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Extracting Automata from Neural Networks Using
Active Learning

Zhiwu Xu, Xiongya Hu, Cheng Wen, and Shengchao Qin

Abstract—Deep Learning is a new area of Machine Learning
research. Most modern deep learning models are based on an
artificial neural network, and benchmarking studies reveal that
neural networks have produced results comparable to and in
some cases superior to human experts. However, the generated
neural networks are typically regarded as incomprehensible
black-box models, which not only limits their applications, but
also hinders testing and verifying. In this paper, we present
an active learning framework to extract automata from neural
network classifiers, which can help users to understand the
concepts being training or testing the classifiers. In more detail,
we use Angluin’s L∗ algorithm as a learner and the neural
network under learning as an oracle, employing abstraction
interpretation of the neural network for answering membership
and equivalence queries. Our abstraction consists of value,
symbol and word abstractions. The factors that may affect the
abstraction are also discussed in the paper. We have implemented
our approach in a prototype. To evaluate it, we have performed
the prototype on a MNIST classifier and have identified that
the abstraction with interval number 2 and block size 1 × 28
offers the the best performance in term of F1 score. We also
have compared our extracted DFA against the DFA learned via
the RPNI algorithm and have confirmed that our DFA gives a
better performance.

Index Terms—Automata Learning, Neural Network, Active
Learning

I. INTRODUCTION

Deep Learning is a new area of Machine Learning research,
which has been applied to various fields, including computer
vision, speech recognition, natural language processing, au-
dio recognition, social network filtering, machine translation,
bioinformatics, drug design and board game programs [1], [2].
Most modern deep learning models are based on an artificial
neural network, such as deep neural networks (DNN), deep
belief networks (DBN), convolutional neural networks (CNN)
and recurrent neural networks (RNN). Benchmarking studies
reveal that neural networks have produced results comparable
to and in some cases superior to human experts.

However, the generated neural networks are typically re-
garded as incomprehensible black-box models. They are in
practice unlikely to generalise exactly to the concept be-
ing trained, and what they eventually learn in actuality is
unclear [3]. The opaqueness of neural networks not only
limits their applications, but also hinders testing and verifying.
Indeed, several lines of work attempt to glimpse into the black-
box networks, especially RNN [4]–[11]. They induce rules that
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mimic the blackbox neural networks as closely as possible, by
exploring the possible state vectors of networks, which is often
practically impossible at present.

Active Learning [12] can learn finite automata (sets of
words) precisely from a minimally adequate teacher, an
oracle capable of answering the so-called membership and
equivalence queries, which has been successfully applied to
numerous practical cases in different domains [13]. Recently,
Weiss et al. [14] adopted active learning to extract automata
from neural networks. But the network systems under learning
are RNN acceptors on small regular languages: an input at a
time is a symbol, and thus a sequence of inputs is considered
as a word. Hence, their approach is not suitable to other
neural networks in practice such as CNN, since not all neural
networks perform on discrete-time symbol data.

In this paper, we present an active learning framework to
extract automata from neural network classifiers, which is
inspired by Weiss et al.’s work [14]. But different from their
work, we consider each input as a word using abstraction. So
the system under learning here can be any neural network.
Indeed, we assume that we have no idea about the framework
of neural networks: we can not access the state-vectors nor
we do not know the relations between two consecutive inputs.
For simplicity, we focus on network-acceptors, that is, binary
neural network classifiers, since multi-class classifiers can be
reduced into several binary classifiers.

Abstraction is the key for scaling model learning methods
to realistic application [13]. So the key idea of our approach
is to define an abstraction for the neural network classifier
under learning. Our abstraction consists of three layers: (1)
value abstraction: each value in an input array is mapped into
an integer via partitioning; (2) symbol abstraction: a block
of multi-dimensional integer array is abstracted as a symbol;
and (3) word abstraction: the whole input array is encoded
into a word. We also discuss the factors that may affect the
abstraction.

Next, we present how to instantiate the active learning
framework on neural networks, in particular the membership
and equivalence queries [13]. Membership queries can be
answered by the neural networks via the word concretization
function: we concretise the word that is being queried and
then fed the concretised data into the neural network under
learning. While equivalence query is more challenge, due to
that there are no finite interpretations for neural networks [14].
To address this, we use as an abstract model the automaton
that is learned passively from the trained dataset and then
perform the equivalence query against the abstract model. If
no words that separate the hypothesis and the abstract model
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are found, then the equivalence query is yes. Note that, when
a counterexample is found, it may be not that the hypothesis
is incorrect, but rather that the abstract model is not precise
enough and needs to be refined.

