
Controlled Concurrency Testing via Periodical Scheduling
Cheng Wen

CSSE, Shenzhen University
Shenzhen, China

Mengda He∗
SCEDT, Teesside University

Tees Vally, UK

Bohao Wu
CSSE, Shenzhen University

Shenzhen, China

Zhiwu Xu
CSSE, Shenzhen University

Shenzhen, China

Shengchao Qin∗
Huawei Hong Kong Research Center

Hong Kong, China

ABSTRACT

Controlled concurrency testing (CCT) techniques have been shown
promising for concurrency bug detection. Their key insight is to
control the order in which threads get executed, and attempt to
explore the space of possible interleavings of a concurrent program
to detect bugs. However, various challenges remain in current CCT
techniques, rendering them ineffective and ad-hoc. In this paper,
we propose a novel CCT technique Period. Unlike previous works,
Period models the execution of concurrent programs as periodical
execution, and systematically explores the space of possible inter-
leavings, where the exploration is guided by periodical scheduling
and influenced by previously tested interleavings. We have evalu-
ated Period on 10 real-world CVEs and 36 widely-used benchmark
programs, and our experimental results show that Period demon-
strates superiority over other CCT techniques in both effectiveness
and runtime overhead. Moreover, we have discovered 5 previously
unknown concurrency bugs in real-world programs.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; Formal software verification; • Security and privacy →
Formal methods and theory of security.

KEYWORDS

Concurrency Testing, Concurrency Bugs Detection, Multi-threaded
Programs, Systematic Testing, Stateless Model Checking

ACM Reference Format:

Cheng Wen, Mengda He, Bohao Wu, Zhiwu Xu, and Shengchao Qin. 2022.
Controlled Concurrency Testing via Periodical Scheduling. In 44th Inter-
national Conference on Software Engineering (ICSE ’22), May 21–29, 2022,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3510003.3510178

*Corresponding authors: Shengchao Qin and Mengda He.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510178

1 INTRODUCTION

To make the best of the computing power brought with modern
multiprocessor hardware, concurrent programming is now preva-
lent. However, it is difficult to ensure that a concurrent program is
bug-free, as unlike sequential programs whose behavioural nonde-
terminism mainly comes from their input. The behavior of concur-
rent programs is also subject to how their threads interleave, thus
leaving more openings for concurrency bugs [5, 6, 44]. Testing is
usually an effective way to ensure software quality; however the
same issue of scheduling nondeterminism renders naïve concur-
rency testing insufficient in practice [39, 43, 81]. Indeed, testing a
concurrent program without any scheduling control often covers
only a portion of the schedule space, failing to explore the others in
which the bugs may reside, even if the program is tested over and
over again. Notice that detecting data race is another widely used
solution to find concurrency bugs [23, 26, 36, 71], as data races are
widely considered as a cause of concurrency bugs. But a data race
may not be sufficient or necessary to trigger a concurrency bug.
As shown in [15], 90% of data races are benign. And a concurrency
bug can happen in a concurrent program that is race-free [42].

Therefore, controlled concurrency testing (CCT) techniques uti-
lizing controlled scheduling have been intensively studied [4, 12, 26,
45, 64, 69]. CCT usually inserts “scheduling points” in the target
program in front of some key points/steps (i.e., instructions that are
key to the program’s observable behavior, such as the instructions
accessing shared memory locations or synchronization primitives)
and controls these key points from various threads to execute in
different orders. When a bug is triggered during execution, the
scheduling decisions (i.e., the order in which instructions from
various threads are executed) can be logged and used to determin-
istically reproduce the buggy execution [53, 54, 77].

A key practical challenge for CCT is how to achieve controlled
scheduling. Usually, the target program is put in a serialized execu-
tion, that is, only one thread is picked to execute at a time; when
the execution hits a scheduling point, the scheduler may decide to
carry on the current execution or to pick another thread to execute
(i.e., a context switch is made). Existing works tend to enforce con-
text switches via preemptions [48], sleeping delay [39, 71], or even
dynamic thread priority modifications [11, 18, 42]. However, these
scheduling techniques can have pathological interactions with the
synchronization operations in the target program. For example,
introducing preemptive synchronization (e.g., preemption, lock)
may lead to a false deadlock that was not originally exhibited in the
target programs [49], and injecting different sleeping delays before
any key point may have unpredictable results and significantly

1

https://doi.org/10.1145/3510003.3510178
https://doi.org/10.1145/3510003.3510178
https://doi.org/10.1145/3510003.3510178

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Cheng Wen et al.

slow down the execution speed. Moreover, simply serializing the
execution of the target program (e.g., disallowing parallelism) could
introduce undesirably high overhead. This motivates us to find a
more efficient and effective solution to control scheduling.

Another key challenge is how to effectively explore the schedule
space. Notice that the size of a program’s schedule space grows expo-
nentially with the number of scheduling points in its threads. It is of-
ten practically infeasible to exhaustively iterate the schedule space
for real-world programs. Schedule bounding techniques [63, 64]
are often employed. The idea behind schedule bounding is that
many real-world concurrency bugs have a small bug depth, that is,
the number of context switches needed to expose the bug [22, 46].
Therefore, controlled scheduling techniques could bound the num-
ber of their schedule-interfering activities and tremendously shrink
the schedule space to (ideally) a space composed of only schedules
with context switches no more than a designated number. Existing
works explore the schedule space in either a randomized or sys-
tematic way. Randomized testing (e.g., PCT [11] and PPCT [50])
employ a randomizer to generate schedules, but they could only
provide probabilistic guarantees of finding bugs. Systematic testing
(e.g., IPB [48, 64] and IDB [22, 64]), also known as stateless model
checking [27], explore all possible schedules within a limited num-
ber of preemptions or delays, but they tend to go through a larger
schedule space than needed, requiring more overhead or missing
some bugs. Therefore, a more effective way to explore the schedule
space is still badly needed.

In this paper, we propose a novel controlled concurrency testing
technique, called Period, to achieve controlled scheduling and to
effectively explore the space of possible interleavings. In Period,
the execution of a concurrent program is modeled as periodical
execution, wherein context switches can be achieved via period
switches naturally. That is, Period uses a series of execution periods
to host the execution of the target program and key points assigned
to an execution period only get to be executed when the previous
period is finished. Periodical execution can be enforced by deadline
task scheduling [3], without any preemption or sleeping delay.
Parallelization (i.e., concurrent execution) can be readily achieved
by allocating key points from different threads into the same period
(in our implementation, we put them in the last period).

Period employs a period-bounding technique to explore the
possible interleavings. It takes a preset period-number upper bound
𝑃 and aims to detect bugs with bug-depth less than 𝑃 . The schedule
exploration process works as follows. It starts with the smallest pos-
sible period-number 2 (i.e., for bugs with bug-depth 1). For a given
period-number 𝑝 , Period explores schedules systematically in a
quasi-lexicographical order on the corresponding thread identifiers.
Once all schedules of the current period-number 𝑝 are explored,
it increases the period-number 𝑝 by 1 to carry on exploring, until
either all possible schedules are explored or the period-number 𝑝
reaches the preset bound 𝑃 . Meanwhile, we explore the schedule
space gradually, targeting at feasible interleavings. For that, we
introduce dynamic key point slice to represent the key points of
each thread that are covered by a dynamic run of the target pro-
gram. Specifically, we statically generate all possible schedules for
a starting dynamic key point slice, wherein only one key point is
assumed to be covered for each thread. During the executions of
the generated schedules, some new dynamic key point slices would

be found, on which the exploration continues. To guide the explo-
ration on the newly found slices, schedule prefixes are constructed
based on historical executions. In addition, allowing parallelism
enables us to hugely reduce the schedule space to explore and boost
the performance.

We have implemented Period and performed a thorough evalu-
ation of Period on 10 real-world CVEs and 36 widely-used bench-
mark programs. For comparison, we have selected 6 well-known
and representative CCT techniques (i.e., IPB [46], IDB [22], DFS [63],
PCT [11], Maple [75] and the controlled random scheduling [64]).
Our experimental results demonstrate that Period substantially
outperforms existing CCT techniques in terms of bug finding ability
and runtime overhead. Moreover, we have discovered 5 previously
unknown concurrency bugs in real-world programs. Notice that
Period focuses mainly on bugs caused by thread interleavings, e.g.
user-specified assertion failure (AF), use-after-free (UAF), double-
free (DF), null-pointer-dereference (NPD), deadlock (DL), etc.

Our main contributions are summarized as follows:
• We model the execution of concurrent programs as periodical ex-
ecution, which uses non-preemptive synchronization to achieve
controlled scheduling and allows parallelism.
• We propose a novel systematic schedule generator that works
for each dynamic key points slice of a concurrent program. The
proposed schedule generator allows parallelism and is equipped
with a feedback analyzer that uses schedule prefixes to guide
further schedule generation, hugely reducing the schedule space
needed to explore.
• We have implemented Period and our experimental evaluation
confirms the superiority of Period over existing CCT techniques.

2 OVERVIEW

In this section, we give a high level overview of Period through a
simple motivating example selected from the CVEs [20].

2.1 Motivating Example

To illustrate our technique, Fig. 1 shows an example simplified
from CVE-2016-1972 [21]. Two threads 𝑇0, 𝑇1 concurrently invoke
the function once(), and are synchronized with the help of three
variables (i.e., lock, done, waiters). The variable lock, allocated
in the main thread (Ln. 20) and released in the child thread (Ln. 15),
is used to protect the critical section (Ln. 9-13). The variable done
will be set to 1 once the critical section is completed (Ln. 11-12).
Threads created after a thread finishes the critical section would
return directly (Ln. 6-7). The variable waiters indicates the number
of threads waiting to enter the critical section (Ln. 8). The expected
behavior is that only the last thread should release lock (Ln. 14-16).
Note that all statements except for “return 0“ in function once()
either access shared memory locations or contain synchronization
primitives, therefore are considered as key points.

This program demonstrates three kinds of concurrency bugs,
namely, null-pointer-dereference (NPD), use-after-free (UAF), and
double-free (DF), all of which have been detected by Period. In
more detail, if the lock is set to null in 𝑇0 at Ln. 16 before 𝑇1 uses
the lock at Ln. 9, a NPD will occur. A UAF can be triggered at Ln. 9
where thread 𝑇0 releases the lock at Ln. 15 and thread 𝑇1 uses the
lock at Ln. 9. A DF can be triggered at Ln. 15 where both threads

2

Controlled Concurrency Testing via Periodical Scheduling ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1 static pthread_mutex_t* lock;
2 static long waiters = 0;
3 static int done = 0;
4

5 void *once(void *) {
6 if(done)
7 return 0;
8 ++waiters;
9 pthread_mutex_lock(lock);

10 // do some thing ...
11 if(!done)
12 done = 1;
13 pthread_mutex_unlock(lock);
14 if(!--waiters) {
15 free(lock);
16 lock = NULL;
17 }
18 }
19 void main() {
20 lock = malloc(sizeof(pthread_mutex_t));
21 pthread_t T0, T1;
22 pthread_create(&T0, NULL, once, NULL);
23 pthread_create(&T1, NULL, once, NULL);
24 pthread_join(T1, NULL);
25 pthread_join(T0, NULL);
26 }

Figure 1: An example simplified from CVE-2016-1972.

