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ABSTRACT

Kernel drivers are a critical part of the attack surface since they con-
stitute a large fraction of kernel codebase and oftentimes lack proper
vetting, especially for those closed-source ones. Unfortunately, the
complex input structure and unknown relationships/dependencies
among interfaces make them very challenging to understand. Thus,
security analysts primarily rely on manual audit for interface re-
covery to generate meaningful fuzzing test cases. In this paper,
we present SyzGen, a first attempt to automate the generation of
syscall specifications for closed-source macOS drivers and facilitate
interface-aware fuzzing. We leverage two insights to overcome the
challenges of binary analysis: (1) iterative refinement of syscall
knowledge and (2) extraction and extrapolation of dependencies
from a small number of execution traces. We evaluated our ap-
proach on 25 targets. The results show that SyzGen can effectively
produce high-quality specifications, leading to 34 bugs, including
one that attackers can exploit to escalate privilege, and 2 CVEs to
date.
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1 INTRODUCTION

According to syzbot [5], Google’s Linux kernel fuzzing platform,
2,854 bugs have been found in the Linux upstream kernel in just
under four years of deployment. This translates to 3 bugs per day on

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8454-4/21/11.

https://doi.org/10.1145/3460120.3484564

Yu Wang

Didi Research America
Mountain View, USA

Zhiyun Qian
University of California, Riverside
Riverside, California, USA

average, demonstrating the tremendous success of its underlying
kernel fuzzing system, namely Syzkaller [25]. More importantly, ac-
cording to the report [24] from Google and some prior research[30],
the majority of Linux bugs reported are attributed to drivers as they
contribute to a large portion of the codebase and oftentimes are less
tested, indicating a critical attacking surface. It is no different from
Apple’s operating systems. There were 74 CVEs related to Apple
drivers, accounting for approximately one-third of all 231 reported
Apple kernel vulnerabilities from iOS 8 through iOS 13.4.1 [7].

The key to the success of kernel fuzzing hinges on a fuzzer’s
ability to generate diverse and interesting test cases that exercise
various corner cases relatively deep in the kernel. Today, this is
largely accomplished through syscall specifications that are typi-
cally manually crafted by experts. For example, Syzkaller, the state-
of-the-art kernel fuzzer, supports templates that encode the in-
formation regarding syscalls that can be invoked against specific
kernel modules. More specifically, they contain two types of infor-
mation about syscalls: (1) The structures and constraints of syscall
arguments, i.e., type, value ranges, and the relationship between
fields. Without such knowledge, the input generated by a fuzzer will
likely be rejected by the kernel as driver-specific sanitization will be
performed on untrusted input from userspace. (2) Dependencies
between syscalls. This is crucial because a kernel module maintains
its internal states: successful execution of syscalls usually require
the right sequence of invocation (i.e., implicit dependence or
ordering dependence) and/or correctly passing a ‘handler’ (e.g.,
file descriptor) returned from the kernel to a syscall (i.e., explicit
dependence or value dependence) [14]. Missing explicit depen-
dencies can be especially detrimental because key functionalities
of a kernel module would become unreachable, i.e., it is unlikely a
fuzzer can generate a random value that happens to match a specific
‘handler’ returned by previous syscalls.

Unfortunately, the process of curating templates is tedious and
labor-intensive, often requiring a deep understanding of the corre-
sponding module. As a result, in practice, templates are incomplete
and lead to sub-optimal fuzzing results. Indeed, from tracking the
history of templates maintained by Syzkaller [6] over the years,
there are a large number of additions and corrections to improve
the quality.

Despite the challenge, there has been recent work on automating
the generation of syscall templates. Specifically, DIFUZE [9] was
proposed to statically analyze the source code of a Linux kernel
module to infer the structure and constraints of syscall arguments,
based on how the arguments are copied and used in the module. In
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addition, it also compiles a list of hard-coded explicit dependencies
in kernel modules.

In this project, we take on an ambitious goal to automatically
generate syscall templates for closed-source drivers on macOS. There
are several unique challenges in achieving the goal. First, unlike
the core kernel’s syscalls which are well-documented to support
application development, drivers’ syscalls are generic and yet have
vastly different functionalities depending on the underlying driver-
specific implementation. For example, I0ConnectCallMethod in
macOS (or its counterpart ioctl in Linux) is a generic syscall that
takes a void* argument to communicate with any driver. Second,
since we target closed-source drivers, it is much more difficult to
recover information regarding syscall arguments and dependencies
among syscalls (e.g., lack of type, inlined functions). This also means
that we cannot directly apply the recent work [9] that statically
analyzes the source code of Linux kernel modules to automated
specification generation.

To overcome the challenges, we present SyzGen, driven by two
key insights: (1) Iterative refinement. Templates can be generated
and refined over time instead of being curated in one shot. This
allows us to overcome the challenge of having to precisely analyze
the whole binary-only driver. Instead, we can sample various ex-
ecution paths and combine the knowledge from each. (2) Explicit
dependencies can be extracted and extrapolated based on a small
number of execution traces. This allows us to map out the explicit
dependencies that we may not have seen in the past, creating much
more complete templates.

SyzGen is the first to automate the generation of syscall specifica-
tions for closed-source macOS drivers and facilitate interface-aware
fuzzing. We evaluated our tool against 25 targets without source
code and discovered 34 bugs, 2 of which have been assigned CVE
numbers so far. We also observed that SyzGen could identify 271
explicit dependencies and produce high-quality specifications by
measuring the code coverage, demonstrating the effectiveness of
our explicit dependence inference and interface recovery.

In summary, we make the following contributions:

o Interface-aware fuzzing of binary-only drivers. We devel-
oped SyzGen capable of automatically extracting both structures/-
constraints of syscalls and explicit dependencies between syscalls,
given a specific macOS driver. We released the source code of
our prototype to facilitate the reproduction of results and future
research: https://github.com/seclab-ucr/SyzGen_setup.

o Novel techniques. We leveraged two insights to get around the
challenges in binary analysis: (1) iterative refinement of syscall
knowledge and (2) extraction and extrapolation of explicit de-
pendencies from a small number of execution traces.

e Promising experimental results. We evaluated SyzGen against
25 targets on macOS and found 34 bugs, 2 of which have been
assigned CVE numbers so far.

2 BACKGROUND AND RELATED WORK

In this section, we will give some brief background on the internal
structure of macOS drivers, which are the main targets of this
paper, and introduce prior work to explain the challenges we must
overcome.

Application Service Driver
% I0ServiceOpen(service, owningTask, M Spawn a
; type, &connection) UserClient
3 object
i return connection handler representing the act:c?rdlng
i corresponding UserClient object in kernel o type
I l0ConnectCallMethod( M
! io_connect_t connection,
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i const uint64_t*  inputValues, Call different
! uint32_t inputCount, functionalities
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i size_t inputStructSize, the input
' uint64_t* outputValues,
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| void* outputStruct,
? size_t* outputStructSize) .

Figure 1: The internal structure of drivers and its interface.

2.1 MacOS Device Drivers

Similar to Linux, MacOS provides a few generic syscalls such as
I0ServiceOpen and I0ConnectCallMethod through which a user-
space application can interact with a driver. Specifically, each driver
can expose a few services through specific service names (hard-
coded strings), each of which in turn can have a few user clients
providing different functionalities. Note that user clients reside in
kernel space and are part of the drivers. Fig. 1 depicts the typical
communication process for an application to interact with a kernel
driver. Any user application that wishes to connect to a service
must firstly invoke I0ServiceOpen (first argument service speci-
fies which). Then the second argument type, an unsigned 32-bit
integer, is interpreted by the service ! to instantiate a correspond-
ing user client object responsible for subsequent communication
between the user application and service. Upon a successful invo-
cation, a connection handler is returned to the caller which can
be used to locate the user client object in kernel. Any request
that the application sends to the driver will be made by calling
I0ConnectCallMethod() (the main syscall) that takes this connec-
tion as the first parameter.

As shown in Fig. 1, I0ConnectCallMethod() is a generic syscall
that can take any complex data structures, and is implemented differ-
ently by each driver. The second parameter selector is commonly
known as the “command identifier” to determine which operation
the user client would perform. The rest eight parameters are used
to pass inputs and gather outputs. Specifically, inputValues con-
tains integer-only inputs and inputCount determines the number
of elements in inputValues. In contrast, inputStruct can contain
arbitrary types of inputs (as its type is void#), and its size is speci-
fied in inputStructSize. The four output parameters are similar
in nature compared to the input ones. We refer to the collection
of functionalities corresponding to a specific command identifier
value as an interface. The separation of interfaces follows the con-
vention of Syzkaller templates and allows the different interfaces
to be treated differently as will be shown later.

It may be omitted by the driver if there is only one user client to serve.