Finally, we have implemented our approach in Java, wherein
we use the library LearnLib [15] to implement the active
learning framework. To evaluate our approach, we conducted
a series of experiments on a MNIST classifier. We first test
the safety of the MNIST classifier under the abstractions with
different interval numbers (i.e., the number of partitioning) and
block sizes and have found that it is fine to set the interval
number as 2. Secondly, we check whether the abstractions
with different interval numbers and block sizes are over-
approximated and have identified some suitable block sizes.
Thirdly, we conduct some experiments to learn DFAs from the
MNIST classifier with some abstractions. The results shows
that the abstraction with interval number 2 and block size
1×28 offers the the best performance in term of F1 score. At
last, we also conduct the experiments to compare our resulted
DFAs against the DFA learned via the RPNI algorithm and the
MNIST classifier itself. Although worse than the classifier,
our DFA gives a better performance than the RPNI DFA.
Nevertheless, there are still some limitations for our approach.

In summary, our contributions are as follows:
• We have proposed an MAT framework to extract au-

tomata from neural network, employing abstraction in-
terpretation of the neural network for answering mem-
bership and equivalence queries.

• We have conducted several experiments on a MNIST
classifier, which demonstrate that our approach is viable,
and the resulted DFA has a better performance than the
DFA learned via the RPNI algorithm in terms of F1 score.

The remainder of this paper is organised as follows. Section
II gives the preliminary of DFA and active learning. Section III
describes our approach, followed by the experimental results
in Section IV. Section V discusses some limitations of our
approach. Section VI presents the related work, followed by
some concluding remarks in Section VII.

II. PRELIMINARY

In this section, we present some notion about automata [16]
and active learning [13].

A. Deterministic Finite Automata

Definition II.1. A deterministic finite automaton (DFA) is a
5-tuple (Q,Σ, δ, q0, F ), where
• Q is a finite set of states,
• Σ is a finite set of input symbols and is called the

alphabet,
• δ : Q× Σ→ Q is the transition function,
• q0 ∈ Q is the starting state,
• F ⊆ Q is the set of accepting states.

A word or string over an alphabet Σ is a finite sequence
of symbols from Σ. The length of a word is the number of
symbols it contains. Note that a word can be empty: the empty
word, denoted as ε, has length 0 and contains no symbols.

Fig. 1. The MAT Framework

Definition II.2. LetM = (Q,Σ, δ, q0, F ) be a DFA and w =
a1a2 . . . an be a word of length n over Σ. The automaton M
accepts the word w if and only if there exists a sequence of
states r0, r1, ..., rn with the following conditions:
• r0 = q0
• ri+1 = δ(ri, ai+1), for i = 0, ..., n− 1
• rn ∈ F .

The set of words recognised by a DFA M, called the
language of M, is the following set:

L(M) = {w ∈ Σ∗ | w is accepted by M}

B. Active Learning Framework
Angluin [12] proposed the first active learning algorithm,

the L* algorithm , to learn finite automata from a minimally
adequate teacher (MAT) in 1987, and today all the most effi-
cient learning algorithms that are being used follow Angluin’s
approach. In the following, we briefly introduce the MAT
framework.

Finite automata (sets of words) can be learned precisely
from a minimally adequate teacher (MAT), that is, an oracle
capable of answering the so-called membership and equiva-
lence queries:
• membership queries (MQ): the learner asks whether a

given word is accepted by the automaton or not, and the
teacher answers with the result.

• equivalence queries (EQ): the learner asks whether a
given hypothesis H is equal to the the automaton model
M held by the teacher. The teacher answers yes if this is
the case. Otherwise she answers no and supplies a word,
the so-called counterexample, on which the hypothesis H
and the automaton model M disagree.

