
ParmeSan: Sanitizer-guided Greybox Fuzzing

Sebastian Österlund
Vrije Universiteit

Amsterdam

Kaveh Razavi
Vrije Universiteit

Amsterdam

Herbert Bos
Vrije Universiteit

Amsterdam

Cristiano Giuffrida
Vrije Universiteit

Amsterdam

Abstract
One of the key questions when fuzzing is where to look for
vulnerabilities. Coverage-guided fuzzers indiscriminately
optimize for covering as much code as possible given that
bug coverage often correlates with code coverage. Since
code coverage overapproximates bug coverage, this ap-
proach is less than ideal and may lead to non-trivial time-
to-exposure (TTE) of bugs. Directed fuzzers try to address
this problem by directing the fuzzer to a basic block with a
potential vulnerability. This approach can greatly reduce the
TTE for a specific bug, but such special-purpose fuzzers can
then greatly underapproximate overall bug coverage.

In this paper, we present sanitizer-guided fuzzing, a new
design point in this space that specifically optimizes for bug
coverage. For this purpose, we make the key observation that
while the instrumentation performed by existing software
sanitizers are regularly used for detecting fuzzer-induced er-
ror conditions, they can further serve as a generic and effec-
tive mechanism to identify interesting basic blocks for guid-
ing fuzzers. We present the design and implementation of
ParmeSan, a new sanitizer-guided fuzzer that builds on this
observation. We show that ParmeSan greatly reduces the
TTE of real-world bugs, and finds bugs 37% faster than ex-
isting state-of-the-art coverage-based fuzzers (Angora) and
288% faster than directed fuzzers (AFLGo), while still cov-
ering the same set of bugs.

1 Introduction

Fuzzing is a common technique for automatically discov-
ering bugs in programs. In finding bugs, many fuzzers try
to cover as much code as possible in a given period of
time [9, 36, 47]. The main intuition is that code coverage is
strongly correlated with bug coverage. Unfortunately, code
coverage is a huge overapproximation of bug coverage which
means that a large amount of fuzzing time is spent covering
many uninteresting code paths in the hope of getting lucky
with a few that have bugs. Recent directed fuzzers [4, 8] try

to address this problem by steering the program towards lo-
cations that are more likely to be affected by bugs [20, 23]
(e.g., newly written or patched code, and API boundaries),
but as a result, they underapproximate overall bug coverage.

We make a key observation that it is possible to detect
many bugs at runtime using knowledge from compiler san-
itizers—error detection frameworks that insert checks for a
wide range of possible bugs (e.g., out-of-bounds accesses or
integer overflows) in the target program. Existing fuzzers
often use sanitizers mainly to improve bug detection and
triaging [38]. Our intuition is that we can leverage them
even more by improving our approximation of bug cover-
age in a target program. By applying directed fuzzing to
actively guide the fuzzing process towards triggering san-
itizer checks, we can trigger the same bugs as coverage-
guided fuzzers while requiring less code coverage, result-
ing in a lower time-to-exposure (TTE) of bugs. Moreover,
since compilers such as LLVM [25] ship with a number
of sanitizers with different detection capabilities, we can
steer the fuzzer either towards specific classes of bugs and
behavior or general classes of errors, simply by selecting
the appropriate sanitizers. For instance, TySan [14] checks
can guide fuzzing towards very specific bugs (e.g., type
confusion)—mimicking directed fuzzing but with implic-
itly specified targets—while ASan’s [37] pervasive checks
can guide fuzzing towards more general classes of memory
errors—mimicking coverage-guided fuzzing.

In this paper, we develop this insight to build ParmeSan,
the first sanitizer-guided fuzzer. ParmeSan relies on off-the-
shelf sanitizer checks to automatically maximize bug cover-
age for the target class of bugs. This allows ParmeSan to
find bugs such as memory errors more efficiently and with
lower TTE than existing solutions. Like coverage-guided
fuzzers, ParmeSan does not limit itself to specific APIs or ar-
eas of the code, but rather aims to find these bugs, wherever
they are. Unlike coverage-guided fuzzers, however, it does
not do so by blindly covering all basic blocks in the pro-
gram. Instead, directing the exploration to execution paths
that matter—having the greatest chance of triggering bugs in

the shortest time.
To design and implement ParmeSan, we address a num-

ber of challenges. First, we need a way to automatically ex-
tract interesting targets from a given sanitizer. ParmeSan ad-
dresses this challenge by comparing a sanitizer-instrumented
version of a program against the baseline to locate the sani-
tizer checks in a blackbox fashion and using pruning heuris-
tics to weed out uninteresting checks (less likely to contain
bugs). Second, we need a way to automatically construct a
precise (interprocedural) control-flow graph (CFG) to direct
fuzzing to the targets. Static CFG construction approaches
are imprecise by nature [4] and, while sufficient for exist-
ing special-purpose direct fuzzers [4, 8], are unsuitable to
reach the many checks placed by sanitizers all over the pro-
gram. ParmeSan addresses this challenge by using an ef-
ficient and precise dynamically constructed CFG. Finally,
we need a way to design a fuzzer on top of these building
blocks. ParmeSan addresses this challenge by using a two-
stage directed fuzzing strategy, where the fuzzer interleaves
two stages (fuzzing for CFG construction with fuzzing for
the target points) and exploits synergies between the two.
For example, since data-flow analysis (DFA) is required for
the first CFG construction stage, we use the available DFA
information to also speed up the second bug-finding stage.
DFA-based fuzzing not only helps find new code, similar to
state-of-the-art coverage-guided fuzzers [9, 36], but can also
efficiently flip sanitizer checks and trigger bugs.

In this paper we present the following contributions:

• We demonstrate a generic way of finding interesting
fuzzing targets by relying on existing compiler sanitizer
passes.

• We demonstrate a dynamic approach to build a precise
control-flow graph used to steer the input towards our
targets.

• We implement ParmeSan, the first sanitizer-guided
fuzzer using a two-stage directed fuzzing strategy to ef-
ficiently reach all the interesting targets.

• We evaluate ParmeSan, showing that our approach finds
the same bugs as state-of-the-art coverage-guided and
directed fuzzers in less time.

To foster further research, our ParmeSan prototype is
open source and available at https://github.com/vusec/
parmesan .

2 Background

2.1 Fuzzing strategy
In its most naive form blackbox fuzzing randomly generates
inputs, hoping to trigger bugs (through crashes or other er-
ror conditions). The benefit of blackbox fuzzing is that it is
easily compatible with any program.

On the other side of the spectrum we have whitebox
fuzzing [6,21], using heavyweight analysis, such as symbolic
execution to generate inputs that triggers bugs, rather than
blindly testing a large number of inputs. In practice, white-
box fuzzing suffers from scalability or compatibility issues
(e.g., no support for symbolic execution in libraries/system
calls) in real-world programs.

To date, the most scalable and practical approach to
fuzzing has been greybox fuzzing, which provides a mid-
dle ground between blackbox and whitebox fuzzing. By
using the same scalable approach as blackbox fuzzing, but
with lightweight heuristics to better mutate the input, grey-
box techniques yield scalable and effective fuzzing in prac-
tice [5, 7, 17, 30].

The best known coverage-guided greybox fuzzer is Amer-
ican Fuzzy Lop (AFL) [47], which uses execution tracing
information to mutate the input. Some fuzzers, such as
Angora [9] and VUzzer [36], rely on dynamic data-flow
analysis (DFA) to quickly generate inputs that trigger new
branches in the program, with the goal of increasing code
coverage. While coverage-guided fuzzing might be a good
overall strategy, finding deep bugs might take a long time
with this strategy. Directed fuzzers try to overcome this lim-
itation by steering the fuzzing towards certain points in the
target program.

2.2 Directed fuzzing

Directed fuzzing has been applied to steering fuzzing to-
wards possible vulnerable locations in programs [7, 13, 18,
19, 41, 45]. The intuition is that by directing fuzzing to-
wards certain interesting points in the program, the fuzzer
can find specific bugs faster than coverage-guided fuzzers.
Traditional directed fuzzing solutions make use of symbolic
execution, which, as mentioned earlier, suffers from scala-
bility and compatibility limitations.

AFLGo [4] introduces the notion of Directed Greybox
Fuzzing (DGF), which brings the scalability of greybox
fuzzing to directed fuzzing. There are two main problems
with DGFs. The first problem is finding interesting targets.
One possibility is to use specialized static analysis tools to
find possible dangerous points in programs [13, 16]. These
tools, however, are often specific to the bugs and program-
ming languages used. Other approaches use auxiliary meta-
data to gather interesting targets. AFLGo, for example, sug-
gests directing fuzzing towards changes made in the appli-
cation code (based on git commit logs). While an interest-
ing heuristic for incremental fuzzing, it does not answer the
question when fuzzing an application for the first time or in
scenarios without a well-structured commit log. The sec-
ond problem is distance calculation to the interesting targets
to guide the DGF. Static analysis might yield a sub-optimal
view of the program. More concretely, the (interprocedural)
CFG is either an overapproximation [8] or an underapproxi-

https://github.com/vusec/parmesan
https://github.com/vusec/parmesan

mation [4] of the real one, leading to suboptimal fuzzing.

2.3 Target selection with sanitizers
Modern compilers, such as GCC and Clang+LLVM ship
with a number of so-called sanitizers, that employ runtime
checks to detect possible bugs that cannot always be found
through static analysis. Sanitizers have been successfully
used for finding bugs [42] and have been used to improve
the bug-finding ability of fuzzers [38]. Typically these are
mainly deployed during testing, as the overhead can be sig-
nificant.

The sanitizer typically instruments the target program,
adding a number of checks for vulnerabilities such as buffer
overflows or use-after-free bugs (see Listing 1 for an exam-
ple of the instrumentation). If a violation occurs, the sanitizer
typically reports the error and aborts the program. ParmeSan
shows that sanitizers are useful not only to enhance a fuzzer’s
bug-finding capabilities, but also to improve the efficiency of
the fuzzing strategy to reduce the time-to-exposure (TTE) of
bugs.

2.4 CFG construction
Directed fuzzers take the distance to the targets into account
when selecting seeds to mutate. For example, AFLGo [4]
and HawkEye [8] use lightweight static instrumentation to
calculate the distance of a certain seed input to the specified
targets. This instrumentation relies on a static analysis phase
that determines the distance for each basic block to the se-
lected targets.

