally. Specifically, RPG maintains a hash map
of generic signatures and concrete types to ensure the consistency
in an API sequence, and applies different processes for different
general dependencies given in Table 1 to update the hash map:

(1) Both types in a generic dependency are generic (i.e., 𝑇 ⇒ 𝑇 ).
RPG first examines whether both the generic types in the call have
already matched any data types. (𝑖) If both have been matched, RPG
then checks whether these two matched types are compatible. (𝑖𝑖)
If only one has a matched type, RPG checks whether the matched
type meets the trait bounds of the other generic type. (𝑖𝑖𝑖) If neither
generic type has a matched type, RPG selects a data type that meets
the trait bounds of both generic types from the parameter provider.
RPG prioritizes the data type that implements the most traits in
such situations. If any of the above conditions are met, the call is
considered successful.

(2) One type in a generic dependency is generic and the other is
concrete (i.e., 𝑇 ⇒ 𝐶 or 𝐶 ⇒ 𝑇 ). RPG first examines whether the
generic type have already matched any data type. (𝑖) If matched,
and the matched type is compatible with the concrete type, the
call is considered successful. (𝑖𝑖) If not matched, RPG then checks
whether the concrete type meets the trait bounds of the generic
type. If so, the call is also successful.

(3) If the above process fails, RPG will select a data type from
the parameter provider that meets all the involved trait bounds and
is compatible with all associated types.

Return Value Recall. To exploit memory-related vulnerabil-
ities, RPG attempts to use the values returned by the APIs in a
generated sequence, which is termed the return value recall. The
return value recall can be considered as a simple case of the param-
eter check for a target API, where only some special non-generic
functions are considered. For instance, if the return value satisfies
the Display or Debug trait, an immutable reference can be used
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to call it via the println! macro. However, recalling these return
values is prohibited if they have been moved, or doing so violates
the borrowing rules. The return value recall performs a reverse
move-borrow check (see Sec 3.4) on the return value of each called
API to determine whether it can be used before searching for a call-
ing function. Moreover, to alleviate borrow rule violations caused
by alias references, an alias analysis of the return values and inputs
of APIs is conducted in their corresponding implementations.

Example. Consider the motivating example in Listing 1 and its
dependency graph in Figure 2. We assume that the size of API
pool is sufficient during the sequence generation process. The
starting set comprises three distinct API sequences: Queue::new,
Queue::new→Queue::peek, and Queue::new→Queue::pop. For
the sake of simplicity, we pick sequence 𝑠0: Queue::new as our
starting sequence in this example.

At depth 1, when invoking Queue::push, 𝑠0 satisfies only the in-
put of the Queue type. As the generic type item cannot be provided
by 𝑠0, we select String as the input from the parameter provider.
Since the String type is a preset data type, its value can be ob-
tained from the input of the fuzzer. This results in the sequence 𝑠1:
Queue::new→Queue::push.

At depth 2, 𝑠1 can use the return value of Queue::new to per-
form an immutable reference call of Queue::peek. The resulting
sequence is 𝑠2: Queue::new→Queue::push→Queue::peek.

At depth 3, an additional basic data type usize is required when
invoking Queue::pop to set the number of items to pop. This results
in the sequence 𝑠3: Queue::new→Queue::push→Queue::peek→
Queue::pop.

At this stage, the sequence generation process based on the pool
is completed. Then we perform the return value recall on the se-
quence 𝑠3, yielding the sequence: Queue::new(RC)→Queue::push
→Queue::peek(RC)→Queue::pop, where RC denotes the return
value recall. The return value recall is helpful, as the UAF vul-
nerability can only be triggered after using the return value of
Queue::peek.

3.4 API Sequence Optimization

This section presents several API sequence optimization strategies
to obtain valid fuzz targets efficiently.

Sequence Check. Due to the complexity of Rust’s syntax, par-
ticularly its unique ownership system, the use of the return value of
an API (as an input for another API) may cause syntactic errors. To
maximize validity of the generated sequences, RPG proposes two
essential checks to eliminate invalid sequences from the sequence
set: a move-borrow check and a generic declaration check.