𝑇0 and 𝑇1 try to release the lock. All these bugs are actually hard
to trigger, as they each require a specific sequence of operations on
variable done, waiter, and lock.

We have tested this example with several existing CCT tech-
niques. Maple [75] can detect NPD but misses UAF and DF, as it
heuristically steers thread scheduling to attempt to force a set of
predefined interleaving idioms, which does not include the required
interleaving idioms of such UAF and DF in the example. PCT [11]
relies on a randomizer to explore the schedule space of the example.
The probability for finding NPD is high, but the probabilities for
finding UAF and DF are very low, which are respectively about
0.15% and 0% in our experiment. IPB [46] and IDB [22] are two
representative systematic techniques. Both IPB and IDB can detect
NPD and UAF, but miss DF, whose bug depth is 5 (i.e., requiring
at least 5 context switches to expose the bug). The reason is that
they try to iterate the scheduling decision on each key point, going
through a large schedule space. Moreover, their bounds could not
faithfully reflect the context switch bounds in that they often re-
quire (potentially a lot) more context switches than the depth of the
bugs they try to expose. These results demonstrate the limitations
of current CCT techniques as shown in §1.

Let us now illustrate our approach with this example and explain
how Period detects all three bugs.

2.2 Approach Overview

The workflow of our proposed controlled concurrency testing tech-
nique Period is shown in Fig. 2. It comprises three main compo-
nents: schedule generator (1○), periodical executor (2○) and feedback
analyzer (3○). The schedule generator systematically generates
schedules for a dynamic key point slice of the target program and
feeds them to the periodical executor. The periodical executor con-
trols the thread interleavings of the target program through period-
ical execution, following the schedules generated by the schedule
generator. The periodical executor is also responsible for collecting

Figure 2: The workflow of Period.

the runtime information, such as the error information and the
activated key points. The feedback analyzer makes use of historical
execution information to guide the schedule generator to effectively
generate legal schedules to cover more untested interleavings.

Considering the motivating example in Fig. 1, let us start with
the period-num 2 and the starting dynamic key point slice (DKPS)
𝑠0 = [𝑇0:[6], 𝑇1:[6]], where the integers denote the line numbers
of the statements in Fig. 1 and only the first key point is assumed
to be covered. The first step is to generate the schedules with 2
periods for this DKPS. A schedule is a series of execution periods
and is represented as {. . .}·{. . .} . . . ·{. . .}, where {. . .} represents
a period containing the key points that would be executed in this
period. By assigning one thread to a period, we obtain two schedules:
{𝑇0:6}·{𝑇1:6} and {𝑇1:6}·{𝑇0:6}. Indeed, a scheduler is concerned
only with the number of key points from various threads and the
order they interleave in. So we can omit key points safely and order
the above two schedules lexicographically: {𝑇0}·{𝑇1} and {𝑇1}·{𝑇0}.

In the second step, guided by the above two schedules, we would
like to control the thread interleavings via periodical execution.
Fig. 3(a) gives the execution guided by the first schedule, where
the extra key points of thread 𝑇0 are put in the last period of
thread 𝑇0 (in this case, there is only one period, namely period
1, allocated for 𝑇0, hence all key points of 𝑇0 are put in period
1). By analyzing the runtime information, we obtain a new DKPS
𝑠1 = [𝑇0:[6, 8, 9, 11, 12, 13, 14, 15, 16], 𝑇1:[6]] (new key points are
colored gold in Fig. 3(a)). Likewise, we obtain another different
DKPS 𝑠2 = [𝑇0:[6], 𝑇1:[6, 8, 9, 11, 12, 13, 14, 15, 16]] (see Fig. 3(b)) for
the second schedule.

If a DKPS obtained by an execution is previously uncovered, we
consider the DKPS as an interesting new behavior. A new DKPS
indicates there may be some other uncovered feasible schedules of
the target program. To explore these schedules, we create a new
exploration job to handle it. So two schedule jobs1 are created for
the above newly obtained DKPSs 𝑠1 and 𝑠2, respectively. Moreover,
to guide the target program running into the new behavior, we
introduce schedule prefixes. Intuitively, a prefix is a partial schedule
that contains context switches needed to reach a new DKPS. The
1Actually, 𝑠1 and 𝑠2 are symmetric, to explore one of them would be sufficient. In the
following, we omit the exploration on 𝑠2 .

3

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Cheng Wen et al.

if(done);
++waiters;
mutex_lock(lock);
if(!done)
done=1;

mutex_unlock(lock);
if(!--waiters) {
free(lock);
lock = NULL; }

if(done)
return 0;

Pe
rio

d
1

Pe
rio

d
2

(a) {𝑇0 }·{𝑇1 }

if(done);
++waiters;
mutex_lock(lock);
if(!done)
done=1;

mutex_unlock(lock);
if(!--waiters) {
free(lock);
lock = NULL; }

if(done)
return 0;

(b) {𝑇1 }·{𝑇0 }

if(done);
++waiters;
mutex_lock(lock);
if(!done)
done=1;

mutex_unlock(lock);
if(!--waiters) {
free(lock);

if(done)
return 0;

lock = NULL;
}

Pe
rio

d
3

(c) {𝑇0 × 8}·{𝑇1 }·{𝑇0 }

if(done);
++waiters;
mutex_lock(lock);
if(!done)
done=1;

mutex_unlock(lock);
if(!--waiters) {

if(done)
return 0;

free(lock);
lock = NULL;

}

(d) {𝑇0×7}·{𝑇1 }·{𝑇0×2}

if(done);
++waiters;
mutex_lock(lock);
if(!done)
done=1;

mutex_unlock(lock);

if(done)
return 0;

if(!--waiters) {
free(lock);
lock = NULL;

}

(e) {𝑇0×6}·{𝑇1 }·{𝑇0×3}

if(done);
++waiters;
mutex_lock(lock);
if(!done)

if(done)
++waiters;

done=1;
mutex_unlock(lock);
if(!--waiters)

mutex_lock(lock);
if(!done)
mutex_unlock(lock);
if(!--waiters) {
free(lock);
lock = NULL;

}

(f) {𝑇0×4}·{𝑇1 }·{𝑇0×5}

if(done);

if(done)
++waiters;
mutex_lock(lock);
if(!done)
done=1;

mutex_unlock(lock);
if(!--waiters) {
free(lock);
lock = NULL; }

++waiters;
mutex_lock(lock);

if(!done)
mutex_unlock(lock);
if(!--waiters) {
free(lock);
lock = NULL;

}

(g) {𝑇0 }·{𝑇1 }·{𝑇0×8}

if(done);
++waiters;
mutex_lock(lock);
if(!done)

if(done)

done=1;
mutex_unlock(lock);
if(!--waiters) {

++waiters;
mutex_lock(lock);
if(!done)
mutex_unlock(lock);
if(!--waiters) {
free(lock);
lock = NULL;

}
lock=NULL;
free(lock);

}

(h) {𝑇0×4}·{𝑇1 }·{𝑇0×3}·{𝑇1×7}

if(done);
++waiters;
mutex_lock(lock);
if(!done)

if(done)

done=1;
mutex_unlock(lock);
if(!--waiters) {
free(lock);

++waiters;
mutex_lock(lock);

if(!done)
mutex_unlock(lock);
if(!--waiters) {
free(lock);
lock = NULL;

}

lock = NULL;
}

(i) {𝑇0×4}{𝑇1 }{𝑇0×4}{𝑇1×7}{𝑇0 }

if(done);
++waiters;
mutex_lock(lock);
if(!done)

if(done)

done=1;
mutex_unlock(lock);
if(!--waiters) }

++waiters;
mutex_lock(lock);
if(!done)
mutex_unlock(lock);
if(!--waiters) {
free(lock);

free(lock);

lock = NULL;
}

lock = NULL;
}

(j) {𝑇0×4}{𝑇1 }{𝑇0×3}{𝑇1×6} . . .

Figure 3: Each sub-figure is an execution of the CVE-2016-1972 program, and their captions are the generated schedule they attempt to follow.

schedule prefixes for the 𝑠1 and 𝑠2 are respectively [𝑇0] (indicating
that the𝑇0 must be chosen to run first) and [𝑇1]. In general, a sched-
ule’s prefix is in the form of {. . .} . . . ·{. . .}·[𝑇𝑖], where the periods
in curly brackets will be literally preserved in the exploration job
following this prefix. The prefix’s last period in square brackets
indicates that only key points from 𝑇𝑖 can be scheduled to this
period while the key points’ number can be changed.

After exploring the only 2 schedules for 𝑠0 the exploration job
for 𝑠0 is concluded. However, we still need to explore the job for
𝑠1 with prefix [𝑇0]. We omit its less interesting 2-period schedules
and jump to the 3-period phase, where there are 8 schedules to
explore, namely {𝑇0×8}·{𝑇1}·{𝑇0}, . . . , and {𝑇0}·{𝑇1}·{𝑇0×8}.The
executions of the first three schedules are shown in Fig. 3(c), Fig. 3(d)
and Fig. 3(e), respectively.

On the fifth 3-period schedule for 𝑠1, we find a new DKPS 𝑠3
(see Fig. 3(f)), which contains 7 key points in 𝑇0 and 8 key points
in 𝑇1. A new exploration job will be created for 𝑠3 associated with
the prefix {𝑇0×4}·[𝑇1] needed to lead us to 𝑠3. Meanwhile, we con-
tinue with the job for 𝑠1 and eventually when we get to schedule
{𝑇0}·{𝑇1}·{𝑇0×8}, the NPD bug will be triggered (see Fig. 3(g)).

Now we focus on the exploration job for 𝑠3 with the prefix
{𝑇0×4}·[𝑇1].We skip the inconsequential schedules and have a close
look at the schedule {𝑇0×4}·{𝑇1}·{𝑇0×3}·{𝑇1×7} (Fig. 3(h)), where a
new DKPS 𝑠4 is discovered and its prefix is {𝑇0×4}·{𝑇1}·[𝑇0]. Again,

we skip some schedules and consider the exploration on the newly-
found DKPS 𝑠4. As shown in Fig. 3(i) one of its 5-period schedules
{𝑇0×4}·{𝑇1}·{𝑇0×4}·{𝑇1×7}·{𝑇0} triggers the UAF bug. Next, we
continue the exploration on 𝑠4 with period-number 6. By using the
schedule {𝑇0 × 4}·{𝑇1}·{𝑇0×3}·{𝑇1 × 6}·{𝑇0×2}·{𝑇1}, we are able to
trigger the DF bug, as shown in Fig. 3(j). These findings illustrate
the effectiveness of Period.

Finally, we stop the exploration when all the obtained DKPSs are
explored within the preset period-number bound. In this example,
the period-number bound is set to be 6 (or any larger number) so
that the NPD, UAF, and DF can be found.

3 METHODOLOGY

We have illustrated how Period works with an example. We shall
now present some essential technical details.