Many real-world applications, however, rely on indirect
calls for function handlers. A prime example are (web)
servers, where a number of different handlers are registered
based on the server configuration.

AFLgo [4] follows the former strategy, underapproximat-
ing the real CFG. Hawkeye [8] follows the latter strategy,
overapproximating the real CFG. For this purpose, Hawkeye
uses points-to analysis to generate a CFG for indirect calls.
Context-sensitive and flow-sensitive analysis is too expen-
sive to scale to large programs. While complete, context-
insensitive analysis causes an indirect call to have many out-
going edges, possibly yielding execution paths that are not
possible for a given input. For example, if a configuration
file determines the function handler, the call may in prac-
tice only have one valid target site. We propose a dynamic
CFG construction approach augmented with dynamic data-
flow analysis (DFA) to address this problem.

3 Overview

Figure 1 presents a high-level overview of the ParmeSan
sanitizer-guided fuzzing pipeline, with the different com-
ponents and their interactions. There are three main com-

ponents: the target acquisition, the dynamic CFG and the
fuzzer components. In this section, we briefly present a high-
level overview of each component and defer their design de-
tails to the following sections.

3.1 Target acquisition

The first component of our pipeline, target acquisition, col-
lects a number of interesting targets that we want our fuzzer
to reach. The set of targets is generated by the instrumen-
tation operated by the given sanitizer on the given program.
We use a simple static analysis strategy to compare the in-
strumented version of the program with the baseline and au-
tomatically locate the instrumentations placed by the san-
itizer all over the program. Next, target acquisition uses
pruning heuristics to weed out uninteresting instrumenta-
tions (e.g., “hot” paths less likely to contain bugs [44]) and
derive a smaller set of interesting targets for efficient fuzzing.
Section 4 details our target acquisition design.

3.2 Dynamic CFG

The second component of our pipeline, dynamic CFG, main-
tains a precise, input-aware CFG abstraction suitable for
“many-target directed fuzzing” during the execution of the
target program. We add edges to our CFG as we observe
them during the execution, and rely on DFA [1] to track de-
pendencies between the input and the CFG. As a result the
dynamic CFG component can track input-dependent CFG
changes and provide feedback to input mutation on which
input bytes may affect the CFG for a given input. Section 5
details our dynamic CFG design.

3.3 Fuzzer

The final component of our pipeline, the ParmeSan fuzzer,
takes an instrumented binary, the set of targets, an initial
distance calculation, and a set of seeds as input. Our fuzzing
strategy starts with input seeds to get an initial set of exe-
cuted basic blocks and the conditions covered by these ba-
sic blocks. It then tries to steer the execution towards tar-
gets from the target acquisition component using the pre-
cise distance information that is provided by the dynamic
CFG component. At each trial, the ParmeSan fuzzer priori-
tizes the solving of that condition from the list of the visited
conditions that results in the best distance to the target basic
blocks.

Since we already need DFA for CFG construction, we
can also use it to solve branch constraints. In ParmeSan,
this intuition is used not just to find new code to reach the
targets efficiently—similar to DFA-based coverage-guided
fuzzers [9, 36]—but also to quickly flip the reached target
sanitizer checks and trigger bugs. The output of the fuzzer

Target
acquisition

ParmeSan
Fuzzer

Sanitizer

Program

Graph
extractor

Instrumented
Binaries

Instrumentor

Static
CFG

Targets

Seed
Inputs

Dynamic
CFG

Error
Inputs

Figure 1: An overview of the ParmeSan fuzzing pipeline. The target acquisition step automatically obtains fuzzing targets.
These targets are then fed to the ParmeSan fuzzer, which directs the inputs towards the targets by using the continuously
updated dynamic CFG. The inputs to the pipeline consist of a target program, a sanitizer, and seed inputs.

consists of generated error inputs. Section 5 details our
fuzzing design.

4 Target acquisition

Our target acquisition component relies on off-the-shelf
compiler sanitizers to find interesting targets to reach. The
key idea is to direct the fuzzer towards triggering error con-
ditions in the sanitizer and find real-world bugs in a directed
fashion. By implementing the analysis in a generic way, we
can use any existing or future sanitizer to collect possible
interesting targets. Since our approach is entirely sanitizer-
agnostic, we can easily retarget our fuzzing pipeline to a dif-
ferent class (or classes) of bugs depending on the sanitizer
used.

4.1 Finding instrumented points
Compiler frameworks, such as LLVM [25], transform the
frontend code (written in languages such as C, Rust, etc.)
to a machine-agnostic intermediate representation (IR). The
analysis and transformation passes, such as sanitizers, gen-
erally work at the IR level. Suppose we take an appli-
cation and transform it into LLVM IR. Existing sanitizer
passes can then instrument the IR to add sanitization checks
and enable runtime bug detection. For example, the snip-
pet in Listing 1 has been augmented with UBSan [2] in-
strumentation to detect pointer overflows. The UBSan
pass adds a conditional branch before loading a pointer (at
%6). The added branch calls the error handling function
__ubsan_handle_pointer_overflow() if the added con-
ditional is met (i.e., an overflow occurs).

Sanitizers instrument programs in two different ways.
Some instrumentations simply update internal data struc-
tures (e.g., shadow memory), while other instrumentations

;... Non-sanitized
%4 = load i8*, i8** %2 , align 8
%5 = getelementptr inbounds i8, i8* %4 , i64 1
%6 = load i8, i8* %5 , align 1
;..

⇓

; ... Sanitized with UBSan
%4 = load i8*, i8** %2 , align 8
%5 = getelementptr inbounds i8, i8* %4 , i64 1
%6 = ptrtoint i8* %4 to i64
%7 = add i64 %6 ,
%8 = icmp uge i64 %7 , %6
%9 = icmp ult i64 %7 , %6
%10 = select i1 true, i1 %8 , i1 %9
br i1 %10 , label %12 , label %11

; <label>:11: ; preds = %1
call void @__ubsan_handle_pointer_overflow (...)
br label %12

; ...
%17 = load i8, i8* %5 , align 1

Listing 1: LLVM IR without and with UBSan instrumenta-
tion to check for pointer overflows

are used when the sanitizers detect the actual bug using a
branch condition that either interacts with the internal sani-
tizer data structures (e.g., ASan’s out of bound access detec-
tion) or the immediate state of the program (e.g., Listing 1).
Our goal is to direct fuzzing towards points where the sani-
tizer updates its internal data structure (i.e., interesting code
paths) and the conditional branches that are introduced by
the sanitizers which if solved mean that we have discovered
a bug. We discuss how ParmeSan uses this intuition for effi-

cient fuzzing in Section 6.
Since there exist numerous different sanitizers, with new

ones being added frequently, we want a sanitizer-agnostic
analysis method to collect these targets. We do this by im-
plementing a blackbox analysis of the IR difference (diff) of
the target program compiled with and without the sanitizer.
To include the instrumented basic blocks that do not include
a conditional, we add all the predecessor basic blocks instru-
mented by the sanitizer. For instrumented basic blocks that
include a conditional, we include both the instrumented ba-
sic block and the basic block with a taken conditional (i.e.,
often the sanitizer’s bug checking function). We found this a
simple strategy to yield a generic and effective way to obtain
targets that is compatible with all the existing (and future)
LLVM sanitizers.

4.2 Sanitizer effectiveness

To verify that our approach of using sanitization instrumen-
tation as interesting targets is sound, we instrumented a num-
ber of applications, and confirmed that the targeted sanitizer
checks detect the actual bugs. In Table 1, we tested the ef-
fectiveness of three different sanitizers against a number of
known vulnerabilities.

AddressSanitizer (ASan) [37] is able to discover buffer
overflows and use-after-free bugs. UndefinedBehaviorSan-
itizer (UBSan) [2] is able to detect undefined behavior, such
as using misaligned or null pointers, integer overflows, etc.
The Type Sanitizer (TySan) [14] is able to detect type con-
fusion when accessing C/C++ objects with a pointer of the
wrong type.

Table 1 shows whether the sanitizer catches the bug and
the number of basic blocks of the program not contained
in a path to instrumented basic blocks. For example, if a
deep basic block is considered a target (i.e., contains a target
branch), all its predecessors have to be covered. However,
non-target basic blocks that are not on a path to a target do
not need to be covered, as our analysis estimates there are
no bugs in those blocks. By calculating the number of ba-
sic blocks that we can disregard (non-target) in this way, we
get a metric estimating how many basic blocks are irrelevant
for triggering sanitizer errors, and are thus not necessary to
be covered when fuzzing. This metric gives us an estimate
of how sanitizer-guided fuzzing compares against traditional
coverage-oriented fuzzing for different sanitizers.

In many cases, a significant part of the code coverage can
be disregarded. For example in libxml2 using TySan, we
can disregard 80% of the basic blocks and still find the bug.
However, as seen in the pruning metric in Table 1, there is
a major variance in how much of the application different
sanitizers instrument. Some sanitizers, such as UBSan and
TySan, are specialized in what they instrument, yielding a
small set of targets. Other sanitizers, such as ASan, instru-
ment so many basic blocks that, if we were to consider every

Prog Bug Type Sanitizer (% non-target)
ASan UBSan TySan

base64 LAVA-M BO ✓ (5%) 7 7
who LAVA-M BO ✓ (9%) 7 7
uniq LAVA-M BO ✓ (15%) 7 7

md5sum LAVA-M BO ✓ (12%) 7 7
OpenSSL 2014-0160 BO ✓ (8%) 7 7

pcre2 - UAF ✓ (7%) 7 7
libxml2 memleak TC 7 7 ✓ (80%)
libpng oom IO 7 ✓ (40%) 7

libarchive - BO ✓ (17%) 7 7

Table 1: Bugs detected and percentage of branches that
can be disregarded (i.e., are not on the path to an instru-
mented basic block) compared to coverage-oriented fuzzing.
UAF= use-after-free, BO=buffer overflow, TC=type confu-
sion, IO=integer overflow

instrumented point a target, we would essentially end up with
coverage-guided fuzzing.

Thus, the challenge is to limit the number of acquired tar-
gets to consider, while still keeping the interesting targets
that trigger actual bugs. To address this challenge, our solu-
tion is to adopt pruning heuristics to weed out targets part of
the candidate target set. We experimented with a number of
pruning heuristics and ultimately included only two simple
but effective heuristic in our current ParmeSan prototype.