There are a few interesting things we wish to point out. First, to
conduct any meaningful fuzzing, it is critical to infer the mapping
for each interface between the value of a command identifier and the
rest of the arguments (input or output). Second, even though there
is a convention, drivers can interpret the inputs in any way they
choose, and the command identifier does not necessarily need to be
passed as the second argument (i.e., selector). It can be embedded
in one of the parameters labeled as inputs. Finally, interfaces can
have dependencies on each other. New and interesting code can be
revealed only when a test case exercises a dependence by invoking
multiple interfaces with the correct arguments.

2.2 Kernel Fuzzing

Coverage-guided fuzzing [32] is now the de facto standard for test-
ing and bug finding in the industry due to its efficacy in discovering
complex vulnerabilities without false positives. The unique aspect
of kernel fuzzing is that the input is comprised of a sequence of
syscalls, involving complex arguments and dependencies. To ad-
dress the challenge, the state-of-the-art kernel fuzzer Syzkaller [25]
was developed to allow developers to encode the knowledge of
syscalls in the form of templates.

Below we summarize the recent efforts on interface recovery
assisting kernel fuzzing. Specifically, we list their characteristics in
Table 1.

Interface Recovery without Dependence Inference. DIFUZE [9],
dedicated to recovering interfaces of Linux drivers, is the most
relevant work. It conducts a static analysis to retrieve command
identifiers and their corresponding input structures. However, it
requires source code to extract the structure definition and thus
can not be applied to closed-source kernel modules including ma-
cOS drivers. Moreover, it only conducts static range analysis to a
certain argument (i.e., ioctl’s command identifier) to refine
the syscall templates. It also fails to extract complex relationships
between fields of structures (e.g., a length field specifies the size of a
buffer) and dependencies between syscalls (other than a hard-coded
list), which impedes the fuzzer from exploring deeper and more
interesting code.

Regarding closed-source macOS drivers, there is a small tool,
p-joker [28], which was developed in the industry [3] to recover the
interface of some drivers. The idea is based on some common pro-
gramming pattern in macOS where command identifiers are often
used as indices into function dispatch tables to locate the correspond-
ing handler function. Following Apple’s guidelines, developers
can encode the required values for inputCount, inputStructSize,
outputCount,and outputStructSize in such dispatch table, which
would be enforced by the kernel. p-joker also extracts the informa-
tion to facilitate fuzzing. Unfortunately, this is not the only way a
command identifier is used. In addition, the tool is unable to recover
types and other constraints of the arguments associated with the
command identifier.

Interface Recovery with Dependence Inference. As opposed
to structure recovery, IMF [14] works on general syscall interfaces of
which the argument types are well documented. IMF rather focuses
on mutating the value of arguments in a black-box manner, without
an understanding of their valid ranges and does not attempt to
generate syscall templates. In addition, it also attempts to infer the

dependence between syscalls by analyzing existing syscall traces
generated by applications. Intuitively, it preserves the order of
syscall sequences to produce a fuzzing harness, and infer the explicit
dependence by checking the identical value pairs from the input
and output of syscalls. Similarly, Moonshine [21] relies on traces to
infer explicit dependence and implicit dependence. However, both
schemes cannot be directly applied to macOS drivers where the
interface argument type is generic (void#). Furthermore, none of
the approaches attempts to extrapolate dependencies beyond the
traces that have been observed, and thus the quality of the inferred
dependencies is heavily dependent on the applications that may
exercise various functionalities of the corresponding kernel module
to various degrees.

A more recent work dubbed HFL [16], a hybrid Linux kernel
fuzzer, employs concolic execution to monitor every possible read
and write pairs along the execution of a sequence of syscalls in a
given test case to find dependencies, which is unfortunately not
very scalable and challenging in practice because it needs to drive
the execution perfectly to exercise both of the read and write. In
contrast, SyzGen is much more realistic as it requires the analysis
of a single interface only by generalizing the knowledge gathered
from prior dependencies (see §4.3). In addition, HFL requires source
code to conduct static analysis for instrumentation and points-to
relationship, and such analysis is much less precise on binaries.
Type Recovery. To support fuzzing, type inference is necessary
but not a strong requirement. For example, it is important to differ-
entiate a pointer from non-pointer types, and string (char array)
from other array types. However, it is not critical to differenti-
ate unsigned from signed integer, as long as we know what value
is interesting and allows more coverage. As a result, we borrow
ideas from the rich literature on reverse engineering of variable
types in binary programs [10, 17, 19]. Tupni [10] leverages dynamic
analysis to recover input formats based on the usage of input. RE-
WARDS [19] proposes to propagate type information based on “type
sinks”, which are calls to functions with known type signatures
(e.g., a library call). In contrast, TIE [17], a static analysis based
approach, proposes a principled type inference system that could
generate type constraints based upon how the binary code is used
and then deduce the actual types. Our type recovery method is
similar to Tupni [10] but is simpler due to the lower requirement.
Other kernel fuzzing work. In addition to the above, we have
seen several other related works in recent years. Moonshine [21]
improves syzkaller by distilling seeds of high quality from existing
testing suites. JANUS [31], specific to fuzz file system, extends
the attacking surface to disk image of which metadata could be
malicious and thus leads to vulnerabilities that are neglected by
other fuzzers. Similarly, PeriScope [23] is tailored to detect driver
vulnerabilities reachable from the hardware side as opposed to the
syscall side. Razzer [15] and KRACE [29] combines static analysis
and fuzzing to drive fuzzer towards most potential spots of data
race bugs. Though these techniques prove to be effective, one of the
fundamental reasons for their success is the interface specifications
that are manually implemented by security analysts, which is a
tedious process given the massive amount of driver code in kernel.
What’s worse, if the source code is not available, analysts usually



Tool Target Requirements Techniques
Source Code  Trace  Specification Infer Explicit  Infer Implicit Coverage  Structure  Constraint
P Dependence  Dependence  Guided Recovery  Recovery

DIFUZE[9] Android Driver v X X X X X v X
HFL[16] Linux Driver v X X SE X v v v
Moonshine[21]  Linux v v v DM v v X X
p-joker[28] MacOS Driver X X X X X X X 4
IMF[14] MacOS X 4 v DM v X X X
SyzGen MacOS Driver X v X DM+SM v v v v

SE: Symbolic execution on multiple syscalls. DM: Data mining on traces. SM: Signature matching.

Table 1: The comparison of recent fuzzing techniques on interface recovery.

resort to reverse engineering to recover the interface, which is
time-consuming and error-prone.

3 OVERVIEW

In this section, we first walk through a motivating example to
demonstrate our key observation from security analysts’ experience
on how to infer explicit dependence and refine templates iteratively
— which is crucial for developing specifications of good quality,
then position SyzGen in a bigger picture.

3.1 A Motivating Example

Fig. 2 presents some code excerpts adapted from the macOS driver
AppleUpstreamUserClientDriver in which both functions CloseLink ()
and FlushLink() require an identifier returned from OpenLink ()
(i.e., two explicit dependencies). Here we consider OpenLink() a
generate interface as it generates a new kernel object and returns a
corresponding id (which we refer to as dependence variable). In con-
trast, we consider CloseLink() and FlushLink() use interfaces,
as they rely on or “use” the object previously generated.

In this example, we are able to observe the execution traces
of OpenLink() and CloseLink(). Assuming we already success-
fully inferred the types and constraints of the arguments for both
OpenLink() and CloseLink(), we can also infer the explicit de-
pendence following the prior approach [14]. Specifically, as shown
in @ in Fig. 3, it is clear that the actual return value of the generate
interface OpenLink() and the value of the first argument of the use
interface CloseLink() always match. This will allow us to gener-
ate an initial template involving all three interfaces of OpenLink(),
CloselLink(), and FlushLink() but only one explicit dependence
is established. This is because we never observe any traces involving
FlushLink() in a dependence with OpenLink().

Nevertheless, during the course of analyzing CloseLink(), we
can extract more details about the dependence to help generalize it
to other interfaces such as FlushLink (). Specifically, we observe
that there is a function LookupLink() in Fig. 2 responsible for con-
verting a dependence variable (i.e., LinkID) into a corresponding
kernel object. This allows us to label FlushLink() as an internal
dependence operation (see @ in Fig. 3) and look for similar oper-
ations in other use interfaces (note that an internal dependence
operation does not have to be a function invocation). The next time
we encounter the same internal operation (i.e., LookupLink() invo-
cation) in another interface (e.g., FlushLink()), we can conclude
the passed value is a dependence variable of the same type, i.e.,
LinkID (see ® in Fig. 3). We can further observe that LinkID comes

01 typedef int32 LinkID

02 struct CloseRequest { LinkID linkID; };

03 struct FlushRequest { unknownFields };

04 Service* gService; // Struct definition is omitted.

05 int OpenLink(){ ... ... return linkID; }
06 void* LookupLink(int linkID) {

07 ...

08 }

09 int CloseLink(struct CloseRequest* arg) {
10  p « LookupLink(arg->linkID);

11 if (p == NULL) goto error;

12 ...

