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Abstract
Data flow analysis (e.g., dynamic taint analysis) has proven

to be useful for guiding fuzzers to explore hard-to-reach code
and find vulnerabilities. However, traditional taint analysis
is labor-intensive, inaccurate and slow, affecting the fuzzing
efficiency. Apart from taint, few data flow features are utilized.

In this paper, we proposed a data flow sensitive fuzzing
solution GREYONE. We first utilize the classic feature taint to
guide fuzzing. A lightweight and sound fuzzing-driven taint
inference (FTI) is adopted to infer taint of variables, by mon-
itoring their value changes while mutating input bytes during
fuzzing. With the taint, we propose a novel input prioritiza-
tion model to determine which branch to explore, which bytes
to mutate and how to mutate. Further, we use another data
flow feature constraint conformance, i.e., distance of tainted
variables to values expected in untouched branches, to tune
the evolution direction of fuzzing.

We implemented a prototype of GREYONE and evaluated it
on the LAVA data set and 19 real world programs. The results
showed that it outperforms various state-of-the-art fuzzers
in terms of both code coverage and vulnerability discovery.
In the LAVA data set, GREYONE found all listed bugs and
336 more unlisted. In real world programs, GREYONE on
average found 2.12X unique program paths and 3.09X unique
bugs than state-of-the-art evolutionary fuzzers, including AFL,
VUzzer, CollAFL, Angora and Honggfuzz, Moreover, GREY-
ONE on average found 1.2X unique program paths and 1.52X
unique bugs than a state-of-the-art symbolic exeuction as-
sisted fuzzer QSYM. In total, it found 105 new security bugs,
of which 41 are confirmed by CVE.

1 Introduction

Evolutionary mutation-based fuzzing (e.g., AFL [44]) has
become one of the most popular vulnerability discovery solu-
tions, widely used and studied by the community. A core task
of such fuzzers is determining the evolution direction, as well
as where and how to mutate seed inputs, in order to efficiently

explore hard-to-reach code and satisfy sophisticated data-flow
constraints to trigger potential vulnerabilities.

A common solution is utilizing symbolic execution to solve
control-flow constraints and help fuzzers to explore code, as
proposed in Driller [37], QSYM [43] and DigFuzz [45]. How-
ever, symbolic execution is too heavy weight and cannot scale
to large applications, and unable to solve many complicated
constraints, e.g., one-way functions. Researchers also tried to
improve fuzzers with deep learning [29] and reinforcement
learning [7], by predicating which byte to mutate and what
mutation actions to take. However, they are still in early stage
and the improvements are not significant.

Instead, data flow analysis 1(e.g., dynamic taint analysis)
has proven to be useful for guiding fuzzing. TaintScope [40]
utilized it to locate checksums. VUzzer [30] uses it to identify
which bytes and what values are used in branch instructions.
Angora [10] uses it to draw the shape of input bytes related
to path constraints. These solutions utilize taint to determine
where and how to mutate in different ways, and showed good
performance in some applications.

1.1 Questions to Address

However, traditional dynamic taint analysis has several lim-
itations. First, it is labor-intensive and requires lots of man-
ual efforts. For example, VUzzer [30] at first only supports
x86 platform. In general, these solutions have to interpret
each instruction in native or intermediate representation form,
with custom taint propagation rules. They also have to build
taint models for external function calls or system calls. Sec-
ond, it is inaccurate. For example, some tainted data val-
ues may affect control flow that further affects other data,
forming implicit data flows. It causes either under-taint if
the implicit flows are ignored, or over-taint if such flows
are all counted [19]. Lastly, it is extremely slow (usually
several times overheads), making fuzzing inefficient. These

1The paper focuses on fuzzing, and dynamic taint analysis is more accu-
rate than its static counterpart. So we only focus on dynamic taint analysis.



seriously limit dynamic taint analysis’ application and ef-
ficiency in fuzzing. Therefore, the first research question
to address is: RQ1: How to perform lightweight and
accurate taint analysis for efficient fuzzing?

With the inferred taint attributes, VUzzer [30] mutates
input bytes used in branch instructions and imprecisely
replaces them with expected values (e.g., magic number).
REDQUEEN [4] further identifies all direct copies of inputs,
i.e., input bytes that are directly used in branch constraints
(e.g., magic number and checksum), and replaces them with
expected values. However, they could neither solve branch
constraints related to indirect copies of inputs, i.e., input bytes
that are transformed and indirectly used in branch constraints,
nor prioritize which branch to explore and which bytes to
mutate. Thus, the second research question to address is: RQ2:
How to efficiently guide mutation with taint?

Existing evolutionary fuzzers in general evolve towards
increasing code coverage. For example, AFL [44] adds test
cases that find new code to the seed queue, and selects one
at a time from the queue to mutate. Many other solutions,
e.g., AFLfast [6] and CollAFL [14], have been proposed to
further improve the way to select seed, accelerating the evo-
lution speed. However, they only considered control flow
features rather than data flow features, e.g., taint attributes
or constraint conformance, and may waste energies during
mutation to explore hard-to-reach branches. Thus, the third re-
search question to address is: RQ3: How to tune fuzzers’
evolution direction with data flow features?

1.2 Our Solution
We proposed a novel data flow sensitive fuzzing solution
GREYONE, to address the aforementioned questions.

Fuzzing-driven Taint Inference (FTI). We first propose
FTI to infer taint of variables by conducting a pilot fuzzing
phase, during which we systematically mutate each input byte
(one at a time) and monitor variables’ values. If a variable’s
value changes while an input byte is mutated, we could infer
the former is tainted and depends on the latter.

This inference is sound, i.e., without over-taint issues. It is
also immune to under-taint issues caused by implicit flows
or external calls2. Experiments showed that, FTI is more ac-
curate than traditional taint analysis, e.g., able to find 2 to 4
times more dependencies (with no false positives). Further-
more, it avoids the labor-intensive efforts of composing taint
propagation rules and is very fast at runtime. This lightweight
and sound solution could scale to large programs, and provide
supports for other application scenarios beyond fuzzing.