3.1 The Top-level Algorithm

Given a concurrent program 𝑃𝑟𝑜𝑔 with 𝑛 threads2, we assume the
input of the target program is given, so the only nondeterminism
in execution would be caused by thread interleaving. Different
interleavings may lead the execution to divergent paths, that is,
different parts of the program get executed/activated. Only the
interleavings of the key points are interesting, so we abstract the
2We assume the number of active threads 𝑛 does not change in different executions
for simplicity, though our model allows changing number of threads.

4

Controlled Concurrency Testing via Periodical Scheduling ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

active parts of the program as a dynamic key point slice (DKPS
or slice for short), which is represented as a list with 𝑛 elements,
wherein the 𝑖th element is a list consisting of every encountered key
points in thread 𝑇𝑖 ’s execution in the chronological order. Since a
DKPS naturally reflects that there must be some feasible schedules
to activate it, Period aims to systematically detect all slices and
test each of them with all possible schedules.

Period models the execution of concurrent programs as periodi-
cal execution, wherein context switches can be achieved via period
switches naturally (see §3.3 for more detail). Motivated by the study
[11, 44] that shows many real-world concurrency bugs have shal-
low depths, Period employs schedule bounding techniques as well
and requires the period numbers of the generated schedules to be
within a preset bound 𝑃 , targeting at all potential bugs with depths
less than 𝑃 .

The top-level algorithm of Period is illustrated in Alg. 1, which
takes an instrumented program 𝑃𝑟𝑜𝑔 with 𝑛 threads and a preset
period bound 𝑃 as input, and returns a set of bugs and their corre-
sponding schedules. Note that the target program is instrumented
so that it follows our schedules and we can collect the runtime
information. We create “jobs” for slices to be explored in 𝑃𝑟𝑜𝑔, with
each job represented by a pair consisting of a DKPS and a schedule
prefix. The schedule prefix is used to lead the execution of the target
program to the DKPS as possible. The initial job is denoted as a pair
consisting of the smallest approximation assuming there is only one
active key point in each thread and an empty schedule prefix (Ln.
2). Indeed, this smallest approximation is used to allow different
possible orders for various threads to start running. Each schedule
job is performed with the period-number from 2 (i.e., 1 context
switch targeting at the bug depth 1) to the preset period bound 𝑃
(Ln. 4-17). Specifically, for each job 𝑗𝑜𝑏 and each period-number
𝑝 , we fisrt generate all schedules (Ln. 6) by invoking our sched-
ule generator (§3.2). Note that a scheduler is concerned only with
the number of key points from various threads and the order they
interleave. We test the target program guided by each generated
schedule (Ln. 11) via our periodical executor (§3.3), and log bugs
captured by our executor (Ln. 12) . Our executor also captures the
dynamic key point slice of the execution (Ln. 11). Therefore, the
feedback analyzer (§3.4) can decide whether a new job should be
created to explore the newly found slice or not (Ln. 14). Notice that
we may be unable to generate schedules for some job (Ln. 7). For
instance, if 𝑝 were greater than a job’s total number of key points,
then some periods would be left empty and wasted. In this case, we
say the job is finished, that is, the exploration of the corresponding
slice is done, and we remove it from 𝐽𝑜𝑏𝑠 (Ln. 8).

3.2 Schedule Generator

Our schedule generator focuses on scheduling key points of a slice.
To see how our periodical schedule generator is designed, we first
introduce the serialized scheduler which lays the foundation of
our method, and then present the key optimization that allows
concurrency in our schedules and that greatly reduces the number
of schedules needed to expose bugs. Without loss of generality, we
name the threads in a DKPS as 𝑇0,𝑇1, . . .𝑇𝑛−1 , where 𝑛 = |𝐷𝐾𝑃𝑆 |.

3.2.1 Serialized Scheduler. Period models program execution in
a series of execution periods, that is, a schedule, and represents it

Algorithm 1: Period Systematic Concurrency Testing
Input :an instrumented program 𝑃𝑟𝑜𝑔, number of worker threads 𝑛,

and a bound 𝑃 for the maximum periods
Output :a set 𝐿𝑜𝑔 recording bugs and their corresponding schedules

1 𝐿𝑜𝑔← ∅
2 𝐽 𝑜𝑏𝑠 ← {([1] × 𝑛, 𝜖) }
3 𝑝 = 2 // the period-number, starting from 2

4 while 𝑝 ≤ 𝑃 do

5 foreach 𝑗𝑜𝑏 in 𝐽 𝑜𝑏𝑠 do

/* schedule generator generates all schedules for ‘job’

with the current period-number p */

6 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠 ← 𝑆𝑐ℎ𝑒𝑑𝐺𝑒𝑛 (𝑗𝑜𝑏.𝑑𝑘𝑝𝑠, 𝑝, 𝑗𝑜𝑏.𝑝𝑟𝑒 𝑓 𝑖𝑥)
7 if 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠 = ∅ then // the current job is done
8 𝐽 𝑜𝑏𝑠 ← 𝐽 𝑜𝑏𝑠 \ { 𝑗𝑜𝑏 } // remove it from the Jobs

9 continue

10 foreach 𝑠 ∈ 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠 do
11 𝑑𝑘𝑝𝑠, 𝐸𝑟𝑟𝑜𝑟𝑠 ← 𝑅𝑢𝑛 (𝑃𝑟𝑜𝑔, 𝑠) // periodical executor

/* log the bugs and the current schedule */

12 𝐿𝑜𝑔← 𝐿𝑜𝑔 ∪ {(𝑠, 𝑒) | 𝑒 ∈ 𝐸𝑟𝑟𝑜𝑟𝑠 }
/* feedback analyzer */

13 𝑝𝑟𝑒 𝑓 𝑖𝑥 = 𝐺𝑒𝑡𝑃𝑟𝑒 𝑓 𝑖𝑥 (𝑠)
14 𝐽 𝑜𝑏𝑠 ← 𝑈𝑝𝑑𝑎𝑡𝑒 (𝐽 𝑜𝑏𝑠,𝑑𝑘𝑝𝑠, 𝑝𝑟𝑒 𝑓 𝑖𝑥) ;

15 if 𝐽 𝑜𝑏𝑠 = ∅ then // all feasible schedules explored
16 break

17 𝑝 ← 𝑝 + 1 // to explore schedules with one more period

as {. . . }·{. . . } . . . ·{. . . }, where {. . . } denotes an execution period
and is a multi-set that contains thread identifiers. Note that key
points are omitted, as our scheduler is concerned only with the
number of key points from various threads and the order they
interleave. For example, the schedule with three execution periods
{𝑇0,𝑇0} · {𝑇1} · {𝑇0} indicates that thread𝑇0 can take two key steps
in the first execution period; then it is𝑇1’s turn to take one key step
in the second execution period, before 𝑇0 takes another key step in
the last execution period. We use {𝑇𝑥 × 𝑛} for 𝑛 occurrences of 𝑇𝑥
appearing in a period.

For any DKPS, we can create serialized schedules by imposing
the following rules:

• Rule 1. Each period only hosts key points from the same thread.
• Rule 2. Key points in two adjacent periods should belong to dif-
ferent threads.
• Rule 3. No execution period is left empty.
• Rule 4. Thread 𝑇𝑖 appears exactly |𝐷𝐾𝑃𝑆 [𝑖] | times in a schedule.

These rules define the space of serialized periodical schedules
for the slice. Consider a schedule job on a slice DKPS with a period-
number 𝑝 . To iteratively generate schedules within the space of
DKPS with 𝑝 , we first introduce schedule patterns: skeletons of
schedules and represented as [𝑇𝑖𝑑0]·[𝑇𝑖𝑑1] . . . ·[𝑇𝑖𝑑𝑝], where [𝑇𝑖𝑑𝑖]
denotes that only 𝑇𝑖𝑑𝑖 can be scheduled into the corresponding
period. All the possible patterns would be generated in a lexico-
graphical order on the thread identifiers. Then for each possible
pattern, we generate all schedules in order by allocating the key
points to their corresponding periods. In this way, we can system-
atically explore all schedules on DKPS with period-number 𝑝 in
a quasi-lexicographical order. In the following, we illustrate our
exploration of 4-period schedules for the slice 𝐷𝐾𝑃𝑆 that has 3 key
points in 𝑇0, 2 key points in 𝑇1 and 1 key point in 𝑇2.

5

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Cheng Wen et al.

81

Example: Reorder_10_bad

Thread 𝑇0 Thread 𝑇1 Thread 𝑇2 Thread 𝑇3 … Thread 𝑇9

a = 1;

if ((! (a==0 && b==0)

|| (a == 1 && b == -1))

assert(0);

b = -1; a = 1;a = 1; a = 1;

b = - b =1; -1; b = -1;

Figure 4: A buggy interleaving of program reorder_10_bad.

Firstly, let us consider the first possible pattern, we take 𝑇0 for
the first period. Due to Rule 2, we could not use 𝑇0 again for the
second period. By lexicographical order, we take 𝑇1 for the second
period and then 𝑇0 again for the third period. For the last period,
we notice𝑇1 is the smallest candidate. But taking𝑇1 would make𝑇2
left unscheduled, violating Rule 4. So we have to take𝑇2 for the last
period, yielding the first pattern [𝑇0]·[𝑇1]·[𝑇0]·[𝑇2]. By replacing
some period with a (next) larger one and reinitializing the periods
after it, we can construct the other patterns in order. For example,
the next pattern after the first one would be [𝑇0]·[𝑇1]·[𝑇2]·[𝑇0].

Once the patterns are decided, we can then allocate the key points
to their corresponding periods. First of all, by Rule 3, we put one key
point into each period. We only need to arrange the remaining key
points, which might have different ways. Taking [𝑇0]·[𝑇1]·[𝑇0]·[𝑇2]
for example, the remaining𝑇1 can only be put in the second period,
while the 𝑇0 could be put in either the first or the third period,
yielding two different schedules {𝑇0}·{𝑇1 × 2}·{𝑇0 × 2}·{𝑇2} and
{𝑇0×2}·{𝑇1×2}·{𝑇0}·{𝑇2}. Likewise, we can generate all schedules
in order for a given pattern by exploring all possible ways to arrange
the key points.

3.2.2 The Parallel Scheduler. Although it systematically explores
the schedule space of a slice, our serialized scheduler could be costly
for slices with many threads. In the worst case scenario, to expose a
𝑑-depth bug in an 𝑛-thread slice DKPS, we will have to explore the
serialized schedule space with 𝑑+𝑛−1 periods. We can also estimate
the size of the space as (𝑛 × 𝑘)𝑑+𝑛−1, where 𝑘 is the maximum
number of key points in a thread in DKPS. Apparently, it could
be too huge if 𝑛 is big. For instance, the program in Fig. 4 takes
2 context switches between 𝑇0 and any another thread to trigger
the assertion error. But our serialized scheduler has to generate
schedules with 11 periods due to Rule 1 and is unable to trigger this
error within 10,000 schedules (see Table 2).