4.3 Profile-guided pruning

Our first heuristic to limiting the number of targets is to per-
form profile-guided target pruning. By applying a similar ap-
proach to ASAP [44], our strategy is to profile the target pro-
gram and remove all the sanitizer checks on hot paths (i.e.,
reached by the profiling input). Since hot paths are unlikely
to contain residual bugs that slipped into production [27,44],
this strategy can effectively prune the set of targets, while
also preferring targets that are “deep”/hard-to-reach. While
this pruning mechanisms might remove some valid targets,
the authors of ASAP [44] note that (in the most conservative
estimate) 80% of the bugs are still detected.

4.4 Complexity-based pruning

Our second heuristic to limiting the number of targets is
to operate complexity-based pruning. Since sanitizers often
add other instrumentation besides a simple branch, we score
functions based on how many instructions are added/mod-
ified by the sanitizer (diff heuristic) and mark targets that
score higher than others as more interesting. The intuition is
that the more instructions are changed within a function by
the sanitizer, the higher the complexity of the function and
thus the chances of encountering the classes of bugs targeted
by the sanitizer. We show this intuition on LAVA-M [15]
using ASan. Using the this heuristic, our top 3 targets in
base64 are in the functions lava_get() , lava_set() , and
emit_bug_reporting_address() , of which the top 2 func-

tions are the functions in LAVA-M that trigger the injected
bugs. The score is taken into consideration when selecting
which targets to prune based on profiling. This allows our
target acquisition component to be geared towards retaining
targets in cold code.

5 Dynamic CFG

To make our sanitizer-guided fuzzing strategy effective,
ParmeSan must be able to efficiently steer the execution to-
wards code that is identified by the target acquisition step. To
do this, ParmeSan needs a precise CFG to estimate the dis-
tance between any given basic block and the target. Building
a precise CFG is the role of our dynamic CFG component.
We first show how we dynamically improve the CFG’s preci-
sion during fuzzing (Section 5.1). Using the improved CFG,
ParmeSan then needs to make use of a distance metric to
decide which code paths to prioritize given how far an exe-
cution trace is from interesting code blocks that are instru-
mented by sanitizers (Section 5.2). To further improve the
quality of ParmeSan’s distance metric, we augment our CFG
with Dynamic (Data-)Flow Analysis (DFA) information to
ensure certain interesting conditions are always satisfied by
selecting the current input bytes (Section 5.3).

5.1 CFG construction
Prior directed fuzzers rely on a statically-generated CFGs
for distance calculation. In directed fuzzing with many tar-
gets, statically-generated CFGs lead to imprecise results. For
ParmeSan, we instead opt for a dynamically-generated CFG.
In particular, we start with the CFG that is statically gener-
ated by LLVM, and then incrementally make it more precise
by adding edges on the fly as the program executes during
fuzzing. This addition of edges happens, for example, when
we discover an indirect call which cannot be resolved
statically during compile time.

To perform scalable distance calculations, we use the
number of conditionals between a starting point and the tar-
get, as conditionals are the essence of what a fuzzer tries to
solve. Compared to the full CFG, this strategy yields a com-
pact Conditional Graph (CG)—a compacted CFG that only
contains the conditionals. ParmeSan maintains both the CG
and the CFG at runtime, but uses only the CG for distance
calculations.

We repurpose the AFL edge coverage tracking strat-
egy [47] for our compact CG design. After assigning a ran-
domly generated identifier to each basic block, we initially
collect them all from the CFG. Note that the number of nodes
is static and will never change. The edges in the CFG, on
the other hand, are dynamic, and we add them to the CFG
and CG when we encounter edges that are not yet present.
Specifically, for each edge that the execution takes, we log
the edge identifier (a hash of the previous and current basic

block identifiers) and if the edge is not yet in the CFG, we
simply add it. When we add edges to the CFG, we only have
to update a subset of the CG, adding only the missing edges
for the neighboring conditionals of the new edge.

5.2 Distance metric

The distance metric helps the fuzzer decide which parts of
the CFG it needs to explore next to get closer to the basic
blocks of interest. Since distance calculation can quickly
run into scalability issues, here we opt for a simple metric.
We define the distance of a given branch condition c to the
branch conditions that lead to the interesting basic blocks as
d(c). To calculate d(c), we follow a recursive approach in
which the neighboring basic blocks of a target branch will
have a weight of 1. The neighbors of the neighbors’ weights
are then calculated using the harmonic mean (somewhat sim-
ilar to the one used by AFLGo [4]). Implementationwise, the
results in the calculation are propagated starting from the tar-
gets, keeping track of which edges have already been prop-
agated. During implementation, we empirically tested a few
distance metrics, and found the following to be both scalable
and accurate.

Let N(c) be the set of (yet unaccounted for) successors of
c with a path to at least one of the targets, then:

d(c) =


0 if c ∈ Targets
∞ if N(c) = /0
(∑n∈N(c) d(n)−1)−1

|N(c)| +1 otherwise

Given an execution trace for a given input, ParmeSan uses
the distance metric to determine which of the branches it
should try to flip (by modifying the input), steering the exe-
cution towards interesting basic blocks. While our evaluation
(Section 8) shows that even such a simplistic distance metric
works well, we expect that better scheduling might lead to
better performance. We leave this problem as an open ques-
tion for future work.

5.3 Augmenting CFG with DFA

Our dynamic CFG can further improve distance calculation
by fixing the indirect call targets to a single target depend-
ing on the input. If we know both the sanitizer check that
we want to reach and the input bytes that determine the tar-
get of an indirect call, we can fix the input bytes such that we
know the target of the indirect call. This simple improvement
can drastically impact the precision of our distance calcula-
tion. This optimization is mainly beneficial if the program
has many indirect calls with many possible targets.

Figure 2: Example of DFA mutation. The taint label (T 1)
is recorded at a newly uncovered conditional, allowing the
fuzzer to learn that the value should be either fixed to E or
mutated further.

6 Sanitizer-guided fuzzer

In this section, we discuss how ParmeSan uses the targets
obtained by the target acquisition component along with the
distance information provided by the dynamic CFG compo-
nent to direct the fuzzing process towards the desired targets
and trigger bugs.

6.1 DFA for fuzzing
Existing directed greybox fuzzers [4, 8] show that directing
the input based on simple distance metrics works well and is
scalable. At the same time, existing DFA-based coverage-
guided fuzzers [9, 36] show that adding DFA allows the
fuzzer’s input mutation to prioritize and solve tainted branch
constraints in significantly fewer executions. When the
fuzzer finds new coverage, the DFA-instrumented version
of the program tracks the input byte offsets that affect the
newly-found branches, such that the fuzzer can focus on mu-
tating those offsets (see Figure 2). Since we already use DFA
for augmenting the CFG, we also leverage the same analy-
sis to implement coverage-guided-style DFA-enhanced input
mutation but applied to (many-target) directed fuzzing. This
allows us to focus the mutation on input bytes that affect con-
ditionals, which will ultimately lead to our desired targets.
Moreover, once we reach the desired target conditionals, we
use DFA again to prioritize fuzzing of branch constraints,
allowing us to trigger the bugs more efficiently.

Interestingly, we do not need a specialized mutation strat-
egy to quickly flip sanitizer checks. Since we specifically
target sanitizer-instrumented conditionals, we can simply use
the same DFA-enhanced input mutation we used to reach the
targets and get fast bug triggering “for free” as a by-product.
Tainted sanitizer checks will automatically be prioritized,
since tainted checks are preferred by DFA-enhanced input
mutation and sanitizer checks are prioritized by our directed
fuzzing strategy.

6.2 Input prioritization
The main fuzzing loop repeatedly pops an entry from the
priority queue containing entries consisting of a conditional

and the corresponding seed that uncovered that conditional.
The queue is sorted based on a tuple consisting of (runs,
distance) , where runs is the number of times this entry has
been popped from the queue and distance is the calculated
distance of the conditional to our targets obtained by using
our dynamic CFG.

In the fuzzing loop, ParmeSan pops the entry with the low-
est priority from the queue. Using the number of runs as the
first key when sorting ensures that the fuzzer does not get
stuck on a single conditional with a low distance. This is an
effective way to mimic coverage-guided, while giving prior-
ity to promising targets.

The fuzzer then mutates the selected seed, giving prior-
ity to input bytes that affect the conditional (as provided by
DFA), with the goal of triggering new coverage. If the fuzzer
generates an input that increases coverage, we add the input
and its coverage to the list of candidate inputs that we will
consider adding to the queue.

We do a DFA-instrumented run for each of these inputs
to collect the taint information for the new basic blocks the
input uncovers. While taint tracking is expensive, we only
need to collect this when we find new code coverage. As
finding new coverage is relatively rare, the amortized over-
head of tracking is negligible (as discussed in Section 8). For
every new conditional that the input covers, we add an entry
consisting of the conditional, the distance, and the seed to
the queue.

Finally, after the original seed has been mutated a number
of times (set to 30) in the round we push it back onto the
queue with an updated distance if the CFG has changed since
the last run.

6.3 Efficient bug detection

We have discussed how ParmeSan uses compiler sanitizers to
direct fuzzing towards interesting targets in the program. In
other words, while sanitizers have been used for bug detec-
tion in existing fuzzing efforts (i.e., fuzzing a sanitized ver-
sion of the program to improve bug detection beyond crash
detection in the baseline) [38], ParmeSan uses compiler san-
itizers for analysis purposes. Moreover, just like existing
fuzzers, ParmeSan can fuzz the target program with or with-
out sanitizers (with a trade-off between bug detection cover-
age and performance).

However, compared to existing fuzzers, ParmeSan can
perform much more efficient sanitizer-based bug detection
if desired. Since we know where the interesting sanitizer
checks are, ParmeSan supports a simple but effective opti-
mization (which we call lazysan). In particular, ParmeSan
can enable sanitizer instrumentation on demand only when
this is useful (i.e., when we reach the desired target checks)
and run the uninstrumented version at full speed otherwise—
similar in spirit to our DFA-enhanced input mutation strat-
egy.

6.4 End-to-end workflow

The end-to-end fuzzing workflow consists of three phases,
a short coverage-oriented exploration and tracing phase to
get the CFG (only run for the input seeds), a directed explo-
ration phase to reach the target basic blocks, and an exploita-
tion phase which gradually starts when any of the specified
targets are reached.