Taint-Guided Mutation. Input bytes contribute differently
to code coverage. We utilize taint provided by FTI to sort

2FTI could suffer from under-taint issues due to incomplete pilot fuzzing.

input bytes. More specifically, we prioritize input bytes that
affect more untouched branches to mutate, and prioritize un-
touched branches that depend on more prioritized input bytes
to explore. When exploring a branch, we mutate its depen-
dent input bytes in priority order, by precisely replacing direct
copies of inputs with expected values (and minor variations).

Conformance-Guided Evolution. Lots of fuzzers (e.g.,
AFL) use control flow features, e.g., code coverage, to guide
evolution. To efficiently explore hard-to-reach branches (e.g.,
those related to indirect copies of inputs), we propose to use
complementary data flow features to tune the evolution direc-
tion. Note that, for each tainted variable used in untouched
branches, we need to flip some bits to match the expected
values. The amount of efforts required is related to the con-
straint conformance, i.e., the distance of tainted variables to
the values expected in untouched branches.

We use this data flow feature to tune the fuzzer’s evolution
direction. First, we add test cases with higher conformance
to the seed queue, making the fuzzer gradually improve the
overall conformance and eventually satisfy the constraints of
untouched branches. Then, we prioritize seeds with higher
conformance to be selected from the queue for mutation,
accelerating the exploration of new branches. This evolution
could satisfy the constraints at a faster pace, like the gradient
descent used in Angora [10]. But it could avoid getting stuck
in local minimum and brings long-term stable improvements.
Furthermore, we rebase ongoing mutations onto new seeds
with higher conformance on-the-fly. Experiments showed that
it thus significantly improves the mutation efficiency.

1.3 Results
We implemented a prototype of GREYONE and evaluated it
on the LAVA-M dataset [12] and 19 open source applications.

Our taint analysis engine FTI outperforms the classic taint
analysis solution DFSan [2]. On average, it finds 1.3X more
untouched branches that are tainted (i.e., depending on input
bytes), and generates 1X more unique paths during fuzzing.

GREYONE outperforms 6 state-of-the-art evolutionary
fuzzers, including AFL and CollAFL [14], in terms of both
code coverage and vulnerability discovery. In the LAVA
data set, GREYONE finds all listed bugs and 336 more un-
listed bugs. In real world applications, GREYONE finds 2.12X
unique paths, 1.53X new edges, 6X unique crashes and 3.09X
bugs, than the second best counterpart.

In addition, GREYONE demonstrates very good perfor-
mance in bypassing complicated program constraints, even
better than the state-of-the-art symbolic execution assisted
fuzzer QSYM [43]. In the real world applications, GREYONE
finds 1.2X unique paths, 1.12X new edges, 2.15X unique
crashes and 1.52X bugs than QSYM.

In total, GREYONE has found 105 unknown vulnerabilities
in these applications. After reporting to upstream vendors, we



Test (Core Fuzzing)

selective testing

Path1

Fuzzing-driven Taint Inference 
(FTI)

Test (Pilot Fuzzing)

seed
Initial
Inputs

Byte-Level Mutate

Taint Inference

variable value 
monitoring

branch-input
dependency

Taint-Guided Mutation

Byte Prioritization

Branch Prioritization

Bytes Mutation

seedseedTestcases coverage 
tracking

Potential
Vulnerabilities

conformance 
tracking

security sanitizers

Direct Copy Identif.

Direct Copy 
Replacement

seed11

seed12

Path2

seed21

Path3

seed31

seed32

Seed Queue

Seed 
Selection

Seed 
Updating

Conformance-Guided Evolution

On-the-fly Mutation Rebase

Figure 1: Architecture of GREYONE.

learned that 25 of them are known by vendors (but not public).
Among the remaining 80 bugs, 41 are confirmed by CVE.

To summarize, we make the following contributions:

• We propose a taint-guided mutation strategy, able to
prioritize which branch to explore and which input bytes
to mutate, and determine how to (precisely) mutate.

• We propose a new conformance-guided evolution solu-
tion to tune the direction of fuzzing, by taking into con-
sideration data flow features including taint attributes
and constraint conformance.

• We implement a prototype GREYONE, evaluate it on 19
widely-tested open source applications, showing that it
outperforms various state-of-the-art fuzzers.

• We find 105 unknown vulnerabilities in 19 applications,
and help the vendors improve the products.

2 Design of GREYONE

As shown in Figure 1, the overall workflow of GREYONE is
similar to AFL, consisting of steps like seed generation/up-
dating, seed selection, seed mutation and testing/tracking.

First, we introduce a new step into the fuzzing loop, i.e.,
fuzzing-driven taint inference (FTI), to infer taint of variables.
We conduct a pilot fuzzing by performing byte-level mutation
on the input seed and testing them. During the pilot fuzzing,
we monitor program variables’ value changes. Once a vari-
able’s value changes, we could induce that it is tainted and
depends on the mutated input bytes. Besides, we could also
identify all tainted variables that use direct copy of inputs.

Second, with the taint attributes provided by FTI, we fur-
ther guide the fuzzer to mutate seeds in a more efficient way.
We prioritize which input bytes to mutate and which branch
to explore. In addition, we determine how to mutate input
bytes, including direct and indirect copies of inputs.

Lastly, we tune the fuzzing direction with conformance-
guided evolution. In addition to code coverage, we track
tainted variables’ constraint conformance during testing, and

add test cases with higher conformance to the seed queue,
making the fuzzer gradually increase the conformance and
reach untouched branches. Then, we prioritize seeds with
higher conformance to select from the queue, accelerating
the evolution. Furthermore, once we find a new seed with
higher conformance, we rebase ongoing mutations onto this
new seed on-the-fly, promoting the mutation efficiency.

2.1 Fuzzing-driven Taint Inference
As shown in [10, 30], taint analysis could guide fuzzers
towards efficient mutation and help explore hard-to-reach
branches. However, traditional solutions are labor-intensive,
slow and inaccurate. GREYONE introduces a lightweight and
sound solution, i.e., fuzzing-driven taint inference (FTI).