The MAT framework is shown in Figure 1. Initially, the
learner knows the static interface of the system under learning
(SUL), that is, the sets of input (i.e., multi-dimensional array
for neural networks) and output (i.e., yes or no for recogniz-
ers). Then the learner starts to ask a sequence of membership
queries and receives the corresponding responses from the
teacher. After a “sufficient” number of queries, the learner
builds a hypothesis H from the obtained information, and then
sends an equivalence query. If the teacher answers yes, then
the hypothesis H is returned. Otherwise, the learner refines the
information with the returned counterexample, and continues
on querying.
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Fig. 2. Framework of Our Approach

III. APPROACH

In this section, we present an active learning framework
to extract automata from neural network classifiers. Our
framework is shown in Figure 2, which is a classic MAT
framework with an abstraction1. To be brief, we make an
abstraction between the learner and the system under learning.
When queries are sent, the abstraction maps the abstract words
into the concrete ones; while the responds are received, the
abstraction does the opposite. In the following, we explain
how to define an abstraction for neural networks and how to
instantiate the active learning framework on neural networks.

A. Abstraction

For simplicity, we focus on network-acceptors, that is,
binary neural network classifiers, since we can reduce a multi-
class classifier into several binary classifiers. So there are only
two outputs for the system under learning, and thus we do not
need to abstract them. That is to say, we will abstract only
the inputs. Generally, the inputs of neural network classifiers
are always multi-dimensional array. As mentioned in Section
I, we abstract an input as a word, rather a symbol.

Our abstraction consists of three layers:

• value abstraction: each value in an input array is mapped
into an integer via partitioning;

• symbol abstraction: a block of multi-dimensional integer
array is abstracted as a symbol;

• word abstraction: the whole input array is encoded into
a word.

Value abstraction. Inspired by Omlin and Giles’s work [7],
we first split the values of the input space into n (equal)
intervals, and map each interval into an integer. Formally, let
I0, . . . , In−1 be the intervals and a value d of the input. Then
we define a value abstraction function αv that maps concrete
values in the inputs into integers in {0, . . . , n− 1}:

αv(d) = i such that d ∈ Ii

1Some papers use the term mapper [13].

When concretizing an abstract integer, we randomly select at
most kv (which can be dependent on the intervals) values to
represent the corresponding interval. That is, we define a value
concretization function γv that maps integers in {0, . . . , n−1}
into sets of concrete values2:

γv(i) = {dj | dj ∈ Ii and 0 ≤ j < kv}

These two functions can be extended on sets of elements in a
natural way.

It is easy to get that αv(γv(i)) = i for each integer i.
Moreover, if kv is large enough, we can have d ∈ γv(αv(d))
for a given value d. To some extent, (αv, γv) forms a Galois
connection [17]. So concerning Galois connections, the larger
kv , the better.

But only Galois connections are not enough here. We also
need to consider the safety of neural networks [18]. The
composition of the functions αv and γv can be viewed as
a manipulation [18]. Performing this manipulation should not
result in a different classification. That is, replacing a value
d of the input by any value d′ obtained by applying this
manipulation should not flap the outputs. So we require that
d′ should be as close to d as possible, that is, n should be as
large as possible.

Symbol abstraction. After the value abstraction, each in-
teger can be used as a symbol. But this could yield words
that are too long to learn the model. So for scalability, we
add a symbol abstraction, which abstracts input arrays into
symbols by blocks. For simplicity, in this paper we consider
2-dimensional array with size iRow × iCol . We say a slice
of an input array starting from the index (ri , ci) to the index
(ri + oRow , ci + oCol) is a block, and the size of the block
is oRow × oCol .

A natural way to abstract blocks into symbols is to mapped
the blocks into one dimension in row (or column) major order
and then encode the one dimension into a base-n number (or
a string consisting of the integers in the one dimension). We
denote this mapping as αB

s . By decoding the base-n number
(or the string), it is easy to obtain the inverse mapping γBs . It
is clear (αs, γs) forms a Galois connection. But a drawback of
this solution is that the size of alphabet is noRow×oCol , which
could be too large in practice.

In this paper we use an alternative way to represent a block
as its sum. In more detail, we define a symbol abstraction
function αS

s that maps integer blocks of size oRow × oCol
into the sum of the integers in blocks:

αS
s (b) =

∑
i∈b

i

The set of the possible sums of blocks is {0, . . . , oRow ×
oCol × (n− 1)}. So the size of alphabet is oRow × oCol ×
(n − 1) + 1. Compared to the natural solution, the size of
alphabet is quite smaller. But this mapping is not bijective,
and thus the inverse mapping does not exist. In order to form
Galois connections, similar to value abstraction, we define the
inverse mapping from symbols (i.e. sums) to sets consisting

2In our implementation, we collect sets of values that is mapped into an
identity integer from existing data, and select values from the corresponding
set when concretizing an abstract integer.
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of at most ks (which can be dependent on the block size and
n) blocks whose sum is exact the symbol3:

γSs (sum) = {bj |
∑
i∈bj

i = sum and 0 ≤ j < ks}

Likewise, these two functions can be lifted to sets of elements
in a natural way. Moreover, if ks is large enough, we can have
b ∈ γSs (αS

s (b)) for a given block b. To some extent, (αS
s , γ

S
s )

forms a Galois connection. So concerning Galois connections,
the larger ks, the better.