During the short initial tracing phase, ParmeSan collects
traces and tries to build a CFG that is as accurate as possi-
ble. During the directed exploration phase, ParmeSan tries
to solve conditionals to reach the desired targets. The ex-
ploitation phase starts whenever ParmeSan reaches a target.
ParmeSan tries to exploit the points reached so far by means
of targeted DFA-driven mutations and, when configured to
do so, also switches to the sanitizer-instrumented version
of the program on demand. Note that the directed explo-
ration stage and exploitation stage are interleaved. ParmeSan
only performs the exploitation strategy for inputs that have
reached the target, while still continuing to do exploration to
reach open targets.

7 Implementation

We implement the fuzzing component of ParmeSan on top of
Angora [9], a state-of-the-art coverage-guided fuzzer written
in Rust. The blackbox sanitizer analysis consists of a num-
ber of Python scripts and LLVM passes. The modifications
required to Angora consist of about 2,500 lines of code. We
also integrate AFLGo into the ParmeSan pipeline, allowing
us to use AFLGo as a fuzzing component, rather than the
ParmeSan fuzzer, based on Angora.

To implement our target acquisition component, we run
the llvm-diff tool between the sanitizer-instrumented and
the uninstrumented version of the target program. We an-
alyze the resulting LLVM IR diff file and label all the con-
ditionals added by the instrumentation as candidate tar-
gets. We implement our target set pruning strategy on top
of ASAP [44], which already removes sanitizer checks in
hot paths to improve sanitizer-instrumented program perfor-
mance. We augment ASAP, letting it take into account the
complexity-based pruning heuristics described in Section 4.4
when deciding which checks to remove.

We base the fuzzer and dynamic CFG components of
ParmeSan on Angora [9]. Angora keeps a global queue,
consisting of pairs of conditionals (i.e., branching compare
points) and input seeds. In Angora, these queue entries are
prioritized based on how hard a conditional is to solve (e.g.,
how many times it has been run).

We modify Angora to sort queue entries by distance to
the targets generated by the target acquisition step and direct
fuzzing towards them. Furthermore, we added a dynamic
CFG component to Angora, to allow for CFG constraint col-
lection, making it possible to narrowly calculate distances to

our targets based on the obtained coverage and the condi-
tional to be targeted.

Similar to Angora, we use DataFlowSanitizer (DF-
San) [1], a production DFA framework integrated in the
LLVM compiler framework. We use such information in a
dedicated LLVM instrumentation pass that traces each indi-
rect call and records the input bytes that determine (i.e., taint)
the target of the indirect call site. Note that we only run the
DFSan-instrumented version of our program (for CFG con-
struction or fuzzing) and re-calculate target distances when
we uncover a new edge, resulting in low overhead.

7.1 Limitations
Currently, ParmeSan relies on available LLVM IR for its
target acquisition. In theory the techniques described in
this paper can also be applied to binaries without the IR
available. While the analysis currently relies on compiler
sanitizer passes, however, for raw binaries the methods we
present could be applied by replacing the compiler sanitizers
with binary hardening [33, 48]. We also noted an issue with
some sanitizers that only insert their modifications at linking
time; doing the analysis on the actual binary would solve this
issue.

The types of bugs found by ParmeSan are heavily reliant
on the sanitizers used for target acquisition (as we show in
Section 8.3). Some sanitizers, such as ASan, are capable of
detecting a broad class of common bugs. We refer the reader
to [42] for a more thorough analysis on using sanitizers in a
security context for testing and production purposes.

8 Evaluation

In this section we evaluate ParmeSan on a number of real-
world programs with known bugs. We compare how Parme-
San performs against other directed and coverage-guided
greybox fuzzers. We also show how our dynamic CFG con-
struction improves fuzzing for real-world programs with per-
vasive indirect calls. Some additional results are presented in
Appendix A.

We run all our experiments on machines running Ubuntu
18.10 using AMD 7 Ryzen 2700X with 32 GB DDR4 RAM.
While both ParmeSan and Angora are able to use multiple
cores, we run all our experiments on only one core to be able
to compare against prior work, unless noted otherwise. For
each part of the evaluation, we specify which sanitizer we
use for target acquisition and repeat the experiments 30 times
with a timeout of 48 hours, unless otherwise noted. During
the profiling-guided pruning phase in our target acquisition
component, we always set the ASAP cost level to 0.01. This
is the equivalent of adding instrumentation at a cost of 1%
in performance. As noted by the ASAP authors [44], this
strategy sufficiently covers bugs, while aggressively remov-
ing hot checks. Note that the target acquisition step is not

included in the total run time of our benchmarks, as it is part
of the compilation process. In all our experiments, the time
spent on analysis is linear to the original compilation time of
the target program (as shown in Table 8).

8.1 ParmeSan vs. directed fuzzers
We first compare against state-of-the-art directed greybox
fuzzers and show the availability of DFA information alone
improves directed fuzzing significantly. We reproduce a
number of benchmarks covered by AFLGo [4] and Hawk-
Eye [8], showing how ParmeSan fares in a traditional di-
rected setting. Note that the source code for HawkEye is not
available at the moment, and thus we compare against the
results reported by the authors. While comparisons to results
in papers is difficult due to variations in the test setup, since
the baseline performance of AFLGo presented by the Hawk-
eye authors [8] is similar to the one we obtained in our setup,
we are hopeful that their performance numbers are also com-
parable to ours.

CVE Fuzzer Runs p-val Mean TTE
OpenSSL

2014-0160
ParmeSan 30 5m10s
HawkEye
AFLGo 30 0.006 20m15s

Binutils

2016-4487
2016-4488

ParmeSan 30 35s
HawkEye 20 2m57s
AFLGo 30 0.005 6m20s

2016-4489
ParmeSan 30 1m5s
HawkEye 20 3m26s
AFLGo 30 0.03 2m54s

2016-4490
ParmeSan 30 55s
HawkEye 20 1m43s
AFLGo 30 0.01 1m24s

2016-4491
ParmeSan 10 1h10m
HawkEye 9 5h12m
AFLGo 5 0.003 6h21m

2016-4492
2016-4493

ParmeSan 30 2m10s
HawkEye 20 7m57s
AFLGo 20 0.003 8m40s

2016-6131
ParmeSan 10 1h10m
HawkEye 9 4h49m
AFLGo 5 0.04 5h50m

Table 2: Reproduction of earlier results in crash reproduction
in greybox fuzzers. We manually select the target and show
the mean time-to-exposure.

In Table 2, we present a comparison of ParmeSan,
AFLGo, and HawkEye on crash reproduction of known bugs
in OpenSSL and Binutils. We manually target the point in
the code that causes the crash, and let the fuzzers generate
inputs to reproduce the crash (i.e., ParmeSan skips its target
acquisition step). We use the same input seeds as presented

in [8], consisting of a single file with a single newline char-
acter. As shown in the table, ParmeSan outperforms both
HawkEye and AFLGo in reproducing these bugs in all cases.
For most, ParmeSan is more than twice as fast, while in the
worst case (CVE-2016-4490), it is still more than 30% faster
at reproducing the bug than AFLGo. Adding DFA informa-
tion allows ParmeSan to focus on solving conditionals, both
on the way to the target and of the target itself—leading to a
more targeted mutation strategy (fewer executions needed),
allowing for faster crash reproduction. We conclude that
ParmeSan significantly improves the state-of-the-art time-to-
exposure (TTE) of bugs even for traditional directed fuzzing.

8.2 Coverage-guided fuzzers

We now show that our fuzzing strategy finds (many) bugs
faster than state-of-the-art coverage-guided fuzzers. We
specifically compare against Angora, which we found to be
the fastest open-source competitor on the dataset considered,
faster for instance than QSYM [46]. Note that if we target
all the conditionals in the program, the behavior of ParmeSan
is very similar to Angora. Comparing against Angora gives
us a good picture of the effectiveness of targeting points ob-
tained from our sanitizer-based analysis stage.

To show that sanitizer-guided fuzzing can efficiently find
real-world bugs, we evaluate ParmeSan on the Google
fuzzer-test-suite [22]. This dataset contains a number of
known bugs, coverage benchmarks, and assertion checks for
23 real-world libraries. We show that ParmeSan is able to
trigger the same bugs as coverage-oriented fuzzers in sig-
nificantly less time. In this suite, we always use ASan for
ParmeSan’s target acquisition step, as it is very powerful and
detects some of the most common memory errors.

In all benchmarks, we use the seeds provided by the suite
as the initial corpus. Since the dataset contains a number of
hard-to-trigger bugs, we run the experiments with a timeout
of 48 hours, to give the fuzzers a chance at reaching these
bugs. For example, it takes Angora on average 47 hours to
trigger the integer overflow in freetype2 . Furthermore, the
suite adds runtime sanitizers to each application to detect the
bugs. We compile and run every program with the default
parameters used in the suite.