Algorithm 2 illustrates the procedure for the move-borrow check.
The algorithm first analyzes the data flows between the reference
inputs and outputs for each API in the sequence (line 4), which
is used to update the life cycles for reference variables. Then it
examines each dependent (i.e., non-basic) input of each API in the
sequence based on ownership and borrowing rules, and simulates
the moving (lines 9-10) and borrowing cycles (lines 11-18) of each
variable. Finally, the overlapping cycles between moving and bor-
rowing or mutable and immutable references are checked (lines
19-20). If there are overlapping cycles that violate the rules, the

Algorithm 2:Move-Borrow Check
Input: API sequence 𝑠𝑒𝑞
Output: True or False

1 move_map← new HashMap();
2 mut_map← new HashMap();
3 immut_map← new HashMap();
4 ref_map← dataRefFlowAnalysis(𝑠𝑒𝑞);
5 for func in 𝑠𝑒𝑞 do

6 for input in func.dep_inputs() do
7 from_idx← getDependency(func, input, 𝑠𝑒𝑞);
8 to_idx← index(func, 𝑠𝑒𝑞);
9 if isMoved(from_idx, to_idx, input) then
10 move_map.insert(from_idx, to_idx);
11 else if isMutRef(from_idx, to_idx, input) then
12 life_lst← mut_map.getOrInsert(from_idx, []);
13 life_lst.insert((to_idx, to_idx));
14 update life w.r.t. from_idx and ref_map to to_idx;
15 else if isImmutRef(from_idx, to_idx, input) then
16 life_lst← immut_map.getOrInsert(from_idx, []);
17 life_lst.insert((to_idx, to_idx));
18 update life w.r.t. from_idx and ref_map to to_idx;

19 if !check(move_map, mut_map, immut_map) then
20 return False;

21 return True;

sequence is considered a syntactic error and is therefore removed
from the sequence set.

The generic declaration check first examines whether every
generic type parameter of a sequence already has a matched con-
crete type in hash map maintained for the sequence. If not, it will
select a data type from the parameter provider that meets all the
involved trait bounds. Then it inspects the hash map and gener-
ates the declaration for the relevant data types, thereby avoiding
compilation errors.

Sequence Filter. After successfully passing the prior sequence
checks, the resultant sequence set can be synthesized into fuzz
targets. However, generating too many targets may reduce the ef-
ficiency of fuzz testing, due to the potential redundancy of APIs
and their dependencies. Therefore, to mitigate this potential redun-
dancy and optimize testing results, RPG employs greedy sequence
filtering to obtain a minimum sequence set. The filtering process
involves selecting the most desirable sequence continuously, con-
sidering the following criteria, ranked by importance:

(1) The maximum number of new (unsafe) APIs;
(2) The maximum number of new (unsafe) dependencies;
(3) The longer sequence.
Fuzz Target Synthesis. Similar to RULF [24], RPG utilizes the

information of an API sequence to generate the code necessary to
achieve a fuzz target. RPG starts with an empty Cargo.toml file, and
subsequently links the target Rust library and the fuzzing library
AFL using the extern crate. RPG then defines a main function to
call the target APIs in the sequence one by one based on their
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Listing 3: Fuzz Target Example For Queue

1 // _param0, _param1: provided by fuzzer.
2 fn fuzz_fn(_param0: &str ,_param1: usize) {
3 let mut _local0: Queue<String> = Queue::new();
4 Queue::push(&mut _local0, _param0.to_string());
5 let _local1 = Queue::peek(&(_local0));
6 Queue::pop(&(_local0) ,_param1);
7 println!("{:#?}", _local1);
8 println!("{:#?}", _local0);
9 }

signatures. If the return value of an API is required by other APIs,
the ‘let’ construct is generated. Moreover, the ‘mut’ tag is added
if the return value will be modified. If there are wrapper calls,
auxiliary functions are utilized to unwrap the underlying objects.
The ‘unsafe’ tag is required for calling unsafe APIs. Lastly, RPG
considers the parameters of basic and prepared types as inputs for
fuzz testing and generates various values for them.