Let us consider the alphabet size. As discussed above, the
alphabet size is linear (exponential resp.) in the block size and
the number of intervals n for the abstraction function αS

s (αs

resp.). So concerning the alphabet size, the smaller the block
size and the interval number n, the better.

Due to the mapping is not bijective, the sum abstraction
may flap the results of neural networks, . To avoid this, the
distance between two blocks of the same sum, or the size of
block, should be as small as possible.

Word abstraction. Finally, we split the input array into
blocks, and map them into a sequence of symbols (i.e., a
word) in row (or column) major order. Algorithm 1 shows
the detail of the word abstraction function αw. The algorithm
first invokes the value abstraction αv to map the values in
the input array into integers (Line 1). Then it slides over the
integer matrix block by block (Lines 2 − 10) and maps each
block into a symbol by the symbol abstraction αS

s (Line 6).
Note that here we use a narrow slide on the input array, that
is, the blocks to be abstracted are fully contained in the input
array. One can use the wide slide with zero-padding as well.
In addition, just like the convolution operation of CNN, one
can further set the stride sizes for each dimension.

Algorithm 1 Word Abstraction Function αw(in)

Input: an input in
Output: a word w

1: inI = αv(in)
2: w = ε, ri = 0
3: while ri + oRow < iRow do
4: ci = 0
5: while ci + oCol < iCol do
6: w = w + αS

s (inI [ri : ri + oRow ][ci : ci + oCol ]))
7: ci = ci + oCol
8: end while
9: ri = ri + oRow

10: end while
11: return w

As mentioned above, the symbol abstraction aims to reduce
the length of words. According to the word abstraction, we
have that the larger the block size, the shorter the word.

The word concretization function γw, which is shown in
Algorithm 2, does the opposite: it maps a sequence of symbols
(i.e., a word) into a sequence of sets of blocks (Lines 5− 7),
and combines them into a set of matrices (Lines 8−10). Note

3In our implementation, we collect sets of blocks that is mapped into an
identity symbol from existing data, and select blocks from the corresponding
set when concretizing an abstract symbol.

Algorithm 2 Word Concretization Function γw(w)

Input: a word w
Output: a set matrix set of matrices

1: rnum = iRow/oRow , cnum = iCol/oCol
2: if w.length 6= rnum× cnum then
3: return null
4: end if
5: for wi = 0, . . . , w.length− 1 do
6: data[wi] = γSs (word[wi])
7: end for
8: S = {m|m[ri : ri + oRow ][ci : ci + oCol ] ∈ data[ri ×
cnum+ ci ]}

9: matrix set = {in|in ∈ γv(m) and m ∈ S}
10: return matrix set

that we require the length of word to be concretized should
conform to the size of input (Lines 2−4). One can release this
length condition by zero-padding or discarding the superfluous
symbols. But this may break the Galois connections. In
addition, one can further encode the sequence of symbols into
a final word in a more compact format, such as using run-
length encoding (RLE).

If (αv, γv) and (αS
s , γ

S
s ) are Galois connections, then so is

(αw, γw). If (αv, γv) and (αS
s , γ

S
s ) does not cause the flapping,

then neither does (αw, γw).
Finally, consider the abstraction itself. It should not be an

over-approximation. We say a word w is conflict, if there exist
two inputs of different classifications that are abstracted into
w. To avoid over-approximation, the number of the conflict
words caused by the abstraction should be as little as possible.

To sum up, to obtain a suitable abstraction (e.g., scalable,
safety and non-conflict), one needs to take n, kv , ks, and block
size into account .

B. Active Learning

In this section, we present how to instantiate the active
learning framework on neural networks, in particular the
membership and equivalence queries.