Intuition. If a variable’s value changes after we mutate one
input byte, we could infer that the former depends on the
latter, either explicitly or implicitly. Furthermore, mutating
this input byte could change the constraints of branches that
use this variable, leading to new branch exploration.

Interference Rule for FTI. Assume we have a program
variable var (at a given line of instruction) and a seed input
S, and another input S[i] which is derived by mutating the
i-th byte of the input S, let v(var,S) be the value of var when
given the input S. We claim the variable var depends on the
i-th byte of input S, if the following condition holds.

v(var,S) 6= v(var,S[i]) (1)

Moreover, if either operand variable of a branch instruction
br depends on the i-th byte of input S, we claim this branch
br depends on this input byte. In other words, if the data
flow from the input byte to the branch does not satisfy the
non-intererence rule [16], the latter depends on the former.

Unlike traditional instruction-level taint analysis, e.g.,
TaintInduce [46], this rule captures high-level dependency
and is more accurate. As discussed later, it has fewer false pos-
itives (i.e., over-taint) and false negatives (i.e., under-taint).



Algorithm 1 Fuzzing-driven Taint Inference.
Input: seed
Output: {br.taint[seed] | br ∈ branches(P)}

1: // Target program is instrumented to collect information, as P′

2: State = Execute(P′ ,seed)
3: for each candidate mutation method Opr do
4: for each available mutation operand Opd do
5: for each position pos in the seed do
6: seed

′
= Mutate(seed,Opr,Opd, pos)

7: State
′
= Execute(P′ ,seed

′
)

8: for br ∈ uncovered_branches(State) do
9: for var ∈ br do

10: if State(var) 6= State
′
(var) then

11: br.taint[seed] ∪= {pos}
12: end if
13: end for
14: end for
15: end for
16: end for
17: end for

2.1.1 Taint Inference

Following the aforementioned intuition and interference rule,
FTI infers the taint attributes in a pilot fuzzing phase, which
could be integrated with the deterministic fuzzing stage of
AFL, with the following three steps, as shown in Algorithm 1.

Byte-Level Mutation. We mutate the seed inputs one byte
at a time, with a set of predefined mutation rules (e.g., single-
bit flipping, multiple-bits flipping and arithmetic operations).
For each seed input S and each input offset pos, a set of new
test cases BLM(S, pos) could be derived in this way.

Note that, we do not mutate multiple bytes at the same
time,3 due to the following reasons. First, we cannot precisely
determine which byte is responsible for the potential value
change if multiple bytes are mutated, causing either under-
taint or over-taint issues. Second, single-byte mutation yields
fewer test cases and introduces fewer performance overheads.

Variable Value Monitoring. We then feed the generated
test cases to test, and monitor program variables’ values dur-
ing testing. To support the monitoring, we instrument the
target applications with special value tracking code.

Note that, we could monitor all program variables in this
way. However, for the purpose of fuzzing, we only monitor
variables that are used in path constraints. First, it is much
faster to monitor fewer variables. Second, only these variables
will affect the path exploration, and it is sufficient to only
monitor them in order to explore all branches.

Taint Inference. Lastly, after testing each set of test cases
BLM(S, pos), we check whether the value of each variable
used in path constraints keeps intact or not. If the value of a
variable var changes, we could infer that var is tainted and
depends on the pos-th byte of the input seed S.

3This may cause incomplete testing.

Listing 1: Motivating example of FTI
1 / / magic number : d i r e c t copy of i n p u t [ 0 : 8 ] vs . c o n s t a n t
2 i f ( u64 ( i n p u t ) == u64 ( "MAGICHDR" ) ) {
3 bug1 ( ) ;
4 }
5 / / checksum : d i r e c t copy i n p u t [ 8 : 1 6 ] vs . computed v a l
6 i f ( u64 ( i n p u t +8) == sum ( i n p u t +16 , len −16) ) {
7 bug2 ( ) ;
8 }
9 / / l e n g t h : d i r e c t copy of i n p u t [ 1 6 : 1 8 ] vs . c o n s t a n t

10 i f ( u16 ( i n p u t +16) > l e n ) ) { bug3 ( ) ; }
11 / / i n d i r e c t copy of i n p u t [ 1 8 : 2 0 ]
12 i f ( foo ( u16 ( i n p u t +18) ) = = . . . ) { bug4 ( ) ; }
13 / / i m p l i c i t dependency : va r1 depends on i n p u t [ 2 0 : 2 4 ]
14 i f ( u32 ( i n p u t +20) == . . . ) {
15 va r1 = . . . ;
16 }
17 / / v a r1 may change i f i n p u t [ 2 0 : 2 4 ] changes
18 / / FTI i n f e r s : va r1 depends on i n p u t [ 2 0 : 2 4 ]
19 i f ( va r1 == . . . ) { bug5 ( ) ; }

As shown in Listing 1, which is extended from
REDQUEEN [4], we could detect the value of variable var1
used in the branch at Line 20 changes, when we mutate either
the 20th, 21st, 22nd or 23rd byte of the input. Therefore, var1
depends on these four bytes.

2.1.2 Comparison with Traditional Taint Analysis.

Comparing to traditional taint analysis, FTI requires fewer
manual efforts, and is much more lightweight and accurate.

Manual Efforts. Traditional taint analysis (e.g., [20]) re-
quires labor-intensive efforts. In general, each instruction/s-
tatement has to be either interpreted with custom instruction-
specific taint propagation rules, or lifted/translated to an inter-
mediate representation form and then analyzed with general
taint propagation rules. FTI is architecture independent and
requires no extra efforts to port to new platforms.

Speed. FTI is very fast. First, it is based on static code
instrumentation, rather than dynamic binary instrumentation.
Second, it only monitors values of variables used in path
constraints, not all program variables. Third, it does not need
to interpret individual instructions with custom rules.

Accuracy. FTI is more accurate than traditional taint anal-
ysis solutions. Its inference rule is sound. If a variable is
reported to depend on a specific input byte, then it is most
likely to be true. In other words, it has no over-taint issues.