Table 3 shows the mean time-to-exposure (TTE) of a num-
ber of bugs from the Google fuzzer-test-suite dataset. We
emphasize that we evaluated the entire test suite, but for
brevity left out 11 bugs that no fuzzer could find within
48 hours, as well as the openthread set with its 12 very
easy to find bugs which did not have any outlying results
(of course, we did include them in our geomean calculation
to avoid skewing the results). The evaluation is split into
two parts. The first part, whole pipeline, uses the whole
ParmeSan pipeline with automatic target acquisition using
ASan. We compare ParmeSan against baseline Angora (i.e.,
no targets) and sanitizer-guided AFLGo (i.e., provided with

Prog Type Runs Mean. TTE Comment
AFLGo (p) Angora (p) ParmeSan

Whole pipeline
boringssl UAF 30 2h32m 0.004 45m 0.005 25m crypto/asn1/asn1_lib.c:459

c-ares BO 30 5s 0.04 1s 0.12 1s CVE-2016-5180
freetype2 IO 5 7 47h 0.018 43h cf2_doFlex.

pcre2 UAF 30 25m 0.006 15m 0.003 8m src/pcre2_match.c:5968
lcms BO 30 6m 0.002 2m 0.006 41s src/cmsintrp.c:642

libarchive BO 30 1h12m 0.004 22m 0.001 13m archive_read_support_format_warc.c:537
libssh ML 30 3m10s 0.002 32s 0.008 50s

libxml2 BO 30 51m 0.007 20m 0.001 11m CVE-2015-8317
libxml2 ML 30 30m 0.005 20m 0.001 17m memleak. valid.c:952

openssl-1.0.1f BO 30 50m 0.003 5m 0.04 3m4s CVE-2014-0160. OpenSSL 10.0.1f
openssl-1.0.1f ML 30 1m 0.012 40s 0.11 37s crypto/mem.c:308

proj4 ML 30 7m30s 0.002 1m40s 0.03 1m26s
re2 BO 30 47m 0.002 21m 0.004 12m35s

woff2 BO 30 45m 0.004 15m 0.006 8m
Geomean ParmeSan benefit 288% 37%

Manual targeting
libjpeg-turbo ⋆ 30 1h8m 0.003 (45m) 0.000 10m jdmarker.c:659

libpng ⋆ 30 2m 0.003 (30s) 0.002 20s pngread.c:738
libpng ⋆ 30 2m 0.005 (42s) 0.003 34s pngrutil.c:3182

freetype2 ⋆ 30 2s 0.21 (1s) 0.83 1s ttgload.c:1710
guetzli AE 30 45m 0.000 (10m) 0.005 5m

harfbuzz AE 30 5h 0.000 (2h20m) 0.005 1h10m
json AE 30 7m 0.004 (3m) 0.005 1m

openssl-1.0.2d AE 30 1m10s 0.001 (15s) 0.04 10s CVE-2015-3193
Geomean ParmeSan benefit 422% 90%

Table 3: Time-to-exposure on the Google fuzzer-test-suite. For the tests under manual target, there is no actual bug, here we
manually target the site (i.e., no target acquisition phase). Statistically significant Mann-Whitney U test p-values (p < 0.05) are
highlighted. 7= not found, = not available. In all cases, we use ASan for target acquisition. UAF=use-after-free, BO=buffer
overflow, IO=integer overflow, ML=memory leak, AE=assertion error

the same targets as ParmeSan). We see that ParmeSan out-
performs both AFLGo and Angora significantly, with a ge-
omean speedup in TTE of 288% and 37% respectively.

In the second part, we manually target a number of known
hard-to-reach sites. These benchmarks from the suite check
whether fuzzers are able to cover hard-to-reach sites or trig-
ger assertion errors. Since in these cases there is no bug to be
found, using a sanitizer-guided approach makes little sense.
Instead, we show the effect of making the fuzzer directed.
As these targets have to be selected manually, we consider
the comparison against Angora to be unfair and only include
the results as an indication how much directed fuzzing can
help in such scenarios.

Interestingly, Angora beats AFLGo in every benchmark
on the whole suite. The main cause for this is that Angora
has access to DFA information which allows it to cover new
branches much more quickly than the AFL-based strategy
used by AFLGo. Note that some of our results when compar-
ing ParmeSan against Angora are not statistically significant
(Mann-Whitney p-value ≥ 0.05). All of these are bugs that
are either triggered in a short amount of time (and thus have
a large variance in the measurements), or are memory leaks

(for which the immediate cause is independent of the targets
retrieved by our target acquisition component, as we discuss
in the next section). On the libssh benchmark, ParmeSan
performs worse than Angora. This happens due to the fact
that the bug is often triggered at a point when a lot of new
coverage is found in one go. Due to our lazysan optimiza-
tion, ASan is not enabled when this new coverage is trig-
gered, causing ParmeSan to detect the bug later when it actu-
ally tries to flip the branch that causes the sanitizer error. As
Table 7 shows, ParmeSan without the lazysan optimization
is faster at finding this particular bug. Note that the variance
in this test case is very high, and, as such, the result is not
statistically significant.

In Table 4, we present branch coverage at the time-of-
exposure (TTE) for ParmeSan and 4 different state-of-the-
art fuzzers: AFLGo [4], NEUZZ [40], QSYM [46], and An-
gora [9]. In this experiment, we run all the fuzzers with 1
instance, except QSYM which uses 2 AFL instances and one
QSYM instance (as per the setup suggested by the authors)
inside a Docker container that has been allocated one CPU.
Note that we do not include the required preprocessing time
for NEUZZ and ParmeSan in the results. For ParmeSan, the

Prog Type Runs AFLGo NEUZZ QSYM Angora ParmeSan
boringssl UAF 10 2281 2h32m 2520 1h20m 2670 3h20m 2510 45m 1850 25m
c-ares BO 10 202 5s 275 3s 280 20s 270 1s 200 1s
freetype2 IO 5 7 7 7 7 7 7 57330 47h 49320 43h
pcre2 UAF 10 9023 25m 31220 16m 32430 1h20m 30111 15m 8761 8m
lcms BO 10 1079 6m 2876 1m50s 3231 7m 2890 2m 540 41s
libarchive BO 10 4870 1h12m 5945 1h20m 7 7 6208 22m 4123 13m
libssh ML 10 365 3m10s 419 43s 631 2m32s 341 32s 123 50s
libxml2 BO 10 5780 51m 7576 25m 12789 2h5m 5071 20m 2701 11m
libxml2 ML 10 5755 30m 10644 19m 11260 1h10m 10580 20m 2554 17m
openssl-1.0.1f BO 10 550 50m 814 10m12s 853 5h25m 793 5m 543 3m4s
openssl-1.0.1f ML 10 1250 1m 717 40s 4570 23m 720 40s 709 37s
proj4 ML 10 82 7m30s 83 1m55s 86 10m5s 83 1m40s 80 1m26s
re2 BO 10 5172 47m 5178 50m 7610 2h 4073 21m 3267 12m35s
woff2 BO 10 91 45m 94 31m20s 98 41m 90 15m 83 8m
woff2 OOM 10 50 2m 50 22s 53 1m45s 50 20s 49 12s
Geomean diff +16% +288% +40% +81% +95% +867% +33% +37%

Table 4: Average branch coverage and TTE at the time of exposure for ParmeSan and several other state-of-the-art fuzzers.
Compared to other fuzzers, ParmeSan requires a significantly lower coverage (and shorter time) to expose bugs. AFLGo uses
the targets obtained using the ParmeSan analysis stage. All fuzzers run with sanitizers enabled.

preprocessing time is in the order of the normal compilation
time (as seen in Table 8). Every benchmark in the suite is
run with the sanitizers enabled (as per the test suite).

In every single case except one, our results show that
ParmeSan requires significantly less coverage to trigger the
bug compared to the other state-of-the-art fuzzers. Like-
wise, AFLGo, which uses the targets obtained by the Parme-
San pipeline, also fares well in this regard, requiring slightly
more coverage than ParmeSan to trigger the bugs. These re-
sults suggest that directing the fuzzing process towards sani-
tizer instrumentation reduces the coverage required to trigger
bugs between 14 and 51%.

8.3 Sanitizer impact

We now take a look at how the particular sanitizer used in our
analysis impacts the final results of the fuzzing pipeline. We
show that the sanitizer used determines the classes of bugs
ParmeSan can find, allowing us to focus fuzzing on specific
types of bugs.

Table 3, shows ParmeSan performs the worst on the
memory-leak bugs. This is a first indication that our sanitizer
analysis has a significant impact on the end result. Since we
use ASan for target acquisition, the fuzzing will be directed
to possible invalid uses of memory. This still covers the ac-
tual use of allocated memory, but ideally we would like to
direct the fuzzing towards calls that allocate memory. We re-
peat the experiment on the memory leak bugs, but now using
LeakSanitizer (LSan) instead of ASan for target acquisition
(see Table 5). LSan keeps track of allocated memory ob-
jects at runtime and generates a summary of memory leaks
when the program terminates. Note that LSan does not mod-

ify the IR, but rather intercepts library calls to functions such
as malloc , which happens at link time. Instead, we create a
custom LLVM pass that inserts dummy calls to the hooks of
the intercepted functions, yielding the same behavior as nor-
mal LSan while still changing the IR at the relevant locations.
This is a process that can be easily automated in the future,
and is a limitation only of the current implementation. With
our custom LSan pass for target acquisition, the mean TTE
for the memory leak bugs in libssh, libxml, openssl, proj4
then changes significantly, yields a geomean improvement of
32% compared to using ASan for target acquisition. Like-
wise for the integer overflow in freetype2 , we see that us-
ing the correct sanitizer which actually catches the bug (i.e.,
UBSan) for target acquisition improves the performance sig-
nificantly, finding the bug in 20 hours rather than 47 hours.

As shown in Table 5, there is a stark contrast between san-
itizers used for target acquisition. We run a number of ap-
plications with known bugs of a certain type, while using
three different sanitizers (ASan, UBSan, and TySan) to auto-
matically find targets. Note that triggering the bugs requires
sanitizers also (as the bugs usually do not crash the program).
To eliminate the variance caused by overhead of each sani-
tizer, we always instrument the program with the same set of
runtime sanitizer (ASan + LeakSan + UBsan, which is able
to detect all the selected bugs), regardless of the one used for
target acquisition.

As shown in Table 5, a sanitizer that detects the bug
will always allow ParmeSan to find the bug within the least
amount of time. Overall, we see that using the sanitizers that
covers the bug and instruments a minimum set of targets al-
lows ParmeSan to find bugs faster.

For example, CVE-2018-13785 is a hard-to-trigger inte-

Bug Type Sanitizer Targets Covered µTTE

CVE-2014-0160 BO
ASan 533 ✓ 5m
UBSan 120 7 6m
TySan 5 7 6m

CVE-2015-8317 BO
ASan 352 ✓ 10m
UBSan 75 7 50m
TySan 30 7 50m

pcre2 UAF
ASan 122 ✓ 10m
UBSan 52 7 20m
TySan 12 ✓ 8m

freetype2 IO
ASan 437 7 47h
UBSan 48 ✓ 20h
TySan 71 7 >48h

CVE-2011-1944 IO
ASan 230 ✓ 30s
UBSan 125 ✓ 20s
TySan 8 7 50s

CVE-2018-13785 IO
ASan 450 7 11h
UBSan 45 ✓ 32m
TySan 31 7 5h

libssh ML

ASan 590 7 31s
UBSan 57 7 33s
TySan 13 7 35s
LSan 104 ✓ 25s

libxml ML

ASan 352 7 15m
UBSan 75 7 22m
TySan 30 7 25m
LSan 191 ✓ 12m

openssl ML

ASan 533 7 40s
UBSan 120 7 50s
TySan 5 7 43s
LSan 191 ✓ 32s

proj4 ML

ASan 729 7 1m30s
UBSan 170 7 1m55s
TySan 373 7 2m10s
LSan 43 ✓ 57s

Table 5: Bugs found by ParmeSan using different sanitizers
in the analysis stage. ✓ in targets, bug found; 7 not in targets,
bug found; For the memory leak (ML) bugs we also show the
performance of LeakSanitizer.

ger overflow in libpng. Here we see the most significant im-
provement as result of selecting the right sanitizer. Specif-
ically, using UBsan, we trigger the bug in an average time
of 32 minutes, but using the other sanitizers, ParmeSan does
not consider the site triggering the bug as a target, and there-
fore takes a significantly longer time to find the bug, while
using the right sanitizer for target acquisition improves the
performance by an order of magnitude.

