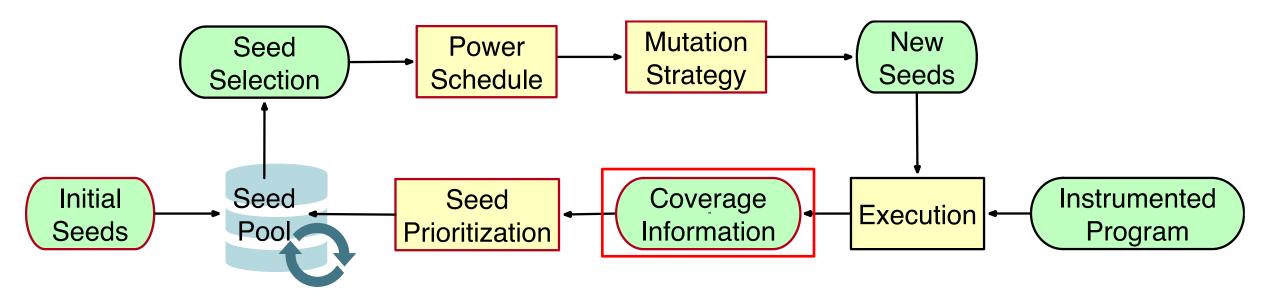


Typestate-Guided Fuzzer for Discovering Use-after-Free Vulnerabilities

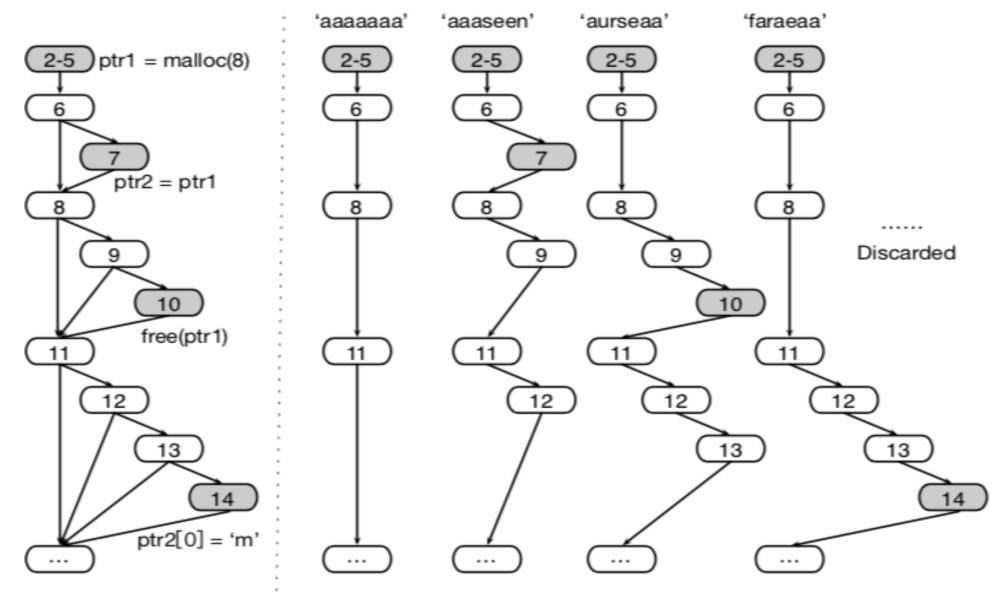
Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao Qin, Hongxu Chen, Yulei Sui