It also has fewer under-taint issues. In practice, most under-
taint issues are caused by ubiquitous implicit data flows and
loss in external functions or system calls. FTI is immune to
these cases. However, FTI may still have under-taint issues
due to incomplete fuzzing caused by byte-level mutation.

Figure 2 demonstrated how FTI works. Unlike traditional
dynamic taint analysis, which focuses on instructions and suf-
fers from over-taint and under-taint issues, FTI could improve
the accuracy with fewer efforts.

Head-to-Head Comparison. Note that, several recent
works have similar ideas or comparable results. TaintIn-
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Figure 2: Illustration of the procedure for FTI, along with a
sample program with over-taint and under-taint issues.

duce [46]could infer taint propagation rules for each instruc-
tion without manual efforts. But it is extremely slow in taint
rule inferring stage, due to its mutation on each instruction.
ProFuzzer [42] mutates one input byte at a time too. But it
monitors the coverage changes rather than value changes,
unable to infer taint dependency. MutaFlow [26] monitors
changes in sink APIs and could tell whether a parameter is
tainted. But it focuses on APIs rather than variables, and can-
not provide precise taint information for variables. Further-
more, it lacks a systematic testing, such as the pilot fuzzing
performed by FTI, and thus has much more under-taint issues.

2.1.3 Identify Direct Copies of Inputs.

It is common that, some input bytes will be directly copied to
variables, and compared against expected constants or com-
puted values in branch instructions, as shown at Line 2 (magic
number), Line 6 (checksum) and Line 10 (length check) in
Listing 1. These input bytes should be replaced with the ex-
act values (or with minor variations like ±1) expected in the
branches, to bypass the hard-to-reach path constraints.

FTI could identify all direct copies of inputs in an efficient
way. For each tainted variable used in branch instructions,
we could match it against its dependent input bytes. If their
values are equal, we report the variable as a direct copy of
input. Otherwise, we report it as an indirect copy of input.

2.2 Taint-Guided Mutation

Mutation-based fuzzers will mutate seed inputs in certain
ways and generate new test cases, to explore new code and
trigger potential vulnerabilities. GREYONE utilizes taint pro-
vided by FTI to prioritize which bytes to mutate and which
branch to explore, as well as determine how to mutate.
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Figure 3: Dependency between inputs, variables and branches.

2.2.1 Prioritize Bytes to Mutate

As pointed by [29], not all inputs bytes are equal. Some bytes
should be prioritized to mutate, to get a better fuzzing yields.
We argue that, if an input byte could affect more untouched
branches, then it should be prioritized over other input bytes,
because mutating this input byte is more likely to trigger
untouched branches, and trigger more complicated program
behaviors since more branch states have changed.

As shown in Figure 3, each input byte at offset pos of a
seed input S may affect multiple variables, and then affect
multiple branches among which some are not explored by any
test case. We define a byte’s weight as the count of untouched
branches depending on this byte, as follows.

Wbyte(S, pos) = ∑
br∈Path(S)

IsUntouched(br)∗DepOn(br, pos) (2)

where, IsUntouched returns 1 if the branch br is not explored
by any test case so far, otherwise 0. And the function DepOn
returns 1 if the branch br depends on the pos-th input byte,
according to FTI, otherwise 0.

2.2.2 Prioritize Branches to Explore

As shown in Figure 3, a program path may have multiple
untouched neighbour branches. Similarly, some untouched
branches should be prioritized to explore in order to get a
better fuzzing yields. We argue that, an untouched branch that
depends on more high-weight input bytes should be prioritized
over other untouched branches.

If an untouched branch depends on more high-weight input
bytes, to explore this branch, we will mutate its dependent
input bytes. As aforementioned, mutating these high-weight
input bytes is more likely to trigger untouched branches (in-
cluding branches different from the one to explore).

Accordingly, for a seed S, we evaluate the weight of an
untouched branch br in the according path as the sum of all
its dependent input bytes’ weight, as follows.

Wbr(S,br) = ∑
pos∈S

DepOn(br, pos)∗Wbyte(S, pos) (3)



2.2.3 Determine Where and How to Mutate

With the weight of input bytes and unexplored branches, we
could further determine the seed mutation policy.

Where to mutate? Given a seed and the program path it
exercises, we will explore the untouched neighbor branches
along this path one by one, in descending order of branch
weight according to Equation 3.

When exploring a specific untouched neighbor branch, we
will mutate its dependent input bytes one by one, in descend-
ing order of byte weight according to Equation 2.

How to mutate direct copies of input? As aforemen-
tioned, direct copies of inputs should match the values ex-
pected in untouched branches. Thus, during mutation we re-
place the direct copy of input bytes with the exact expected
values (for magic number and checksum etc.) and values with
minor variations (e.g., ±1 for length checks etc.).

The core question left is how to get the expected values.
There are two cases. If a constant value (e.g., magic number) is
expected, we record this constant value with FTI. If a runtime-
computed value (e.g., checksum) is expected, we first feed a
malformed input to test, and get the expected runtime value
with FTI. Then we use the recorded value (and with minor
variations) to patch the dependent input bytes.

Note that, REDQUEEN [4] could also mutate direct copies
of input bytes. Unlike GREYONE, REDQUEEN could not
precisely locate the exact position of dependent bytes. It has
to mutate the seed hundreds of times to get a colorized version
with higher entropy, which exercises the same path. The col-
orized version is tested again, and compared with the original
seed, to locate the potential positions of dependent bytes. The
colorization process is very slow, and the number of candidate
positions could be large too. As a result, it wastes more time
to precisely mutate the dependent bytes than GREYONE.

How to mutate indirect copies of input? If some input
bytes affect an untouched branch but their direct copy is not
used in the branch, we will mutate these bytes one by one, in
descending order of byte weight according to Equation 2.

More specifically, we will apply random bit flipping and
arithmetic operations on each dependent byte. Different from
the byte-level mutation used in FTI, multiple dependent bytes
could be mutated together in this phase.

As discussed later, our conformance-guided evolution so-
lution will rebase the mutation onto better seeds on-the-fly,
which could greatly improves the mutation of indirect copies.