Membership query. Membership queries can be answered
by the neural networks via the word concretization function.
In our abstraction, we map a word into a set of data. As
mentioned above, the abstraction may flap the results or yield
some conflict words, that is, the classifications of different data
in the set of an identity word may not be the same. To address
this, we count the numbers of different classifications of the
data in the set and take the classification which gets the most
votes as the result for the word.

We say a word is positive (negative resp.) if there are more
positive (negative resp.) input arrays that are abstracted into it
than the negative (positive resp.) one.

Algorithm 3 gives the procedure of membership query,
where NW denote the neural network under learning. Firstly,
we concretise the word w that is being queried into a set
matrix set of possible data, using the word concretization
function γw (Line 1). If matrix set is null, that is, the
length of word w does not conform to the size of input data,



5

then we return false immediately. Otherwise, we fed each
matrix into the neural networks and count the numbers of
different classifications (Lines 5− 12). Finally, we return the
classification, which gets the most votes (Line 13).

Algorithm 3 Membership Query MQ(w)

Input: a word w
Output: true if w is accepted, otherwise false

1: matrix set = γw(w)
2: if matrix set == null then
3: return false
4: end if
5: yes = 0, no = 0
6: for matrix in matrix set do
7: if NW (matrix) then
8: yes+ +
9: else

10: no+ +
11: end if
12: end for
13: return yes >= no

Equivalence query. As there are no finite interpretations
for neural networks [14], equivalence query is more challenge
than membership query. To address this, similar to Weiss
et al.’s work [14], we use an abstract representation of the
neural network under learning. But different from Weiss et
al.’s work [14], we start with the automaton that is learned pas-
sively via the regular positive and negative inference (RPNI)
algorithm [19] from some test queries, which are selected
from the trained dataset. Then we perform the equivalence
query against this abstract model. As discussed in [14], when
a counterexample is found, it may be not that the hypothesis
is incorrect, but rather that the abstract model is not precise
enough and needs to be refined.

The procedure4 of equivalence query is given in Algorithm
4. Firstly, the algorithm tries to find a word that can separate
the hypothesisH and the abstract modelM by the Wp-method
test [20] (Line 3). If such a word does not exist, then it returns
null (Lines 4 − 6), which means the equivalence query is
yes. Assume a word w is found. Then it checks whether this
word is a true counterexample, that is, the classifications of
the abstract model and the neural network under learning are
the same (Line 7). If it is in that case, then it returns this
word as a counterexample to the learner (Line 8). Otherwise,
it refines the abstract model with this word (Line 10): it
adds the counterexample into the positive set or the negative
set dependent on its true classification, and relearns a new
automata via RPNI. After that, the algorithm continues on the
equivalence query against this refined model.

IV. EXPERIMENTS

We have implemented our approach in a prototype in Java,
wherein we use the library LearnLib [15] to implement the
MAT learning framework and the RNPI algorithm. To evaluate

4In our implementation, we set a bound for the refining time for efficiency,
which may yield an incompatible acceptance exception.

Algorithm 4 Equivalence Query EQ(H,M)

Input: a hypothesis H and a model M
Output: a counterexample if H 6=M, otherwise null

1: while true do
2: find a word w that separates H and M
3: if w does not exist then
4: return null
5: end if
6: if M.isAccepted(w) = MQ(w) then
7: return w
8: end if
9: refine M with (w,MQ(w))

10: end while

our approach, we conduct a series of experiments on a MNIST
classifier, which is always used as a Hello World program of
deep learning. Firstly, we conduct experiments to see the safety
of the MNIST classifier under the abstractions with different
interval numbers and block sizes. Secondly, we also conduct
experiments to test whether the abstractions with different in-
terval numbers and block sizes are over-approximated. Thirdly,
we present the experiments to learn DFAs from the MNIST
classifier under different abstractions. Fourthly, we also present
the comparison of the resulted DFAs against the DFAs learned
via the RPNI algorithm and the MNIST classifier itself.

The experiments were conducted on a workstation with Intel
Processor i7-7820HQ (2.90GHz) and 32GB memory.

A. MNIST Classifier

The MNIST classifier under learning is a binary classifi-
cation version of MnistClassifier from the tutorial examples
of DeepLearning4J [21], which recognises the number 1. It
is built on a convolution neural network, which consists of 6
layers, namely, a convolution layer, a pooling layer, another
convolution layer, another pooling layer, a dense layer and a
output layer. The training dataset and the testing dataset are
from the official site [22], wherein each input is 2-dimensional
integer matrix with size 28× 28.