For the use-after-free bug in pcre2 , both ASan and TySan
instrument the location of the vulnerability. Since the num-
ber of targets obtained by TySan is smaller than for ASan,
the input generation is steered towards the target containing
the actual bug faster than for ASan, triggering the bug in
less time. CVE-2011-1944 is an integer overflow in libxml2,
which is easy to trigger. Here, again, we see that the less-

eager-to-instrument sanitizer lets ParmeSan trigger the bug
in the least amount of time.

For CVE-2014-0160 (HeartBleed), on the other hand, we
see that the sanitizer chosen does not have as significant an
impact on how fast the bug is triggered. This is mainly due to
the fact that ASan gives us a large number of targets. Note,
that while fuzzing, we found a number of other crashes not
related to HeartBleed, due to other memory errors. However,
for CVE-2015-8317 (out-of-bounds heap read on libxml),
we see a major improvement, even though we get a large
set of targets.

The interesting insight we get from these experiments is
that ParmeSan is able to target specific kinds of bugs based
on the sanitizer used for target acquisition and can thus be
used to fuzz applications more effectively. For example, the
use-after-free bug in pcre2 might manifest itself as a type
confusion bug. Using Tysan for target acquisition, we are
able to trigger the bug 20% faster. We have focused our anal-
ysis on a small number of common off-the-shelf sanitizers.
For a more comprehensive overview of different sanitizers
and behavior, we would like to point to the work of Song &
al. [42].

8.4 New bugs

We apply ParmeSan to finding new bugs and compare the
results with a number of state-of-the-art fuzzers using a se-
lection of libraries. We include a random sampling of ap-
plications from OSS-Fuzz [39] and three target applications
(jhead , pbc , protobuf-c) that were evaluated in recent
work in fuzzing [3,12,32] in which we were able to uncover
new bugs. We setup ParmeSan to fuzz the most recent com-
mits on the master branch of the applications from the OSS-
Fuzz sample. In total, ParmeSan was able to uncover 736
crashes, of which we determined 47 to be unique based on
the call stack. Of these crashes 37 were found in the (some-
what) outdated pbc library, while 10 of them were found in
up-to-date well-fuzzed libraries. The bugs found in the OSS-
Fuzz applications, jhead, and protobuf-c have all been been
triaged and resolved.

We emphasize that our analysis here (and in general evalu-
ating a fuzzer on the number of new bugs found) on selected
targets only serves as a case study and is not useful to assess
the overall fuzzing performance—given that the selection of
the targets and their particular versions can heavily influence
the results. We refer the reader to the previous subsections
for experiments detailing ParmeSan’s overall fuzzing perfor-
mance.

Overall, our results show that ParmeSan outperforms other
state-of-the-art directed greybox fuzzers by adding DFA in-
formation and dynamic control-flow graph construction. We
have shown that directing fuzzing towards targets achieved
by a sanitizer-guided analysis is an effective bug-finding
strategy, allowing us to outperform state-of-the-art coverage-

Prog Version Bugs NEUZZ QSYM Angora ParmeSan
1h 24h 1h 24h 1h 24h 1h 24h

OSS Fuzz [39]
curl 54c622a 1 0 0 0 0 0 0 0 1
json-c ddd0490 0 0 0 0 0 0 1 1 1
libtiff 804f40f3 1 0 0 0 0 0 1 1 1
libxml2 1fbcf40 2 0 0 0 0 0 1 1 2
libpcap c0d27d0 1 0 0 0 0 0 1 1 1
OpenSSL 6ce4ff1 1 0 0 0 1 0 1 1 1
ffmpeg 9d92403 0 0 0 0 0 0 0 0 0
harfbuzz b21c5ef 0 0 0 0 0 0 0 0 0
libpng 3301f7a1 0 0 0 0 0 0 0 0 0

Targets from prior work [3, 12, 32]
jhead 3.03 2 0 2 0 2 2 2 2 2
pbc 0.5.14 37 9 9 2 12 10 29 23 37
protobuf-c 1.3.1 1 0 0 0 0 1 1 1 1

Table 6: New bugs found within 1h and 24h by ParmeSan
and other state-of-the-art fuzzers. The version is denoted by
either a version number or a commit id. In total ParmeSan
found 47 new bugs.

oriented fuzzers as well. We have seen that ParmeSan can be
between 37% to 876% faster at triggering bugs than other
state-of-the-art fuzzer. In two cases, ParmeSan could find
bugs that none of the other fuzzers could find.

9 Related work

In the software engineering community, search-based test
data generation has been common for a number of years [24,
30, 31]. In a security context this approach is known as
fuzzing.

Greybox Fuzzing Greybox fuzzing has been successfully
applied to fuzzing a large number of programs [17,47]. Fair-
Fuzz [26] augments AFL to prioritize seeds that exercise un-
common branches to improve branch coverage. Steelix [28]
uses instrumentation to record comparison progress, allow-
ing it to solve so-called “magic bytes” that need to be fixed
not to quit the program at an early stage.

VUzzer [36] first suggested using dynamic data-flow anal-
ysis (DFA) in a greybox fuzzing strategy, allowing the in-
put mutation to focus on the bytes that affect branches.
ParmeSan shows DFA can also be used to accurately aug-
ment the control-flow graph for direct fuzzing purposes.
REDQUEEN uses a lightweight input-to-state correspon-
dence mechanisms as an alternative to data-flow analysis [3].
Angora [9] uses a gradient descent-based strategy to solve
branch constraints in an efficient manner. NEUZZ [40] uses
neural networks to approximate the discrete branching be-
havior of a target application and uses this information to im-
plement a similar gradient-guided optimization as Angora.

Similarly to Matryoshka [10], ParmeSan relies on control-
flow and data-flow analysis to augment the fuzzing process.
However, ParmeSan relies on such information to augment

the CFG and fixing indirect calls, rather than using it to solve
constraints.

Directed Greybox Fuzzing Böhme & al. introduce di-
rected greybox fuzzing [4] with AFLGo. AFLGo takes a set
of predetermined targets and tries to guide the fuzzing pro-
cess in that direction. Unlike ParmeSan, AFLGo cannot op-
erate as a drop-in replacement for coverage-guided fuzzing,
as it includes no generic target acquisition analysis. Hawk-
eye [8] improves upon the ideas in AFLGo by supporting in-
direct calls using static alias analysis. While Hawkeye sup-
ports reaching targets via indirect calls, unlike ParmeSan’s
dynamic CFG distance calculation, the static call-target anal-
ysis incurs overapproximations and does not take the input
seed into account for distance calculation.

Driller [43] introduces hybrid fuzzing. By only using sym-
bolic execution selectively for a smaller compartments of the
total program, it is able to avoid path explosion common
to prior symbolic execution approaches, and is thus able to
scale to larger programs. KATCH utilizes static analysis and
symbolic execution to generate inputs for increasing patch
test coverage [29]. QSYM [46] introduces a new symbolic
execution engine tailored to hybrid fuzzing, which is able to
scale to larger programs than previous attempts at symbolic
execution. TaintScope [45] uses tainting and symbolic exe-
cution to avoid the target program exiting an an early stage
due to invalid checksums in the input. A similar approach is
taken by T-Fuzz [34], which transforms the target program
by removing hard-to-solve checks to more easily reach pos-
sible bugs in the program. After a possible bug is found,
T-Fuzz tries to reconstruct the input with symbolic execution
such that the input passes the checks and triggers the deep
bug.

Another use case for sanitizers in fuzzing that builds on
similar ideas is the concurrent work presented by Chen et
al. in SAVIOR [11], which suggests using the UBSan san-
itizer to improve hybrid fuzzing. It solves constraints for
UBSan checks to direct the fuzzing process towards actual
bugs, avoiding costly concolic execution for many branches
that are less prone to bugs. Note that this approach is not
directly applicable to sanitizers, such as ASAN, that use in-
ternal datastructures (e.g., shadow memory). In contrast,
ParmeSan’s generic dynamic taint tracking strategy makes
it sanitizer-agnostic. This allows ParmeSan to use all avail-
able LLVM sanitizers for more fine-grained targeting of bug
classes as shown in Section 8.3.

In a similar manner to ParmeSan, Hercules [35] uses dy-
namic CFG reconstruction techniques to reach bugs. While
Hercules focuses on bug reproducibility (i.e., generating a
crashing input given a target application and a crash report),
ParmeSan focuses on finding bugs without the knowledge
that a certain crash exists (i.e., generating a crash given a tar-
get application). Hercules augments the CFG with indirect
calls and tainting information to satisfy conditions for reach-

ing a target crash site. ParmeSan uses similar information,
but instead uses it to improve distance calculations with bet-
ter estimation of indirect call targets, given the input bytes
that the fuzzer is mutating.

10 Conclusion

We presented ParmeSan, a sanitizer-guided greybox fuzzing
pipeline. ParmeSan leverages off-the-shelf sanitizers, not
only for detecting vulnerabilities as commonly used by prior
fuzzers, but to actively guides the fuzzing process towards
triggering the sanitizer checks. We identified a number of
challenges in sanitizer-guided fuzzing, and discussed how
ParmeSan addresses them. ParmeSan shows that off-the-
shelf sanitizers are useful not only for bug detection, but
also for finding interesting fuzzing targets that match real-
world bugs. ParmeSan trivially retargets the fuzzing strat-
egy to different classes of bugs by switching to a different
sanitizer, all in an automated and blackbox fashion. Our ex-
perimental results show that ParmeSan finds many classes of
bugs with significantly lower time-to-exposure (TTE) than
state-of-the-art fuzzers. ParmeSan is 37% faster than ex-
isting state-of-the-art coverage-based fuzzers (Angora) and
288% faster than directed fuzzers (AFLGo) when covering
the same set of bugs. Techniques used by ParmeSan, such as
taint-enhanced input mutation and dynamic CFG construc-
tion can further benefit other fuzzers. To foster further re-
search and encourage reproducibility, we will open-source
ParmeSan upon acceptance of the paper.

