
MemSpate: Memory Usage Protocol
Guided Fuzzing

Zhiyuan Fu1, Jiacheng Jiang1, Cheng Wen2(B), Zhiwu Xu1(B),
and Shengchao Qin2

1 College of Computer Science and Software Engineering, Shenzhen University,
Shenzhen, China

xuzhiwu@szu.edu.cn
2 Guangzhou Institute of Technology, Xidian University, Xi’An, China

wencheng@xidian.edu.cn

Abstract. Memory safety vulnerabilities are high-risk and common vul-
nerabilities in software testing, often leading to a series of system errors.
Fuzz testing is widely recognized as one of the most effective methods for
detecting vulnerabilities, including memory safety ones. However, current
fuzzing solutions typically only partially address memory usage, limit-
ing their ability to detect memory safety vulnerabilities. In this paper,
we introduce MemSpate, a dedicated fuzzer designed to detect mem-
ory safety vulnerabilities. Utilizing a more comprehensive memory usage
protocol, MemSpate identifies the memory operation sequences that may
violate the protocol and estimates the overall memory consumption to
exceed an acceptable limit. It then monitors the coverage of these oper-
ation sequences and tracks the maximum memory consumption, both of
which are used as a new feedback mechanism to guide the fuzzing pro-
cess. We evaluated MemSpate on 12 real-world open-source programs and
compared its performance with 5 state-of-the-art fuzzers. The results
demonstrate that MemSpate surpasses all other fuzzers in terms of dis-
covering memory safety vulnerabilities. Furthermore, our experiments
have led to the discovery of 4 previously unknown vulnerabilities.

Keywords: Fuzz Testing · Memory Safety Vulnerability · Memory
Usage Protocol · Software Testing

1 Introduction

Memory safety vulnerabilities are high-risk and common vulnerabilities in soft-
ware testing, often leading to a series of system errors. Generally, memory safety
vulnerability exists in two different forms: spatial [1,19] or temporal [5,22]. The
former happens when a memory allocated with an invalid size, or program
accesses the memory exceeds its spatial threshold (e.g., stack overflow, mem-
ory allocation failure). The latter is due to data being used out of its life span
(e.g., use-after-free, double-free).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Ogata et al. (Eds.): ICFEM 2024, LNCS 15394, pp. 237–256, 2024.
https://doi.org/10.1007/978-981-96-0617-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0617-7_14&domain=pdf
https://doi.org/10.1007/978-981-96-0617-7_14

238 Z. Fu et al.

Detecting memory safety vulnerabilities is challenging, as they are influenced
by numerous factors such as the frequency of heap operations, the specific exe-
cution order, and code coverage. Fuzz testing [6,9] is widely recognized as one of
the most effective methods for detecting vulnerabilities, including memory safety
ones. However, current fuzzing solutions typically only address memory usage
partially. For example, MemLock [17] and TortoiseFuzz [16] focus on memory
spatial vulnerabilities, while UAFL [15] and HTFuzz [20] concentrate on memory
temporal vulnerabilities. The lack of comprehensive memory usage limits their
ability to detect all types of memory safety vulnerabilities.

To address the limitations of current memory-related fuzzers, this paper pro-
poses a new fuzzer named MemSpate. MemSpate is guided by a comprehensive
memory usage protocol that addresses both memory temporal vulnerabilities
and memory spatial vulnerabilities. Utilizing this protocol, MemSpate identifies
the memory operation sequences that may violate the protocol and estimates
the overall memory consumption to exceed an acceptable limit. It then moni-
tors the coverage of these operation sequences and tracks the maximum memory
consumption, both of which are used as a new feedback mechanism to guide
the fuzzing process. By doing so, MemSpate can effectively detect more memory
safety vulnerabilities, including both temporal and spatial ones.

We implemented a prototype of MemSpate based on AFL++ [6] ver-
sion 4.09a, and evaluated 12 widely used real-world open-source programs.
We compared MemSpate with five state-of-the-art memory-related fuzzers:
AFL++ [6], MemLock [17], UAFL [15], HTFuzz [20] and TortoiseFuzz [16].
The results demonstrate that MemSpate outperforms the other fuzzers in terms
of discovering memory safety vulnerabilities. Specifically, MemSpate is able
to detect 33.33%, 140.00%, 30.43%, 46.34% and 76.47% more vulnerabilities
than AFL++, MemLock, UAFL, HTFuzz and TortoiseFuzz, respectively. Fur-
thermore, MemSpate discovered 4 new previously unknown that had not been
reported by any other studies.

In summary, this paper makes the following contributions.

1. We proposed a comprehensive memory usage protocol that addresses both
memory temporal vulnerabilities and memory spatial vulnerabilities.

2. We designed and developed MemSpate, a grey-box fuzzer that utilizes a more
comprehensive memory usage protocol to efficiently detect memory safety
vulnerabilities.

3. We evaluated MemSpate on 12 real-world programs and compared it with
five state-of-the-art memory-related fuzzers. The results demonstrate that
MemSpate outperforms the other fuzzers in terms of discovering memory
safety vulnerabilities. Furthermore, our experiments have led to the discovery
of 4 previously unknown vulnerabilities.

2 Motivation

Listing 1 demonstrates a null pointer dereference vulnerability that was discov-
ered by MemSpate. This vulnerability is present in the program yasm, due to the

MemSpate 239

Listing 1. A null-pointer-dereference in yasm

1 static MMacro *mmacros[NHASH];
2
3 static int expand_mmacro(Token *tline) {
4 Token **params , *t, *tt;
5 MMacro *m;
6 Line *l, *ll;
7 // ...
8 t = tline;
9 // ...