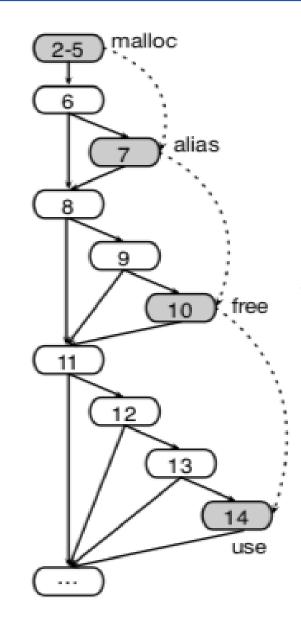

2019.07.07

Fuzzing Techniques

- Fuzzing Technique
 - ✓ Automated software testing technique
 - ✓ Provide invalid, unexpected, or random data to a program
 - $\checkmark\,$ The program is instrumented, e.g., branch coverage
 - The most popular technique to find vulnerabilities
 e.g., AFL, libFuzzer, ClusterFuzz, OSS-Fuzz
- Fuzzing Technique Types
 - ✓ Generation-based fuzzing generate inputs from templates, e.g., grammar, specification
 - Mutation-based fuzzing
 randomly mutate inputs from seed test cases

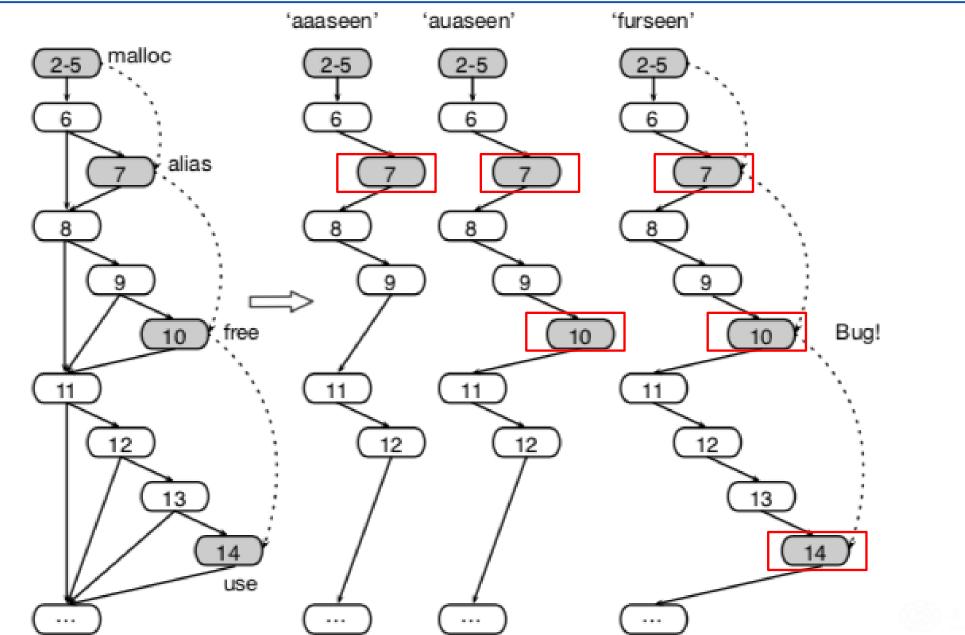
Challenges in fuzzing techniques


Whether the existing branch coverage is enough? e.g., use-after-free vulnerability