13 }

14 int FlushLink(struct FlushRequest* arg) {
15  p « LookupLink(*(int*)&arg->unknownFields[0]);
16  if (p == NULL) goto error;

17 magic « *(int*) &arg->unknownFields[1];
18 if magic != Oxdeadbeef: goto error;

19 ...

20 }

Figure 2: A motivating example for explicit dependence in-
ference. If we know CloseLink accepts a dependence LinkID,
we can also learn that FlushLink requires the same LinkID
due to their similar code pattern.

from the four bytes of the arg of FlushLink(), and therefore con-
clude FlushLink() is dependent on OpenLink() and update the
template with the new dependence accordingly.

Next, we can inspect other fields in arg of FlushLink() and
refine the template even further with the types and constraints
regarding the complete arg (see @ in Fig. 3). For example, we may
learn that the second field of arg needs to take a magic number to
reach a deeper part of the function. The process of iterative refine-
ment of specifications, starting from a “sampled” execution paths
(including OpenLink() and CloseLink(), allows us to gather a
progressively more complete understanding of the driver. We argue
that this side-steps the challenge of analyzing a complex driver in
binary as a whole, and is also a suitable process for automation.

3.2 System Architecture

Fig. 4 illustrates the system architecture of SyzGen which is aimed
at generating specifications for macOS drivers with respect to de-
pendencies between interfaces. SyzGen primarily consists of four
components including (1) syscall logger and analyzer, (2) service
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Figure 3: Typical process of interface recovery for the moti-
vating example. @ Inferring explicit dependence by search-
ing for identical input and out pairs from logs; ® Annotating
dependence related operations; ® Identifying more depen-
dence based on annotated code; @ Recovering structure and
constraints of inputs.

and interface identification, (3) interface recovery, and (4) fuzzer
with coverage enabled.

Syscall logger and analyzer. The logger instruments the ker-
nel to record the input and output of every syscall to the target
driver. And then SyzGen analyzes the collected logs to identify ex-
plicit dependencies that are directly observable in the execution
traces (following the approach in IMF [14]), which may be limited
as mentioned earlier. It further separates the logs into independent
test cases according to the dependence we have inferred to produce
an initial corpus.

Service and command identifier determination. Given the
target binary, SyzGen detects the service name and its type number
(corresponding to user clients), which are used to interact with
the driver. As mentioned in section §2.1, since interfaces share the
same entry, ie., I0ConnectCallMethod(), SyzGen also needs to
find out what command identifier values the driver expects and
figure out where it is in the input so that the syscall analyzer could
distinguish different interfaces from each other.

Interface recovery. For each interface, SyzGen first attempts
to generate an initial template encoding the previously extracted
explicit dependence knowledge, along with the input structure and
constraints through dynamic analysis (on sampled execution paths).
In addition, it attempts to automatically extrapolate or generalize
the explicit dependence from known ones, in a style similar to the
motivating example. Then, SyzGen proceeds iteratively, allowing it
to gradually encode newly-discovered dependencies and refine the
structure and constraints of new use interfaces (e.g., FlushLink()).

Fuzzer with kernel coverage. Given the specification SyzGen
produces, a standard Syzkaller can start the fuzzing campaign. How-
ever, as much of its power comes from the fact that it is coverage-
guided, we also integrate a kernel module responsible for collecting
coverage in the system, which does not require the source code or
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prci Fg J Corpus
Analyzer Depen- uzzer
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Specification Testcase
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Figure 4: Workflow of SyzGen

specific hardware and virtual machine. With the coverage, SyzGen
additionally infers implicit dependence (order of syscalls) to further
improve the effectiveness of test case generation.

Although in this work we focus on macOS, the proposed solution
can be applied to other OSes with closed-source kernel modules.
It is also worth noting that if no traces are available, SyzGen can
still work, though it can no longer infer explicit dependencies from
existing traces and extrapolate them.

4 DESIGN

In this section, we describe the design of SyzGen in depth. For each
component we present in §3.2, we will explain our design decisions.

4.1 Syscall Logger and Analyzer

As mentioned in §3.2, the primary goal of this component is to
extract the explicit dependence from existing traces. Together with
the service detection and command identifier determination, we
will be able to generate preliminary versions of templates. Though
we apply a similar idea as IMF [14], we also address its limitations.
Specifically, the fundamental premise of IMF is the availability
of knowledge of specifications for the target syscalls (including
parameter definitions), which does not hold true for drivers. As
mentioned in §2.1, the syscall I0ConnectCallMethod()’s key in-
put and output parameters inputStruct and outputStruct are
voidx. Even though their sizes are given by inputStructSize and
outputStructSize,itis unable to discern which field of inputStruct
represents a dependency. Furthermore, according to our finding, it
is common that inputStruct contains pointers that point to other
objects (this can go recursively also). As a result, IMF is unable to
track explicit dependencies whenever the dependence variable is
located in the void* object.

In our solution, we handle the void* by assuming the depen-
dence variable can exist anywhere in the object, from a single byte
to at most eight bytes. Basically, we search for pairs of identical
input and output bytes in two different interfaces. If there exists
a single byte whose values in both the input and output always
match, we consider this byte a potential dependence variable. How-
ever, when there are multiple such individual bytes, we merge them
into contiguous groups up to eight bytes long. Interestingly, in
practice, we find that the size of dependence variables can indeed
vary from two to eight bytes. To improve precision, we ensure iden-
tified explicit dependencies are consistent across different logs and
exhibit different values. The rationale behind it is that dependence



value by nature is a dynamically changing resource whose value is
inconstant if we have seen enough logs.

In addition, to reconstruct the additional objects that are reach-
able by pointers in inputStruct (which may contain the depen-
dence variable), we monitor the key internal APIs invoked in macOS
drivers to transfer the input from userspace to kernel space, e.g., the
macOS equivalent of copy_from_user() in Linux. For example,
if there is only one pointer in inputStruct object, there will be
one copy of the inputStruct itself, and then a second copy of the
data at the address given by the pointer. We perform the recon-
struction recursively by following as many layers of pointers as
necessary. Combining the above two improvements, we are able
to locate a more complete set of dependence variables and extract
more explicit dependencies missed by IMF.

Finally, a secondary goal of this component is to generate concise
test cases that encode explicit dependencies, of which the benefits
are twofold: (1) The later dynamic analysis in interface recovery
is performed against these distilled test cases instead of the entire
log which can be expensive to sift through. (2) Such test cases can
serve as the initial corpus to boost the fuzzing campaign.

4.2 Service and Command Identifier
Determination

To generate a complete template, SyzGen needs to know the ser-
vice names (specific strings) and valid values of service types to
determine the exposed services and user clients (see §2.1 for de-
tails). In addition, we need to infer the valid values for the command
identifier to differentiate different interfaces.
Service identification. By design, the name of a service is the
name of the corresponding class. As a result, we can directly resort
to the symbols indicating the service class names. Next, we can
simply query the OS using a convenient API I0ServiceMatching()
with the service name to confirm its validity. This gives us a list
of matching services registered in the system. To infer the valid
values of service type, for each service, we conduct a dynamic
symbolic execution of I0ServiceOpen() with the third argument
type symbolized (See §5 for details.).
Command identifier determination. As mentioned earlier, com-
mand identifiers may or may not be passed as the second argument
of I0ConnectCallMethod(). When they are not, it can be tricky to
determine which bytes in either inputValues or inputStruct cor-
respond to a command identifier. Nevertheless, our observation is
that a command identifier is used to determine which functionality
the service should provide, and there are generally some common
programming patterns in macOS. As mentioned in §2, there is often
a function dispatch table that takes the command identifier as an
index to invoke different functions representing different function-
alities. However, using the command identifier as an index may not
be the only pattern (which was recognized by p-joker [28]). We find
that it can also be implemented by involving the command identifier
in conditional statements, e.g., switch cases or if-else statements, to
determine the subsequent code to execute.

Given the above, we design a general symbolic-execution-based
exploration strategy to identify such patterns. Basically, we attempt
to find a symbolic variable (among all the symbolized ones) whose

values lead directly to different functions being invoked. For ex-
ample, we may find a symbolic variable a whose constraint is a
== 1 when function foo() is invoked, whereas it has a different
constraint a == 2 when function bar () is invoked. The exact al-
gorithm is described in Algorithm 1 in the Appendix. In practice,
we find that the algorithm is general enough to handle a variety of
patterns mentioned above (See Appendix A for more details). Note
that the symbolic variable identified by the algorithm will not only
tell which parameter the command identifier comes from (e.g.,
the fifth argument inputStruct of I0ConnectCallMethod()) but
also precisely which bytes (e.g., first 8 bytes of inputStruct or the
object pointed to by a pointer field of inputStruct).