10 m = is_mmacro(t, ¶ms); // get macro from defined table
11 // ...
12 for (l = m->expansion; l; l = l->next) {
13 // ...
14 for (t = l->first; t; t = t->next) {
15 Token *x = t;
16 if (t->type == TOK_PREPROC_ID && t->text [1] == ’0’ && t->text [2] == ’0’

) // crash
17 // ...
18 }
19 }
20 }
21
22 static MMacro *is_mmacro(Token *tline , Token *** params_arr) {
23 // ...
24 head = mmacros[hash(tline ->text)];
25
26 for (m = head; m; m = m->next)
27 if (! mstrcmp(m->name , tline ->text , m->casesense))
28 break;
29 if (!m)
30 return NULL;
31 // ...
32 while (m) {
33 // ...
34 return m; // without checking every line is null
35 // ...
36 }
37 // ...
38 }

absence of validation for the pointer t before it is accessed. Specifically, within
the file nasm-preproc.c, the function expand smacro() utilizes a Token pointer
t to process the text stored in MMacro m. However, m is initialized by the func-
tion is macro() without validating the line during expansion before returning
m. The function expand smacro() only checks the type of token t, leading to a
crash when attempting to access the line text of macro m. During our experi-
ments, current fuzzing tools such as AFL++, MemLock, and TortoiseFuzz were
unable to detect this vulnerability within 24 h. This is because they did not take
the memory temporal information into account.

Another example is a heap buffer overflow vulnerability in the program
binutils, as illustrated in Listing 2. Specifically, the array shndx pool, with size
shndx pool size, is initialized within the function prealloc cu tu list(). How-
ever, when the function add shndx to cu tu entry() attempts to write data
to the array within the function process cu tu index(), no bound checking is
performed on the array, resulting in a heap buffer overflow. Similarly, existing

240 Z. Fu et al.

Listing 2. A heap-buffer-overflow in binutils

1 static void add_shndx_to_cu_tu_entry(unsigned int shndx) {
2 shndx_pool[shndx_pool_used ++] = shndx; // out of bounds
3 }
4
5 static void prealloc_cu_tu_list(unsigned int nshndx) {
6 if (shndx_pool == NULL) {
7 shndx_pool_size = nshndx;
8 shndx_pool_used = 0;
9 shndx_pool = (unsigned int *) xcmalloc(shndx_pool_size , sizeof(unsigned

int));
10 } else {
11 shndx_pool_size = shndx_pool_used + nshndx;
12 shndx_pool = (unsigned int *) xcrealloc(shndx_pool , shndx_pool_size ,

sizeof(unsigned int));
13 }
14 }
15
16 static int process_cu_tu_index(struct dwarf_section *section , int do_display)

{
17 // ...
18 unsigned char *shndx_list;
19 unsigned int shndx;
20 // ...
21 if (! do_display) {
22 prealloc_cu_tu_list ((limit - ppool) / 4);
23 for (shndx_list = ppool + 4; shndx_list <= limit - 4; shndx_list += 4) {
24 shndx = byte_get(shndx_list , 4);
25 add_shndx_to_cu_tu_entry(shndx); // entry
26 }
27 end_cu_tu_entry ();
28 }
29 // ...
30 }

fuzzing tools such as AFL++, UAFL, and HTFuzz, which disregard memory
spatial information, were incapable of detecting this vulnerability within 24 h.

Above all, existing fuzzing tools are unable to detect both of the aforemen-
tioned vulnerabilities. This is primarily because existing fuzzing solutions either
overlook memory usage information or address it partially. As a result, there is
a clear need for an enhanced fuzzer capable of identifying a broader spectrum of
memory safety vulnerabilities in order to address this limitation.

3 Our Approach

3.1 Overview of MemSpate

The workflow of MemSpate is shown in Fig. 1, which consists of two main com-
ponents: static analysis and fuzzing loop. MemSpate follows the general workflow
of grey-box fuzzers but integrates improvements in both components guided by
a memory usage protocol. In particular, the static analysis takes the program
source code as the input, and generates the information related to the mem-
ory usage protocol, including control flow graph, call graph, memory operations,
and memory sequences. Similar to the general grey-box fuzzers, the control flow
graph information is utilized to gather the branch coverage, and the call graph

MemSpate 241

Fig. 1. Workflow of MemSpate

information is used to instrument the function call entries and returns. With
guidance from the memory usage protocol, MemSpate identifies the locations of
memory operations, calculates the (maximum) memory consumption, and ana-
lyzes the operation sequences that may violate the memory usage protocol. This
information helps to determine where to instrument and what instrumentation
is needed. Once the program is instrumented, MemSpate feeds it into the fuzzing
loop for detecting memory safety vulnerabilities.

During the fuzzing loop, in addition to collecting the code coverage infor-
mation, MemSpate also gathers information on memory consumption, memory
operation coverage, and memory sequence coverage. MemSpate preserves the
test cases that actively contribute to covering new code branches, consuming
more memory, or covering new memory operation sequences, thus enhancing the
likelihood of uncovering memory safety vulnerabilities.

3.2 Memory Usage Protocol

To detect a broader range of memory safety vulnerabilities, MemSpate employs
a more comprehensive protocol to guide the fuzzing process.