In our definitive scheduler (which is termed as “the parallel
scheduler”), we address this problem elegantly by allowing some
threads to be executed in parallel. Specifically, at a time we pick a
set of threads under surveillance. We only serialize these “chosen”
threads so we can check how they interact. All the other threads
are neglected for now and left to run freely in the last period.
For instance, assuming 𝑇0 and 𝑇1 are chosen, a 3-period schedule
{𝑇1} · {𝑇0} · {𝑇1,𝑇2, . . . ,𝑇10} is able to trigger the assertion error in
Fig. 4. So to allow parallelism, we loosen Rule 1:

• Rule 1’. Each period (apart from the last one) only hosts key points
from the same thread.

Note that we do not impose any controls over the threads sched-
uled in the last period, but for consistency, we write them in the
lexicographical order.

It is possible that some bugsmay be in the neglected threads. This
is not an issue as we systematically (following the lexicographical
order) choose threads and would eventually reveal bugs caused by
any thread combination. Particularly, when producing the 𝑝-period
schedules, we choose all 2 to𝑚𝑖𝑛(𝑝, 𝑛)-thread combinations. For
every thread combination, using only the chosen threads and their
key points, we first generate serialized schedules as themid-product,
and then for every such serialized schedule we add the neglected
key points in its last period to produce a complete schedule.

Allowing parallelism puts every period in use to create meaning-
ful context switches. With the parallel scheduler for any 𝑛-thread
program/slice (𝑛 ≥ 2), no matter how big 𝑛 is, we can always start
with period-number 2 (instead of 𝑛), and can trigger a 𝑑-depth bug
with no more than 𝑑 + 1 periods (instead of 𝑑 + 𝑛 − 1 in the worst
case).

This process can be further guided by a schedule prefix (see §3.4).
A prefix is in the form {𝑇𝑖𝑑0 ×𝑛0} . . . ·{𝑇𝑖𝑑𝑖 ×𝑛𝑖 }·[𝑇𝑖𝑑𝑖+1] . . . ·[𝑇𝑖𝑑 𝑗

].
We say a schedule satisfies such a prefix if its first 𝑖 periods are
exactly the same as the prefix’s first 𝑖 periods and its next 𝑗 periods
have the same pattern as that is given in the prefix. Our schedule
generator function SchedGen(𝐷𝐾𝑃𝑆, 𝑝, pfx) generates all 𝑝-period
schedules for a slice DKPS satisfying the prefix pfx.

3.3 Periodical Executor

After schedule generation, we would like to enforce the schedules
in the executions of the target program. Specially, we use a series of
execution periods to host the executions, called periodical execution,
and impose the following rules: (𝑖) key points assigned to a period
only get to be executed when the previous period is completed; (𝑖𝑖)
each period has a lifetime, which should be long enough to cover
the key points hosted in any period assuming they are executable;
and (𝑖𝑖𝑖) a period is completed if the lifetime is over.

We implement the periodical executor based on Linux’s deadline
task scheduling [3], which is originally designed for real-time sys-
tems that need tasks to be done periodically. For our purpose, we
adapt deadline task scheduling for our use by putting all threads
under the deadline tasking scheduling with the same period length
and start time; so the execution periods for all threads are always
synchronized and can be used to fulfill our period based controlled
execution.We also instrument the target programwith a scheduling
point in front of every key points.

Fig. 5 gives the periodical execution for the schedule {𝑇1} · {𝑇0} ·
{𝑇1,𝑇2, . . . ,𝑇10}, where sched_yield() is triggered at the sched-
uling point to hang the current thread’s execution until the next
period. Let Run(𝑃, 𝑠) denote the periodical execution of the target
program 𝑃 guided by a periodical schedule 𝑠 .

Our periodical executor is also responsible for collecting infor-
mation from the execution: (𝑖) the error information 𝐸𝑟𝑟𝑜𝑟𝑠 , from
which we can know if a bug is triggered, and (𝑖𝑖) the activated
slice DKPS, which is fed to our feedback analyzer (§3.4) to decide
whether a new schedule job should be created. In other words, our
periodical executor returns a pair (𝐷𝐾𝑃𝑆, 𝐸𝑟𝑟𝑜𝑟𝑠). Note that, the
slice newly activated by a schedule may not be the same to the one
that generates the schedule. This is due to the fact that different
interleavings may cause conditional key points to take different
branches. For instance, the schedules shown in Fig. 3(e) and Fig. 3(f)

6

Controlled Concurrency Testing via Periodical Scheduling ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

 Thread 0 Thread 1 Thread 10
 +----------------+ +-----------------+ +-----------------+
 | sched_yield() | | key point 1.0 | | sched_yield() |
period 1 | | | sched_yield() | | |
 | | | | | |
 +----------------+ +-----------------+ +-----------------+
 | key point 0.0 | | sched_yield() | | sched_yield() |
period 2 | | | | ... | |
 | | | | | |
 +----------------+ +-----------------+ +-----------------+
 | | | key point 1.1 | | key point 10.0 |
period 3 | | | | | key point 10.1 |
 | | | | | |
 +----------------+ +-----------------+ +-----------------+

Figure 5: The execution of {𝑇1 } · {𝑇0 } · {𝑇1,𝑇2, . . . ,𝑇10 }

are generated from the same DKPS, but they cause “if(done)” in
thread 𝑇1 to take different branches, yielding two different DKPSs.

3.4 Feedback Analyzer

As explained in §3.3, the newly activated slice may be different
from the original one. Our feedback analyzer can handle this situa-
tion. For that, we introduce the supported relation between DKPSs:
𝐷𝐾𝑃𝑆1 is supported by 𝐷𝐾𝑃𝑆2 if the number of key points for
each thread in 𝐷𝐾𝑃𝑆1 is not larger than the corresponding one
in 𝐷𝐾𝑃𝑆2. From the periodical executor’s point of view, 𝐷𝐾𝑃𝑆1
is supported by 𝐷𝐾𝑃𝑆2, indicates that the schedules generated by
𝐷𝐾𝑃𝑆2 provide enough “space” of periods to hold their key points
from 𝐷𝐾𝑃𝑆1 for each thread. Considering the motivating example,
the 𝑠4 is supported by the 𝑠3, just skipping unneeded key points or
periods.

When a previously uncovered slice DKPS is discovered, our
feedback analyzer first checks if it is supported by the original one.
If not, we will consider to create a new job for it. To guide the
exploration on DKPS, we make full use of the history execution
information. We compare the current schedule with its immediate
previous schedule3 and locate the first different key point; let us
say it is a key point from 𝑇𝑖 . We can assume the difference here
leads us to the new slice, so we construct a schedule prefix by
keeping everything before it literally, and then adding a pattern
period [𝑇𝑖]. For instance, the schedule {𝑇0 × 4}·{𝑇1}·{𝑇0 × 5} in the
motivating example (Fig. 3(f)) gives us a new slice. To calculate
its prefix, we compare it with its immediate previous schedule,
{𝑇0×5}·{𝑇1}·{𝑇0×4}, and locate the first different key point, which
is the fifth key point𝑇1 of the schedule in Fig. 3(f), where its previous
schedule has 𝑇0. So we keep the {𝑇0 × 4} before this key point and
connect it with a [𝑇1] to get the prefix: {𝑇0×4}·[𝑇1]. Note that there
may already exist a job on this slice DKPS. If so, we update the prefix
of the existing job as the common prefix of the newly constructed
one and the original one. Otherwise, a new job consisting of DKPS
and the newly constructed prefix is created and put into the job list
𝐽𝑜𝑏𝑠 . The procedure is denoted as Update(𝐽𝑜𝑏𝑠, 𝐷𝐾𝑃𝑆, 𝑝𝑟𝑒 𝑓 𝑖𝑥).

Intuitively, one could explore the schedule space on the slice
containing all the key points of the target program instead. How-
ever, this space could be too huge and suffers from lots of useless
schedules. Considering the motivating example again, any schedule
satisfying that at least 5 key points from thread 𝑇0 have been exe-
cuted prior to the execution of the first key point of thread𝑇1 would
make thread 𝑇1 return directly. There are too many such schedules

3If it is the first schedule in our exploration, we say its immediate previous schedule is
an empty schedule {}.

but only one is sufficient. Moreover, during our exploration, the
number of generated schedules grows rapidly, as the size of the
slice increases. Thanks to the schedule prefix again, it helps us
significantly reducing the schedule space via avoiding some dupli-
cated schedules. As in the motivating example, when exploring 𝑠3
we use the prefix {𝑇0 × 4}·[𝑇1] which will guide the execution to
𝑠3. Without prefix, schedules like {𝑇0 × 5} . . . would be allowed
leading the execution back to 𝑠1 instead of 𝑠3 (Fig.3(c)-3(e)). Finally,
concerning the completeness, since our scheduler systematically
explores all schedules on all interesting DKPSs with period-number
from 2 to 𝑃 , we argue that most of the possible interleavings of
various threads bounded by 𝑃 context switches will be touched by
Period. As illustrated in Fig. 3, all the branches of three conditional
statements can be covered and each conditional statement can be
shuffled in any possible position if period-number 𝑝 is enough.

4 EVALUATION

Wehave built a prototype for Period upon the LLVM framework [37],
SVF [62] and SCHED_DEADLINE [9]. In particular, the periodical
executor and the feedback analyzer rely on instrumentation based
on the LLVM framework. We have implemented a static analy-
sis component, which statically identified key points of the given
concurrent program, on top of SVF [62]. The underlying implemen-
tation of the periodical execution uses the existing CPU scheduler
SCHED_DEADLINE available in the Linux kernel, as the implemen-
tation vehicle.

We have conducted thorough experiments to evaluate Period
with a set of widely-used benchmarks, and compared it with various
existing techniques. With these experiments, we aim to answer the
following research questions:
RQ1. How capable is our proposed parallel scheduler in reducing

the schedule space, compared to the serialized scheduler?
RQ2. How capable is Period in terms of finding concurrency bugs,

compared to other techniques?
RQ3. What runtime overhead is incurred by Period?

4.1 Evaluation Setup

4.1.1 Benchmark Programs. To evaluate Period, we make use of
a set of widely-used benchmarks and real-world CVEs, written in
C/C++ for the Linux/Pthreads platform, including 36 programs
from SCTBench [1] and all 10 programs from the CVE bench-
mark [2]. The CVE benchmark contains 10 programs that have
various concurrency bugs, and each program corresponds to a
real-world CVE. The SCTBench collects 52 concurrency bugs from
previous parallel workloads [10, 70] and concurrency testing/verifi-
cation works [19, 48, 73, 74]. Note that we exclude 16 programs in
SCTBench as 5 of them fail to compile on the LLVM platform and
the bugs in the other 11 programs can be exposed 100% of the time.

4.1.2 Baselines. We used existing implementations of compared
baselines when available. Based on the category of CCT tech-
niques, we select 3 systematic CCT techniques: IPB [46], IDB [22],
and DFS [64], and 3 non-systematic CCT techniques: PCT [11],
Maple [75] and a controlled random scheduler (Random) that ran-
domly chooses a thread to execute at a time. For comparison, we

7

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Cheng Wen et al.