Example. Listing 3 shows the final synthesized fuzz target of the
sequence Queue::new(RC)→ Queue::push→ Queue::peek(RC)→
Queue::pop. There are three dependencies between the four APIs,
all of which are related to the variable _local0, which is returned
by the first API Queue::new. The first dependency occurs in the
second API Queue::push, which is a mutable reference. Therefore,
there is a mutable lifetime (4, 4) (the line of Queue::push). There is
also an immutable lifetime (5,5), as the second dependency occurs in
Queue::peek. The third dependency, which occurs in Queue::pop,
extends the immutable lifetime from (5,5) to (5,6). It is clear that the
mutable lifetime and the immutable lifetime do not overlap. There
are two RCs. The first RC corresponds to an immutable reference of
_local1 (line 7). So there is an immutable lifetime (7,7) for _local1,
which extends the immutable lifetime of _local0 to (5,7), since there
is a data flow from _local0 to _local1 (line 5). Similarly, the second
RC further extends the immutable lifetime of _local0 to (5,8). The
move-borrow check also passes here. If the move-borrow check
for a RC fails, then simply remove it. Finally, note that fuzzing the
input of Queue::pop is useful for triggering the UAF vulnerability,
as it can only be triggered by a value of 0. This corresponds to the
POC presented in Listing 2.

4 EVALUATION

The experiments conducted in this study pursue the answers to
the following research questions:
RQ1. What is the quality of the fuzz targets generated by RPG?
RQ2. What are the individual contributions of the various compo-

nents in RPG toward generating fuzz targets?
RQ3. CanRPG outperform the state-of-the-art approaches in terms

of bug-finding ability?

4.1 Evaluation Setup

4.1.1 Evaluation Dataset. The dataset used in the experiments
comprises 50 Rust libraries, which are selected from Rust’s official
crate host crates.io, based on their popularity, size, functionality, and
the presence of unsafe code or generic functions. Figure 3 shows
the statistics of the dataset, revealing that the dataset covers a broad

Figure 3: Statistics of Dataset

range of library sizes. The sizes of the libraries are measured by
calculating the lines of code (LoC) present in the public functions
of each library. The libraries are categorized into five groups based
on their sizes, that is, Micro (0-1,000 LoC), Small (1,000-5,000 LoC),
Medium (5,000-10,000 LoC), Large (10,000-50,000 LoC), and Huge
(more than 50,000 LoC).

4.1.2 Baselines. We compared RPG against a state-of-the-art fuzz
target generation technique, namely RULF [24]. For comparison, we
selected various kinds of representative static and dynamic analysis
techniques as competitors4, such as Miri [35] and Rudra [4], as they
are widely used in practice. We also include the results obtained by
different versions of RPG without a particular component.

4.1.3 Configuration Parameters. After conducting numerous ex-
periments and analyses, we have determined the values of 𝛼 , 𝛽 , and
𝛾 to be 3, 200, and 5, respectively. These values were selected to
strike a trade-off between target generation time and API cover-
age. For Rudra, we use its default configuration. Miri runs under
the built-in test cases of the project. For fuzz targets generated by
RULF and RPG, the fuzz targets generated by RPG and RULF were
further performed fuzzing using AFL++ [15]. We determined the
maximum duration of fuzz testing by considering the number of
targets. Specifically, we set a timeout of 2 hours for cases with less
than 40 targets, whereas for instances with over 200 targets, the
timeout was extended to 6 hours. For scenarios with the number of
targets falling within the range of 40 to 200, the timeout duration
followed a linear transition between 2 and 6 hours. Additionally, to
mitigate the impact of randomness on the experimental outcomes,
we conducted each set of experiments 3 times and used the average
of the results as the final value.

4We encountered challenges while attempting to run SyRust [42] and RustyUnit [44]
on our dataset. Unfortunately, we faced compatibility issues with the Rust version
when installing RustyUnit. Furthermore, most of the programs generated by SyRust
were rejected by Miri. Upon inspecting the rejected programs for 14 libraries affected
by bugs, we found that some were rejected due to the uninitialized generic type T,
while others failed due to unwrapped results. In addition, there were a few programs
that passed the Miri test, but the reasons for their rejection during the generation
process remain elusive. We noted that the API sequences generated by SyRust are
relatively simple and may not be effective in detecting bugs. Further discussion can be
found in Section 5.