The memory usage protocol used in MemSpate is represented as an automa-
ton, which is illustrated in Fig. 2, where the conditions enclosed in square brack-
ets denote the guards that the operation should satisfy, and if so, the correspond-
ing action is performed. The protocol contains three kinds of memory operations,
that is, memory allocation (e.g., malloc, new), memory deallocation (e.g., free,

242 Z. Fu et al.

Fig. 2. Memory Usage Protocol of MemSpate

delete) and memory use (e.g., read, write). And for both memory allocation and
deallocation, a parameter m, representing the size of allocated/deallocated mem-
ory, is associated. To describe the effects of the memory operations, MemSpate
uses four states, that is, init, live, dead trap, and leak. MemSpate also uses
a global variable M to represent the current memory consumption. When a
request for memory allocation of size m arises, MemSpate checks whether the
sum of the current memory consumption M and the required memory size m
exceeds a preset memory threshold (i.e., the total system memory size). If this
limit is exceeded, MemSpate may report a warning regarding potential memory
overflow or allocation failure. Conversely, if there is sufficient available memory,
the current memory consumption M is updated as M + m, and a new mem-
ory block is allocated with its state marked as live (transitioning from init).
This allocated memory block can be used as long as the accessed points (offsets)
fall within its defined bounds. And it remains in live until either it is deallo-
cated or the program exits. In the latter case, a potential memory leak would
be reported, as indicated by the dotted state in Fig. 2). While in the first case,
this memory block becomes dead and then the current memory consumption
is reduced to M − m. However, if any use or deallocation is performed on an
already-deallocated memory block, then it goes into trap state, which indicates
the detection of a use-after-free vulnerability or a double-free vulnerability. Sim-
ilarly, if any use or deallocation is performed on an uninitialized memory address
(in init state), it indicates the detection of a null-pointer-dereference vulnera-
bility or an invalid-free vulnerability.
Function Call Stack. In addition to addressing heap memory overflow vul-
nerabilities, MemSpate also considers stack overflow vulnerabilities. Similarly,
MemSpate utilizes a global variable D to represent the current stack depth.

MemSpate 243

Algorithm 1: Memory Operation Sequences Analysis
Input: Original Program P
Output: Memory Operation Sequences Set Seq

1 Seq ← ∅;
2 SM ← findMalloc(P);
3 SU ← findUsage(P);
4 SF ← findDealloc(P);
5 foreach (sm,m) ∈ SM do
6 A ← getAlias(m);
7 AF ← findDealloc(A,P);
8 AU ← findUsage(A,P);
9 Seq ← Seq ∪ reachAnalysis(sm, AF , AU);

10 Seq ← Seq ∪ reachAnalysis(sm, AF , AF);
11 Seq ← Seq ∪ checkOffset(sm, AU);
12 SU ← SU − AU ;
13 SF ← SD − AF ;

14 Seq ← Seq ∪ SU // null-pointer-dereference

15 Seq ← Seq ∪ SF // invalid-free

16 return Seq;

Upon function invocation, the variable D is incremented by 1; upon function
return, D is decremented by 1. It is worth noting that recursive functions may
be invoked excessively, gradually consuming the stack until it overflows.

3.3 Static Analysis

According to the memory usage protocol, any memory operation may introduce
vulnerabilities if performed improperly (i.e., violating the temporal rule of the
protocol) or if cumulative memory consumption exceeds an acceptable limit (i.e.,
violating the spatial rule of the protocol). Therefore, MemSpate will identify
all potential memory operations within a program, which can be done during
instrumentation. Furthermore, certain vulnerabilities arise from special memory
operation sequences, such as use-after-free and double-free. For that, MemSpate
will gather these memory operation sequences, particularly those with a length
greater than 1, that result in the trap state.
Memory Operation Sequences. Inspired by UAFL [15], MemSpate conducts
static analysis to identify the memory operation sequences that violate the tem-
poral rule of the protocol. Algorithm 1 illustrates the basic idea, which takes a
program P as input and outputs a set of memory operation sequences S.

To begin with, MemSpate gathers all memory allocation operations along
with their corresponding memory objects in SM (line 2). It also collects all
memory use operations in SU (line 3) and all memory deallocation operations
in SF (line 4). For each memory operation sm and its associated object m,
MemSpate employs pointer analysis to identify their potential aliasing pointers
(line 6). Subsequently, MemSpate identifies all memory deallocation operations

244 Z. Fu et al.

Algorithm 2: Instrumentation
Input: Original Program P
Output: Instructioned Program P ′

1 foreach function f ∈ P do
2 foreach basic block bb ∈ CFGf do
3 if isEntryBB(bb) then
4 stack depth ← stack depth + 1;
5 max stack depth ← max(max stack depth, stack depth);

6 foreach instruction i ∈ bb do
7 if isReturnInst(i) then
8 stack depth ← stack depth − 1;

9 if isAllocInst(i) then
10 size ← calculate size(i);
11 alloc size ← alloc size + size;
12 max alloc size ← max(max alloc size, alloc size);

13 if isDeallocCond(i) then
14 if isDeallocInst(i) then
15 size ← lookup size(i);
16 alloc size ← alloc size − size;

17 foreach sequence seq ∈ getDeallocSequences(bb) do
18 if isLast(seq, bb) then
19 op seqs[seq ⊕ bb] ← op seqs[seq ⊕ bb] + 1;
20 else
21 pos ← findDeallocPos(bb, seq);
22 op seqs[pos ⊕ seq] ← op seqs[pos ⊕ seq] + 1;

23 if isUseCond(i) ∨ isUseInst(i) then
24 foreach sequence seq ∈ getUseSequences(bb) do
25 op seqs[seq ⊕ bb] ← op seqs[seq ⊕ bb] + 1;

26 code cov[bbpre ⊕ bb] ← code cov[bbpre ⊕ bb] + 1;

that deallocate the memory object m via an aliasing pointer, yielding a set AF

(line 7). Similarly, MemSpate finds all memory use operations related to any
aliasing pointer of m, yielding a set AU (line 8). With the assistance of reach-
ability analysis, MemSpate adds into Seq the paths of the operation sequence
[sm, sf , su] if sm can reach sf and sf can reach su. As well as the paths of the
operation sequence [sm, sf , s

′
f] if sm can reach sf and sf can reach s′

f , where
su is a use operation from SU while sf and s′

f are two different deallocation
operations from SF (lines 9–10). Additionally, if feasible, it also checks the offset
is appropriate for use operations (line 11). After that, MemSpate respectively
remove the operations in AF and AU from SF and SU (lines 12–13). Finally,
MemSpate appends the remaining deallocation and usage operations into Seq
(lines 14–15) and returns Seq (line 16).