Table 1: Descriptive statistics and detection results on CVE benchmark

Systematic Testing Non-systematic Testing

Con. Bug

Detector

Data Race

Detector

Period / Serial IPB IDB DFS Native PCT Random Maple

Bug ID Programs
Bug

Type

Bug

Depth sc
he
du

le
st
o
bu

g
(1
st
)

sc
he
du

le
s

bu
gg
y
sc
he
du

le
s

sc
he
du

le
st
o
bu

g
(1
st
)

sc
he
du

le
s

bu
gg
y
sc
he
du

le
s

sc
he
du

le
st
o
bu

g
(1
st
)

sc
he
du

le
s

bu
gg
y
sc
he
du

le
s

sc
he
du

le
st
o
bu

g
(1
st
)

sc
he
du

le
s

bu
gg
y
sc
he
du

le
s

ru
ns

to
1s
tb

ug

bu
gg
y
ru
ns

sc
he
du

le
st
o
bu

g
(1
st
)

bu
gg
y
sc
he
du

le
s

sc
he
du

le
st
o
bu

g
(1
st
)

bu
gg
y
sc
he
du

le
s

fo
un

ds
?

sc
he
du

le
s

C
o
n
V
u
l

U
F
O
/
U
F
O
N
PD

F
a
s
t
T
r
a
c
k

H
e
l
g
r
i
n
d

T
S
A
N

CVE-2009-3547 Linux-2.6.32-rc6 NPD 1 2 6 3 3 36 5 5 33 4 4 10 1 249 3 5 3333 8 2506 ! 30 ! ! ! ! !

CVE-2011-2183 Linux-2.6.39-3 NPD 2 3 906 130 8 98 11 6 85 9 5 31 3 681 10 5 394 8 3745 ! 60 % % % % %

CVE-2013-1792 Linux-2.8.3 NPD 2 13 179 6 15 321 18 22 260 14 15 88 5 % 0 61 124 8 741 ! 165 ! % % % %

CVE-2015-7550 Linux-4.3.4 NPD 2 3 14 6 8 73 11 6 64 9 5 22 3 % 0 3 394 1 3745 ! 160 ! ! % % %

NPD 2 3 20 16 881 11 472 228 90 % 0 3 731 55 430 ! % % % %(△) %(△)
UAF 4 159 11 91 918 66 663 229 337 % 0 134 15 1 1539 % ! % % %(△) %(△)CVE-2016-1972 Firefox-45.0
DF 5 447

573
1 %

L
0 %

6176
0 %

L
0 % 0 % 0 % 0 %

144
% % % %(△) %(△)

NPD 2 5 2 % 0 % 0 % 0 1415 3 % 0 % 0 ! % % % % %
CVE-2016-1973 Firefox-45.0 UAF 3 17 31 5 % L 0 % L 0 % L 0 % 0 % 0 % 0 % 157 ! % % % %

CVE-2016-7911 Linux-4.6.6 NPD 2 3 19 8 8 204 66 6 170 54 5 58 21 799 15 5 511 5 3733 ! 143 ! % %(△) %(△) %(△)
CVE-2016-9806 Linux-4.6.3 DF 2 6 42 4 9 226 84 7 193 65 6 71 28 % 0 3 1135 1 2353 ! 36 ! - %(△) % %(△)
CVE-2017-15265 Linux-4.9.13 UAF 2 11 96 1 % 88 0 % 83 0 % 31 0 % 0 % 0 % 0 ! 73 ! ! % % !

NPD 2 5 60 % 0 % 0 % 0 % 0 % 0 % 0 ! % % %(△) %(△) %(△)
UAF 3 47 6 % 0 % 0 % 0 % 0 % 0 % 0 % ! % %(△) %(△) %(△)CVE-2017-6346 Linux-4.13.8
DF 2 46

182
14 %

L
0 %

L
0 %

L
0 % 0 % 0 20 1625 !

118
! - %(△) %(△) %(△)

Total bugs found (Buggy Programs) 15 (10) 8 (7) 8 (7) 8 (7) 4 (3) 8 (7) 9 (7) 11 (7) 10 (9) 3 (3) 1 (1) 1 (1) 2 (2)
* All the sub-thread numbers of programs are 2. NPD, UAF, and DF are short for null-pointer-deference, use-after-free , and double-free, respectively. ‘L’ denotes our schedule limit 10,000 is reached. ‘%’
denotes that no bug was found. "-" denotes an inapplicable case.△ denotes that a race detector reports a race on the related variables of the concurrency bug.

also include the version of Period equipped with our serialized
scheduler (we call this version of Period as Serial) and the native
execution (Native) wherein schedules are uncontrolled.

4.1.3 Configuration Parameters. In our experiments, the schedule
bounds for all the CCT techniques are set to check bugs with bug-
depth nomore than 5 on the CVE Benchmark (resp. 3 on SCTBench),
as the maximum bug-depth for known bugs in the CVE-benchmark
(resp. SCTbench) is 5 (resp. 3). Each invocation of a CCT technique
has a budget of exploring up to 10, 000 schedules. For the other
non-CCT techniques, we adopted their default configurations. For
each compared technique, we invoke tests run for each program
10 times and collect their results. All our experiments have been
performed on a workstation with an Intel(R) Xeon(R) Silver 4214
processor, installed with Ubuntu 18.04, GCC 7.5, LLVM 10.0.

4.2 Improvement of Parallel Scheduler (RQ1)

The descriptive statistics and detection results on the CVE bench-
mark [2] and SCTBench [1] are shown in Table 1 and Table 2,
respectively. Each column denotes the experimental results of a
technique. The schedules to bug (1st), schedules, and buggy sched-
ules denote the number of schedules that were explored up to and
including the detection of a bug for the first time, the total number
of schedules explored by a technique, and the number of explored
schedules that exhibited the bug. These figures can demonstrate
how capable and how quickly each technique finds the bugs on
these benchmark programs.

As shown in Table 1, the results for Period (which uses the par-
allel scheduler) and Serial on the CVE benchmark are exactly the
same. This is because, as discussed in §3.2.2, the schedule space sizes
for Serial and Period to explore on programs with 𝑛 threads and
a 𝑑-depth bug are respectively over-approximated as (𝑛×𝑘)𝑛+𝑑−1
and (𝑛×𝑘)𝑑+1, and all the thread numbers of programs in the CVE
benchmark are 2 so that both space sizes are exactly the same.
While their results on SCTBench are different and highlighted in

blue in Table 2. All the differences are due to the thread numbers
are larger than 2. In fact, when testing programs with a large thread
number, Serial could require a larger schedule space than needed
to detect bugs, resulting in missing some bugs, even the ones with
depth 2. While, thanks to parallelization, Period can always trigger
a 𝑑-depth bug with no more than 𝑑 + 1 periods. Table 2 shows that
Period reports 8 more bugs than Serial, with an improvement
about 26.67%.

Moreover, allowing parallelism greatly improves the schedule
space. For example, Serial generates 30, 384 and 5040 schedules for
the 3-threads, 4-threads, and 5-threads versions of CS.reorder_bad
(CS.reorder_3_bad, CS.reorder_4_bad and CS.reorder_5_bad), respec-
tively. When the thread number grows to 10 (CS.reorder_10_bad),
Serial requires a particularly large number of schedules, which
quickly exceeds the budget limit. While Period respectively gen-
erates 27, 100, and 225 schedules for the 3-threads, 4-threads, and
5-threads versions and still performs well (2350 schedules, still lots
of remaining budgets) on the 10-threads version. This indicates that,
as the thread number increases, the improvement of the parallel
scheduler would be more substantial. In addition, allowing paral-
lelism also enables Period to detect bugs more quickly. As shown
in Table 2, Period always requires fewer schedules to detect the
same bug for the first time, compared with Serial.

Our parallel scheduler significantly improves serialized one in
terms of the schedule space, enabling us to detect more bugs.

4.3 Bug-finding Ability Evaluation (RQ2)

In Table 1, Period has successfully identified all 10 programs from
the CVE benchmark as buggy ones, while other CCT techniques
(i.e., IPB, IDB, DFS, PCT, Random, Maple) have identified only 7
buggy ones. Notice that the native execution (i.e., no control on
schedules), could identify only 3 buggy programs. In terms of bugs,

8

Controlled Concurrency Testing via Periodical Scheduling ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: Descriptive statistics and detection results on SctBench

Systematic Testing Non-systematic Testing

Period Serial IPB IDB DFS Native PCT Random Maple

Programs
Sub

Threads

Bug

Type

Bug

Depth sc
he
du

le
st
o
bu

g
(1
st
)

sc
he
du

le
s

bu
gg
y
sc
he
du

le
s

sc
he
du

le
st
o
bu

g
(1
st
)

sc
he
du

le
s

bu
gg
y
sc
he
du

le
s

sc
he
du

le
st
o
bu

g
(1
st
)

sc
he
du

le
s

bu
gg
y
sc
he
du

le
s

sc
he
du

le
st
o
bu

g
(1
st
)

sc
he
du

le
s

bu
gg
y
sc
he
du

le
s

sc
he
du

le
st
o
bu

g
(1
st
)

sc
he
du

le
s

bu
gg
y
sc
he
du

le
s

ru
ns

to
1s
tb

ug

bu
gg
y
ru
ns

sc
he
du

le
st
o
bu

g
(1
st
)

bu
gg
y
sc
he
du

le
s

sc
he
du

le
st
o
bu

g
(1
st
)

bu
gg
y
sc
he
du

le
s

fo
un

ds
?

sc
he
du

le
s

CS.account_bad 3 AF 1 2 65 26 4 136 56 3 70 13 4 43 6 3 28 4 2903 1 5 2396 8 1177 ! 80
CS.bluetooth_driver_bad 2 AF 2 9 205 9 9 205 9 7 92 9 7 92 9 36 177 10 % 0 700 85 8 648 % 57
CS.carter01_bad 2 DL 2 5 42 11 5 42 11 11 396 38 9 250 18 8 1708 49 555 1 3 608 1 4750 ! 6
CS.circular_buffer_bad 2 AF 2 17 871 207 17 871 207 26 806 363 42 623 219 20 3991 2043 % 0 11 842 1 9110 % 58
CS.deadlock01_bad 2 DL 2 3 14 6 3 14 6 11 81 8 8 65 6 10 46 3 4353 2 38 174 1 3745 % 89
CS.lazy01_bad 3 AF 1 3 39 12 4 60 20 1 208 13 1 87 62 1 118 81 2 6631 1 5128 2 6092 ! 1
CS.queue_bad 2 AF 2 25 998 119 25 998 119 101 L 7275 106 8310 3768 43 L 6405 7993 1 6 984 1 L ! 64
CS.reorder_10_bad 10 AF 2 27 2350 89 % L 0 % L 0 % 7406 0 % L 0 % 0 85 9 % 0 % 56
CS.reorder_20_bad 20 AF 2 39 L 2870 % L 0 % L 0 % L 0 % L 0 % 0 891 18 % 0 % 56
CS.reorder_3_bad 3 AF 2 6 27 6 10 30 10 50 1192 25 33 205 6 126 2494 23 % 0 192 54 39 237 % 56
CS.reorder_4_bad 4 AF 2 9 100 12 37 384 90 393 L 31 262 518 7 6409 L 4 % 0 164 40 68 86 % 56
CS.reorder_5_bad 5 AF 2 12 225 20 283 5040 816 3587 L 3 % 996 0 % L 0 % 0 355 28 68 23 % 56
CS.stack_bad 2 AF 2 3 918 144 3 918 144 25 2429 318 23 1595 273 22 L 512 % 0 15 6 3 6189 ! 2
CS.token_ring_bad 4 AF 1 2 232 58 7 2424 401 8 503 114 15 113 13 8 280 57 % 0 11 6 9 1293 ! 45
CS.twostage_100_bad 100 AF 2 690 L 141 % L 0 % L 0 % L 0 % L 0 % 0 13453 11 % 0 % 56
CS.twostage_bad 2 AF 2 4 33 3 4 33 3 % L 0 % L 0 % L 0 % 0 % 0 % 0 ! 8
CS.wronglock_3_bad 4 AF 2 6 172 42 26 1320 265 277 L 1227 16 1568 197 3233 L 94 7212 1 7 313 1 3197 ! 19
CS.wronglock_bad 8 AF 2 10 1464 210 % L 0 % L 0 32 L 710 % L 0 % 0 44 307 1 3286 ! 19
CB.aget-bug 3 AF 2 9 3279 679 12 L 1900 1 4359 2903 1 292 194 1 2847 1814 2 3341 7 3202 4 4853 ! 1
CB.stringbuffer 2 AF 2 12 163 16 12 163 16 13 38 2 13 38 2 8 30 2 % 0 3555 5 23 673 ! 40