RPG: Rust Library Fuzzing with Pool-based Fuzz Target Generation and Generic Support ICSE ’24, April 14–20, 2024, Lisbon, Portugal

4.1.4 Test Oracle. Panic is an error-handling mechanism in Rust
that allows the program to abort and provide a log of what caused
the panic. When a panic occurs during fuzzing, it indicates an
unexpected behavior or a bug in the program. AddressSanitizer
(ASan) is a tool used to detect memory-related bugs, such as buffer
overflows, use-after-free errors, and uninitialized memory accesses.
By combining Panic and AddressSanitizer as test oracles, we can
effectively identify and diagnose potential issues.

4.1.5 Experiment Infrastructure. We conducted all experiments
on a machine with an Intel Xeon Gold 6132 Processor (56 cores,
2.60GHz) and 256GB of RAM running 64-bit Ubuntu LTS 20.04.

4.2 Quality of Fuzz Targets (Q1)

The effectiveness and quality of the fuzz targets generated by RPG
on 50 Rust libraries were evaluated by computing various statistics
such as the API coverage rate, API dependency coverage rate, se-
quence generation time, and the number of targets for each library.
In Table 2, a summary of these statistics is presented according
to the five groups classified by library sizes. And Table 3 shows
statistical results of various methods for sequence generation (at
the moment, concentrating on RULF [24] and RPG is sufficient).

API coverage represents the ratio of APIs included in the sequence
set to the total number of APIs offered in the library. RPG achieved
API coverage rates ranging from 57% to 100% for the analyzed 50
Rust libraries, with an overall coverage rate of 72%. In contrast, the
RULF achieves an API coverage rate of only 47.3%. This indicates
that RPG is capable of significantly improving the quality of fuzz
targets generated through pool-based generation and generic sup-
port. We conducted a manual inspection of the uncovered APIs. We
found that those APIs were not covered because they require sup-
port for advanced Rust syntaxes, such as macros and closures. For
instance, the macro_rules! feature enables the creation of declar-
ative macros that ensure code portability across various platforms.
Another instance is closures, which are function-like constructs
that capture and manipulate the surrounding state.

Dependency coverage signifies the ratio of dependencies included
in the sequence set to the total number of dependencies present in
the API dependence graph of the library. The achieved coverage rate
of dependencies for RPG is 11%, which is significantly higher than
RULF’s rate of 4.84%. This can be attributed to two reasons. Firstly,
comprehensive coverage of dependencies is challenging, especially
for generic ones. RPG’s support of generic functions leads to a
dramatic increase in the number of dependencies (the improvement
of generic support will be further discussed in Q2). Secondly, as
mentioned in Section 3.2, a generic dependency is labeled when the
trait bounds of the generic types are locally satisfiable, meaning
that either the trait bounds may not be satisfied globally or the
concrete type could not be provided by the parameter provider.

The number of generated fuzz targets was higher in RPG than
RULF (2121 VS. 923), as shown in Table 3. This achievement of
RPG can be attributed to the pool-based generation and generics
support (with additional 745 generic targets). Moreover, by priori-
tizing unsafe APIs, RPG generate a larger number of unsafe targets
compared to RULF (317 VS. 127), resulting in an improvement of
approximately 150%. Table 2 also presents the number of fuzz tar-
gets generated by RPG and the number of successfully compiled

Table 2: Quality of Fuzz Targets generated by RPG

Scale
API

Coverage (%)
Dependency
Coverage (%)

Generation
Time (ms)

Generated
Targets

Compiled
Targets

Micro (5) 12 (100%) 0 (-) 206 (41) 7 7 (5)
Small (14) 176 (96%) 161 (31%) 2481 (177) 156 156 (116)
Medium (6) 125 (95%) 174 (40%) 1992 (332) 125 124 (118)
Large (18) 549 (57%) 955 (7%) 128363 (7131) 840 733 (639)
Huge (7) 630 (80%) 1269 (15%) 375114 (53588) 993 988 (704)
Total 1492 (72%) 2559 (11%) 508156 (10163) 2121 2008 (1582)

Table 3: Results for Different Sequence Generations

RULF RPG-1 RPG-2 RPG-3 RPG
API Coverage 47.3% 61.6% 64.2% 53.7% 71.8%

Dependency Coverage 4.84% 10.14% 10.42% 7.11% 11.11%

Generation Time (ms) 305634 1406828 410659 109576 508156
Unsafe API 54 81 77 63 82