After identifying the service and command identifier, SyzGen
could generate an initial template. Moreover, as described in §2,
some macOS drivers follow the convention of using function dis-
patch tables which also encodes some basic constraints enforced
by kernel automatically (i.e., desired sizes of the input and output).
Similar to p-joker [28], SyzGen extracts such constraints whenever
available (typically common in simple drivers) and encodes such
information in the initial template as well. In the next component,
we will describe the more fine-grained structure and constraint
inference.

4.3 Interface Recovery

This is a core part of SyzGen, which aims at reconstructing the
argument structures and collecting their more fine-grained con-
straints. Most importantly, SyzGen generalizes the knowledge of
dependencies it has learned from logs (see §4.1) to those interfaces
without any trace and thus can uncover more dependencies.
Choice of dynamic symbolic execution. A recent work DIFUZE [9]
has opted for static analysis to reconstruct the nested argument
structures from source code. This is a reasonable choice when the
source code is available. Even then, static analysis is limited due
to the challenge of precisely reasoning about program values and
pointer relationships. It gets even worse for closed-source macOS
drivers. As a result, we choose dynamic symbolic execution instead,
which fits our problem better. First, analyzing the interfaces dy-
namically (with concrete memory states) allows us to bypass the
precision challenge of static analysis. Second, we are able to collect
useful constraints about valid ranges of various arguments as well
as relationships among different fields. However, the downside is
that it may suffer from the path explosion problem. Fortunately,
in the case of drivers, syscall arguments are usually checked at
the very beginning of syscalls (most are simple sanity checks) and
thus SyzGen only needs to perform symbolic execution up to these
points, which is much more manageable.

Test Case Generation. To perform dynamic symbolic execution,
we need to obtain valid test cases that correctly set up the context
(e.g., global variables) so we can symbolize the arguments of an in-
terface to explore deeper parts of the code. As mentioned in §4.1, we
have an initial corpus of test cases that already exercise known ex-
plicit dependencies. Going back to the motivating example, we can
easily obtain a test case with both OpenLink() and CloseLink(),
exhibiting a dependency. Therefore we can symbolize the argument
of CloselLink() and learn the structure and constraints of it, with-
out worrying about an early exit of the function due to the lack of



a correct dependence variable. We also allow the fuzzer to generate
a few more variants to improve the diversity as explained in §5.
For the cases where we do not have any valid test case for an in-

terface, we will need to do some more work iteratively. For the same
motivating example, since we do not have any test case that has ex-
ercised FlushLink (), SyzGen will first try to infer any potential ex-
plicit dependence with other interfaces (see later in the section). At
ahigh level, SyzGen will initially generate a test case exercising only
one interface (in addition to the prologue of I0ServiceOpen()),
and it will then use the learned knowledge about its arguments
and any new explicit dependence to continue to improve the test
case. For the interface FlushLink() as an example, though SyzGen
would initially fail to explore any deep code with the initial test
case as it does not set up proper context and thus leads to an error
path. Specifically, it is likely that no OpenLink() is invoked, and
even if it is, its return value is not passed to FlushLink(). Even
though we may not be able to learn the structure or constraints of
its argument, a symbolic execution still likely allows us to reach
the critical function LookupLink() responsible for checking the
dependence variable, triggering SyzGen to become aware of the
potential dependence. After it learns FlushLink() also requires a
dependence variable of type LinkID, it could refine the specifica-
tion and produce another test case respecting the dependence as
follows:

int id = OpenLink();

struct FlushRequest req = { .linkID = id };

FlushLink(&req);

With the valid sequence of syscalls, SyzGen can then redo the dy-
namic symbolic execution on FlushLink(), extracting more com-
plete knowledge about the structure and constraints of the argu-
ment.

Dependence Generalization. Now we describe the methodology
to generalize dependencies beyond the ones we observed in the
past. Using the motivating example in §3.1, given the knowledge
of the dependence variable LinkID learned from logs (see §4.1),
SyzGen first analyzes the use interface CloseLink() and figures
out what internal dependence operation is performed to retrieve
the corresponding kernel object generated before. In Fig. 2, it hap-
pens through another function call of LookupLink(). To recognize
such function calls, we observe that the function call must take
in the dependence variable as an argument, and return an object.
Furthermore, to avoid false dependence being identified due to any
irrelevant “helper” functions (e.g., copy_from_user liked functions)
we allow only the functions defined within the target driver (as
opposed to external modules). Our observation for macOS is that
external functions in the core kernel (invoked by drivers) are not
designed to handle dependencies in drivers.

After discovering such a function call, we label the internal de-
pendence operation to be a function call (LookupLink()) together
with the parameter corresponding to the dependence variable (1st
argument of LookupLink()). When symbolically executing a new
interface (e.g., FlushLink()), we will look for the same internal
dependence operation. If there is a match, we will further look at
whether the argument of the internal dependence operation is a
symbolic variable. If so, it confirms the generalized dependence,

01 int CloseLink(struct CloseRequest* arg) {
02  p < gService->links->head;
03  while (p->value != arg->linkID) { «———

04 p < p->next;

05 if (p == NULL) goto error;

06 }

07 ...

08 }

09 int FlushLink(struct FlushRequest* arg) {
10  p « gService->links->head;

v
11 while (p->value != *(int*)&arg->unknownFields[0]) {

12 p < p->next;

13 if (p == NULL) goto error;
14 }

15 ...

16 }

Figure 5: Dependence inference through common access
pattern gService—links—head—value if LookupLink is in-
lined in the motivating example.

and we can also learn which bytes of the input constitute a depen-
dence variable. This allows SyzGen to encode the new dependence
in the template, setting the stage for the next step of structure and
constraint recovery.

In practice though, such “lookup” functions may not be imple-
mented as an actual function invocation, or they may have been in-
lined such that it is hard to recognize in the binary. To support such
internal dependence operations, we observe that there must be some
form of check to validate the dependence variable and subsequently
use it to retrieve the corresponding kernel object. An example is
shown in Fig. 5, where a linked list is traversed and the dependence
variable is compared against the same field in every element. An-
other common case is to use the dependence variable as an array
index to obtain the corresponding object, for which there is always
a check against the index to ensure no out-of-bound access would
occur. Based on this observation, we may craft simple signatures
based on such checks and match them in new interfaces. However,
if we only look at a simple check against the dependence variable, it
may lead to false positives. This is because in the new interface (e.g.,
FlushLink()), we do not yet know which bytes correspond to the
dependence variable. Therefore, there may be similar checks per-
formed against bytes that are not the dependence variable. Never-
theless, if we carefully examine the check in the example “p—value
!= arg—1inkID”, we can find that the left side of the check is a
value derived from a pointer, which in turn is originated from the
global variable “gService” through a chain of dereferences. Intu-
itively, we can annotate the check with sufficient history (i.e., the ori-
gin of the variable) so that the generated signature could be unique
enough. Formally, the signature can be formulated in the form of
ASTs (i.e., symbolic expressions) following the notation in Fig. 6.
For the motivating example in Fig. 5, the corresponding signatures
are the following: “neq [[[gService+264]+8]+8] 1inkID” and
“neq [[[gService+264]+8]1+8] unknownFields[@]” 2 where

2We omit some structure definitions in the motivating example and those immediate
values are offsets to some fields.



var: symbolic variable

imm: immediate value

[]: dereference

opi: binary operators

op2: unary operators

expr: var|imm | [expr] | op1 expr expr | op2 expr
| if (expr) then expr else expr

Figure 6: Notation for formula (signature)

neq means inequality. By simply comparing the two signatures,
we can learn that unknownFields[0] is the same dependence vari-
able as LinkID. In addition to this exact match, we also allow a
relaxed version of match in which opposite operators can match
with each other (e.g., equality and inequality) to cope with some
nuances potentially induced by compilers. To further reduce false
positives, a valid signature requires at least one dereference and
exactly one symbolic variable because it is unlikely the validation
of a dependence variable involves other inputs. It is worth noting
that our scheme is to mechanically extract formulas (as signatures)
from whatever checks performed on the dependence variable and
the two types of checks aforementioned are only examples that are
correctly identified by our solution.

Structure and Constraints Recovery. From the previous steps,
we can always have a test case exhibiting a valid explicit depen-
dence, distilled from existing traces or obtained from the depen-
dence generalization. For the test cases that come from existing
traces, we already know the rough structure of the void#* object,
including its size, and any additional layers of objects reachable
through its pointers from the earlier steps. For the test cases that
come from the dependence generalization, we may have the knowl-
edge of the dependence variable but nothing else regarding the
input.

The process is slightly dependent on which case we are faced
with. In the first case, even though we know the size of the object,
up to this point, we still treat each layer of the object as a flat
array. To infer more structures, during the symbolic execution,
we simply symbolize all the memory associated with the object
(including all the layers). We then monitor every “use” instruction
of the symbolic memory to determine the boundary of the various
fields. Specifically, SyzGen identifies fields of sizes 8, 16, 32, and 64
bits at byte granularity. In addition, we infer the basic types of the
fields based on how they are used. The list of supported types is
shown in Figure 7. We omit the details as it is following a similar
solution to Tupni [10].