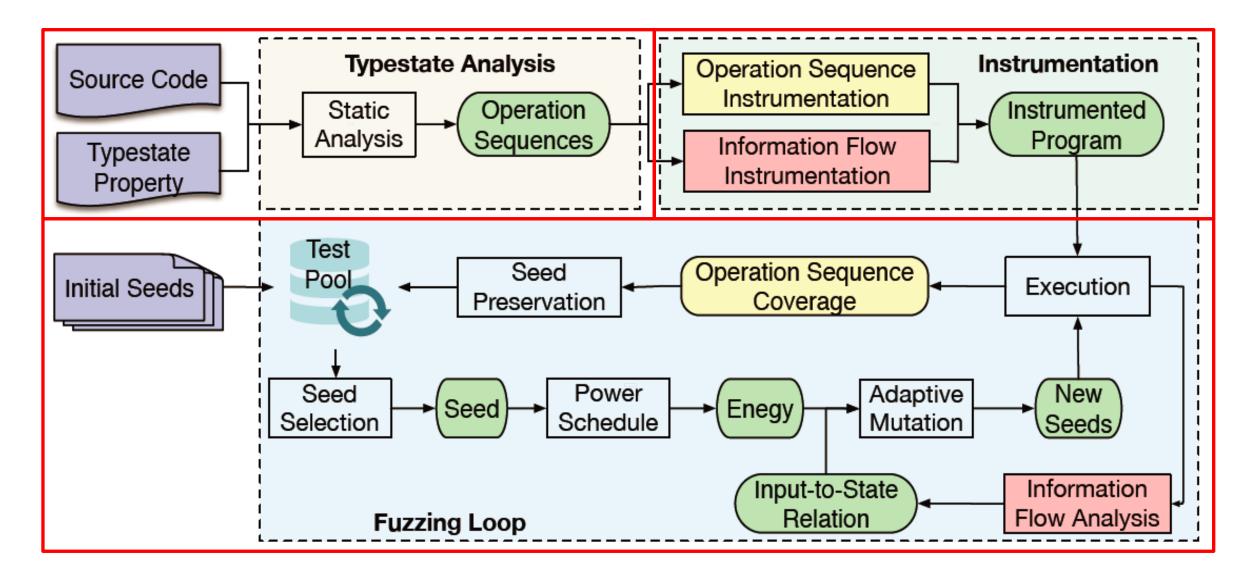

- 1 void main() {
- 2 char buf[7];
- 3 read(0, buf, 7)
- 4 char* ptr1 = malloc(8);
- 5 char* ptr2 = malloc(8);
- 6 if(buf[5] == 'e')
- 7 ptr2 = ptr1;
- 8 if(buf[3] == 's')
- 9 if(buf[1] == 'u')
- 10 free(ptr1);
 11 if(buf[4] == 'e')
- 12 if (buf [2] == 'r')
- 13 if(buf[0] == 'f')
 14 ptr2[0] = 'm';
- 14 15
- $15 \dots 16$

- The program has a use-after-free vulnerability
 - \checkmark Line4: allocate the memory
 - ✓ Line7: ptr1 and ptr2 become alias
 - \checkmark Line10: the memory is freed

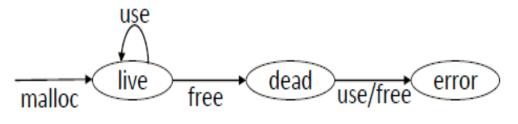
 \checkmark Line14: use the freed memory

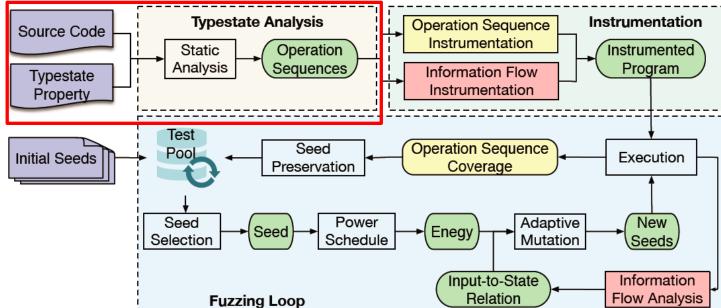


動を考ええ大学


- To expose the use-after-free vulnerability \checkmark Line: $4 \rightarrow 7 \rightarrow 10 \rightarrow 14$
- Challenges in detecting UaF
 - ✓ How to identify the above operation sequence?
 - ✓ How to cover this operation sequence?