BOF 2 41 14 578 27 % 0 % 0 % 0 % 0 % 0 % 0 %

NPD 2 52 41 82 427 16 36 4 1733 12 573 % 0 62 136 1 2545 !CB.pbzip2 4
UAF 1 53

1626
24 83

L
498 2

L
4902 3

L
3053 2

L
1267 % 0 7 2193 5 1594 %

42

Chess.WSQ 3 AF 3 105 434 15 574 5175 117 4502 L 306 845 L 270 % L 0 % 0 2 1118 392 10 ! 49
Chess.IWSQ 3 AF 3 108 711 17 836 L 138 % L 0 3554 L 192 % 1503 0 % 0 5 1173 443 24 % 10

BOF 3 1628 11 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
Chess.SWSQ 3 AF 3 1630 L 13 %

L 0 284 L 1 222 L 1 %
L 0 % 0 68 257 17 1078 % 60

BOF 3 1661 11 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
Chess.IWSQWS 3 AF 3 1663 L 13 %

L 0 284 L 1 222 L 1 %
L 0 % 0 68 261 3 1918 % 70

Inspect.qsort_mt 3 AF 2 27 8643 135 30 L 96 33 L 365 20 3882 158 % L 0 % 0 44 194 72 100 % 115
Inspect.boundedbuffer 4 AF 2 20 L 1514 39 L 1382 % L 0 608 L 103 % L 0 15 294 27 109 8 2808 % 158
Misc.safestack 3 AF - % 6519 0 % L 0 % L 0 % L 0 % L 0 % 0 % 0 % 0 % 59
Splash2.barnes 2 AF 1 2 L 1186 2 L 1186 3 L 1006 3 L 741 2 L 2202 7 1251 2 5013 2 4893 ! 1
Splash2.fft 2 AF 1 2 L 3963 2 L 3963 3 L 9221 3 L 9221 2 L 7210 1 6862 2 5047 2 6241 ! 2
Splash2.lu 2 AF 1 2 6129 2848 2 6129 2848 3 L 6900 3 L 6900 2 L 5560 12 2177 2 5724 2 9714 ! 4
RADBench.bug2 2 AF 3 1985 L 9 1985 L 9 % L 0 % L 0 % L 0 % 0 1813 10 % 0 % 264
RADBench.bug3 2 AF 2 42 L 3478 42 L 3478 % L 0 % L 0 % L 0 % 0 1 489 % 0 % 227
RADBench.bug4 2 AF 3 259 L 6 259 L 6 % L 0 % L 0 % L 0 4 2013 % 0 1275 13 ! 1
RADBench.bug5 2 DL 2 % L 0 % L 0 % L 0 % L 0 % L 0 % 0 % 0 % 0 % 224
RADBench.bug6 2 DL 2 24 2950 340 24 2950 340 30 8327 112 27 4039 70 % L 0 236 7 484 34 3 855 ! 14

Total bugs found (Buggy Programs) 38 (34) 30 (28) 25 (24) 27 (26) 19 (18) 13 (13) 33 (32) 29 (28) 18 (18)
* AF, BOF, and DL are short for assertion failure, buffer-overflow, and deadlock, respectively. The marker ‘L’ and ‘%’ respectively denote our schedule limit 10,000 is reached (except program
CS.twostage_100_bad using 100,000 as schedule limit) and that no bug was found.

Period and Serial identified 15 bugs in the CVE benchmark, per-
forming the best. In the program of CVE-2017-6346, Period reports
a null-pointer-dereference (NPD) bug, a use-after-free (UAF) bug
and a double-free (DF) bug. While all other systematic CCT tech-
niques fail to report these three bugs, and only two non-systematic
CCT techniques (i.e., Random and Maple) can identify NPD or DF.
In particular, the DF bug in the program of CVE-2016-1972 can
be found only by Period, which is also an undocumented bug.
Moreover, two concurrency vulnerabilities detectors (i.e., UFO [30]
and ConVul [15]) and three data race detectors (i.e., FastTrack [24],
Helgrind [35] and TSAN [59]) are considered, whose results are
included in Table 1 as well. However, most of their performances
(except for ConVul) are worse than CCT techniques: ConVul and
UFO identify 9 and 3 buggy programs, respectively, and the three
data race detectors can identify at most 2 bugs. The above results

Figure 6: The number of bugs found after 𝑥 schedule.

demonstrate the effectiveness of our systematic schedule explo-
ration in terms of execution periods for both Period and Serial.

On SCTBench, as shown in Table 2, Period identified 38 bugs
and 30 buggy programs in total, performing the best. In particular,
Period performs the best on about half (20 out of 40) bugs in terms

9

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Cheng Wen et al.

of schedules to bug (1st), and requires fewer schedules than other sys-
tematic testing techniques on about 83.33% (30 out of 36) programs,
due to our efficient exploration of schedule space. Moreover, our
Serial identified 30 bugs, performing better than the other CCT
techniques (except for PCT). Due to the larger thread numbers,
Serial still missed 10 bugs, 7 of which are also missed by IPB and
IDB. However, about 80% of these missed bugs can be identified by
our parallel version Period. The last two lucky bugs missed by all
the techniques are Misc.SafeStack and RADBench.bug5. We had a
manual inspection on these two bugs. Misc.SafeStack is an imple-
mentation of a lock-free stack [67], which requires at least 5 context
switches. While the schedule bound for the CCT techniques is set
to 3. In addition, as shown in a prior evaluation [64],Misc.SafeStack
is very difficult to detect, since all techniques in [64] fail to detect
it. RADBench.bug5 was unable to reproduce in our experiments,
despite that we followed the instructions in the document.

To further compare the CCT techniques, we present a cumula-
tive plot in Fig. 6 with a schedule limit of 10,000, where each line
represents a technique and is labeled by the name of the technique
and the number of bugs found by the technique, and a point (𝑥 ,𝑦)
represents that 𝑦 concurrency bugs are exposed by the technique
using 𝑥 schedules. On the whole, Period has a larger growth trend,
indicating that Period requires fewer schedules to find the same
number of bugs or can find more bugs in the same number of sched-
ules. For example, more than 40 bugs could be exposed by Period
using lower than 100 schedules, while the others would require
1,000 to 10,000 schedules.

The above results signify that Period is more effective than the
other techniques. There are two main factors that contribute to
the effectiveness. Firstly, as demonstrated by the performances of
our Serial and Period, the proposed gradual exploration in terms
of execution periods guided by schedule prefixes is effective in
detecting concurrency bugs. Secondly, as shown in §4.2, allowing
parallelism can significantly improve our serialized scheduler.
Case Studies. To demonstrate the reasons behind Period’s superi-
ority, we present two case studies. The first case is the program in
CVE-2016-1972, which suffers from the NPD, UAF and DF bugs.With
the help of feedback analyzer, Period only generates 573 schedules
and successfully finds all the bugs. A brief introduction for how
Period find the UAF and DF bugs have been given in §2, which
demonstrates our effective exploring strategies. However, both IPB
and DFS generated more than 10, 000 schedules but failed to find the
DF bug. The program CS.reorder_10_bad from SCTBench contains
an assertion error. As illustrated in Fig. 4, two context switches
between 𝑇0 and any other thread can trigger the error. But most
of the CCT techniques, except for our technique Period and PCT,
were unable to detect it. Similar to Serial, with no supports of
parallelization, existing systematic techniques have to explore a
much larger schedule space than needed, causing schedule budget
running out quickly, especially for programs with a large number
of threads. On the other hand, although PCT can expose this error,
the probability to trigger it is extremely low (about 9/10000 = 0.09%
in our experiment).

Period significantly outperforms existing CCT techniques in
terms of concurrency bug finding ability.

Figure 7: Average execution speed of CCT techniques relative to na-

tive execution. Lower is better.

4.4 Overhead Evaluation (RQ3)

To evaluate the runtime overhead required for achieving controlled
scheduling, we use programs from the SCTbench with various
numbers of threads and all the programs from the CVE benchmark.
Fig. 7 shows the average execution speed during testing achieved by
Period, IPB, IDB and PCT relative to native execution, where the
number inside the program name represents the number of threads.
On all benchmark programs, the runtime overhead incurred by
Period is lower than other techniques (i.e., IPB, IDB, and PCT). In
detail, Period requires only 2 to 30 times of execution slowdown
over native execution, while the others require 10 to 500 times.
As the number of threads increases, the effect of execution slow-
down can be weakened for all techniques. The reasons for the low
overhead of Period could be: (𝑖) the periodical execution achieves
control scheduling with non-preemptive synchronizations, thus
avoiding false deadlocks and starvation; and (𝑖𝑖) Period allows
parallelism in periodical execution, instead of serializing execution,
which can boost the performance.

Period incurs some noticeable runtime overhead, which is
significantly lower than that of IPB, IDB, and PCT.