MemSpate 245

Instrumentation. In order to monitor memory usage information and adjust
the fuzzing strategy in the fuzzing loop accordingly, we perform instrumenta-
tion to collect both code coverage information and memory-related information.
Algorithm 2 illustrates the process of program instrumentation.

MemSpate follows the standard workflow of AFL [9] and AFL++ [6] for
handling code coverage: MemSpate instruments every basic block in the program
using code cov (line 26).

In terms of stack consumption, MemSpate instruments the entry (line 3)
and return instructions (line 7) of each function. It respectively increments (line
4) and decrements (line 8) the stack depth by 1 correspondingly. Furthermore,
MemSpate keeps track of the maximum stack depth (line 5), which is benefi-
cial for seed selection during the fuzzing loop. Concerning heap consumption,
MemSpate instruments each allocation operation (line 9) and each deallocation
operation (line 13).

MemSpate calculates the memory size size and increases the memory con-
sumption alloc szie by size for each allocation operation (lines 10–11); while
MemSpate looks up the size and decreases the memory consumption alloc szie
by size for each deallocation (lines 14–15). Similarly, MemSpate keeps track of
the maximum memory consumption (line 12), which is beneficial for seed selec-
tion during the fuzzing loop.

Finally, MemSpate utilizes a bitmap, op seqs, to track the memory operation
sequence coverage at the basic block level, as generated by Algorithm 1. As
previously discussed, the operations in sequences may necessitate certain path
conditions (i.e., the branch basic blocks required by the paths). If an instruction
is deallocated with its path conditions holding (line 14), MemSpate retrieves all
the sequences associated with the deallocation (line 17). For each sequence seq,
if the deallocation appears last in seq (i.e., a double-free sequence), MemSpate
identifies and marks the sequence as covered (lines 18–19); otherwise (i.e., a
subsequence of a use-after-free or double-free sequence), MemSpate locates the
position of the deallocation in seq and marks that position as covered (lines
21–22). The use operation follows similar procedures (lines 23–25).

3.4 Fuzzing Loop

The fuzzing loop of MemSpate is outlined in Algorithm 3. It takes the instru-
mented program P ′ and a set of initial seeds T as inputs and returns a set of test
cases that trigger crashes S and a set of test cases that trigger memory safety
vulnerabilities Smem.

MemSpate initializes the seed pool Queue as the initial seeds T (line 3).
Then MemSpate performs the following process until timeout: it selects a seed
seed from the seed pool Queue (line 5) and assigns the seed an energy value
testcase num (line 6), which determines the number of children (i.e., test-
cases) to be generated from that seed (line 8), following the same heuristics
as AFL++ [6]. After that, for each mutated testcase, MemSpate monitors the
execution of the instrumented program P ′ and collects the information on code

246 Z. Fu et al.

Algorithm 3: Fuzzing Loop
Input: Instrumented Program P ′, Initial Seed T
Output: Crashes Set S, Memory Safety Vulnerabilities Set Smem

1 S ← ∅;
2 Smem ← ∅;
3 Queue ← T ;
4 while time ¡ timeout do
5 seed ← selectSeed(Queue);
6 testcase num ← assignEnergy(seed);
7 for i ← 1 to testcase num do
8 testcasei ← mutate(seed);
9 code covi, op seqsi,max stack depthi,max alloc sizei ←

fuzzRun(testcasei, P
′);

10 if triggerCrash(testcasei) then
11 S ← S ∪ testcasei;
12 if triggerMemCrash(testcasei) then
13 Smem ← Smem ∪ testcasei;

14 if hasNewCov(op seqsi) then
15 Queue ← Queue ∪ testcasei;

16 else if hasNewCov(code covi) then
17 Queue ← Queue ∪ testcasei;

18 else if isLarger(max alloc sizei, max stack depthi) then
19 Queue ← Queue ∪ testcasei;

coverage, memory operation sequence coverage, maximum stack depth, and max-
imum memory consumption (line 9). If the program crashes, then the tasecase
is added to the crash set S (lines 10–11). Moreover, if the crash is classified as
a memory-related vulnerability by sanitizers, then the testcase is added into set
Smem as well (lines 12–13). Otherwise, if the testcase is considered to be interest-
ing, meaning that it achieves new code branch coverage (line 14), introduces new
memory operation sequence coverage (line 16), or results in larger stack/heap
memory consumption (line 18), then the testcase is added into the seed pool for
further testing (lines 15, 17, 19).

4 Evaluation

We have implemented a prototype of our memory usage protocol guided fuzzer
MemSpate based on AFL++ [6] version 4.09a, wherein SVF [14], a static value-
flow tool, is used to implement the static analysis. Our main focus is on modifying
the influencing factors in the instrumentation and feedback mechanism. By mak-
ing these modifications without changing other components, we have successfully
improved the overall performance of memory-related vulnerability detection.

MemSpate 247

We conducted comprehensive experiments to evaluate MemSpate using a set
of real-world programs, and compared MemSpate with state-of-the-art fuzzers.
In the experiments, we aim to answer the following research questions:

RQ1. How effective is MemSpate in detecting memory safety vulnerabilities in
real-world programs?

RQ2. How does MemSpate compare to other state-of-the-art fuzzers?
RQ3. Can the protocol of MemSpate assist in detecting memory safety vulner-

abilities more comprehensively?

4.1 Experiment Setup

Benchmark Programs. We curated a collection of 12 benchmark applica-
tions from fuzzing papers focusing on memory safety vulnerabilities, as shown
in Table 1.