In the second case, since we do not yet know the size of the
voidx object, SyzGen initially symbolizes the void#* input as a flat
array with 4,096 bytes. This is because the symbolic length of arrays
is poorly handled in symbolic execution engines [4] and thus we
start with a size large enough for most inputs. We then perform
the same analysis as above to determine the boundary of fields and
their basic types. In addition, if any pointer is found (via deference
instructions), we will concrete its value to a user-space address, and
symbolize the memory accordingly. To determine the size of the
symbolic memory, we again look for the macOS-equivalent API
copy_from_user() as we did in §4.1.

Finally, since our solution is based on symbolic execution, SyzGen
generates one template for each explored path and later merges
them. In particular, we are interested in retaining the templates for
which we are able to explore relatively deeper parts of the kernel.
Thus, we prune the templates with paths that terminate early, e.g.,
due to failing to pass sanity checks. SyzGen applies the hierarchical
agglomerative clustering algorithm [11] to group templates that
are similar in size, and prune the clusters that correspond to the
shorter paths. In particular, the algorithm clusters the templates in
the form of a binary tree where the leaf nodes are the individual
templates. Our policy is such that if a non-leaf node (corresponding
to a cluster) whose centroid of path depth is less than 0.5 of that
of the sibling node, we will prune it. To safeguard the shorter but
also functional paths (preventing them from being pruned), we
also keep the templates whose number of executed basic blocks
exceeds a pre-determined threshold (e.g., 500 in our experiments).
The parameters of 0.5 and 500 are empirically determined based
on the number and quality of generated templates. Lowering those
thresholds would preserve more corner paths at the cost of fuzzing
efficiency as it increases the search space. In addition to path prun-
ing, SyzGen recursively merges templates as we will explain in

§5.

5 IMPLEMENTATION

We have implemented SyzGen with 7.2K lines of Python code for
interface recovery, 1K lines of C code for kernel coverage, 463 lines
of C code for syscall logger, and 1K lines of Go code into Syzkaller
for fuzzer. We also implemented scripts based on IDA Pro [2] to
collect addresses of basic blocks and function signatures (i.e., the
number of parameters and where they are stored).

Symbolic execution. Currently, there is no publicly available
tool that can perform dynamic symbolic execution of the whole
macOS kernel, as what S2E [8] can do on Linux kernels. Fortunately,
as articulated earlier in §4.3 , SyzGen only needs to focus on one
interface at a time and perform dynamic symbolic execution on a
small portion of the driver. As a result, we developed our symbolic
execution component based on angr [27] and kernel debugging,
allowing us to take a snapshot at any kernel address and prepare a
memory state for dynamic symbolic execution. More specifically,
SyzGen prepares a test case containing the target interface to set up
the proper context (see §4.3), pause the kernel execution when it
reaches the target interface, and then conduct symbolic execution
under this context (i.e., with the memory snapshot). To improve
the scalability of symbolic execution on kernel and cope with ker-
nel functions requiring hardware or multi-threading support, we
manually model some kernel functions belonging to the core ker-
nel to be general, such as strcpy(), malloc(). For the rare cases
where driver-specific functions also need modeling (e.g., interact-
ing with hardware), we simply terminate the symbolic execution.
Fortunately, such functions are typically behind the input sanity
checks, posing minimal impact on constraint extraction. In total,
we have modeled 60 functions, 30 of which can be simply replaced
with a dummy function, e.g., printf() and sleep(). Also, we set a
5-minute timeout for each run of symbolic execution since SyzGen
only needs to perform symbolic execution to pass sanitization that
is usually imposed at the beginning of interfaces.



constN[V]:
intN[min:max]:

a N-bit integer constant of value V
a N-bit integer with range from min to max
flags[(V)+, TI: a set of constants of type T
string: a zero-terminated memory buffer
array[T, minimax]: a bounded array of elements of type T
ptr[dir, T]: a pointer to an object of type T;
dir specifies the direction (input or output)
len[identifier, intN]: a N-bit integer denotes the size of another
field specified by the identifier
identifier { (identifier T)+ }: a custom structure

Figure 7: Supported types for syscall specifications

Service type identification. One service can provide different
user clients through a uniform interface I0ServiceOpen, each of
which is bound to a unique integer passed as the third argument
“type”. Hence, the driver needs to firstly check the argument to fig-
ure out which user client to instantiate. To infer the valid values, we
conduct a dynamic symbolic execution on I0ServiceOpen() with
the third argument “type” symbolized. More specifically, SyzGen
looks for class initialization (i.e., IOUserClient: :I0UserClient)
of any user client during symbolic execution and then performs
constraint solving against the service type to obtain the unique
value. In the case where multiple values are valid, which usually
means that there is only user client and thus no need for the dri-
ver to validate the service type, we simply select the minimum
value. With the help of symbolic execution to explore all possible
paths, SyzGen is able to discover all valid values for service type
and their corresponding user client classes. Note that we termi-
nate a path when it reaches the class initialization function and
thus symbolic execution does not suffer from the notorious path
explosion problem.

Specification reduction. Since SyzGen produces the syscall
specification in the format of Syzkaller templates [26], it needs
to support the data types defined in its declarative description
language. Fig. 7 lists all supported types by SyzGen.

As mentioned in §4.3, SyzGen generates one specification for
one explored path from symbolic execution. After path pruning
by its depth, we merge two templates based on a set of simple
rules defined in Table 6 in the Appendix. Basically, we observe
that most specifications only differ in one field and thus can be
straightforwardly merged. For example, if one specification says
that one byte of the input can take a constant of 1 while another
says it can take a constant of 2, we will simply merge the two
specifications and say that this byte can take either the value of
1 or 2. Note that coalesced specifications can be further merged
recursively until they differ by more than one field. Later we will
illustrate an example template produced by SyzGen in Fig. 8.

Fuzzing with Kernel Coverage Coverage-guided fuzzing has
become the de facto standard for fuzzing. To collect coverage for
macOS kernel fuzzing, Panic [18] proposes to leverage static binary
instrumentation, but it is not a full-fledged tool and not publicly
available. KAFL [22] takes advantage of hardware (i.e., intel-pt)
and thus is agnostic to OSes. We, however, found it lacking sup-
port for the latest macOS due to the underlying virtual machine it
uses (i.e., gemu-pt, a customized version of gemu). Therefore, we
propose a lightweight technique to collect coverage without the

requirement of specific hardware, virtual machine, or source code.
Basically, we leverage the built-in kernel debugger (available in
all modern OSes) composed of an agent running inside the kernel
to receive and execute commands and a debugger running on a
remote machine to send commands to the kernel and display the
results. The agent internal to the kernel is capable of setting break-
points at specific virtual addresses by patching the code with INT3
instructions. When the breakpoint is hit, the kernel would pause
and divert its execution to the agent, which in turn sends related
information to the remote debugger and wait for its subsequent
commands (e.g., resume). By setting the breakpoints at the begin-
ning of every basic block we are interested in, we can effectively
collect the block coverage feedback. However, the communication
between the in-kernel agent and a remote debugger is prohibitively
expensive. Therefore, we develop another in-kernel module acting
as the debugger and collect coverage natively. As an optimization,
SyzGen removes breakpoints that have been hit to eliminate need-
less tracing overhead (as suggested by UnTracer [20]) and thus
collects only block coverage. The implementation only takes 1K
lines of C code and can be ported to other OSes for closed-source
kernel module fuzzing since most OSes share similar designs for
kernel debugging.

6 EVALUATION

To determine the effectiveness of SyzGen we evaluate both its inter-
face recovery and bug-finding capabilities. Our experiments answer
the following questions:

1. How is SyzGen’s effectiveness on interface recovery (§6.2)?

2. How much does dependence generalization contribute (§6.3)?
3. Can SyzGen find real-world vulnerabilities (§6.4)?

6.1 Evaluation Setup

Since there is no prior work to generate syscall specification for ma-
cOS drivers from end to end, we evaluate SyzGen by breaking down
each component. It is worth noting that we have re-implemented
most related work (i.e., p-joker[3] and IMF[14]) in SyzGen and even
made them better. Specifically, we run the following configurations
of SyzGen:

e SyzGen-Base. It is an improved version of p-joker with advanced
symbolic execution and automated specification generation. Af-
ter the step of service and command identifier determination
(see §4.2), SyzGen can already produce an initial specification
with the knowledge of interfaces and some simple constraints
on inputs extracted from dispatch tables (whenever available).
As we will show later, this configuration represents a compelling
baseline, especially for those small and simple drivers.

e SyzGen-IMF. Though IMF [14] only works with syscall that has
known specifications, its idea to infer explicit dependence from
syscall logs can be applied to unknown drivers with some adap-
tation (see §4.1). In this configuration, we retain the explicit
dependencies learned from logs but disable the dependence gen-
eralization component. Interface recovery is performed as well.
This represents a strong configuration that is similar but more
complete than the original IMF.



e SyzGen. This configuration enables all components as described
in §4. Compared to SyzGen-IMF, the only difference is the signature-
based dependence inference.