B. Safety Experiments

As discussed in Section III-A, the interval number n and
the block size affect the definition of the abstraction, especially
the safety of the neural network under learning. For that, we
present in this section some experiments to test the flapping
of the MNIST classifier on some selected inputs from the
training set under different abstractions with different interval
numbers and different block sizes. For simplicity, we use the
number of values that are possibly modified by the abstraction
manipulation to represent the block size.

In these experiments, for a given interval number n, we
randomly select k values from a selected input, and replace
each selected value by a random value which shares the same
interval with the corresponding selected value. Next, we fed
the resulted data into the MNIST classifier and see whether
the classifications are flapped. We select 59733 inputs in total
from the training set, which are classified correctly by the
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TABLE I
FLAPPED RESULTS ON DIFFERENT INTERVAL NUMBERS AND VALUE

NUMBERS

n k Flaps Ratio n k Flaps Ratio
2 1 3 0.005% 2 10 16 0.027%
2 100 209 0.350% 2 500 6585 11.024%
3 1 0 0.000% 3 10 6 0.010%
3 100 132 0.221% 3 500 3962 6.633%
5 1 1 0.002% 5 10 4 0.007%
5 100 42 0.703% 5 500 419 7.015%
10 1 1 0.002% 10 10 0 0.000%
10 100 19 0.032% 10 500 93 0.156%

MNIST classifier. Table I shows the results, where Flaps
denotes the number of inputs whose results are flapped by the
manipulation, and Ratio denotes the percentage of the number
of flapped input to the total number of selected inputs.

From the results we can see that, the number of flapped
inputs increases as the number of selected values increases.
That is to say, the smaller the block size, the less the number of
flapped inputs. While as the number of intervals increase, the
number of flapped inputs decreases, which indicates that the
larger the interval number, the better. These results conform
to the discussion in Section III-A. Moreover, the results also
shows that when the interval number n is 2 and the number
of selected values k is 100 (close to the block size 28× 4 or
4×28), the ratio of the flapped inputs is still smaller than 1%.
As a small number of intervals yields a small size of alphabet,
we suggest to set the interval number n as 2.

C. Conflict Experiments

In this section, we conducted experiments to see whether
the abstraction with the given block size is over-approximated,
that is, we would like to test how many conflict words that
are generated by the abstractions with different block sizes.
For that, we perform the abstractions with different block
sizes on some selected inputs from the training set, and do a
statistic analysis on the abstracted words with respect to their
classifications. For simplicity and scalability, we consider the
block sizes whose row sizes or column sizes are 28. The test
inputs that are selected from the training set is 59733 in total,
with 6619 positive inputs and 53114 negative inputs.

The statistic results are given in Table II, where PW (NW
resp.) denotes the number of positive (negative resp.) words,
CPD (CND resp.) denotes the number of positive (negative
resp.) inputs that are abstracted into a negative (positive resp.)
word and CPW ( CNW resp.) denotes the number of positive
(negative resp.) words that have both positive and negative
inputs.

The results show that as the block size increases, the
number of abstracted words decreases, which conforms to the
discussion in Section III-A. Thus it could be more easy to
extract the automaton for a larger block size. For example,
when taking the whole input as a symbol, there are 239 words
in total. But both the number of conflict words and the number
of conflict data increase as the block size increases, which
indicates that an abstraction with a larger block size is prone
to be an over-approximation. In particular, when taking the

TABLE II
CONFLICT RESULTS ON DIFFERENT BLOCK SIZES

oRow oCol CPD CND PW CPW NW CNW
1 28 0 0 6524 0 53114 0
2 28 0 0 6419 0 53114 0
4 28 3 79 3518 77 51740 3
7 28 10 242 4425 240 49393 10
14 28 2530 1334 247 162 5197 516
28 1 0 1 6488 1 53113 0
28 2 0 8 6114 8 53100 0
28 4 80 422 4437 412 51419 79
28 7 2252 1318 1366 483 35128 728
28 14 3121 1198 729 327 4497 832
28 28 3696 1200 37 24 202 73

TABLE III
ALPHABET SIZES AND WORD LENGTHS ON DIFFERENT BLOCK SIZES

n oRow oCol dSize Size Length
2 1 28 21 29 28
2 2 28 41 57 14
2 4 28 48 113 7
2 7 28 126 197 4
2 14 28 143 393 2
2 28 1 21 29 28
2 28 2 41 57 14
2 28 4 81 113 7
2 28 7 124 197 4
2 28 14 146 393 2
2 28 28 244 785 1

whole input as a symbol, 55.839% of the positive inputs are
abstracted into negative words and 64.865% of the positive
words are conflict. Moreover, concerning the conflict words,
from the results we can also see that the block sizes of 2×28
and 1× 28 perform best, with none conflict data nor words.