11 Acknowledgments

We thank our shepherd, Aurélien Francillon, and the anony-
mous reviewers for their feedback. This work was sup-
ported by the EU’s Horizon 2020 research and innovation
programme under grant agreement No. 786669 (ReAct), by
the Netherlands Organisation for Scientic Research through
grants 639.023.309 VICI “Dowsing” and 639.021.753 VENI
“PantaRhei”, by the United States Office of Naval Research
(ONR) under contract N00014-17-1-2782, and by Cisco Sys-
tems, Inc. through grant #1138109. Any opinions, findings,
and conclusions or recommendations expressed in this pa-
per are those of the authors and do not necessarily reflect the
views of any of the sponsors or any of their affiliates.

References

[1] DataFlowSanitizer. https://clang.llvm.org/
docs/DataFlowSanitizer.html . Online; accessed
30-March-2019.

[2] UndefinedBehaviorSanitizer. https://clang.llvm.
org/docs/UndefinedBehaviorSanitizer.html .
Online; accessed 30-March-2019.

[3] Cornelius Aschermann, Sergej Schumilo, Tim
Blazytko, Robert Gawlik, and Thorsten Holz.
Redqueen: Fuzzing with input-to-state correspon-
dence. In Network and Distributed System Security
Symposium (NDSS 2019), 2019.

[4] Marcel Böhme, Van-Thuan Pham, Manh-Dung
Nguyen, and Abhik Roychoudhury. Directed greybox
fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications
Security, pages 2329–2344. ACM, 2017.

[5] Marcel Böhme, Van-Thuan Pham, and Abhik Roy-
choudhury. Coverage-based greybox fuzzing as
markov chain. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS ’16, pages 1032–1043, New York,
NY, USA, 2016. ACM.

[6] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In
Symposium on Operating Systems Design and Imple-
mentation (OSDI), volume 8, pages 209–224, 2008.

[7] Hongxu Chen, Yuekang Li, Bihuan Chen, Yinxing
Xue, and Yang Liu. Fot: a versatile, configurable, ex-
tensible fuzzing framework. In Proceedings of the 2018
26th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Founda-
tions of Software Engineering, pages 867–870. ACM,
2018.

[8] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan
Chen, Xiaofei Xie, Xiuheng Wu, and Yang Liu. Hawk-
eye: towards a desired directed grey-box fuzzer. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 2095–
2108. ACM, 2018.

[9] Peng Chen and Hao Chen. Angora: Efficient fuzzing
by principled search. In IEEE Symposium on Security
and Privacy (SP), pages 711–725. IEEE, 2018.

[10] Peng Chen, Jianzhong Liu, and Hao Chen. Ma-
tryoshka: fuzzing deeply nested branches. In ACM
Conference on Computer and Communications Secu-
rity (CCS), London, UK.

[11] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Run-
dong Zhou, Yulong Zhang, Long Lu, et al. SAVIOR:
Towards Bug-Driven Hybrid Testing. In IEEE Sympo-
sium on Security and Privacy (SP), 2020.

[12] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang,
Mingzhe Wang, Chijin Zhou, Xun Jiao, and Zhuo
Su. Enfuzz: Ensemble fuzzing with seed synchroniza-
tion among diverse fuzzers. In 28th USENIX Security

https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

Symposium (USENIX Security 19), pages 1967–1983,
Santa Clara, CA, August 2019. USENIX Association.

[13] Maria Christakis, Peter Müller, and Valentin Wüstholz.
Guiding dynamic symbolic execution toward unveri-
fied program executions. In Proceedings of the 38th
International Conference on Software Engineering,
pages 144–155. ACM, 2016.

[14] LLVM Developers. TySan: A type sanitizer.
https://lists.llvm.org/pipermail/llvm-dev/
2017-April/111766.html , 2017. Online; accessed
19-March-2019.

[15] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda,
Tim Leek, Andrea Mambretti, Wil Robertson, Freder-
ick Ulrich, and Ryan Whelan. Lava: Large-scale au-
tomated vulnerability addition. In IEEE Symposium
on Security and Privacy (SP), pages 110–121. IEEE,
2016.

[16] Xiaoning Du, Bihuan Chen, Yuekang Li, Jianmin Guo,
Yaqin Zhou, Yang Liu, and Yu Jiang. Leopard: Iden-
tifying vulnerable code for vulnerability assessment
through program metrics. In Proceedings of the 41st In-
ternational Conference on Software Engineering, ICSE
’19, pages 60–71, Piscataway, NJ, USA, 2019. IEEE
Press.

[17] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. Collafl:
Path sensitive fuzzing. In IEEE Symposium on Security
and Privacy (SP), pages 679–696. IEEE, 2018.

[18] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-
based directed whitebox fuzzing. In Proceedings of the
31st International Conference on Software Engineer-
ing, pages 474–484. IEEE Computer Society, 2009.

[19] Xi Ge, Kunal Taneja, Tao Xie, and Nikolai Tillmann.
DyTa: Dynamic Symbolic Execution Guided with
Static Verification Results. pages 992–994, 05 2011.

[20] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
DART: Directed Automated Random Testing. In Pro-
ceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’05, pages 213–223, New York, NY, USA, 2005.
ACM.

[21] Patrice Godefroid, Michael Y Levin, and David Mol-
nar. SAGE: whitebox fuzzing for security testing.
Queue, 10(1):20, 2012.

[22] Inc. Google. fuzzer-test-suite. https://github.
com/google/fuzzer-test-suite , 2018. Online; ac-
cessed 30-March-2019.

[23] Istvan Haller, Asia Slowinska, Matthias
Neugschwandtner, and Herbert Bos. Dowsing for
Overflows: A Guided Fuzzer to Find Buffer Boundary
Violations. In Presented as part of the 22nd USENIX
Security Symposium (USENIX Security 13), pages
49–64, Washington, D.C., 2013. USENIX.

[24] Mark Harman. Automated test data generation using
search based software engineering. In Proceedings of
the Second International Workshop on Automation of
Software Test, page 2. IEEE Computer Society, 2007.

[25] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In Proceedings of the international symposium on
Code generation and optimization: feedback-directed
and runtime optimization, page 75. IEEE Computer So-
ciety, 2004.

[26] Caroline Lemieux and Koushik Sen. Fairfuzz: Tar-
geting rare branches to rapidly increase greybox
fuzz testing coverage. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated
Software Engineer-ing, 2018.

[27] Yiwen Li, Brendan Dolan-Gavitt, Sam Weber, and
Justin Cappos. Lock-in-pop: Securing privileged oper-
ating system kernels by keeping on the beaten path. In
2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 1–13, Santa Clara, CA, July 2017.
USENIX Association.

[28] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan,
Shang-Wei Lin, Yang Liu, and Alwen Tiu. Steelix:
program-state based binary fuzzing. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Soft-
ware Engineering, pages 627–637. ACM, 2017.

[29] Paul Dan Marinescu and Cristian Cadar. KATCH: high-
coverage testing of software patches. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 235–245. ACM, 2013.

[30] Phil McMinn. Search-based software test data gener-
ation: A survey: Research articles. Softw. Test. Verif.
Reliab., 14(2):105–156, June 2004.

[31] Phil McMinn. Search-based software testing: Past,
present and future. In 2011 IEEE Fourth International
Conference on Software Testing, Verification and Vali-
dation Workshops, pages 153–163. IEEE, 2011.

[32] Trail of Bits. ProtoFuzz: A Protobuf Fuzzer.
https://blog.trailofbits.com/2016/05/18/
protofuzz-a-protobuf-fuzzer/ , 2016. Online;
accessed 31-January-2019.

https://lists.llvm.org/pipermail/llvm-dev/2017-April/111766.html
https://lists.llvm.org/pipermail/llvm-dev/2017-April/111766.html
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
https://blog.trailofbits.com/2016/05/18/protofuzz-a-protobuf-fuzzer/
https://blog.trailofbits.com/2016/05/18/protofuzz-a-protobuf-fuzzer/

[33] Mathias Payer, Antonio Barresi, and Thomas R
Gross. Fine-grained control-flow integrity through bi-
nary hardening. In International Conference on De-
tection of Intrusions and Malware, and Vulnerability
Assessment, pages 144–164. Springer, 2015.

[34] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
Fuzz: fuzzing by program transformation. In IEEE
Symposium on Security and Privacy (SP), pages 697–
710. IEEE, 2018.

[35] V. Pham, W. B. Ng, K. Rubinov, and A. Roychoudhury.
Hercules: Reproducing crashes in real-world applica-
tion binaries. In 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, volume 1,
pages 891–901, May 2015.

[36] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. VUzzer:
Application-aware Evolutionary Fuzzing. In Network
and Distributed System Security Symposium (NDSS),
February 2017.

[37] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer: A
fast address sanity checker. 2012.

[38] Kostya Serebryany. Sanitize, fuzz, and harden your
C++ code. In USENIX Enigma, 2016.

[39] Kostya Serebryany. Oss-fuzz-google’s continuous
fuzzing service for open source software. 2017.

[40] Dongdong She, Kexin Pei, Dave Epstein, Junfeng
Yang, Baishakhi Ray, and Suman Jana. NEUZZ: Effi-
cient fuzzing with neural program smoothing. In IEEE
Symposium on Security and Privacy (SP), 2019.

[41] Stelios Sidiroglou-Douskos, Eric Lahtinen, Nathan Rit-
tenhouse, Paolo Piselli, Fan Long, Deokhwan Kim, and
Martin Rinard. Targeted automatic integer overflow
discovery using goal-directed conditional branch en-
forcement. In ACM Sigplan Notices, volume 50, pages
473–486. ACM, 2015.

[42] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Franz. SoK: sanitizing for security. arXiv preprint
arXiv:1806.04355, 2018.

[43] Nick Stephens, John Grosen, Christopher Salls, An-
drew Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. Driller: Augmenting fuzzing through selective
symbolic execution. In NDSS, volume 16, pages 1–16,
2016.