Mitigate the under-taint issue. As aforementioned, FTI
may have under-taint issues due to incomplete testing. Thus,
for any untouched branch, its dependent input bytes reported
by FTI could be incomplete. In order to explore that branch,
we have to mutate the missing dependent input bytes as well.

More specifically, in addition to mutate the dependent input
bytes reported by FTI, we also randomly mutate their adjacent
bytes with a small probability.

2.3 Conformance-Guided Evolution
A wide range of fuzzers (e.g., AFL) use control flow features,
e.g., code coverage, to guide evolution direction of fuzzing. To
efficiently explore hard-to-reach branches (e.g., those related
to indirect copies of inputs), we propose to use complementary
data flow features to tune the evolution direction of fuzzing.

We note that, for each tainted variable used in untouched
branches, we need to flip some bits of its dependent input
bytes to make it match the expected value. Some test cases re-
quire fewer efforts (i.e., bit flipping) than others. The amount
of efforts required is related to the constraint conformance,
i.e., the distance of tainted variables to the values expected
in untouched branches. Seeds with higher conformance are
more likely to yield test cases exercising untouched branches.

Based on this observation, we use the seed’s constraint
conformance to tune the evolution direction of fuzzing. We
modify the seed updating and seed selection policies accord-
ingly, to drive the fuzzer towards this direction. The test cases
generated during fuzzing are more likely to have higher con-
formance and eventually satisfy the hard-to-reach constraints.

2.3.1 Conformance Calculation

The constraint conformance indicates how much the target
(e.g., seed) matches with the path constraints.

Conformance of an untouched branch. Given an un-
touched branch br, which relies on two operands var1 and
var2, we define its constraint conformance as follows.

Cbr(br,S) = NumEqualBits(var1,var2) (4)

where, the function NumEqualBits returns the number of
equal bits between the two arguments. Note that, for a branch
in a switch statement, the two variables it relies on are the
switch condition and the case value.

Conformance of a basic block. Given a seed S and a basic
block bb it has explored, bb may have multiple untouched
neighbor branches (e.g., switch statements). We define the
constraint conformance of bb as the maximum conformance
of all its untouched neighbor branches:

CBB(bb,S) = MAX
br∈Edges(bb)

IsUntouched(br)∗Cbr(br,S) (5)

Conformance of a test case. Given a test case S, its con-
straint conformance is defined as the sum of the conformance
score of all basic blocks it has explored.

Cseed(S) = ∑
bb∈Path(S)

CBB(bb,S) (6)

Note that, seeds with higher constraint conformance are
likely to have (1) more untouched neighbor branches, and
(2) individual untouched branches with higher constraint con-
formance. Further mutations could thus quickly trigger more
untouched branches or target individual untouched branches.
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Figure 4: Dynamics of seed queue updating.

2.3.2 Conformance-Guided Seed Updating

In addition to test cases that find new code, we also add test
cases with higher constraint conformance to the seed queue.
In order to efficiently support this new seed updating scheme,
we proposed a novel seed queue structure.

Two-Dimensional Seed Queue. Traditional seed queues
are usually kept in a linked list, where each node represents
a seed that explores a unique path4. We extend each node to
include multiple seeds that explore the same path and have
the same conformance but different block conformance, to
form a two-dimensional seed queue, as shown in Figure 4.

Seed queue Updates. Figure 4 also shows how we update
the seed queue, in the following three cases.

• A. New path. If the test case finds new code, then it will
be added to the seed queue as a new node, same as other
coverage-guided fuzzers (e.g., AFL).

• B. Same path but higher conformance. If the test case
does not find any new code, but has a higher conformance
than seeds in the corresponding node (with same path)
in the queue, then this node will be replaced with a new
node consisting of only this test case.

• C. Same path and conformance, but different basic
block conformance. If the test case explores the same
path and has the same conformance as seeds in the cor-
responding node in the queue, but has a distribution of
basic block conformance different from seeds in that
node, then we will append this test case to that node.

It is worth noting that, in the last case, since the test case
has a unique distribution of basic block conformance, it could
derive new test cases to quickly trigger untouched neighbor
branches of some basic blocks, and thus is useful.

Comparison. This seed updating policy makes the fuzzer
gradually improve the overall conformance, and satisfies the
constraints of untouched branches with a fast pace, at a speed

4In AFL, it represents a unique edge hit or a new edge hit count range

comparable to the gradient descent algorithm used in An-
gora [10]. But it could avoid getting stuck in local minimum
like Angora, and brings long-term stable improvements.

Note that, honggfuzz [38] also compares the equality of
operands in branch statements. If a branch’s equality in-
creases, it adds the test case to the seed queue. However,
it does not exclude compare instructions related to touched
branches, which are useless to branch exploration. Further, a
basic block may have multiple compare instructions inside,
but not all of them are related to branches. Lastly, it lacks the
efficient two-dimensional seed queue structure proposed in
this paper, limiting its efficiency as well.

2.3.3 On-the-fly Mutation Rebase

Once we find a test case exercising the same program path
as previous seeds but has a higher conformance, i.e., case B
as aforementioned, we not only add this test case to the seed
queue by replacing the corresponding node with a new node,
but also replace all uses to the seeds being replaced.

Especially, if the seed being replaced is used by an ongoing
mutation, we will rebase the mutation onto the new seed, since
the new seed is better. This operation could be done on-the-fly,
as illustrated in red line in Figure 1. Experiments showed that,
this optimization technique is very effective. For example, it
promotes the speed of finding the same number of bugs in the
LAVA data set by three times.

2.3.4 Conformance-Guided Seed Selection

Many works [6, 14] have proved that seed selection policies
could accelerate the evolution of fuzzing. We propose to pri-
oritize seeds with higher conformance during seed selection.

More specifically, we iterate the linked list of the seed
queue, and select linked nodes that have higher conformance
with a higher probability. Then a random seed in this linked
node will be selected for further mutation.

With this scheme, seeds with higher conformance are more
likely to be selected. Further mutations are more likely to
yield test cases with higher conformance, which could satisfy
the hard-to-reach constraints of untouched branches.