In addition, we also count the the alphabet sizes (denoted
as Size), the number of symbols occurring in the selected
inputs (denoted as dSize), and the word lengths (denoted as
Length) on different block sizes, which are shown in Table III.
The results show that the larger the block size, the larger the
alphabet size and the shorter the word length, which conforms
to the discussion in Section III-A. Moreover, we found that the
products of the alphabet size and the word length are almost
the same. So for scalability, any block size seems fine. But if
considering the practical alphabet (i.e., symbols occurring in
the inputs), the larger block size could be better.

D. Automata Learning

In this section, we present the experiments to learn DFAs
from the MNIST classifier under some abstractions with the
interval number n = 2, wherein the block sizes are selected
based on the experiments above.

To quantitatively validate the models, we use the follow-
ing performance measures. Accuracy is the most intuitive
performance measure and it is simply a ratio of correctly
predicted observation to the total observations. Precision is
the ratio of correctly predicted positive observations to the
total predicted positive observations, and Recall is the ratio
of correctly predicted positive observations to all observations
in actual class. F1 score is the weighted average of Precision
and Recall, that is, (2 ·Precision ·Recall)/(Precision+Recall).
Intuitively, the higher the measures above, the better the model.
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The experimental results are given in Table IV, where State
denotes the number of states of the resulted DFA (the alphabet
size has been given in Table III), the columns wAcc, wPre,
wRec and wF1 respectively denote the Accuracy, Precision,
Recall and F1 score that are computed with respect to words,
and the columns vAcc, vPre, vRec and vF1 respectively
denote the Accuracy, Precision, Recall and F1 score that are
computed with respect to input values.

Form the results, we can see that the DFAs extracted under
the abstraction in rows performs better than the ones under the
abstraction in columns both in terms of F1 score with respect
to words and inputs. For example, the F1 score of the block
size 1×28 is higher than the one of the block size 28×1. This
is because the digit number of 1 is more regular in row order
than in column order. The results also show that a smaller
block size can obtain a higher F1 score. For example, the F1
score of the block size 1×28 is higher than the one of the block
size 2×28 or 28×2. The reason is that a smaller block size can
generate a more preciser abstraction. Moreover, concerning
the size of extracted DFA, we can extract a larger DFA under
a smaller block size. For example, the DFA extracted under
the block size 28 × 1 is the largest one among the results.
As discussed before, an input can be abstracted into a longer
word under a smaller block size, which thus enlarges the the
extracted DFA. In addition, we also perform the abstraction
mapping a whole input as a symbol as does in Weiss et al.’s
work [14]. Although it has a better performance than the other
models on the word layer, the extracted DFA gets the worst
performance in the input value layer, due to the abstraction is
over-approximated.

E. Comparison

To further evaluate the resulted DFA, we compare it against
the DFAs learned via the RPNI algorithm and the MNIST
classifier itself. For that, we learn a DFA (denoted as RPNI
DFA) via the RPNI algorithm from the training data, wherein
all the positive inputs and only one ninth of the negative inputs
are selected (to avoid memory overflow). Then we perform
all the models on the testing dataset. The results are given in
Table V, where both our resulted DFA and the RPNI DFA
are extracted under the abstraction with interval number 2 and
block size 1× 28, and the notations are the same as the ones
of Table IV.

Compared to the RPNI DFA, our DFA has a better Ac-
curacy, Precision and F1 score, but a worse Recall. This
is because that RPNI DFA takes all the positive inputs in
the training set into account such that it can recognise more
positive inputs in the testing dataset. Although we also use
a RPNI DFA as an abstraction model, only part of positive
inputs are selected. And during learning, the RPNI DFA is
refined with respect to the classifier under learning.

The results also show that our DFA is a little worse than the
classifier. A reason for this is that we have set some bounds in
our implementation for the learning procedure for efficiency
and to avoid memory overflow. Nevertheless, our approach
still needs to be improved.