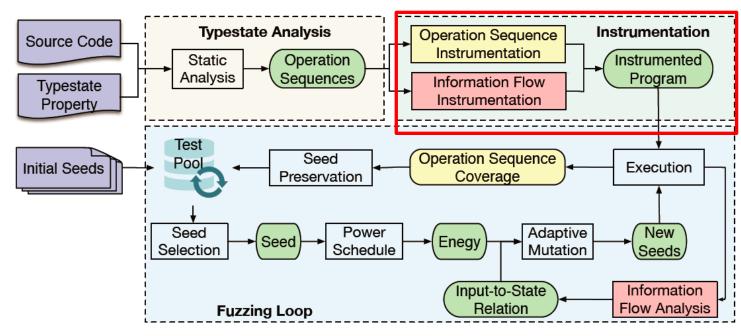
UAFL: Typestate-Guided Fuzzer for Discovering Use-after-Free Vulnerabilities


Overview of UAFL



Static Typestate Analysis

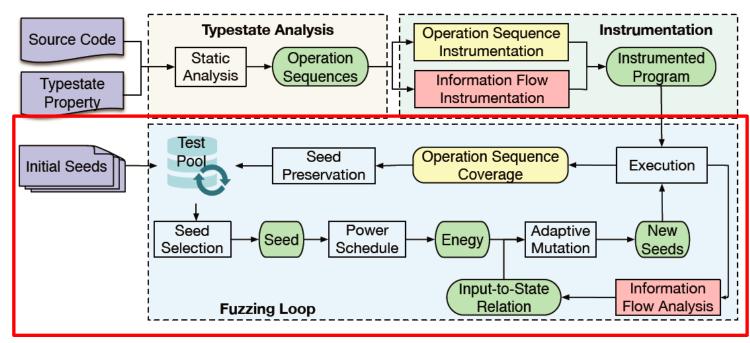
Typtestate property


Static Analysis

- Lightweight path-insensitive static analysis
- ✓ SVF: inter-procedural static valueflow analysis
- Operation Sequence
 - $\checkmark \quad \text{Line: } 4 \longrightarrow 7 \longrightarrow 10 \longrightarrow 14$

Program Instrumentation

- Operation Sequences
 - ✓ $\forall s_i \in (s_1, \dots, s_n)$, instrument whether s_i is executed
 - ✓ $\forall s_i \in (s_1, \dots, s_n)$, retrieve the execution information of $\forall s_j \in (s_1, \dots, s_i)$



- Information Flow
 - $\checkmark IFStrength(x, y, V_x, V_y) = H(x, V_x) H(x|y, V_x, V_y)$

Fuzzing loop

- Seed Selection
 - ✓ Seeds that cover more operation sequences
- Mutation Strategies
 - ✓ Input fields related to operation sequences are more important
 - ✓ Information flow analysis based mutation
- Feedback
 - \checkmark Gradually cover the operation sequences