Table 1. Real-world programs evaluated in our experiment

No. Program Version LoC Input Format Test Instruction

1 bento4-640 1.6.0-640 106K mp4 mp42hls @@

2 bento4-639 1.6.0-639 105K mp4 mp42hls @@

3 binutils 2.40 4984K elf readelf -w @@

4 cflow-1.7 1.7 91K c cflow @@

5 cflow-1.6 1.6 80K c cflow @@

6 cxxfilt 2.40 4984K text cxxfilt -t

7 giflib 5.2.1 17K gif gif2rgb @@

8 mjs 9eae0e6 49K js mjs -f @@

9 openh264 8684722 141K text h264dec @@ ./tmp

10 yara 3.5.0 63K text yara @@ strings

11 yaml-cpp 0.6.2 122K text parse @@

12 yasm 9defefa 176K asm yasm @@

Baseline Fuzzers. We evaluated MemSpate by comparing it against five state-
of-the-art fuzzers: AFL++ [6], MemLock [17], UAFL [15], HTFuzz [20] and
TortoiseFuzz [16]. These fuzzers were selected based on several factors. Firstly,
AFL++ is an improved version of AFL [9] and has established itself as one of the
most widely used baselines in recent research papers. Both Memlock and Tor-
toiseFuzz have proposed strategies for memory operations to discover memory
spatial vulnerabilities, while UAFL and HTFuzz focus on detecting memory tem-
poral vulnerabilities via feedback on memory operation sequences. Since UAFL
is not publicly available, we made efforts to replicate it in our environment and
refer to our replication of UAFL as UAFL†.

248 Z. Fu et al.

Evaluation Metrics. Since most baseline fuzzers and MemSpate focus on
detecting memory safety vulnerabilities, we evaluate the performance of the
fuzzers in terms of the number of memory safety vulnerabilities, instead of the
number of unique crashes as traditional coverage-guided grey-box fuzzers do.
Similar to TortoiseFuzz [16] and HTFuzz [20], we utilized AddressSanitizer [13] to
analyze the crashes and to identify memory safety vulnerabilities. Additionally,
we manually reviewed the crash reports to identify unique vulnerabilities and
compared them with existing CVEs and GitHub issues to discover new vulner-
abilities.
Experiment Configuration. Each experiment ran for 24 h, and the command
options for the benchmark programs are listed in the last column of Table 1.
According to Klees’s suggestions [8], each experiment was conducted 10 times
to minimize the influence of randomness.
Experiment Infrastructure. All the experiments were conducted using the
same setup: a docker container configured with 1 CPU core of Intel(R) Xeon(R)
Gold 5218R CPU @ 2.10GHz and the 64-bit Ubuntu 18.04 LTS.

Table 2. Number of memory safety vulnerabilities found by different fuzzers

Program MemSpate AFL++ MemLock UAFL† TortoiseFuzz HTFuzz

Uniq Avg Uniq Avg Uniq Avg Uniq Avg Uniq Avg Uniq Avg

bento4-640 1 0.10 1 0.10 0 0.00 0 0.00 0 0.00 1 0.10

bento4-639 4 4.00 4 4.00 4 2.50 4 3.80 4 2.60 4 3.80

binutils 1 0.30 0 0.00 0 0.00 1 0.10 0 0.00 1 0.10

cflow-1.7 4 1.60 1 0.80 3 1.10 1 0.80 1 0.30 1 0.50

cflow-1.6 4 2.80 4 1.90 3 1.80 5 2.20 3 1.30 2 1.10

cxxfilt 1 0.20 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

giflib 1 0.50 1 0.30 1 0.10 0 0.00 1 0.40 1 0.10

mjs 12 5.50 7 4.90 3 2.10 9 5.50 7 4.90 7 5.20

openh264 2 1.10 1 1.00 0 0.00 1 1.00 1 0.90 1 1.00

yaml-cpp 5 2.70 5 2.40 6 3.00 5 2.60 5 2.30 0 0.00

yara 9 4.00 6 3.50 3 1.90 5 3.40 5 3.10 6 5.30

yasm 16 10.90 15 8.00 2 0.70 15 9.70 14 9.70 10 7.70

total 60 33.70 45 26.90 25 13.20 46 29.10 41 25.50 34 24.90

4.2 Memory-Related Vulnerability Detection Capability (RQ1)

The “MemSpate” column in Table 2 presents the results of MemSpate in detect-
ing memory safety vulnerabilities, where the term “Uniq” denotes the total num-
ber of unique vulnerabilities found during the 10 runs while “Avg” denotes the
average number of unique vulnerabilities among the 10 runs. As depicted in

MemSpate 249

Table 2, MemSpate successfully found a total of 60 memory safety vulnerabili-
ties and an average of 33.70 ones across the 12 benchmark programs. Notably,
MemSpate was able to identify more than 10 memory safety vulnerabilities in
mjs and yasm.

Moreover, we manually reviewed the vulnerabilities and compared them with
existing CVEs and GitHub issues. And we found that MemSpate is able to find
4 previously unknown memory safety vulnerabilities in yasm, which have been
submitted in GitHub and are listed in Table 3.

Table 3. New memory safety vulnerabilities found by MemSpate

Program Version Report Vulnerability Type

yasm 9defefa Issue-273 null-pointer-dereference

Issue-274 heap-use-after-free

Issue-276 heap-buffer-overflow

Issue-277 null-pointer-dereference

According to the above results, we conclude that MemSpate is capable of
detecting memory safety vulnerabilities in real-world programs.

4.3 Comparison with Other Memory-Related SOTA Fuzzers (RQ2)

Table 2 also presents the number of memory safety vulnerabilities detected
by each baseline fuzzer (e.g., AFL++, MemLock, UAFL†, TortoiseFuzz, and
HTFuzz) on 12 benchmark programs over 24 h, where the numbers in bold
indicate that the corresponding fuzzers achieve the best results. The results
demonstrate that MemSpate achieves superior performance in terms of both
total unique vulnerability number and average vulnerability number. Specifi-
cally, compared with AFL++, MemLock, UAFL†, TortoiseFuzz and HTFuzz,
MemSpate can respectively identify approximately 33.33%, 140.00%, 30.43%,
46.34% and 76.47% more unique vulnerabilities in total, as well as respectively
identifying 25.82%, 155.30%, 15.81%, 32.16% and 35.34% more vulnerabilities on
average. Moreover, MemSpate demonstrates superior performance across most
programs. In particular, on the program mjs, MemSpate identifies 12 memory
safety vulnerabilities, which is significantly higher compared to any other fuzzers.