Target Number 923 1822 2125 1523 2121
Unsafe Target 127 245 249 270 317
Generic Target 0 751 737 0 745

* RPG-1: RPG without pool-based generation, RPG-2: RPG without unsafe calling sequences,
RPG-3: RPG without generic support

targets. The success rate of RPG in target compilation ranges from
87.3% to 100%, with an average of 94.7%. Noted that compilation
failures during fuzzing mainly occur due to private function calls
and incompatible features. For instance, the fuzz targets generated
for the serde library could not complete the compilation process due
to the presence of the private feature. These results demonstrate
the validity of the fuzz targets generated by RPG.

Generation time refers to the duration of the API sequence gen-
eration, which includes building the API dependency graph. On
average, RPG took 10,163ms to generate API sequences for all 50
libraries, with a total time of around 508,156ms. The duration of
sequence generation increases proportionately with the library size.
When analyzing the 7 largest libraries, RPG required approximately
375,114ms, accounting for 74% of the total time for all 50 libraries.

Overall, we conclude that RPG produces valid API sequences
with little redundancy, while maintaining satisfactory API and
dependency coverage rates, as well as optimizing the validity and
generating time of the fuzz targets.

4.3 Improvement of Various Components (Q2)

We conducted ablation experiments to study the effects of various
components on the quality of fuzz targets.

Sequence Generation Components. Table 3 presents the re-
sults of the fuzz targets generated by different sequence generation
methods. Specifically, RPG-1 represents RPG without pool-based
generation, RPG-2 denotes RPG without unsafe calling sequences,
and RPG-3 refers to RPG without generic support. Without the
pool-based generation, the sequence generation time increases sig-
nificantly, making it impossible to complete the generation task
within the allotted 10-minute time limit (taking more than 20 min-
utes for RPG-1), particularly for large-scale libraries. Moreover, the
pool-based generation is also able to explore a wider range of APIs
and dependencies and generate more unsafe targets, due to the
prioritization of unsafe APIs and dependencies. While eliminating
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(a) Results for RPG with/without generic sup-

port

(b) Improvements of Reachability Analysis for

different generation methods

(c) Compilation result for RPG with/

without(∗) sequence checking

Figure 4: Improvement of Various Components in RPG

Table 4: Results for Different Tools

Scale RPG RULF Miri Rudra

Success Targets(Finished) Time(hour) Bugs Success Targets(Finished) Time(hour) Bugs Success Test(Finished) Time(hour) TP/FP Success TP/FP

Micro(5) 5 7(5) 2.02 0 2 4(2) 4.01 0 5 67(65) 0.03 0/2 5 0/2
Small(14) 14 156(116) 80.22 7 12 93(62) 71.22 3 13 1364(1240) 28.97 0/40 14 0/2
Medium(6) 6 124(118) 22.28 1 5 39(30) 3.78 0 6 408(258) 47.29 0/21 6 1/4
Large(18) 18 733(639) 390.61 26 17 305(262) 228.02 23 15 2099(1631) 23.9 1/20 15 0/2
Huge(7) 7 988(704) 545.12 24 6 440(261) 143.04 16 4 342(341) 48.39 1/5 7 1/5

Total 50 2008(1582) 1040.25 58 42 881(617) 450.07 42 43 4280(3535) 148.58 2/88 47 2/15

unsafe calling sequences improves the efficiency of sequence gener-
ation, it also limits the exploration of unsafe APIs. Compared with
RPG-1, RPG-2 identifies four fewer unsafe APIs.

Generic Support.While RPG-3 has a shorter sequence gener-
ation time, its lack of generic support leads to reduced API and
dependency coverage rates. Additional information on the effects of
generic support is available in Figure 4(a). Without generic support,
RPG identifies 1262 APIs and 5497 dependencies. On the other hand,
providing generic support results in a significant increase in the
number of identified APIs and dependencies, by 64.6% and 319.06%,
respectively. Additionally, enabling generic support enables RPG to
cover a wider range of APIs and dependencies, exhibiting improve-
ments of 33.7% and 56.3%, respectively.