Evaluations for UAFL

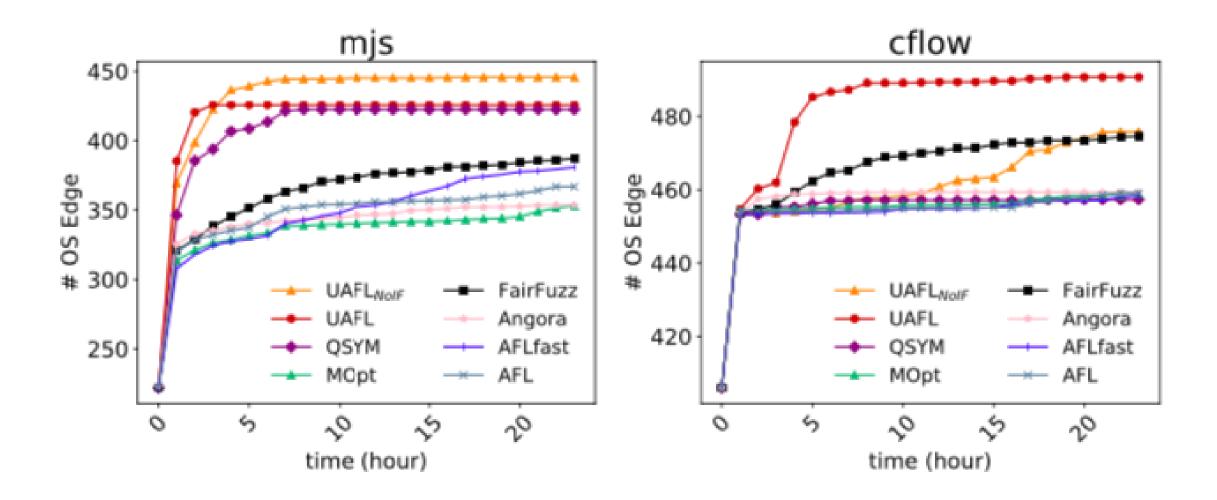
Overhead of Static Analysis

Program	Version LoC T_BB BB _{UAF}		BBIF	BB _{Free}	#OS	T(s)		
readelf	2.28	1,844k	16,967	2,681 (15.8%)	1,103 (6.5%)	91	41,605	262
readelf	2.31	3,277k	19,973	3,647 (18.2%)	1,555 (7.8%)	98	130,102	508
jpegoptim	1.45	2k	634	36 (5.7%)	28 (4.4%)	5	44	1
liblouis	3.2.0	53k	2,957	486 (16.4%)	190 (6.4%)	8	422	18
lrzip	0.631	19k	9,356	1,051 (11.2%)	467 (5.0%)	6	313	150
Mini XML	2.12	15k	4,237	890 (21.0%)	788 (18.6%)	10	486	44
boringssl	_	162k	22,547	3,701 (16.4%)	3,265 (14.4%)	32	84,069	2,005
GNU cflow	1.6	50k	5,095	1,402 (27.5%)	751 (14.7%)	33	4330	30
Boolector	3.0.0	141k	26,866	11,511 (42.8%)	9,031 (33.6%)	4	28,586	2,387
openh264	1.8.0	143k	12,735	2,090 (16.4%)	927 (7.3%)	1	1,219	1,127
libpff	_	125k	18,569	6,371 (34.3%)	6,041 (32.5%)	60	20,865	122
mjs	1.20.1	40k	4,937	546 (11.0%)	343 (6.9%)	16	1,143	24
ImageMagick	7.0.8	485k	31,190	1,573 (5.0%)	1,336 (4.3%)	3	55,877	2,185
nasm	2.14	101k	13,965	3,812 (27.2%)	3,390 (24.2%)	2	3,357	2,210
Avg.	-	462k	13,573	2,842 (19.2%)	2,087 (13.3%)	26	26,601	1,148