4.5 Discussion

Additional Experiments. The above experiments show that Pe-
riod is effective and efficient in finding concurrency bugs. Note
that it is possible that a technique “gets lucky” and finds a bug
quickly due to the search order. For that, we consider the worst-case
bug-finding ability in terms of the total number of non-buggy sched-
ules within the bound, that is, the difference between schedules and
buggy schedules. The result shows that Period performs the best
in 33 out of all 46 programs. Since Period allows parallelism in
periodical execution, which could be accelerated by multi-cores, we
also evaluate the runtime speedup with different CPU cores. For a
program with 10, 20, 50, and 100 threads, Period respectively pro-
vides 8×, 11×, 17×, and 34× speedups on the 8-cores configuration,
compared to the single-core one. In addition, we have tested 20
open-source programs, with source lines of code ranging from 325
to 233,431 lines. Period successfully identified 5 previously unknown
concurrency bugs (e.g., a UAF in lrzip, buffer-overflow in pbzip2, in-
valid address dereference in ctrace). These concurrency bugs were
not previously reported and we have informed the maintainers. All
extra experimental results are available on our website4.
Threats to Validity.We selected a variant of existing benchmarks
and real-world programs to show the capabilities of Period, and

4Period’s website: https://sites.google.com/view/period-cct/

10

https://sites.google.com/view/period-cct/

Controlled Concurrency Testing via Periodical Scheduling ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

compared it against other CCT techniques. However, our evaluation
dataset may still include a certain sample bias. Further studies on
more real-world programs can help to better evaluate Period. Pe-
riod uses static analysis to identify key points. In practice, if some
key points are missed, it could result in some bugs being missed.
Thus the static analysis for identifying key points should be an
over-approximation. Our static analysis is currently built on top of
SVF [62], and it works well for all the benchmark programs in our
evaluation. A more powerful static analysis may help to improve
Period further. Moreover, this work assumes that the inputs to
the program are predetermined, for example, by an existing test
suite, and do not vary between runs, as it is typical in other work
in the literature on CCT. Adopting some test case generation tech-
niques (e.g., fuzzing and symbolic execution) might help mitigate
this threat. Finally, this work doesn’t handle weak memory models
(WMMs) [7] and probabilistic programming models [56]. We are
seeking solutions to further improve Period.

5 RELATEDWORK

There is a wide range of research proposed in the literature on test-
ing and analysis of concurrent programs. Here we briefly describe
the related work and compared it to Period.
Concurrency Testing. Controlled concurrency testing has been
the subject of extensive research, given the elusive nature of con-
currency bugs. Chess [22, 48] showed the effectiveness of itera-
tive preemption-bounding (IPB), and later iterative delay-bounding
(IDB), for finding bugs in multi-threaded software. PCT [11] and its
parallelized variation PPCT [50] set thread priorities that are used
by the scheduler of the underlying operating system or runtime
to schedule the threads exactly as required by the testing algo-
rithm, showcasing the power of randomized scheduling [4, 17, 69].
Maple [75] employs a coverage-driven approach, based on a generic
set of interleaving idioms, for testing multi-threaded programs.
RPro [12] is a radius-aware probabilistic testing for triggering dead-
locks, where it selects priority changing points within the radius of
the targeted deadlocks but not among all events. TSVD [39] dynam-
ically identifies potential thread-safety violations and injects delays
to drive the program towards unsafe behaviors. QL [45] improves
CCT by leveraging classical Q-learning algorithm to explore the
space of possible interleavings. Several techniques are also devel-
oped for distributed systems, including dBug [60], MoDist [72],
Samc [38], Spider [52] and Morpheus [79]. The presence of such a
large number of techniques clearly indicates the importance of CCT.
Our proposed Period achieve controlled scheduling by a novel peri-
odical executions which is non-preemptive and allows parallelism,
and it systematically explore the schedule space of each DKPS with
the guidance of schedule prefixes.

Dynamic partial-order reduction (DPOR) [25, 47] computes per-
sistent sets during testing to identify equivalent interleavings so
some interleavings can be skipped if their equivalents are already
tested. Some recent research has achieved considerable improve-
ments over DPOR [16, 34, 58, 80]. It would be interesting for future
work to combine DPOR techniques into Period.

Several other techniques leverage fuzzing [40, 41] to find test
inputs exposing bugs in concurrent programs [18, 36, 42, 65, 71].
Challenges caused by test inputs are orthogonal to this work as we
focus on finding buggy interleavings.

Static Analysis Approaches. Static analysis aims to approximate
concurrent programs’ behaviors without actually executing them [8,
13, 55, 61, 66]. For example, LOCKSMITH [55] uses existential
types to correlate locks and data in dynamic heap structures for
race detection. Goblint [66] relies on a thread-modular constant
propagation and points-to analysis for detecting concurrency bugs
by considering conditional locking schemes. DCUAF [8] statically
detects concurrency use-after-free bugs in Linux device drivers
through a summary-based lockset analysis. FSAM [61, 62] pro-
poses a sparse flow-sensitive pointer analysis for C/C++ programs
using context-sensitive thread-interleaving analysis. Canary [13]
conducts interference-aware value-flow analysis for checking inter-
thread value-flow bugs, achieving both good precision and scalabil-
ity for millions of lines of code. The static approaches may produce
false positives. In Period, the static analysis component is currently
built on top of SVF, but can be replaced by a more powerful static
analysis if available.
Dynamic Analysis Approaches. There is a line of work using
dynamic analysis to find concurrency bugs [14, 28, 51, 76, 76, 78].
The two fundamentals are happens-before model [24] and lockset
model [57]. The happens-before model reports a race condition
when two threads read/write a shared memory arena in a causally
unordered way, while at least one of the threads writes into this
arena. The lockset model conservatively considers a potential race
if two threads read/write a shared memory arena without lock-
ing. FT [24] and Helgrind [35] are two well-known happens-before
based race detectors. Modern detectors such as TSan [59] apply a
hybrid strategy to combine both the happens-before model [24] and
the lockset model [57]. Predictive analysis [14, 15, 30, 31, 68] collects
traces consisting of different types of events and then predicts bugs
offline based on the dependencies of events or known bug patterns.
UFO [30] applies an extended maximal causality model [29, 32, 33]
to predict concurrency UAFs based on a single execution trace, even
though the UAFs may not happen in the observed execution. Con-
Vul [15] predicts concurrency vulnerabilities by judging whether
two events are exchangeable based on the happens-before model.
ConVulPOE [76] enhances ConVul by introducing partial-order
reduction. Period’s focus is not on improving dynamic detection
of concurrency violation; instead, it can employ these techniques
as bug detectors to work with the periodical scheduling.

6 CONCLUSION

In this paper, we present a novel controlled concurrency testing
technique Period. Period models the execution of concurrent pro-
grams as periodical execution, and systematically explores the space
of possible interleavings, guided by periodical scheduling and the
history execution information. Our evaluation has demonstrated
Period shows superiority over state-of-the-art CCT techniques in
terms of both bug-finding effectiveness and runtime overhead.

ACKNOWLEDGEMENTS

This work was supported in part by the National Natural Sci-
ence Foundation of China (Nos. 61972260, 61772347, 61836005),
the Guangdong Basic and Applied Basic Research Foundation (No.
2019A1515011577) and the Stable Support Programs of Shenzhen
City (No. 20200810150421002).

11

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Cheng Wen et al.

REFERENCES

[1] 2016. SCTBench: a set of C/C++ pthread benchmarks for evaluating concurrency
testing techniques. Retrieved August 20, 2021. https://github.com/mc-imperial/
sctbench [online].

[2] 2019. CVE Benchmark. Retrieved August 20, 2021. https://github.com/mryancai/
ConVul [online].

[3] 2021. Deadline Task Scheduling. The Linux kernel user’s and administrator’s
guide. https://www.kernel.org/doc/html/latest/scheduler/sched-deadline.html
[online].

[4] Mahmoud Abdelrasoul. 2017. Promoting secondary orders of event pairs in
randomized scheduling using a randomized stride. In 2017 32nd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). IEEE, 741–752.

[5] Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, and Hans Hansson.
2017. Concurrency bugs in open source software: a case study. Journal of Internet
Services and Applications 8, 1 (2017), 1–15.

[6] Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hansson, and
Wasif Afzal. 2017. 10 Years of research on debugging concurrent and multicore
software: a systematic mapping study. Software quality journal 25, 1 (2017),
49–82.

[7] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal
Musuvathi. 2010. On the verification problem for weak memory models. In
Proceedings of the 37th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. 7–18.

[8] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min Hu. 2019. Effective static
analysis of concurrency use-after-free bugs in Linux device drivers. In 28th
USENIX Annual Technical Conference (USENIX ATC 19). USENIX, 255–268.

[9] Alessio Balsini. 2014. SCHED DEADLINE. In Workshop on Real-Time Scheduling
in the Linux Kernel.

[10] Christian Bienia. 2011. Benchmarking modern multiprocessors. Princeton Univer-
sity.

[11] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-
garakatte. 2010. A randomized scheduler with probabilistic guarantees of finding
bugs. ACM SIGARCH Computer Architecture News 38, 1 (2010), 167–178.

[12] Yan Cai and Zijiang Yang. 2016. Radius aware probabilistic testing of deadlocks
with guarantees. In 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 356–367.

[13] Yuandao Cai, Peisen Yao, and Charles Zhang. 2021. Canary: practical static de-
tection of inter-thread value-flow bugs. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation.
1126–1140.

[14] Yan Cai, Hao Yun, Jinqiu Wang, Lei Qiao, and Jens Palsberg. 2021. Sound and
Efficient Concurrency Bug Prediction. In Proceedings of the 2021 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM.

[15] Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, and Bin Liang.
2019. Detecting concurrency memory corruption vulnerabilities. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM, Paris, France,
706–717.

[16] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha,
and Kapil Vaidya. 2017. Data-centric dynamic partial order reduction. Proceedings
of the ACM on Programming Languages 2, POPL (2017), 1–30.

[17] Dongjie Chen, Yanyan Jiang, Chang Xu, Xiaoxing Ma, and Jian Lu. 2018. Testing
multithreaded programs via thread speed control. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 15–25.

[18] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang, Yuekang
Li, Haijun Wang, and Yang Liu. 2020. MUZZ: Thread-aware Grey-box Fuzzing
for Effective Bug Hunting in Multithreaded Programs. In 29th USENIX Security
Symposium (USENIX Security 20). USENIX, Virtual, 2325–2342.

[19] Lucas Cordeiro and Bernd Fischer. 2011. Verifying multi-threaded software
using SMT-based context-bounded model checking. In 2011 33rd International
Conference on Software Engineering (ICSE). IEEE, 331–340.

[20] The MITRE Corporation. 1999. Common Vulnerabilities and Exposures.
[21] CVE-2016-1972. 2016. Available from MITRE. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2016-1972.
[22] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamarić. 2011. Delay-bounded

scheduling. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium
on principles of programming languages. ACM, 411–422.

[23] Haining Feng, Liangze Yin, Wenfeng Lin, Xudong Zhao, and Wei Dong. 2020.
Rchecker: A CBMC-based Data Race Detector for Interrupt-driven Programs.
In 2020 IEEE 20th International Conference on Software Quality, Reliability and
Security Companion (QRS-C). IEEE, Macau, China, 465–471.

[24] Cormac Flanagan and Stephen N Freund. 2009. FastTrack: efficient and precise
dynamic race detection. ACM Sigplan Notices 44, 6 (2009), 121–133.

[25] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order reduction
for model checking software. ACM Sigplan Notices 40, 1 (2005), 110–121.

[26] Pedro Fonseca, Rodrigo Rodrigues, and Björn B Brandenburg. 2014. SKI: Exposing
Kernel Concurrency Bugs through Systematic Schedule Exploration. In 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 14).
415–431.

[27] Patrice Godefroid. 1997. Model checking for programming languages using
VeriSoft. In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages. 174–186.

[28] Shin Hong and Moonzoo Kim. 2015. A survey of race bug detection techniques
for multithreaded programmes. Software Testing, Verification and Reliability 25, 3
(2015), 191–217.