Reachability Analysis. Figure 4(b) demonstrates the efficiency
improvements resulting from the use of reachability analysis for
various API sequence generations. By filtering out unreachable APIs
and dependencies, reachability analysis minimizes the time needed
for the pool-based generation. Consequently, RPG’s efficiency is
significantly enhanced, with a noticeable improvement of 38.22%.
These results clearly demonstrate the effectiveness of reachability
analysis in improving the efficiency of API sequence generation.

Sequence Checking. Figure 4(c) illustrates the impact of se-
quence checking on the validity of fuzz targets. In RPG and RPG-3,
the absence of sequence checking results in a significant decrease in
the compilation success rate of fuzz targets, from 94.7% to 78.3% and
from 95.3% to 86.3%, respectively. The decline is more significant
in RPG than RPG-3. primarily due to generic declaration errors
stemming from generic support.

4.4 Bug-finding ability (Q3)

We applied three representative tools, RULF, Miri, and Rudra to the
50 libraries to compare performance. RULF was incorporated with
the sequence checker and fuzz target synthesizer of RPG to ensure
that the fuzz targets generated by RULF align with RPG and are
valid when using a newer version of Rust. Experimental results are
available in Table 4.

Compared with the other tools, RPG exhibits superior library
testing and bug detection capabilities. More specifically, RPG can
successfully test all 50 libraries, while RULF, Miri and Rudra can
respectively test only 42, 43 and 47 libraries. RULF failed mainly
due to its inability to generate an API sequence. On the other hand,
Miri’s testing was subject to timeouts or disruptive interferences,
and Rudra faced difficulties in completing an analysis due to library
dependencies. Moreover, despite more testing time, RPG generates
1.28× more fuzz targets than RULF. This is due to its prioritization
of unsafe APIs and APIs interactions, as well as its support of
generic functions. While the test cases of Miri are provided by
library developers, rather than automatic generation. In terms of
bug detection, RPG outperforms the other tools by identifying a
total of 58 bugs. RULF ranks second with a total of 42 bugs. Miri5
and Rudra, on the other hand, reports 90 and 17 bugs respectively,
however, only two of them can be classified as true bugs through
manual inspection.

Table 5 presents the detailed information regarding the crashes
detected by RULF and RPG in the 14 libraries affected by bugs,
where T indicates the total number of targets that trigger crashes

5Miri functions as a platform-independent interpreter, so the program has no access
to most platform-specific APIs or FFI. Consequently, Miri may report an unsupported
error, which we classify as a false error.



RPG: Rust Library Fuzzing with Pool-based Fuzz Target Generation and Generic Support ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 5: Crashes Detected by RPG and RULF

Crate
Name

RPG RULF

T UT GT C UC GC UA T UT GT C UC GC UA

ryu 1 0 0 31 0 0 0 2 0 0 57 0 0 0
byteorder 1 1 0 1 1 0 4 8 4 0 8 4 0 4
autocfg 8 0 0 8 0 0 0 0 0 0 0 0 0 0
bumpalo 8 8 0 19 19 0 12 5 5 0 13 13 0 11
mio 3 0 0 6 0 0 0 3 0 0 6 0 0 0
unicode-
segmentation 2 0 0 34 0 0 0 3 0 0 35 0 0 0

fixedbitset 32 8 0 52 18 0 10 15 8 0 23 14 0 8
idna 1 0 0 10 0 0 0 1 0 0 21 0 0 0
csv 25 1 3 117 5 15 1 3 0 0 11 0 0 0
bytes 58 31 10 158 94 29 49 23 23 0 70 70 0 33
syn 3 0 3 4 0 4 0 0 0 0 0 0 0 0
chrono 147 0 23 453 0 113 0 41 0 0 110 0 0 0
time 44 0 44 49 0 49 0 4 0 0 4 0 0 0
regex 14 0 0 3842 0 0 0 4 0 0 1143 0 0 0

Total 347 49 83 4784 137 210 76 112 40 0 1501 101 0 56
* T means Target, U means Unsafe, G means Generic, C means Crash, A means API calling.