Figure 3 illustrates the trend of memory safety vulnerabilities found by each
fuzzer over time. Within the initial 6-h period, all baseline fuzzers have reached
a convergence point and successfully detected over 75.00% of the vulnerabili-
ties within their detection scope. However, for MemSpate, 36.67% of detected
vulnerabilities are explored in the later stage, resulting in a significantly higher
number of detected vulnerabilities compared to the baseline fuzzers.

Based on the findings presented in Table 2, we have computed the p-value
of the Mann-Whitney U-test between MemSpate and each baseline fuzzer. The

250 Z. Fu et al.

Fig. 3. Trend of memory safety vulnerabilities found by each fuzzer over time

Table 4. P-values of memory safety vulnerabilities found in 10 runs

programs AFL++ MemLock UAFL† TortoiseFuzz HTFuzz

bento4-640 5.29e-01 1.84e-01 1.84e-01 1.84e-01 5.29e-01

bento4-639 1.00e+00 1.01e-04 8.37e-02 9.86e-05 8.37e-02

binutils 3.84e-02 3.84e-02 1.50e-01 3.84e-02 1.50e-01

cflow-1.7 1.81e-03 1.26e-02 1.81e-03 2.45e-04 6.77e-04

cflow-1.6 1.15e-03 8.56e-03 5.06e-03 8.92e-05 6.89e-05

cxxfilt 8.37e-02 8.37e-02 8.37e-02 8.37e-02 8.37e-02

giflib 1.99e-01 3.18e-02 6.83e-03 3.47e-01 3.18e-02

mjs 1.15e-01 3.95e-05 6.22e-01 1.15e-01 2.64e-01

openh264 1.84e-01 1.21e-05 1.84e-01 9.58e-02 1.84e-01

yaml-cpp 1.02e-01 9.33e-01 3.03e-01 4.46e-02 2.02e-05

yara 8.09e-02 1.63e-04 6.63e-02 8.60e-03 9.99e-01

yasm 7.42e-04 5.97e-05 4.00e-02 4.77e-02 5.97e-05

outcomes are shown in Table 4, with values highlighted in bold indicating sig-
nificance levels below 0.05. Our analysis reveals that MemSpate outperforms all
the five compared fuzzers in 29 out of the 60 comparisons with a significant
difference.

Overall, our experimental results demonstrate that MemSpate outperformed
AFL++, MemLock, UAFL†, TortoiseFuzz, and HTFuzz in identifying memory
safety vulnerabilities.

4.4 Effectiveness of Memory Usage Protocol (RQ3)

Figure 4 presents the number of memory safety vulnerabilities categorized by
various types found by each fuzzer. The findings demonstrate that MemSpate

MemSpate 251

is capable of detecting all 9 types of memory safety vulnerabilities, whereas
other fuzzers fail to detect 2 or 3 types among the 12 benchmark programs.
Furthermore, MemSpate has identified a total of 33 memory temporal vulnera-
bilities (including double-free, heap-use-after-free, invalid-free and null-pointer-
dereference) and 27 memory spatial vulnerabilities (the others). In comparison,
AFL++, MemLock, UAFL†, TortoiseFuzz and HTFuzz have found 27, 8, 28,
25 and 21 memory temporal vulnerabilities respectively. Additionally, they have
identified 18, 17, 18, 16 and 13 memory spatial vulnerabilities. Notably, only
MemSpate has the ability to uncover the invalid-free vulnerability.

Fig. 4. Vulnerability numbers categorized by various types

Figure 5 presents upset plots illustrating the collective number of vulnerabil-
ities discovered by different sets of fuzzers. The figure indicates that there exists
a total of 12 vulnerabilities that can be found by all the fuzzers. Furthermore,
MemSpate demonstrates the capability to exclusively identify 8 vulnerabilities,
while both UAFL† and TortoiseFuzz can each uniquely identify one vulnerability.
Among all the vulnerabilities, MemSpate only missed 6 vulnerabilities, whereas
AFL++, MemLock, UAFL†, TortoiseFuzz, and HTFuzz missed a greater number
at 21, 41, 20, 25, and 32, respectively.

Based on the above findings, we can deduce that the memory usage protocol
of MemSpate contributes to a more comprehensive detection of memory safety
vulnerabilities, encompassing both a greater number and variety of types.

4.5 Discussion

Overhead of Instrumentation. This paper presents our proposed fuzzer,
MemSpate, which effectively detects memory safety vulnerabilities. However,

252 Z. Fu et al.

due to the high expressiveness of preliminary static analysis, the instrumenta-
tion component introduces more overhead to the target program compared to
other fuzzers. We calculated the average time (in seconds) spent on 10 runs of
instrumentation, and the results are shown in Table 5.

Fig. 5. UpSet Plot for MemSpate and five baseline fuzzers

It is evident that MemSpate consumes an average of 517.32 s to instrument
the target programs, which is significantly higher than its base fuzzer AFL++
(3.74 ×). Considering our replication UAFL† of UAFL on MemSpate, we find
that its average cost of instrumentation (3.70 ×compared to AFL++) is slightly
lower than that of MemSpate. MemLock, TortoiseFuzz, and HTFuzz are built
on top of AFL and may have a lower instrumentation overhead than AFL++.
While MemLock’s instrumentation is even slightly lower than AFL++ (0.90
×), TortoiseFuzz and HTFuzz still have a higher instrumentation overhead than
AFL++ (1.96 ×and 2.04 ×) due to the complex memory safety protocol they
propose; however, both are far lower than MemSpate and UAFL†.