Time to Expose UaF

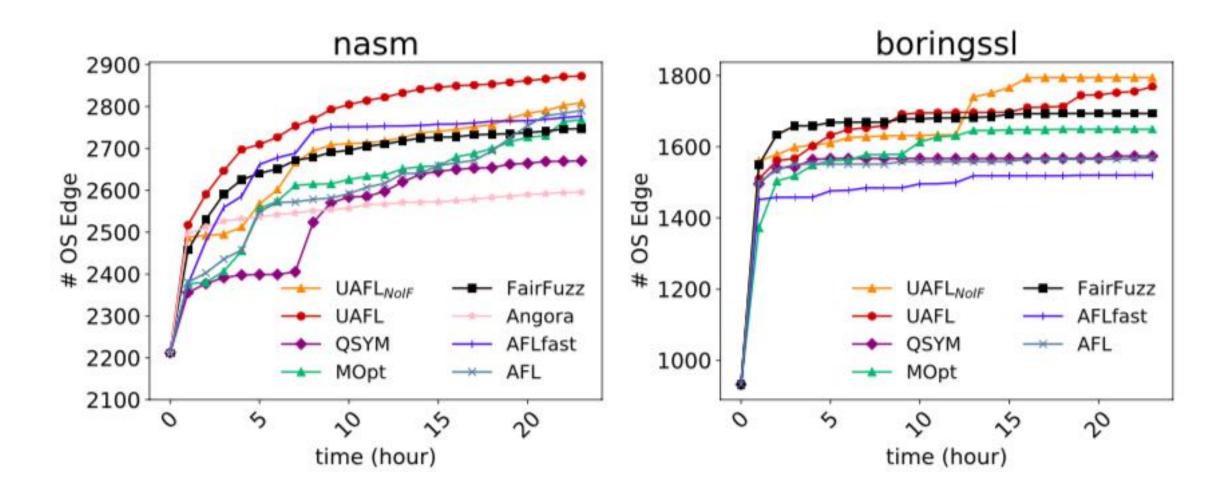
Drogram	Vulnerabilities	Time Usage to Expose the Vulnerabilities (hours)										
Program	vumeradiitties		UAFL	UAFL _{NoIF}	AFL	AFLFast	FairFuzz	MOpt	Angora	QSYM		
readelf-2.28	CVE-2017-6966		0.59	1.32	6.09	1.43	0.68	3.61	T/O	6.20		
readelf-2.31	CVE-2018-20623		0.10	0.10	0.10	0.10	T/O	0.10	0.02	0.10		
jpegoptim	CVE-2018-11416		0.09	0.10	0.59	0.88	1.08	1.49	T/O	1.95		
liblouis	CVE-2017-13741		1.11	1.81	15.81	T/O	6.96	17.38	T/O	13.42		
lrzip	CVE-2018-11496		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01		
Mini XML	CVE-2018-20592		0.38	0.93	1.28	2.59	0.54	16.7	T/O	18.99		
boringssl	Google Test-suit		0.33	1.06	T/O	T/O	4.67	7.62	-	T/O		
GNU cflow	uaf-issue-1		1.80	12.21	23.29	T/O	20.02	T/O	T/O	T/O		
Boolector	uaf-issue-2		0.83	0.97	1.09	0.82	0.39	1.66	-	1.16		
openh264	uaf-issue-3		8.17	13.00	15.80	11.15	8.17	15.39	T/O	18.45		
libpff	uaf-issue-4		1.39	1.39	4.21	4.11	3.98	4.35	T/O	4.98		
mjs	uaf-issue-5		1.21	1.23	3.10	3.02	1.45	4.6	T/O	6.71		
ImageMagick	uaf-issue-6		6.29	13.92	T/O	T/O	T/O	T/O	T/O	T/O		
	CVE-2018-19216		2.59	4.69	8.32	3.45	2.86	11.46	2.75	9.64		
nasm	CVE-2018-20535		17.03	T/O	T/O	T/O	T/O	T/O	T/O	T/O		
Missed Vulnerabilities			0	1	3	-5	3	3	10	4		
Avg. Time Usage		2.79	+ 0.32	5.12 + 0.32	10.11	9.84	8.18	10.42	18.67	11.84		
UAFL's Speedup			_	1.75×	3.25×	3.16×	2.63×	3.35×	6.00×	3.80×		
UAFLNoIF's Speedup				_	$1.86 \times$	$1.81 \times$	1.50×	1.92×	3.43×	$2.18 \times$		

* T/O means the fuzzer cannot discover vulnerabilities within 24 hours across 8 runs. When we calculate the average time usage, we replace T/O with 24 hours. * Angora does not work on the programs *boringssl* and *Boolector*, denoted by '-', because it throws the exceptions during the instrumentation.