[29] Jeff Huang. 2015. Stateless model checking concurrent programs with maximal
causality reduction. ACM SIGPLAN Notices 50, 6 (2015), 165–174.

[30] Jeff Huang. 2018. UFO: predictive concurrency use-after-free detection. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
Gothenburg, Sweden, 609–619.

[31] Jeff Huang, Qingzhou Luo, and Grigore Rosu. 2015. GPredict: Generic predictive
concurrency analysis. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. IEEE, 847–857.

[32] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal sound
predictive race detection with control flow abstraction. In Proceedings of the 35th
ACM SIGPLAN conference on programming language design and implementation.
337–348.

[33] Shiyou Huang and Jeff Huang. 2016. Maximal causality reduction for TSO and
PSO. ACM SIGPLAN Notices 51, 10 (2016), 447–461.

[34] Shiyou Huang and Jeff Huang. 2017. Speeding up maximal causality reduction
with static dependency analysis. In 31st European Conference on Object-Oriented
Programming (ECOOP 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[35] Ali Jannesari, Kaibin Bao, Victor Pankratius, and Walter F Tichy. 2009. Helgrind+:
An efficient dynamic race detector. In 2009 IEEE International Symposium on
Parallel & Distributed Processing. IEEE, Chengdu, China, 1–13.

[36] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and Insik
Shin. 2019. Razzer: Finding kernel race bugs through fuzzing. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, Hyatt Regency, San Francisco, CA,
754–768.

[37] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[38] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F Lukman,
and Haryadi S Gunawi. 2014. SAMC: Semantic-Aware Model Checking for
Fast Discovery of Deep Bugs in Cloud Systems. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14). 399–414.

[39] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan Padhye.
2019. Efficient scalable thread-safety-violation detection: finding thousands of
concurrency bugs during testing. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles. ACM, Huntsville, Ontario, Canada, 162–180.

[40] Jun Li, Bodong Zhao, and Chao Zhang. 2018. Fuzzing: a survey. Cybersecurity 1,
1 (2018), 6.

[41] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. 2018.
Fuzzing: State of the art. IEEE Transactions on Reliability 67, 3 (2018), 1199–1218.

[42] Changming Liu, Deqing Zou, Peng Luo, Bin B Zhu, and Hai Jin. 2018. A heuristic
framework to detect concurrency vulnerabilities. In Proceedings of the 34th Annual
Computer Security Applications Conference. ACM, San Juan, PR, USA, 529–541.

[43] Ziheng Liu, Shuofei Zhu, Boqin Qin, Hao Chen, and Linhai Song. 2021. Au-
tomatically detecting and fixing concurrency bugs in go software systems. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 616–629.

[44] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
mistakes: a comprehensive study on real world concurrency bug characteristics.
In Proceedings of the 13th international conference on Architectural support for
programming languages and operating systems. 329–339.

[45] Suvam Mukherjee, Pantazis Deligiannis, Arpita Biswas, and Akash Lal. 2020.
Learning-based controlled concurrency testing. Proceedings of the ACM on Pro-
gramming Languages 4, OOPSLA (2020), 1–31.

[46] Madanlal Musuvathi and Shaz Qadeer. 2007. Iterative context bounding for
systematic testing of multithreaded programs. ACM Sigplan Notices 42, 6 (2007),
446–455.

[47] Madanlal Musuvathi and Shaz Qadeer. 2007. Partial-order reduction for context-
bounded state exploration. Technical Report. Citeseer.

[48] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagamArumugaNainar, and IulianNeamtiu. 2008. Finding and Reproducing
Heisenbugs in Concurrent Programs.. In OSDI, Vol. 8. USENIX, USA, 267–280.

[49] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Madanlal Musuvathi, Shaz
Qadeer, and Thomas Ball. 2007. Chess: A systematic testing tool for concurrent
software. Technical Report. Technical Report MSR-TR-2007-149, Microsoft Re-
search.

[50] Santosh Nagarakatte, Sebastian Burckhardt, Milo MK Martin, and Madanlal
Musuvathi. 2012. Multicore acceleration of priority-based schedulers for con-
currency bug detection. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM, Beijing, China,12

https://github.com/mc-imperial/sctbench
https://github.com/mc-imperial/sctbench
https://github.com/mryancai/ConVul
https://github.com/mryancai/ConVul
https://www.kernel.org/doc/html/latest/scheduler/sched-deadline.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1972
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1972

Controlled Concurrency Testing via Periodical Scheduling ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

543–554.
[51] Jihyun Park, Byoungju Choi, and Seungyeun Jang. 2020. Dynamic analysis

method for concurrency bugs in multi-process/multi-thread environments. Inter-
national Journal of Parallel Programming 48 (2020), 1032–1060.

[52] João Carlos Pereira, Nuno Machado, and Jorge Sousa Pinto. 2020. Testing for Race
Conditions in Distributed Systems via SMT Solving. In International Conference
on Tests and Proofs. Springer, 122–140.

[53] Ernest Pobee and Wing Kwong Chan. 2019. Aggreplay: Efficient record and
replay of multi-threaded programs. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, Paris, France, 567–577.

[54] Ernest Pobee, Xiupei Mei, and Wing Kwong Chan. 2019. Efficient transaction-
based deterministic replay for multi-threaded programs. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, San
Diego, California, USA, 760–771.

[55] Polyvios Pratikakis, Jeffrey S Foster, and Michael Hicks. 2011. LOCKSMITH:
Practical static race detection for C. ACMTransactions on Programming Languages
and Systems (TOPLAS) 33, 1 (2011), 1–55.

[56] András Prékopa. 2003. Probabilistic programming. Handbooks in operations
research and management science 10 (2003), 267–351.

[57] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. 1997. Eraser: A dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems (TOCS) 15, 4 (1997), 391–411.

[58] Daniel Schemmel, Julian Büning, César Rodríguez, David Laprell, and Klaus
Wehrle. 2020. Symbolic partial-order execution for testing multi-threaded pro-
grams. In International Conference on Computer Aided Verification. Springer, 376–
400.

[59] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data
race detection in practice. In Proceedings of the workshop on binary instrumentation
and applications. ACM, New York, NY, USA, 62–71.

[60] Jiří Šimša, Randy Bryant, and Garth Gibson. 2011. dBug: Systematic Testing
of Unmodified Distributed and Multi-threaded Systems. In International SPIN
Workshop on Model Checking of Software. Springer, 188–193.

[61] Yulei Sui, Peng Di, and Jingling Xue. 2016. Sparse flow-sensitive pointer analysis
for multithreaded programs. In Proceedings of the 2016 International Symposium
on Code Generation and Optimization. 160–170.

[62] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in
LLVM. In Proceedings of the 25th international conference on compiler construction.
265–266.

[63] Paul Thomson, Alastair F Donaldson, and Adam Betts. 2014. Concurrency testing
using schedule bounding: An empirical study. In Proceedings of the 19th ACM
SIGPLAN symposium on Principles and practice of parallel programming. 15–28.

[64] Paul Thomson, Alastair F Donaldson, and Adam Betts. 2016. Concurrency testing
using controlled schedulers: An empirical study. ACM Transactions on Parallel
Computing (TOPC) 2, 4 (2016), 1–37.

[65] Nischai Vinesh and M Sethumadhavan. 2020. Confuzz—a concurrency fuzzer.
In First International Conference on Sustainable Technologies for Computational
Intelligence. Springer, Jaipur, Rajasthan, India, 667–691.

[66] Vesal Vojdani and Varmo Vene. 2009. Goblint: Path-sensitive data race analysis.
In Annales Univ. Sci. Budapest., Sect. Comp, Vol. 30. Citeseer, 141–155.

[67] Dmitry Vyukov. 2010. Bug with a context switch bound 5. In Microsoft CHESS
Forum.

[68] Chao Wang, Sudipta Kundu, Malay Ganai, and Aarti Gupta. 2009. Symbolic
predictive analysis for concurrent programs. In International Symposium on
Formal Methods. Springer, 256–272.

[69] Zan Wang, Dongdi Zhang, Shuang Liu, Jun Sun, and Yingquan Zhao. 2019. Adap-
tive randomized scheduling for concurrency bug detection. In 2019 24th Interna-
tional Conference on Engineering of Complex Computer Systems (ICECCS). IEEE,
Nansha, Guangzhou, China, 124–133.

[70] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. 1995. The SPLASH-2 programs: Characterization and method-
ological considerations. ACM SIGARCH computer architecture news 23, 2 (1995),
24–36.

[71] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. 2020. Krace: Data
Race Fuzzing for Kernel File Systems. In 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, Virtual, 1643–1660.

[72] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang
Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009. MODIST:
Transparent model checking of unmodified distributed systems. (2009).

[73] Yu Yang, Xiaofang Chen, and Ganesh Gopalakrishnan. 2008. Inspect: A runtime
model checker for multithreaded C programs. Technical Report. Citeseer.

[74] Jie Yu and Satish Narayanasamy. 2009. A case for an interleaving constrained
shared-memory multi-processor. ACM SIGARCH Computer Architecture News 37,
3 (2009), 325–336.

[75] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. 2012. Maple:
A coverage-driven testing tool for multithreaded programs. In Proceedings of the
ACM international conference on Object oriented programming systems languages
and applications. ACM, Tucson, Arizona, USA, 485–502.

[76] Kunpeng Yu, Chenxu Wang, Yan Cai, Xiapu Luo, and Zijiang Yang. 2021. De-
tecting Concurrency Vulnerabilities Based on Partial Orders of Memory and
Thread Events. In Proceedings of the 2021 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM.

[77] Tingting Yu, Tarannum S Zaman, and Chao Wang. 2017. DESCRY: reproducing
system-level concurrency failures. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. ACM, Paderborn, Germany, 694–704.

[78] Ming Yuan, Yeseop Lee, Chao Zhang, Yun Li, Yan Cai, and Bodong Zhao. 2021.
RAProducer: efficiently diagnose and reproduce data race bugs for binaries via
trace analysis. In Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 593–606.

[79] Xinhao Yuan and Junfeng Yang. 2020. Effective Concurrency Testing for Dis-
tributed Systems. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems. 1141–
1156.

[80] Xinhao Yuan, Junfeng Yang, and Ronghui Gu. 2018. Partial order aware con-
currency sampling. In International Conference on Computer Aided Verification.
Springer, 317–335.

[81] Shixiong Zhao, Rui Gu, Haoran Qiu, Tsz On Li, Yuexuan Wang, Heming Cui, and
Junfeng Yang. 2018. Owl: Understanding and detecting concurrency attacks. In
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, Luxembourg City, Luxembourg, 219–230.

13

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivating Example
	2.2 Approach Overview

	3 Methodology
	3.1 The Top-level Algorithm
	3.2 Schedule Generator
	3.3 Periodical Executor
	3.4 Feedback Analyzer

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Improvement of Parallel Scheduler (RQ1)
	4.3 Bug-finding Ability Evaluation (RQ2)
	4.4 Overhead Evaluation (RQ3)
	4.5 Discussion

	5 Related Work
	6 Conclusion
	References