[44] Jonas Wagner, Volodymyr Kuznetsov, George Candea,
and Johannes Kinder. High system-code security with
low overhead. In IEEE Symposium on Security and Pri-
vacy (SP), pages 866–879. IEEE, 2015.

[45] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou.
TaintScope: A checksum-aware directed fuzzing tool
for automatic software vulnerability detection. In IEEE
Symposium on Security and Privacy (SP), pages 497–
512. IEEE, 2010.

[46] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A practical concolic execution
engine tailored for hybrid fuzzing. In 27th USENIX
Security Symposium (USENIX Security 18), pages 745–
761, 2018.

[47] Michal Zalewski. American Fuzzy Lop: a security-
oriented fuzzer. http://lcamtuf.coredump.cx/
afl/ , 2010. Online; accessed 31-January-2019.

[48] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and
R Sekar. A platform for secure static binary instrumen-
tation. In ACM SIGPLAN Notices, volume 49, pages
129–140. ACM, 2014.

A Additional results

In this appendix, we include some additional results of our
evaluation of different components of ParmeSan, as well as
an evaluation of our target pruning strategy.

A.1 Impact of different components

In Table 7, we present the results on the Google fuzzer-
test-suite, where we individually disable each of the three
core components: lazy sanitizer optimization (lazysan), tar-
get pruning, and the dynamic CFG dyncfg. Overall, our re-
sults show that each component has a significant impact on
fuzzing performance. Note that the lazysan optimization re-
quires the dyncfg component.

When disabling the lazysan component, we see a degra-
dation in TTE in almost every single case. The outliers are
the bugs in libssh and the memory leak in openssl , where
the performance improves when disabling lazysan. As dis-
cussed previously, this degradation in performance is due to
the fact that the sanitizer is disabled when triggering the bug.
Note that ParmeSan will still catch the bug, but triggering the
sanitizer might be delayed until the exploitation phase.

Overall, we see that the different individual components
each contribute significantly to the total performance of
ParmeSan. For example, disabling the lazysan optimization,
increases the TTE by 25%. Likewise, our target pruning ac-
counts for 28% of the improvement. Without target pruning,

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Prog Type Runs ParmeSan No lazysan No pruning No dyncfg
boringssl UAF 10 1850 25m 1850 37m 2503 47m 2520 51m
c-ares BO 10 200 1s 200 1s 260 1s 200 1s
freetype2 IO 5 49320 43h 49320 46h 7 7 7 7

pcre2 UAF 10 8761 8m 8761 12m 29036 14m 10531 12m35s
lcms BO 10 540 41s 540 1m10s 2990 2m10s 758 1m40s
libarchive BO 10 4123 13m 4123 18m 6001 20m 5833 21m
libssh ML 10 123 50s 123 31s 304 1m15s 285 55s
libxml2 BO 10 2701 11m 2701 17m 5066 20m 5123 23m
libxml2 ML 10 2554 17m 2554 15m 7580 22m 7966 25m
openssl-1.0.1f BO 10 543 3m4s 543 4m30s 700 5m 610 4m52s
openssl-1.0.1f ML 10 709 37s 709 40s 719 42s 713 42s
proj4 ML 10 80 1m26s 80 1m30s 83 1m40s 80 1m30s
re2 BO 10 3267 12m35s 3267 17m10s 3920 20m13s 3450 18m21s
woff2 BO 10 83 8m 83 13m 91 20m 83 13m
woff2 OOM 10 49 12s 49 19s 50 20s 49 19s
Geomean diff +0% +25% +19% +28% +17% +34%

Table 7: Impact of different components of ParmeSan on branch coverage and time-to-exposure of the bug.

Prog Type Run time Compile time Targets
DFA +dyncfg Target acquisition ParmeSan No c.b. pruning No pruning

boringssl UAF 2% 3% 200% 51 51 253
c-ares BO 5% 5% 170% 21 21 36

freetype2 IO 5% 5% 170% 730 950 8538
pcre2 UAF 2% 2% 190% 1856 2051 21781
lcms BO 0% 1% 140% 95 98 785

libarchive BO 1% 1% 170% 273 340 1431
libssh ML 3% 3% 180% 55 45 229

libxml2 BO 1% 1% 210% 670 751 5131
libxml2 ML 2% 2% 210% 670 751 5131

openssl-1.0.1f BO 1% 1% 240% 43 39 304
openssl-1.0.1f ML 1% 1% 240% 43 39 304

proj4 ML 3% 3% 140% 18 15 41
re2 BO 1% 1% 160% 295 370 2129

woff2 BO 1% 2% 180% 24 20 33
woff2 OOM 10% 10% 180% 24 20 22

Geomean 2% 2% 183% 112 (+0%) 108 (-3.5%) 716 (+539%)

Table 8: Run-time and compile-time overhead introduced by the individual ParmeSan components.

the behavior of ParmeSan becomes similar to baseline An-
gora, effectively emulating pure coverage-guided fuzzing.

By disabling the dyncfg component, we see an increase of
34% in TTE. Note that by disabling this component, we also
effectively disable the lazysan component, as it relies on the
control-flow information available by the dyncfg component.
We further evaluate the added benefit of the dyncfg compo-
nent in Section A.1.1.

A.1.1 Dynamic CFG

Since ParmeSan uses a dynamic CFG to get a better esti-
mate of the distance to the targets, we also want to show
that the more accurate CFG actually improves the fuzzing
process, rather than adding more overhead. The existing
benchmarks—mostly C libraries—rarely contain a lot of in-
direct calls. However, in many applications (e.g., servers),
indirect calls are common. We show the effect of dynamic
CFG construction on three different experiments.

We fuzz 4 applications where we artifically demote (a ran-
dom selection of) of the direct calls to indirect calls (with 2
dummy call targets added) and obtain the targets using the
ParmeSan pipeline (with ASan), 3 applications where we de-
mote direct calls and manually target the bug, and finally run
the whole ParmeSan pipeline (with ASan) opn 3 real-world
applications with a large number of indirect calls. The results
for these three experiments can be found in Table 9. Overall,
we see that the dynamic CFG component has a higher impact
if there are indirect calls on the path to the bug to be found
(e.g., in libjpeg-turbo). We also kept track of how much
time is spent on the dynamic CFG component. Overall the
overhead is negligible in most cases, accounting for less than
3% of the total execution time (as shown in Table 8).

A.1.2 Comparison against SAVIOR

For the sake of completeness, we include Table 10, which
shows how ParmeSan compares against Angora and SAV-

Prog Calls demoted Mean. TTE p-val
no dyncfg dyncfg

base64 5 55s 54s 0.19
who 10 2m32s 2m21s 0.03
uniq 8 48s 22s 0.005

md5sum 15 8m34s 6m32s 0.007
Manual targeting

libjpeg-turbo 30 43m 11m 0.004
libpng 20 1m29s 21s 0.006
libpng 20 10s 10s 0.06

freetype2 5 1s 1s 0.09
Real-world programs

httpd 0 10s 1s 0.003
cxxfilt 0 1m45s 1m5s 0.02

boringssl 0 51m 37m 0.005

Table 9: Time-to-exposure of bugs in programs where a
number of direct calls have been “demoted”. Apache httpd ,
cxxfilt , and boringssl have not been modified, as they
already contain indirect calls. Statistically significant values
(p < 0.05) are highlighted.

IOR on the well-known (but what might be considered out-
dated) LAVA-M dataset. We include this table to be able to
show a head-to-head comparison against SAVIOR. We repli-
cate the setup used by SAVIOR in [11], where the targets
are acquired in a manual way (i.e., explicitly targeting the
inlined calls to lava_get()), rather than using sanitizers for
target acquisition, and use 3 fuzzing instances in parallel.
Overall, the results for ParmeSan and SAVIOR are compa-
rable, with the exception of md5sum , where ParmeSan finds
one more hard-to-trigger bug (unlisted bug #499) and who ,
where SAVIOR is able to trigger two more bugs. We hypoth-
esize that ParmeSan is able to trigger the md5sum bug due to
its ability to execute more test cases per second, while SAV-
IOR is better at finding the remaining two bugs in who due
to its symbolic execution-based constraint solving strategy.
Moreover, with ParmeSan, we were able to reproduce the
very same results on LAVA when using a single fuzzing in-
stance (and CPU core), suggesting ParmeSan’s fuzzing-only
strategy can provide results comparable to SAVIOR’s con-
straint solving-assisted strategy but with less resources. We
also include the results for using ASan for targeting.

Angora SAVIOR ParmeSan
ASan lava_get()

base64 48 48 48 48
md5sum 59 59 60 60
uniq 29 29 29 29
who 2295 2357 2320 2353

Table 10: Comparison of Angora, SAVIOR, and ParmeSan
on LAVA-M. Mean number of LAVA-M bugs found over 10
24-hour runs using 3 parallel instances. We include results
for ParmeSan for target acquisition using ASan, as well as
explicitly targetting lava_get() (replicating the setup de-
scribed in [11]).

Prog
Targets

(pre-prune)
Targets

(post-prune)
Bugs

Bugs Found
1m 1h 24h

base64 1950 212 44 48 48 48
md5sum 1639 101 57 31 59 60
uniq 1832 193 28 29 29 29
who 2120 385 2136 1544 1957 2353

Table 11: Analysis target pruning statistics and number of
bugs found within 1 minute and within 24 hours. Some of
the LAVA-M programs contain more bugs than specified in
the dataset.

	Introduction
	Background
	Fuzzing strategy
	Directed fuzzing
	Target selection with sanitizers
	CFG construction

	Overview
	Target acquisition
	Dynamic CFG
	Fuzzer

	Target acquisition
	Finding instrumented points
	Sanitizer effectiveness
	Profile-guided pruning
	Complexity-based pruning

	Dynamic CFG
	CFG construction
	Distance metric
	Augmenting CFG with DFA

	Sanitizer-guided fuzzer
	DFA for fuzzing
	Input prioritization
	Efficient bug detection
	End-to-end workflow

	Implementation
	Limitations

	Evaluation
	ParmeSan vs. directed fuzzers
	Coverage-guided fuzzers
	Sanitizer impact
	New bugs

	Related work
	Conclusion
	Acknowledgments
	Additional results
	Impact of different components
	Dynamic CFG
	Comparison against SAVIOR