3 Implementation

We implemented a prototype of GREYONE with over 20,000
lines of C/C++ code. The current prototype supports analyz-
ing applications with LLVM bytecode. Here, we present some
of its implementation details.

3.1 Modularized Framework

As shown in Figure 1, GREYONE consists of several core
components, e.g., seed updating, seed selection, seed mutation



and testing. We implemented a set of extensible interfaces to
support various policies and future improvements.

Test Case Scoring. Evolutionary fuzzers usually put some
test cases to a seed pool for further mutation according to a
certain test case scoring algorithm. We implemented a gen-
eral interface of test case scoring, able to support both the
coverage-guided seed updating policy adopted by AFL and
the conformance-guided policy adopted by GREYONE.

Seed Prioritization. Fuzzers usually prioritize seeds to se-
lect and assign different energy to mutate according to a cer-
tain seed scoring algorithm. We implemented a general inter-
face of seed scoring, able to support the conformance-guided
seed selection policy adopted by GREYONE and policies used
by other fuzzers (e.g., CollAFL [14] and AFLfast [6]).

Seed Mutation Algorithms. In addition to the mutation
operators (e.g., byte flipping) implemented by other fuzzers
(e.g., AFL), we also add supports to byte-level mutation used
by FTI, and direct-copy mutation in which the fuzzer is told
the exact offset and exact value to use.

State Manager. The fuzzer usually requires special data
structures to support efficient communication between com-
ponents and efficient decision making. We constructed many
tree-based and hash-table-based structures to store these in-
formation, including control flow graph, code coverage, seed
conformance, variables’ taint attributes and variables’ values.

Selective Testing. In addition to code coverage tracking,
GREYONE has two more modes during testing: (1) variable
value monitoring mode used for FTI; (2) conformance-guided
tracking mode for evolution tuning. To efficiently schedule
these different testing modes, we extend the fork server used
by AFL to switch between them on demand. For example,
during fuzzing, if a seed has spent too much mutation energy
or the conformance does not increase for a while, then we will
switch from conformance tracking mode to regular coverage
tracking mode.

3.2 Static Analysis and Instrumentation.

To support the policies proposed in the paper, we need to first
analyze the target applications with static analysis, as well as
collect some information at runtime.

We perform some basic inter-procedural control flow anal-
ysis with the help of Clang, and get the control flow graph
and other necessary information.

Coverage Tracking. As pointed by CollAFL [14], there is
a serious hash collision issue in traditional coverage tracking
solutions (e.g., AFL). We reproduce the mitigation solution
of CollAFL in GREYONE.

Conformance Tracking. To support conformance track-
ing, we instrument each branch statement (including con-
ditional branches and switch statements) to count the
number of equal bits of its operands (by operations like
__builtin_popcount).

Variable Value Monitoring FTI relies on variable value
monitoring during fuzzing. We instrument the application to
record the values of variables used in path constraints. More
specifically, we assign unique IDs to all such variables, and
store their values in a bitmap (with the ID as key), similar to
the bitmap storing code coverage used by AFL.

4 Evaluation

In this section, we evaluated the efficiency of GREYONE, and
showed its improvements compared to other fuzzers.

4.1 Experiment Setup
Following the guidance in [21], we conducted the experiments
carefully, to draw conclusions as objective as possible.

Baseline fuzzers to compare. We compared GREY-
ONE against several well-known evolutionary mutation-based
fuzzers, including AFL [44], VUzzer [30], Angora [10], Col-
lAFL [14] , Honggfuzz [38], and QSYM[43]5. They are cho-
sen based on the following considerations. First, AFL was the
most popular baseline fuzzer studied in the community. Sec-
ond, Angora and VUzzer also utilized taint to guide fuzzing.
Third, CollAFL provides more accurate coverage information,
which is also utilized by GREYONE. In addition, CollAFL
proposed a seed selection policy relying on control flow fea-
tures, different from GREYONE. Further, Honggfuzz is a core
fuzzing engine in Google’s OSS-Fuzz platform [33], and also
uses light-weight data tracking to identify good seeds. Lastly,
QSYM is a popular symbolic execution assisted fuzzer, and
we can use it to evaluate GREYONE’ capability on bypassing
complicated program constraints.

Target applications to test. We chose target applications
considering several factors, including popularity, frequency
of being tested, development activeness, and functionality
diversity. Finally, we chose 19 popular open source Linux
applications (in latest version when tested), including well-
known development tools (e.g., readelf, nm, c++filt), im-
age processing libraries (e.g., libtiff), document process-

5CollAFL is not open source. We implemented a copy following its
design. Another work REDQUEEN [4] is also related, but it is disclosed only
one month ago and not open source. Thus we are unable to compare with it.



Table 1: Number of vulnerabilities (accumulated in 5 runs) detected by 6 fuzzers, including AFL, CollAFL-br, VUzzer, Honggfuzz,
Angora, and GREYONE, after testing each application for 60 hours.

Vulnerabilities by GREYONEApplications Version AFL CollAFL- br Honggfuzz VUzzer Angora GREYONE Unknown Known CVE
readelf 2.31 1 1 0 0 3 4 2 2 -

nm 2.31 0 0 0 0 0 2 1 1 *
c++filt 2.31 1 1 1 0 0 4 2 2 *
tiff2pdf v4.0.9 0 0 0 0 0 2 1 1 0
tiffset v4.0.9 1 2 0 0 0 2 1 1 1

fig2dev 3.2.7a 1 3 2 0 0 10 8 2 0
libwpd 0.1 0 1 0 0 0 2 2 0 2
ncurses 6.1 1 1 0 0 0 4 2 2 2
nasm 2.14rc15 1 2 2 1 2 12 11 1 8
bison 3.05 0 0 1 0 2 4 2 2 0
cflow 1.5 2 3 1 0 0 8 4 4 0
libsass 3.5-stable 0 0 0 0 0 3 2 1 2
libbson 1.8.0 1 1 1 0 0 2 1 1 1