Table 6: Bugs Found by RPG and RULF

Crate
Name

Total
Bugs

RPG RULF Confirmed
Bugs

𝐴 OOM OOR 𝑈 1 𝑈 2 OTHER 𝐴 OOM OOR 𝑈 1 𝑈 2 OTHER

ryu 1 - - - - - 1 - - - - - 1 0
byteorder 6 - - 6 - - - - - 2 - - - 0
autocfg 1 - - - 1 - - - - - - - - 0
bumpalo 2 - 1 - 1 - - - 1 - 1 - - 1
mio 1 - 1 - - - - - 1 - - - - 0
unicode-
segmentation 13 7 - - 2 4 - 6 - - 2 3 - 13

fixedbitset 2 - 2 - - - - - 1 - - - - 0
idna 2 2 - - - - - 2 - - - - - 0
csv 2 - 2 - - - - - 1 - - - - 0
bytes 5 1 2 - - - 1 1 2 1 - - 1 0
syn 1 - - - 1 - - - - - - - - 0
chrono 8 7 - - - 1 - 3 - - - 1 - 8
time 5 5 - - - - - 5 - - - - - 0
regex 10 2 - 8 - - - 1 - 6 - - - 3

Total 59 24 8 14 5 5 2 18 6 9 3 4 2 25
* 𝐴 means ARITH errors,𝑈 1 means UNWRAP errors,𝑈 2 means UTF-8 errors.

during the fuzz testing, UT (GT, resp.) indicates the number of un-
safe (generic, resp.) targets that trigger crashes, C indicates the total
number of crashes triggered by the targets, UC (GC, resp.) indi-
cates the number of crashes triggered by the unsafe (generic, resp.)
targets, UA indicates the number of unsafe API callings among all
the (unsafe) targets. The results demonstrate that RPG outperforms
RULF by generating more targets that trigger more crashes. More
specifically, RPG generates 22.50% more unsafe targets and explores
35.71% more unsafe API callings compared to RULF. Furthermore,
with generic support, RPG generates 83 additional generic targets,
resulting in 210 crashes.

Table 6 provides additional details on the bugs detected by RULF
and RPG, where A denotes arithmetic errors (ARITH), OOM de-
notes out-of-memory errors, OOR denotes out-of-range access, U1

denotes attempts to unwrap None or Err (UNWRAP), and U2 de-
notes problems with UTF-8 string handling (UTF-8). The results
demonstrate that RPG outperformed RULF in detecting errors for
each library, with the exception of the bytes library. Notably, RPG
identified all the errors that RULF detected, except for a single in-
stance of OOM in the bytes library. That is to say, RPG detected 17

Figure 5: Code to reproduce bug in unicode-segmentation

unique bugs, while RULF detected only one unique bug. Moreover,
25 bugs were previously unknown and were confirmed by the li-
brary maintainers. RPG is capable of detecting all 25 bugs, while
RULF could only detect 16. More detailed information on these
bugs, as well as the corresponding fuzz targets and test inputs, are
available on our website6.

Case Study. To highlight the factors contributing to RPG’s supe-
riority, we present two case studies. These two specific errors were
only be found by RPG in our experiment, thanks to its pool-based
generation and fuzz target synthesis methods.

The first case comes from the unicode-segmentation crate,
as depicted in Figure 5, and exhibits a bug that triggers an unex-
pected panic. The program enters a panicked state due to a sub-
traction overflow within the unsafe code block, leading to an erro-
neous index calculation that causes the next_boundary method in
GraphemeCursor to return None. By prioritizing unsafe APIs, RPG
generated an API sequence related to the unsafe code block and
promptly identified the issue. However, RULF failed to detect this
bug, possibly due to spending excessive time on other APIs, which
made it difficult to discover this particular bug within a limited time
period.

The second case study, derived from the regex crate, is illus-
trated in Figure 6. The bug in question arises in the function pos
as a result of inadequate overflow verification during arithmetic
operations. Consequently, this triggers a panic within the function
get and yields an unexpected positional value. In scenarios where
the index is invalid, including overflow scenarios, the expected out-
come is None. The alterationmade in the presented figure effectively
resolves this issue. It is a significant challenge to trigger this bug
through API calls. This process involves constructing precise input
data and executing three API calls, with each call having complex
dependencies and undergoing strict type checks. However, existing
techniques like RULF are inadequate for handling such scenarios.
In contrast, our approach, which prioritizes API dependencies and
incorporates stringent type checking and validation, facilitates the
generation of valid fuzz targets.