Upon thorough analysis, we assert that the high instrumentation overhead
of MemSpate, along with the requirement for static analysis and additional pre-
processing before conducting static analysis, also contributes to a considerable
expense that cannot be ignored.

Moreover, an experiment was conducted to investigate the impact of our
instrumentation on the fuzzing loop phase. The speed of the fuzzing loop for
each fuzzer on each benchmark program was measured in terms of executions
per second. Figure 6 illustrates the results from 10 runs. The findings indicate
that the executions per second of MemSpate are not significantly lower than
those of the other base fuzzers and even show significant improvement compared
to the other base fuzzers on program yara.

In conclusion, the instrumentation cost of MemSpate in the static analysis
stage results in a significant time investment. However, the time overhead of
these static analyses (approximately 10 min) falls within acceptable limits when
compared to the duration of the fuzzing loop test (24 h as we have set). Further-
more, the impact of instrumentation on the efficiency of fuzzing loop execution
is negligible.

MemSpate 253

Table 5. Instrumentation overhead of fuzzers

programs MemSpate AFL++ MemLock UAFL† TortoiseFuzz HTFuzz

bento4-639 466.90 182.10 140.40 436.00 174.40 152.00

bento4-640 461.10 193.10 133.90 454.10 185.40 150.10

binutils 1275.10 452.10 407.10 1285.10 907.40 867.30

cflow-1.6 243.70 42.10 44.10 245.50 65.20 58.80

cflow-1.7 266.10 47.80 48.80 285.50 74.30 64.20

cxxfilt 1865.60 449.50 432.00 1888.70 892.10 831.30

giflib 90.60 33.50 30.40 90.70 35.10 31.90

mjs 36.00 5.20 4.80 32.80 12.30 10.90

openh264 134.60 39.10 37.20 117.30 145.40 114.40

yaml-cpp 387.40 133.70 139.50 342.00 607.10 966.70

yara 457.10 33.70 32.90 470.10 58.20 51.70

yasm 523.60 47.50 41.60 490.60 93.30 81.90

Average 517.32 138.28 124.39 511.53 270.85 281.77

Fig. 6. Executions per second of each fuzzer in 10 runs

Threats to Validity. We discuss the potential threats to the validity and gen-
eralizability of our study, as well as the measures we have taken to mitigate or
control them. One potential threat is the selection bias that may arise from using
only 12 open-source programs, which could limit the diversity of our dataset.
To address this concern, we made sure to select diverse programs from vari-

254 Z. Fu et al.

ous domains and with different characteristics. We are continuously working on
improving and evaluating MemSpate. Another potential concern entails the sam-
pling error that may arise when utilizing a restricted number of seeds and inputs
for each program and fuzzer. This limitation has the potential to impact the
comprehensive nature of our testing process and introduce factors that create
noise or variance in our findings. To address this, we employed an identical set
of seeds for each fuzzer and conducted a 24-h runtime. We repeated each exper-
iment 10 times and reported the average and standard deviation to account for
any potential variations. A third threat to consider is the possibility of statistical
errors. In order to compare MemSpate with other testers, we utilized statisti-
cal tests and significance levels. However, it is important to acknowledge that
these tests have certain assumptions and limitations. To address this concern,
we thoroughly checked the assumptions and conditions before applying the tests,
ensuring that we used the appropriate test for each specific scenario.

5 Related Work

There are various memory-related grey-box fuzzing solutions, whose target can
be classified into two categories: memory spatial bugs and memory temporal
bugs.
Fuzzing for Memory Spatial Bugs. Dowser [7], SAFAL [2] and a concolic
execution-based smart fuzzing method [11] are specifically designed to detect
buffer overflow vulnerabilities. MemFuzz [3] leverages information about mem-
ory accesses to guide the fuzzing process. MemLock [17] employs memory con-
sumption information to guide the fuzzing process. MemConFuzz [4] extracts
the locations of heap operations and data-dependent functions through static
data flow analysis. ovAFLow [21] broadens the vulnerable targets to memory
operation function arguments and memory access loop counts. TortoiseFuzz [16]
proposes a new metric coverage accounting to evaluate coverage by security
impacts (i.e., memory operations), and introduces a new scheme to prioritize
fuzzing inputs.
Fuzzing for Memory Temporal Bugs. FUZE [18] is a new framework to
facilitate the process of kernel UAF exploitation. UAFuzz [12] relies on user-
defined UAF sites to guide the fuzzer during exploration. UAFL [15] uses types-
tate automata to describe a memory temporal protocol of use-after-free vulner-
ability. HTFuzz [20] only focuses on the temporal memory vulnerability. LTL-
FUZZER [10] supports a linear-time temporal logic protocol, but requires expert
knowledge to instrument program locations related to potential temporal vio-
lations. MDFuzz [23] identifies memory operation sequences as targets to guide
the fuzzer without wasting resources exploring unrelated program components.

Note that existing fuzzing solutions typically only address memory usage par-
tially, limiting their ability to detect all types of memory safety vulnerabilities.
While MemSpate utilizes a more comprehensive memory usage, and thus is able
to detect more memory safety vulnerabilities.

MemSpate 255

6 Conclusion

We have proposed MemSpate, a fuzzing technique that utilizes a more compre-
hensive memory usage protocol to efficiently detect memory safety vulnerabili-
ties. We have evaluated MemSpate on 12 real-world programs, demonstrating its
superior performance over 5 state-of-the-art fuzzers in terms of detecting mem-
ory safety vulnerabilities. Additionally, we have disclosed 4 previously unknown
vulnerabilities to the respective vendors. This underscores MemSpate’s efficacy
in testing real-world programs that are prone to memory safety vulnerabilities.

Acknowledgements. This work was supported in part by the National Natural Sci-
ence Foundation of China (Nos. 62472339, 62372304, 62302375, 62192734), the China
Postdoctoral Science Foundation funded project (No. 2023M723736), and the Funda-
mental Research Funds for the Central Universities.