libsndfile 1.0.28 1 2 2 1 0 2 2 0 1
libconfuse 3.2.2 1 2 0 0 0 3 2 1 1
libwebm 1.0.0.27 1 1 0 0 0 1 1 0 1
libsolv 2.4 0 0 3 2 2 3 3 0 3
libcaca 0.99beta19 2 4 1 0 0 10 8 2 6
liblas 2.4 1 2 0 0 0 6 6 0 4

libslax 20180901 3 5 0 0 0 10 9 1 *
libsixl v1.8.2 2 2 2 2 3 6 6 0 6

libxsmm release-1.10 1 1 2 0 0 5 4 1 3
Total - 21 34 18 6 12 105 (+209%) 80 25 41

ing libraries (e.g., libwpd), terminal processing libraries
(e.g., libncurses), audio or video processing libraries (e.g.,
ibsndfile), code processing tools (e.g., cflow, bison,
nasm), graphics processing libraries (e.g., libcaca and
libsixel), and data processing libraries (e.g., libsass and
libxsmm) etc. Furthermore, we also evaluated GREYONE on
the LAVA-M data set [12] as other fuzzers.

Performance metrics. We chose vulnerability discovery
and code coverage as two major metrics used to compare the
efficiency of each fuzzer with GREYONE. For code coverage,
we mainly considered path coverage (i.e., number of seeds in
the queue) and edge coverage (i.e., number of edge hit) sim-
ilar to [14, 42]. For vulnerability discovery, we tracked the
growth trend of unique crashes detected by different fuzzers.
We further utilized tools including afl-collect [3], AddressSan-
itizer [34] and UBSan [23] to deduplicate redundant crashes
and identify unique vulnerabilities.

Note that, fuzzers have different representations of fuzzing
states (e.g., bitmap). We therefore slightly modify them to get
unified fuzzing states and perform fair comparison.

Initial seeds. Note that, our taint analysis engine FTI re-
lies on byte-level mutation. It will perform poorly if no initial
seeds are given, lowering the efficiency of GREYONE. There-
fore, we did not test target applications with empty seeds.
Instead, we test each target application with 10 initial seeds.

For each target application, we randomly downloaded about
100 input files from the Internet, according the required input
file formats. Then, we use the tool afl-cmin shipping with
AFL [44], to filter out a minimal subset of inputs that have the
same code coverage. Finally, we randomly selected 10 inputs
from these distilled inputs, and used them as the initial seeds.

Randomness mitigation. Since mutation-based fuzzers all

rely on random mutation, there could be performance jitter
during testing. We took two actions to mitigate the random-
ness issue. First, we perform each experiment for 5 times,
and evaluate the average performance as well as the minimal
and maximal performance. Second, we test target applications
for more time, until the fuzzers reach a relatively stable state
(i.e., the order of fuzzers’ performance does not change any-
more). Experiments showed that the fuzzers will get stable
after testing these applications for 60 hours. So, we tested
each application for 60 hours in our experiment.

Experiment environment. We run each fuzzer instance
on each target application in the same configuration. More
specifically, each instance is run in a virtual machine running
Ubuntu 17.04 with one Intel CPU @2.9GHz and 8GB RAM.

4.2 Vulnerability Discovery
Table 1 shows the number of unique vulnerabilities (accumu-
lated in 5 runs) found by 6 different fuzzers in the 19 real
world applications. Each application is of the latest version at
the time of testing.

In total, AFL, CollAFL, Honggfuzz, VUzzer and Angora
has found 21, 34, 18, 6 and 12 vulnerabilities in all applica-
tions respectively. GREYONE found 105 unique vulnerabil-
ities in total and covered all vulnerabilities found by other
fuzzers. In other words, GREYONE found 209% more vul-
nerabilities than the second best fuzzer (i.e., CollAFL). Espe-
cially, out of these 19 applications, three applications includ-
ing nm, tiff2pdf and libsass are reported as vulnerable
only by GREYONE. In summary, GREYONE significantly out-
performs other 5 fuzzers in terms of vulnerability discovery.

The last three columns of Table 1 show the number of



Table 2: Number of unique crashes (average and maximum count in 5 runs) found in real world programs by various fuzzers.
AFL CollAFL-br Angora GREYONEApplications Average Max Average Max Average Max Average Max

tiff2pdf 0 0 0 0 0 0 6 12
libwpd 0 0 1 3 0 0 21 58
fig2dev 8 12 11 20 0 0 40 79
readelf 0 0 0 0 21 27 28 38

nm 0 0 0 0 0 0 16 72
c++filt 18 30 7 32 0 0 268 575
ncurses 7 18 12 23 0 0 28 37

libsndfile 4 13 8 20 0 0 23 33
libbson 0 0 0 0 0 0 6 12
tiffset 22 46 43 49 0 0 83 122
libsass 0 0 0 0 0 0 8 12
cflow 9 47 17 35 0 0 32 185
nasm 5 15 20 42 6 12 157 212
Total 73 181 119 229 27 39 716 (+501%) 1447 (+631%)

Table 3: Number of unique paths and edges (average in 5 runs) found in real world programs by various fuzzers. Numbers in red
are path/edge coverages of the second best fuzzer.

Path Coverage Edge CoverageApplications AFL CollAFL-br Angora GREYONE (INC) AFL CollAFL-br Angora GREYONE (INC)
tiff2pdf 2638 3278 3344 5681(+69.9%) 6261 6776 6820 8250(+20.9%)
readelf 4519 4782 5212 6834(+32%) 6729 6955 7395 8618(+14.5%)
fig2dev 697 764 105 1622(+112%) 934 1754 489 2460(+40.2%)
ncurses 1985 2241 1024 2926(+30.6%) 2082 2151 1736 2787(+28.2%)
libwpd 4113 3856 1145 5644(+37.2%) 5906 5839 4034 7978(+35.1%)
c++filt 9791 9746 1157 10523(+8%) 6387 6578 3684 7101(+8%)
nasm 7506 7354 3364 9443(+25.8%) 6553 6616 4766 8108(+22.5%)
tiffset 1373 1390 1126 1757(+26%) 3856 3900 3760 4361(+11.8%)

nm 2605 2725 2493 4342(+59%) 5387 5526 5235 8482(+53.5%)
libsndfile 911 848 942 1185(+25.8%) 2486 2392 2525 2975(+17.8%)

vulnerabilities that are previously unknown, known by ven-
dors only and confirmed by CVE respectively. We reported
the 105 vulnerabilities we found to upstream vendors, and
learned that 25 of them are known by the vendors (but not the
public). Among the remaining 80 unknown vulnerabilities,
41 vulnerabilities are confirmed by CVE.