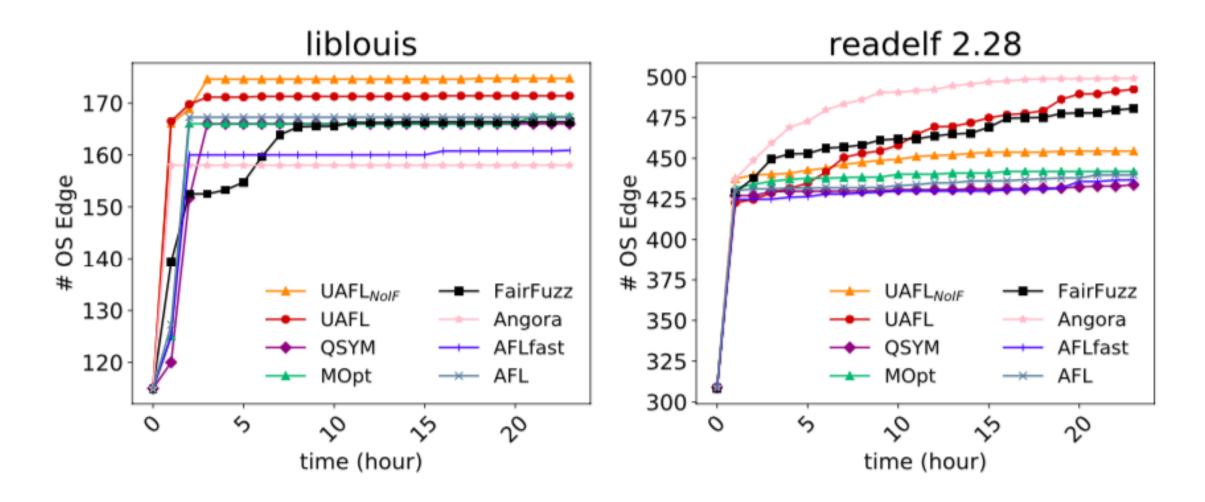

Statistical Tests

Program	Vulnerability	\hat{A}_{12} (UAFL)					\hat{A}_{12} (UAFL _{NoIF})						
		AFL	AFLFast	FairFuzz	MOpt	Angora	QSYM	AFL	AFLFast	FairFuzz	MOpt	Angora	QSYM
readelf	CVE-2017-6966	0.906	0.898	1.000	0.609	1.000	0.968	0.796	0.546	1.000	0.453	1.000	0.828
readelf	CVE-2018-20623	0.500	0.500	0.500	0.500	0.000	0.500	0.500	0.500	0.500	0.500	0.000	0.500
jpegoptim	CVE-2018-11416	0.995	1.000	1.000	1.000	1.000	1.000	0.995	1.0	1.000	1.000	1.000	1.000
liblouis	CVE-2017-13741	0.828	0.937	0.851	1.000	1.000	0.984	0.875	0.937	0.867	1.000	1.000	0.968
lrzip	CVE-2018-11496	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
Mini XML	CVE-2018-20592	0.968	1.000	0.812	1.000	1.000	1.000	0.617	0.929	0.750	0.781	1.000	0.781
boringssl	Google Test-suit	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.828	1.000	1.000	1.000
GNU cflow	uaf-issue-1	1.000	1.000	1.000	1.000	1.000	1.000	0.937	0.968	0.609	0.968	1.000	1.000
Boolector	uaf-issue-2	0.720	1.000	0.030	0.880	1.000	0.780	0.620	1.000	0.020	0.820	1.000	0.720
openh264	uaf-issue-3	0.937	0.781	0.150	1.000	1.000	1.000	0.687	0.359	0.031	0.640	1.000	0.875
libpff	uaf-issue-4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
mjs	uaf-issue-5	0.980	0.980	0.590	1.000	1.000	1.000	0.880	0.890	0.604	0.987	1.000	0.987
ImageMagick	uaf-issue-6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
nasm	CVE-2018-19216	0.960	0.600	0.560	0.920	0.600	0.800	0.800	0.319	0.280	0.840	0.280	0.800
	CVE-2018-20535	1.000	1.000	1.000	1.000	1.000	1.000	0.500	0.500	0.500	0.500	0.500	0.500
Significant better ($A_{12} > 0.71$, bold)		11/15	12/15	9/15	12/15	12/15	12/15	9/15	9/15	7/15	9/15	11/15	10/15

* We highlight the \hat{A}_{12} in the bold if its corresponding Mann-Whitney U test is significant.



Operation Sequence Coverage


1 S J L L X J

Operation Sequence Coverage

Operation Sequence Coverage

B F F L L K F

Thanks! R&Q?