5 RELATEDWORK

Existing works have demonstrated that Rust libraries and applica-
tions may contain security bugs [13, 16, 30, 39, 51, 54]. We discuss
and differentiate three kinds of methods: static analysis, tests gen-
eration, and fuzzing—which are combined in our work.

Static Analysis. Existing static analysis techniques [20, 21, 36]
usually perform bug detection on either RustMIR or LLVM IR gener-
ated by the Rust compiler. Rudra [4] is a static analyzer that utilizes

6RPG’s website: https://sites.google.com/view/rust-rpg.
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Figure 6: Code to reproduce bug in Regex crate

the type system and the borrow checker to identify typical unde-
fined behaviors through three types of bug patterns. SafeDrop [8]
focuses on the deallocation of dynamic memory during runtime
and detects memory corruptions by performing alias analysis and
taint analysis on the Rust MIR. MIRAI [7] is an abstract interpreter
that performs symbolic execution for Rust. It enables users to add
annotations and utilizes the SMT solver Z3 [9] to prove the safety of
Rust programs. MIRChecker [31] detects potential runtime crashes
and memory-safety errors by using constraint-solving on MIR. Dif-
ferent from these static analysis techniques that directly search for
bugs, RPG employs static analysis to construct an API dependency
graph and a parameter provider.

Fuzz Target Generation. Since RPG is a fuzz target genera-
tion technique designed to support Rust library fuzzing, we will
detailed review related research on fuzz target generation for Rust
libraries. RULF [24] is a technique that can automatically generate
fuzz targets from an API specification of a Rust library. It utilizes
breadth-first search with pruning to generate API sequences within
a specified length threshold. Additionally, RULF synthesizes multi-
ple fuzz targets to use for AFL++ fuzz testing with ease. However,
it disregards the significance of unsafe APIs and ignores the API
interactions. Furthermore, RULF lacks the ability to analyze and
fuzz generic components effectively. SyRust [42] aims to generate
compilable tests for Rust libraries using a semantic-aware synthesis
algorithm. It generates the API sequences in an enumeration-like
manner. Additionally, it employs a hybrid approach to indepen-
dently instantiate polymorphic APIs from the API set and template
provided by users in a combinatorial enumeration manner and re-
moves the fully concrete APIs that caused trait errors after a few
rounds. Although it enables SyRust to generate a large number of
tests within a reasonable amount of time, it lacks fast bug detection.
Furthermore, SyRust targets only a few APIs in a crate at a time and
does not mutate the input value of each test, making it less directly
applicable to fuzzing. RustyUnit [44] is a search-based tool for au-
tomatically generating unit tests for Rust programs. It utilizes the
DynaMOSA algorithm [37] to optimize tests for code coverage and
handles generic types randomly in most times without explicitly
checking the trait bounds. However, both SyRust and RustyUnit
target only a few APIs in a crate at a time and do not mutate the
input values of each test, making them less directly applicable to
fuzzing.

Moreover, there exists a line of fuzz target generation techniques
in other programming languages, such as Fudge [3], JFD [6], and
FuzzGen [23]. However, these techniques are language-specific and

cannot be directly applied to Rust programming language, which
has different syntax, semantics, and features.

Fuzzing. Fuzzing [17, 55] has been successfully used to detect
vulnerabilities in Rust applications [1], Rust libraries [24, 50], and
the Rust compiler [10]. RPG mainly focuses on synthesizing fuzz
targets rather than on improving the fuzzing algorithm. In theory,
the fuzz targets generated by RPG can easily be used as verification
hardness for verification tools such as Kani Rust Verifier [45] and
SMACK [5, 40], with some engineering efforts required. Our future
work will explore further how to utilize RPG for verification tasks.

6 CONCLUSION

This paper presents a novel approach called RPG for automated
fuzz target generation in Rust libraries. By proposing a pool-based
generation, a local type inference and several validity checks, we
successfully addressed the challenges of generating diverse valid
fuzz targets with generic support. The experimental results validate
the effectiveness and practicality of RPG in discovering various
bugs of Rust libraries. RPG will be beneficial for developing more
secure and reliable Rust libraries and ensuring the safety of Rust
applications that rely on these libraries.
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