All experiments are conducted on three machines, a Macbook
Air with 2.2 GHz Intel Core i7, a Macbook with 1.1 GHz Dual-Core
Intel Core m3, and a Macbook Pro with 1.1 GHz Dual-Core Intel
Core m3. For any tested driver, we ensure all related evaluations
are performed on the same machine to guarantee a fair comparison.
The version of tested macOS is 10.15.4, and they run in VMware
Fusion 11.5.7. In total, we have tested 25 user clients as listed in
Table 2. Each fuzzing campaign takes 24 hours, and we repeated
it three times for each driver to report the coverage on average to
reduce randomness. The only exception is the file system driver
‘AppleAPFSUserClient’ due to its low throughput (i.e., 5 test cases
per minute) caused by one time-consuming interface to create new
disk volume, and thus we fuzz it for 72 hours. To collect syscall logs
for drivers, we look for any macOS build-in application associated
with them (e.g., system preferences for Bluetooth driver) and man-
ually perform all possible operations on it multiple times. Also, we
found some sample code from Apple open source projects [1]. As a
result, we successfully obtained logs for nine user clients.

6.2 Effectiveness of Interface Recovery

To evaluate the effectiveness of different steps of our interface
recovery solution, we ran SyzGen against 254 drivers. As a result,
SyzGen identified 56 valid service names in total. We found that the
majority of drivers were not loaded (72%) in our environment or
did not expose the interface I0ConnectCallMethod() (18.5%). For
each service name, it may correspond to multiple user clients, each
of which is bound to a specific type number. SyzGen successfully
discovered 60 user clients and their corresponding type numbers,
among which we selectively fuzz 25 user clients as listed in Table 2.
The selection of targets to fuzz is based on the code size (i.e., the
fifth column) and the complexity of inputs as these metrics are
positively correlated to the number of bugs (see §6.4). Note that the
fifth column of Table 2 shows the number of all basic blocks in a
driver and does not necessarily represent the number of blocks that
could be reached by the corresponding user client (there may also be
blocks reachable only from handling specific hardware interrupts).

Effectiveness of service identification. By design, all the ser-
vices registered in the system must be queryable via the API IOSer-
viceMatching(). Therefore, we believe it is complete using the ap-
proach proposed in §4.2. We are unable to find any false positives
or false negatives. As for the 60 user clients and corresponding
type numbers that SyzGen extracts, we manually checked the bi-
nary to confirm the correctness and developed a test program to
ensure those user clients were indeed reachable from userspace.
However, we observed that SyzGen failed to identify the user client
for one particular driver CoreAnalyticsHub because the user client
is instantiated by some daemon after system startup, and subse-
quent requests for connecting are rejected unless prior instance
terminates. SyzGen utilizes memory snapshots as the initial state
to perform symbolic execution and thus is unable to bypass the
singleton check. Additionally, judging from the class names with
the suffix ‘UserClient’, we found two definitions of user clients
(e.g., AppleUSBLegacyInterfaceUserClient) in the binaries but

cannot find any interface that can trigger the creation of them.
Therefore, we do not consider them as false negatives.

Effectiveness of command identifier determination. The
second column of Table 2 shows the number of valid command
identifiers extracted from the corresponding user client. In total,
SyzGen found 504 valid command identifiers across 25 user clients.
Though SyzGen does not distinguish among switch cases, if-else,
and function tables, we manually inspected the binaries and found
that 16 user clients use dispatch function tables, eight use switch
cases and one combines if-else and switch cases, demonstrating the
generality of our tool. We also manually verified those extracted
command identifiers were correct and SyzGen did not miss any-
one. Moreover, unlike DIFUSE [9] and p-joker [28] that assume the
command identifier must be passed through certain parameter (e.g.,
the second parameter ‘selector’ of I0ConnectCallMethod), SyzGen
successfully recognizes the control identifier embedded in the in-
putStruct (i.e., the fifth parameter to I0ConnectCallMethod) for
I0BluetoothHCIUserClient, making the subsequent steps possi-
ble.

Effectiveness of specifications overall by coverage perfor-
mance. Since we do not have the ground truth for the syscall spec-
ifications, we compare the coverage between SyzGen and SyzGen-
Base to demonstrate the overall improvement over interface mod-
els. The third and fourth columns of Table 2 shows the block
coverage for SyzGen-Base and SyzGen, respectively. As we can
see, the average coverage improvement is 48%, demonstrating
the effectiveness of the specifications SyzGen generates. Most im-
provements are due to a few complex drivers where we either
extrapolate many explicit dependencies (e.g., 469% improvement
for TOBluetoothHCIUserClient) or recover many constraints im-

posed on the inputs (e.g., 306% improvement for AppleSSEUserClient),

indicating that the coverage improvement is correlated positively
with the complexity of the target. In contrast, for drivers that are
small and with few input constraints to begin with (or if their con-
straints are already encoded in the dispatch table which can be
extracted by SyzGen-Base), we see almost no improvement and
even slightly worse performance (due to noise) in some cases. This
is expected because such drivers may not have many interesting
behaviors to test in any event. To be thorough, we investigated
the missing block coverage and found that most are simply on the
error paths that terminate early (which are pruned by SyzGen as
described in §5), indicating that SyzGen works as expected.

In addition, we managed to find the source code of two dri-
vers IONetworkUserClient and IOAudioFamily, allowing us to
inspect the source code and confirm the quality of the correspond-
ing templates SyzGen generated. We can confirm that SyzGen suc-
cessfully recovered all the argument structures. However, SyzGen
failed to identify the explicit dependency for I0AudioFamily due
to lack of syscall logs. We also noticed a missing constraint in
IONetworkUserClient, which requires an input string to match
some pre-registered key maintained in an internal dictionary object.
SyzGen fails to extract those fixed keys because it is challenging to
perform symbolic execution on cryptography routines (e.g., hash
functions). Fortunately, the syscall logs happen to contain valid
values for that string field, which are used to produce the initial
corpus, mitigating the specific issue. Nonetheless, these two drivers



#Valid Block Coverage
User Client Command & #Blocks

Identifier SyzGen-Base | SyzGen
ACPI_SMC_PluginUserClient 4 104 104 1875
Applelmage4UserClient 4 24 24 1645
IOHDIXController 2 61 61 1769
AppleMCCSUserClient 9 107 104 1739
AppleSSEUserClient 1 62 252 830
AppleCredentialManagerUserClient | 2 224 758 8043
AHCISMARTUserClient 9 282 302 2766
AppleFDEKeyStoreUserClient 27 108 178 824
I0AudioEngineUserClient 6 504 504 3875
AppleAPFSUserClient 49 6232 6811 37889
10BluetoothHCIUserClient 213 1014 5773 17989
IOAVBNubUserClient 21 453 452 1266
IONetworkUserClient 5 157 157 3806
IOReportUserClient 4 133 132 263
IOHDACodecDeviceUserClient 2 120 123 519
AppleHDAControllerUserClient 2 217 223 3069
AppleHDADriverUserClient 2 905 1032 24920
AppleHDAEngineUserClient 10 1367 1367 24920
AppleUpstreamUserClient 7 183 241 492
AppleUSBHostInterface 34 1903 1719 15408
AppleUSBHostFrameworkInterface | 26 2949 2925 15408
AppleUSBHostDeviceUserClient 20 3220 3255 15408
AppleUSBHostFrameworkDevice 13 1373 1373 15408
AppleUSBLegacyDeviceUserClient 25 255 255 14019
AudioAUUCDriver 7 158 255 439
Overall 504

Table 2: Tested macOS drivers

are rather simple (i.e., most interfaces only require an integer and a
string) and may not be representative.
We further reverse engineered all tested drivers to obtain some

ground truth with our best effort. In general, we believe the automatically-

generated specifications were not entirely precise but good enough.
For instance, it is sufficient for a boolean field of size 8 bytes to have
two values (i.e., True and False), but our specifications may specify
a valid range of [0, MAX_INT], causing the fuzzer to mutate the
value unnecessarily (likely end up with the same True value). One
weakness we find is the inability to express complex relationships
between fields of structures in the specification due to the limitation
of description language defined by Syzkaller. For example, Syzkaller
template cannot express a relationship such as “field A should al-
ways be twice the value of field B”. This prevents us from exploring
certain interesting code paths in the driver. Additionally, for some
drivers (e.g., IOAVBFamily), we find that they allow users to provide
some string as a key to create an object (e.g., addAVBClient (char=
key)) and later on input the same key to delete the corresponding
object (e.g., removeAVBClient(char* key)). Currently, SyzGen
fails to recognize such string-based dependence variables and the
corresponding dependencies.