V. LIMITATIONS

Although our approach works for the MNIST classifier,
there are still some limitations. Firstly, to figure out a suitable
abstraction for the neural network under learning is not a
easy task. As shown in [18], [23], [24], several deep neu-
ral networks, including highly trained and smooth networks
optimised for vision tasks, are unstable with respect to so
called adversarial perturbations. Hence, some neural networks
may be too sensitive to the abstraction manipulation to find
a reasonable interval number. Even if a reasonable interval
number were found, one need to make a compromise between
the abstraction and the scalability to find a block size. More-
over, whether a turing machine can simulate a natural neural
network is an open question [25]. So in some sense, we cannot
define an abstraction without the conflict or the flapping.

Secondly, the scalability is another problem. Generally, the
size of inputs of neural networks is in thousands. For such a
neural network, either the alphabet may be too large (if a large
block size is taken) or the word may be too long (if a small
block size is taken) for us to extract the automaton. Taking
the MNIST classifier for example, it could last several days
for some abstractions to extract the automaton.

Thirdly, our approach is dependent on the dataset. In Section
IV, we selected the interval number and the block size via an
analysis on the the training dataset. Different datasets may
derive different abstractions. To make things worse, it may be
the case that an abstraction is suitable for the training dataset,
but unsuited for some other testing dataset.

VI. RELATED WORK

In this section, we review some related work. Existing work
on DFA extraction from neural networks targets RNNs, which
was extensively explored in [26], [27].

Omlin and Giles [7] proposed a global partitioning of
the network state space according to q equal intervals along
every dimension, and then exploring the network transitions
in the partitioned space. Our value abstraction adopts this
partitioning, but we work on the input space, instead of the
state space.

Cechin [10] presented a approach to extract DFA using k-
means and fuzzy clustering. The key idea is to classifier a large
sample set of reachable network state using k-means. There are
several other work that adopted cluster analysis on state space,
including k-means clustering [4], [8], [9], [11] , hierarchical
clustering [5], and self-organizing maps [6]. These approaches
have to access the state-vectors, while our approach is a block-
box one.

Recently, Weiss et al. [14] adopted active learning to extract
automata from RNN. Our work is inspired by and similar to
this, but different in the follows: (1) we target general neural
network, not only RNN; (2) we consider an input is a word,
rather than a symbol; (3) we use a DFA that is inferred from
some training data as an abstract model for equivalent queries.

VII. CONCLUSION

In this work, we have proposed a MAT framework to
extract automata from neural networks, employing abstraction



8

TABLE IV
AUTOMATA EXTRACTED UNDER DIFFERENT ABSTRACTIONS

oRow oCol State wPre wRec wAcc wF1 vPre vRec vAcc vF1
1 28 175 59.284% 85.745% 91.998% 70.100% 59.676% 84.808% 91.850% 70.056%
2 28 96 58.496% 85.216% 91.887% 69.372% 59.270% 84.363% 91.725% 69.624%
28 1 190 49.667% 82.660% 88.993% 62.050% 50.300% 82.106% 88.869% 62.383%
28 2 83 48.317% 82.156% 89.084% 60.848% 50.630% 82.388% 88.989% 62.718%
28 28 3 100.000% 78.378% 96.653% 87.879% 69.649% 40.927% 91.355% 51.557%

TABLE V
COMPARISON AGAINST THE MNIST CLASSIFIER AND THE RPNI DFA

Model wPre wRec wAcc wF1 vPre vRec vAcc vF1
Our DFA 55.041% 70.782% 90.176% 61.927% 55.288% 70.988% 90.184% 62.162%

RPNI DFA 31.483% 84.636% 77.476% 45.895% 31.664% 84.744% 77.494% 46.102%
CNN - - - - 99.69% 99.40% 99.06% 98.63%

interpretation of the neural networks for answering mem-
bership and equivalence queries. We have implemented our
approach in a prototype and have carried out some interesting
experiments on a MNIST classifier. Through experiments, we
have found that the DFA extracted from the MNIST classifier
under the abstraction with the interval number 2 and the
block size 1× 28 performs the best. The experimental results
have also demonstrated that our resulted DFA has a better
performance than the DFA learned via the RPNI algorithm.

As for future work, we may consider a better encoding such
as RLE to improve the approach. We can perform experiments
on other neural network classifiers. Other models to be extract
from neural network are under consideration.
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