References

1. Ba, J., Duck, G.J., Roychoudhury, A.: Efficient greybox fuzzing to detect mem-
ory errors. In: Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, pp. 1–12 (2022)

2. Bhardwaj, M., Bawa, S.: Fuzz testing in stack-based buffer overflow. In: Advances
in Computer Communication and Computational Sciences: Proceedings of IC4S
2017, vol. 1, pp. 23–36. Springer (2019)

3. Coppik, N., Schwahn, O., Suri, N.: Memfuzz: using memory accesses to guide
fuzzing. In: 2019 12th IEEE Conference on Software Testing, Validation and Veri-
fication (ICST), pp. 48–58. IEEE (2019)

4. Du, C., Cui, Z., Guo, Y., Xu, G., Wang, Z.: Memconfuzz: memory consumption
guided fuzzing with data flow analysis. Mathematics 11(5), 1222 (2023)

5. Farkhani, R.M., Ahmadi, M., Lu, L.: {PTAuth}: temporal memory safety via
robust points-to authentication. In: 30th USENIX Security Symposium (USENIX
Security 21), pp. 1037–1054 (2021)

6. Fioraldi, A., Maier, D., Eißfeldt, H., Heuse, M.: {AFL++}: combining incremental
steps of fuzzing research. In: 14th USENIX Workshop on Offensive Technologies
(WOOT 20) (2020)

7. Haller, I., Slowinska, A., Neugschwandtner, M., Bos, H.: Dowsing for {Overflows}:
a guided Fuzzer to find buffer boundary violations. In: 22nd USENIX Security
Symposium (USENIX Security 13), pp. 49–64 (2013)

8. Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz testing. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 2123–2138 (2018)

9. LCAMTUF: American Fuzzy Loop (2017). https://lcamtuf.coredump.cx/afl/
10. Meng, R., Dong, Z., Li, J., Beschastnikh, I., Roychoudhury, A.: Linear-time tem-

poral logic guided Greybox fuzzing. In: Proceedings of the 44th International Con-
ference on Software Engineering, pp. 1343–1355 (2022)

11. Mouzarani, M., Sadeghiyan, B., Zolfaghari, M.: A smart fuzzing method for detect-
ing heap-based buffer overflow in executable codes. In: 2015 IEEE 21st Pacific Rim
International Symposium on Dependable Computing (PRDC), pp. 42–49. IEEE
(2015)

https://lcamtuf.coredump.cx/afl/

256 Z. Fu et al.

12. Nguyen, M.D., Bardin, S., Bonichon, R., Groz, R., Lemerre, M.: Binary-level
directed fuzzing for {use-after-free} vulnerabilities. In: 23rd International Sym-
posium on Research in Attacks, Intrusions and Defenses (RAID 2020), pp. 47–62
(2020)

13. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: {AddressSanitizer}:
A fast address sanity checker. In: 2012 USENIX Annual Technical Conference
(USENIX ATC 12), pp. 309–318 (2012)

14. Sui, Y., Xue, J.: SVF: interprocedural static value-flow analysis in LLVM. In:
Proceedings of the 25th International Conference on Compiler Construction, pp.
265–266. ACM (2016)

15. Wang, H., et al.: Typestate-guided fuzzer for discovering use-after-free vulnerabili-
ties. In: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, pp. 999–1010 (2020)

16. Wang, Y., Jia, X., Liu, Y., Zeng, K., Bao, T., Wu, D., Su, P.: Not all coverage
measurements are equal: fuzzing by coverage accounting for input prioritization.
In: NDSS (2020)

17. Wen, C., et al.: Memlock: memory usage guided fuzzing. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, pp. 765–777
(2020)

18. Wu, W., et al.: {FUZE}: towards facilitating exploit generation for kernel {Use-
After-Free} vulnerabilities. In: 27th USENIX Security Symposium (USENIX Secu-
rity 18), pp. 781–797 (2018)

19. Ye, D., Su, Y., Sui, Y., Xue, J.: Wpbound: enforcing spatial memory safety effi-
ciently at runtime with weakest preconditions. In: 2014 IEEE 25th International
Symposium on Software Reliability Engineering, pp. 88–99. IEEE (2014)

20. Yu, Y., et al.: Htfuzz: heap operation sequence sensitive fuzzing. In: Proceedings
of the 37th IEEE/ACM International Conference on Automated Software Engi-
neering, pp. 1–13 (2022)

21. Zhang, G., Wang, P.F., Yue, T., Kong, X.D., Zhou, X., Lu, K.: ovaflow: detect-
ing memory corruption bugs with fuzzing-based taint inference. J. Comput. Sci.
Technol. 37(2), 405–422 (2022)

22. Zhang, T., Lee, D., Jung, C.: Bogo: buy spatial memory safety, get temporal mem-
ory safety (almost) free. In: Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, pp. 631–644 (2019)

23. Zhang, Y., Wang, Z., Yu, W., Fang, B.: Multi-level directed fuzzing for detect-
ing use-after-free vulnerabilities. In: 2021 IEEE 20th International Conference on
Trust, Security and Privacy in Computing and Communications (TrustCom), pp.
569–576. IEEE (2021)

	MemSpate: Memory Usage Protocol Guided Fuzzing
	1 Introduction
	2 Motivation
	3 Our Approach
	3.1 Overview of MemSpate
	3.2 Memory Usage Protocol
	3.3 Static Analysis
	3.4 Fuzzing Loop

	4 Evaluation
	4.1 Experiment Setup
	4.2 Memory-Related Vulnerability Detection Capability (RQ1)
	4.3 Comparison with Other Memory-Related SOTA Fuzzers (RQ2)
	4.4 Effectiveness of Memory Usage Protocol (RQ3)
	4.5 Discussion

	5 Related Work
	6 Conclusion
	References