6.3 Dependence Generalization

To see how much benefit does dependence generalization pro-
vides, we compared SyzGen against SyzGen-IMF in terms of the
number of identified dependencies and block coverage. As shown
in Table 3, SyzGen-IMF can infer dependencies for 5 user clients
among those with logs. Interestingly, starting from 33 dependen-
cies learned from logs by SyzGen-IMF, SyzGen can generalize them
to those interfaces without logs and recognize 238 more depen-
dencies. Note that the number of dependencies is counted by the

User Client #Dependencies” Block Coverage
SyzGen-IMF | SyzGen | SyzGen-IMF | SyzGen
AudioAUUCDriver 2 5 209 255
AppleAPFSUserClient 4 21 6503 6811
AppleUpstreamUserClient | 2 5 192 241
I0BluetoothHCIUserClient | 23 235 4421 5773
IONetworkUserClient 2 5 157 157
Overall 33 271 11482 13237

*: The number of dependencies is counted by the usage of them.
Table 3: Comparison of dependence inference between
SyzGen-IMF and SyzGen

instances of them among different interfaces. For example, SyzGen-
IMF only infers three types of explicit dependencies (identified
by the dependence variable from the generate interface) from the
logs for I0BluetoothHCIController, in which one represents the
request the application sends to the service, one represents a re-
mote Bluetooth device, and one represents the connection between
two devices. From the logs, SyzGen-IMF discovered 16, 2, and 5
use interfaces that take the three types of dependence variables,
respectively. The fourth and fifth columns of Table 3 further demon-
strate the coverage improvement achieved by those additionally
discovered dependencies. On average, SyzGen achieves 16.5% more
coverage compared to SyzGen-IMF. Note that we only compare
SyzGen against SyzGen-IMF for 5 user clients because we did not
even find any explicit dependence for the rest 20 user clients. This
means that SyzGen and SyzGen-IMF degrades to the same mode
where only interface recovery is performed. Upon a closer look,
these user clients mostly correspond to simple and small drivers.
To get a better intuition on the evolution of the fuzzing process,
we visualize the block coverage over time as shown in Fig. 9 in the
Appendix. The coverage improvement in general is as significant as
we expected. We investigated the reasons and come to the following
conclusions. Since we uncovered more explicit dependencies, the
search space of fuzzing for input is enlarged. Thus, in general more
fuzzing time is needed to cover more basic blocks. For example,
we can see from Fig. 9(b) that the coverage clearly still improves
towards the end of the experiment for SyzGen. However, there
are exceptions. For I0BluetoothHCIUserClient, we observe only
30.7% coverage improvement over SyzGen-IMF, and yet SyzGen
identified 10 times more explicit dependencies as shown in Table 3.
It turns out that I0BluetoothHCIUserClient serves mostly as a
middleware connecting userspace applications and the underlying
firmware. Thus, most interfaces simply construct the request from
user inputs and forward it to the firmware through a common set of
functions, leaving much smaller space for coverage improvement.
Nevertheless, we are able to find serious vulnerabilities in the new
interfaces as will be shown in §6.4. For IONetworkUserClient and
AppleAPFSUserClient, the improvement is relatively small due
to their unique characteristics of explicit dependence. As opposed
to most drivers in which the value of a dependence variable is
dynamically allocated (e.g., object ID), these two drivers in fact
have some pre-defined IDs that can be directly used. For instance,
interface methodVolumeSpace () in driver AppleAPFSUserClient
provides the space information of a given volume represented by a
dependence variable which can be either produced by the interface



User Client #Interfaces  #Interfaces w/ Traces

AppleAPFSUserClient 49 5
AppleCredentialManagerUserClient 2 1
AppleSSEUserClient 1 1
AppleUpstreamUserClient 7 2
AppleUSBHostDeviceUserClient 20 4
AppleUSBHostInterfaceUserClient 34 3
AudioAUUCDriver 7 2
IOBluetoothHCIUserClient 213 16
IONetworkUserClient 5 2
Overall 338 36

Table 4: Numbers of interfaces with traces.

methodVolumeCreate() or some special constants such as zero
representing the default volume.

Dependence verification. Although we do not have the ground
truth for the dependencies (except IONetworkUserClient and IOAu-
dioFamily manually verified as aforementioned), we manually re-
verse engineer the binaries to confirm the correctness of them
(i.e., no false positives). Besides, we find some hints from those
meaningful functions’ names, indicating the presence of dependen-
cies. We take the driver APFS as an example, in which functions
methodVolumeDelete obviously requires a dependence value pro-
duced by the function methodVolumeCreate. We also observed
missing explicit dependence in 4 user clients where we have no
trace at all and thus cannot infer any explicit dependency.

Necessity for explicit dependence generalization. IMF [14]
targets on commonly used syscalls and thus downloads 5 most
popular and free apps in each category from Apple App Store to
collect syscall logs, while Moonshine [21] focuses on Linux core
subsystem and relies on existing test suite such as Linux Testing
Project (LTP), Linux Kernel selftests (kselftests), Open Posix Tests,
and Glibc Testsuite. In contrast, drivers oftentimes lack test suites
and applications exercising every interface. In our evaluation, we
successfully obtained traces for 9 services listed in Table 4. In total,
only 36 out of 338 interfaces have traces, resulting in 238 more
dependencies being neglected initially by SyzGen-IMF as shown in
Table 3. Given the scarcity of traces, generalizing explicit dependen-
cies from interfaces with traces to those without traces could reduce
the reliance on collecting traces and improve interface recovery.

6.4 Bug Finding and Case Studies

During the evaluation of fuzzing (§6.2), we collected thousands of
crash logs® and crashing test cases, manually triaged them, and
filtered out duplicates based on the stack trace. In total, SyzGen
was able to find 34 unique bugs in 25 user clients. Table 5 lists all
the bugs SyzGen found as well as their corresponding services and
crashing types including arbitrary read, OOB read, integer overflow,
null pointer deference, etc. In general, as expected, we find that
the number of bugs is positively correlated to the code size and
complexity of the inputs.

The base configuration of SyzGen (with service and command
identifier determination and constraints recovered from dispatch
table if applicable) is able to find 29 bugs. Although the result
is impressive on its own, we found that all of them are rather

3MacOS would automatically generate crash reports containing backtraces upon
panics.

shallow bugs that can be easily triggered, e.g., invalid userspace
pointer could trigger an assertion failure. In contrast, those bugs
only identified by SyzGen require either complex inputs or correct
handling of dependencies. They also have more serious security
impacts. One of which can even lead to privilege escalation.

We are currently working on responsibly disclosing those vul-
nerabilities to Apple. So far, we have received 2 CVE numbers. In
the rest of this subsection, we will present the case studies of several
bugs, explaining their root causes and demonstrating how SyzGen
is able to discover them.

eIncoherent checks. One of the most interesting bugs in our
collection is caused by incoherent checks against a 4-byte boolean
input. Depending on its value, the driver expects different sizes of
inputs. The problem is that the driver initially sanitizes the inputs
by checking the least significant byte of the boolean input, but
considers the whole 4 bytes as a boolean value when consuming
the rest input. Due to the incoherent checks, a deliberately crafted
boolean value (e.g., 0x100) could cause different outcomes, leading to
an out-of-bound read. This subtle difference can be easily neglected
by manual audits. Thanks to symbolic execution to explore every
possible path, SyzGen is able to model different paths in different
specifications, including one modeling the boolean value of zero,
one with the value larger than zero, and one requiring only the
least significant byte to be zero.

eNested structure with dependencies and inter-fields re-
lationship. Fig. 8 showcases the specification for the interface

User Client Vuln Type Status Found™*
Arbitrary Read CVE-2020-9929 | A
Arbitrary Read Confirmed A
IOBluetoothHCIUserClient Null Pointer Confirmed A
OOB Read Reported A
OOB Read&Write | CVE-2020-9928 | A
. . Null Pointer Reported A&B
ACPI_SMC_PluginUserClient Null Pointer Reported A&B
IOHDIXControllerUserClient Out of Memory Reported A&B
AppleCredentialManagerUserClient | Invalid Free Reported A
. Memory Leak Reported A&B
AppleAPFSUserClient Assert Failure Reported A&B
AppleUSBLegacyDeviceUserClient | Assert Failure Reported A&B
Null Pointer Reported A&B
Null Pointer Reported A&B
. Integer Overflow | Fixed A&B
AppleUSBHostInterfaceUserClient Assert Failure Reported A&B
Assert Failure Reported A&B
Assert Failure Reported A&B
_ Null Pointer Reported A&B
gpp‘leUCsl]?Hi’StmeeW"rk Null Pointer Reported A&B
cvicetlen Assert Failure Reported A&B
Kernel Hang Reported A&B
. . Kernel Hang Reported A&B
AppleUSBHostDeviceUserClient Assert Failure Reported A&B
Assert Failure Reported A&B
AppleUSBHostFramework- Integer Overflow | Fixed A&B
InterfaceClient Assert Failure Reported A&B
Null Pointer Reported A&B
IOHDACodecDeviceUserClient Null Pointer Reported A&B
Kernel Hang Reported A&B
. Null Pointer Reported A&B
AppleHDAControllerUserClient Null Pointer Reported A&B
. . Null Pointer Reported A&B
AppleHDADriverUserClient Null Pointer Reported A&B

*: A: SyzGen; B: SyzGen-Base

Table 5: Vulnerabilities found by SyzGen




resource portfio_connect_t]
resource connection_0[int32]
resource connection_1[int16]
Group199_3_struct_48 {

} [packed]
Group199_3_struct_46 {
Group199_3_ptr_6 ptr[in, connection_0]
Group199_3_ptr_8 ptrfin, connection_1]
Group199_3_ptr_35 ptrin, Group199_3_struct_48]
Group199_3_buffer_36 array[const[0, int8], 32]
Group199_3_const_37 len[Group199_3_ptr_6, int64]
Group199_3_const_38 len[Group199_3_ptr_8, int64]
Group199_3_const_39 len[Group199_3_ptr_35, int64]
Group199_3_buffer_40 array[const[0, int8], 32]
Group199_3_const_41 const[199, int32]
} [packed]
syz_lOConnectCallMethod$Group199_3(connection port, selector
const[0], input ptrfin, const[0, int8]], inputCnt const[0], inputStruct ptrfin,
Group199_3_struct_46], inputStructCnt const[116], output ptriout,
const[0, int8]], outputCnt ptrlin, const[0, int32]], outputStruct ptrlout,
const[0, int8]], outputStructCnt ptrin, const[0, int32]])

Figure 8: Syscall specification where resource is the keyword
for dependencies.

that could trigger an arbitrary read bug in the Bluetooth driver,
which has been assigned CVE-2020-9929. In this example, resources
‘connection_0’ and ‘connection_1’ are two types of dependencies
that are inferred through our proposed signature-based depen-
dence inference approach. As we can see, the fifth argument (i.e.,
inputStruct) is a nested structure that consists of multiple fields of
different types, including pointer, array, constant, and so on. Ad-
ditionally, the specification specifies inter-fields relationship, e.g.,
the length field ‘Group199_3_const39’ represents the size of an-
other structure ‘Group199_3_struct_48’. The vulnerability results
from a memory read whose address is directly provided by user
(i.e., Group199_3_buffer11) without any sanitization. That said, to
trigger the bug, we must properly construct the input and set up
the correct sequence of syscalls to obtain valid dependence values
for connection_0 and connection_1. Thus, without dependence
inference and interface recovery, it would be difficult for fuzzing
to properly instantiate the arguments to the syscall, likely missing
this bug.

Design issue in Bluetooth. A common practice for macOS dri-
vers to deal with race conditions is to enforce a single-threaded
work loop which ensures sequential execution of requests. How-
ever, the problem with this design is that some requests need to
communicate with the underlying firmware which in turn may
communicate with other devices, and thus occupying the working
thread while waiting for the response can block the entire execution
and is not desired. To cope with it, the driver must put the awaiting
thread to sleep until any response arrives, which unfortunately
leaves a loophole for race conditions. For a waiting request that has
not been completed, any associated global data are susceptible to
the modification of following requests. We found that this issue is
prevalent in the Bluetooth driver and cannot be fixed without sub-
stantial changes to the design of the system. This vulnerability can

be exploited to achieve privilege escalation and has been assigned
CVE-2020-9928.

7 DISCUSSION AND LIMITATION

Even though we have shown SyzGen as a promising direction to
generate templates for closed-source kernel modules, there are still
improvements that can make the solution even better. One premise
of fuzzing and any dynamic analysis is that the target driver must
be loaded so that we could invoke its interfaces. However, we find
that the majority of drivers are not running on our tested machines.
Nonetheless, it is arguable that only those loaded-by-default drivers
are more meaningful attack surfaces. Also, since SyzGen begins
with logs to infer explicit dependencies and then generalizes them
beyond the logs, it would degrade to the mode where only interface
recovery is performed if no log is available.

Modern fuzzing is typically not only coverage-guided but also
usually accompanied by various sanitizers (e.g., Kernel Address
Sanitizer or KASAN) that could catch various types of bugs even
when they do not cause an immediate kernel crash. Unfortunately,
retrofitting sanitizers into closed-source binaries (especially kernel
drivers) remains to be a challenge. Static rewriting of binaries is
a possible direction to address this problem but at the moment
only ELFs binaries can be rewritten with a high accuracy [12].
QASan [13] is an alternative that utilizes QEMU to dynamically
instrument the binary, though it only supports user-mode programs.
Apple occasionally releases a few driver binaries with KASAN
enabled, but we found that only three drivers we tested had this
feature. Windows is equipped with an in-house driver verifier to
monitor drivers by manipulating memory allocation and resource
management, which can be integrated into our system if we port
SyzGen to Windows.

8 CONCLUSION

In this paper, we proposed SyzGen, a first attempt to automatically
generate specifications to fuzz drivers without source code. SyzGen
could infer explicit dependencies for interfaces by analyzing a small
number of execution traces collected from exiting applications, and
then generalize the knowledge to other interfaces without traces.
Instead of producing syscall specifications in one shot, SyzGen
yields coarse-grained specifications at the beginning and iteratively
refines them, allowing us to combine knowledge learned from mul-
tiples runs under different calling contexts. We also proposed a
lightweight coverage collection technique to guide fuzzing without
requiring any specific hardware, virtual machine or kernel source
code. Our empirical evaluation shows that SyzGen is effective in
recovering driver interfaces, including input structure, constraints
upon inputs, and explicit dependencies between syscalls. Our eval-
uation shows that SyzGen is effective in producing high-quality
syscall specifications, leading to 34 unique bugs, including one that
attackers can exploit to escalate privilege, and 2 CVEs to date.
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Algorithm 1: Locate command identifier and collect its
valid values

1 Function AnalyzeCtrlID(a:init state, T : all class member

functions):

2 Symbolize all inputs for o

3 actives, deferred «— [a], []

4 while actives is not empty do

5 actives «— SymbolicExecution(actives) > Step

forward all states by one basic block

6 foreach s in actives do

7 if s.addr in r then

8 L move s from actives to deferred

9 if actives is empty then

10 if all states in deferred have the same address
then

1 swap(actives, deferred)

12 L continue

13 cmds «find common symbolic variables from
states in deferred

14 foreach cmd in cmds do

15 if cmd can have different values in different

states from deferred then
16 foreach s in deferred do
17 if cmd can have multiples values in s
then

18 L move s from deferred to actives

19 if actives is empty then

20 L return cmd, values for cmd

21 break

22 if actives is empty then

23 Randomly move one state from deferred to
| actives

A COMMAND IDENTIFIER DETERMINATION

Algorithm 1 describes the procedure to identify the command
identifier, as well as its valid values and corresponding function-
alities (i.e., function address). We observed that the entry func-
tion I0ConnectCallMethod is simply a dispatch function that calls
other functions depending on the command identifier. Based on
which, SyzGen considers all functions inside the target driver as
candidates for functionalities, and performs symbolic execution to
locate the key variable for dispatching. Essentially, SyzGen sym-
bolizes the inputs and employs a breadth-first search strategy to
explore all paths, during which it suspends any state that runs into
a function that could potentially be the entry of one functionality.
If no states are active, SyzGen extracts common symbolic variables
from constraint sets of those stopped states and check whether
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Type const[j] flags[jo, ... jm] ptr int[jmin, jmax] struct B
int{jmin, jmax] if jmin <=1<= jmax
const[i] flags[i, j] | flags[i, jo, - jm] ptrifi== int[Jmin-1, jmax) if jmin-1==1 B if B.fields[0] == const[i]
int[jmin, jmax+1] if jmax+1==1
flags[io, ..., in] flags(io, . in, jo, - jm] int[min, max] if Vx € [min, max|,x € [ jmin, jmax] VY [i0s -+ in] B if B.fields[0] == flags[io, .., in,]
ptr B if B.fields[0] == ptr
int{imin, imax] int[min, max] if Vx € [min, max],x € [jmin, jmax] Y limin> imax] | B if B.fields[0] == int[imin, imax]
struct A BifACB
Table 6: Rules for merging two specifications if they only differ in one field. We simply take the union of two fields whenever

possible.
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Figure 9: Coverage for SyzGen-IMF, SyzGen-IMF and SyzGen.

there is one that could have unique values in different states. If so,

SyzGen believes that symbolic variable is the command identifier,
and it not only tells which parameter command identifier comes
from (e.g., inputStruct which is the fifth parameter to “lOConnect-

CallMethod”) but also precisely locates where it is (e.g., first 8 bytes

of inputStruct) since it can be embedded in a nested structure. Oth-
erwise, SyzGen resumes some states and repeats the process until

all states terminate.
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