4.3 Unique Crashes Evaluation
In general, the more unique crashes a fuzzer finds, the more
vulnerabilities it could find too. Thus, the number of unique
crashes is also an important metric for fuzzers. Due to the
randomness, we evaluated not only the average but also the
maximum number of unique crashes found in 5 runs.

Table 2 shows the detailed evaluation results. GREYONE
outperforms all other fuzzers in all applications. Especially in
tiff2pdf, nm, and libsass, only GREYONE reported unique
crashes and other fuzzers all failed.

Among the 5 runs, GREYONE on average found 716 unique
crashes in all applications, which is 501% more than the sec-
ond best fuzzer (i.e., CollAFL). In the maximum run, GREY-
ONE found 1447 unique crashes in all applications, which is
631% more than the second best fuzzer.

To better examine the efficiency of each fuzzer, we also
evaluated the growth trend of unique crashes found by them,
as shown in Figure 14 in the Appendix. It shows that, GREY-
ONE had a steady and stronger growth trend on all applica-

tions. Furthermore, GREYONE is also the first fuzzer that
reported crashes in almost all applications.

4.4 Code Coverage Evaluation
Since a fuzzer can only find vulnerabilities in code that it has
explored, code coverage is therefore an important metric for
coverage-guided fuzzers.

Table 3 shows the average number of unique paths and
edges found by each fuzzer for ten applications. In addition,
the improvement of GREYONE compared to the second best
fuzzer is also evaluated and showed in the table.

In terms of path coverage, GREYONE outperforms the sec-
ond best fuzzer by at least 25% in 9 out of ten applications.
In the last application c++filt, GREYONE outperforms the
second best by 8%. In terms of new edge coverage, GREY-
ONE outperforms the second best fuzzer in all applications,
on average by 25.5%.

We also evaluated the growth trend of code explored by
fuzzers, and presented the path coverage in Fig 13 and edge
coverage in Fig 16. It shows that GREYONE has an impressive
stronger growth trend than all other fuzzers in all applications.

4.5 Evaluation on LAVA-M
To directly compare the results with other papers, we tested
applications in the LAVA-M data set for 24 hours (rather than
60 hours) and repeated 5 times.



Table 4: The number of bugs found by various fuzzer tools on LAVA-M in 24 hours.
LAVA-M AFL CollAFL-br Honggfuzz VUzzer CollAFL-br+laf QSYM Angora GREYONE Listed bugs

who 0 2 4 49 245 1252(+43) 1438(+95) 2136(+327) 2136
md5sum 1 3 3 12 37 57(+0) 57(+0) 57(+4) 57
base64 2 2 6 15 44 44(+4) 44(+4) 44(+4) 44
uniq 1 1 4 24 21 28(+1) 28(+1) 28(+1) 28

Table 5: Number of unique paths, unique edge, unique crashes (average count in 5 runs with 60 hours each time) and total
vulnerabilities (5 runs with 60 hours each time) found in real world programs by QSYM-* (QSYM+master AFL+ slave AFL)
and GREYONE-* (GREYONE +slave AFL).

Average Unique Paths Average Unique Edges Average Unique Crashes Total VulnerabilitiesApplications QSYM-* GREYONE-* QSYM-* GREYONE-* QSYM-* GREYONE-* QSYM-* GREYONE-*
Readelf 9028 12312(+36.38%) 7822 8847(+13.10%) 46 77 4 4

Nm 4218 5822(+38.03%) 6773 8599(+26.96%) 3 18 1 2
C++filt 10988 12122(+10.32%) 6898 7155(+3.73%) 158 299 4 4
Tiff2pdf 4856 5698(+17.34%) 7431 8088(+8.84%) 0 3 0 2
Tiffset 1897 2205(+16.24%) 4285 4404(+2.78%) 25 66 2 2

Libwpd 8279 10589(+31.27%) 9947 11702(+17.64%) 12 24 1 2
libsndfile 1375 1650(+20%) 2691 3033(+12.71%) 32 46 1 2
Fig2dev 1218 1616(+32.68%) 1843 2241(+21.60%) 15 38 6 10
Nasm 9184 9529(+3.76%) 7433 8104(+9.03%) 87 231 8 11

libncurses 2837 3291(+16%) 2749 2950(+7.31%) 36 88 3 5
Average Improvement - +20.34% - +12.53% - +115% - +52%

Figure 5: The growth trend of unique crashes found in LAVA-
M by AFL, CollAFL, Angora and GREYONE.

Bug finding. Table 4 shows the number of bugs (average in
5 runs) detected by each fuzzer within 24 hours. GREYONE
finds 2601 bugs in all applications, including all listed bugs in
LAVA-M. Moreover, it found 327, 4, 4 and 1 unlisted bugs in
these four applications respectively, showing that GREYONE
is very effective and much better than other fuzzers.

First, AFL and CollAFL have the worst performance, be-
cause they are not sensitive to data flow features and thus
unfit for detecting bugs in LAVA-M. Second, Honggfuzz an-
alyzes all operands used in branches, but lacks the ability to
isolate untouched branches and lacks efficient seed updating
and selection policies. Therefore its evolution speed is slow
and the overall efficiency is poor. Third, VUzzer is very slow

and can only handle simple constraints (e.g., magic number).
Thus it shows minor improvements comparing to AFL. Fur-
ther, CollAFL-br-LAF integrates the Intel-laf solution, which
splits long string comparisons, fit for detecting certain bugs
in LAVA-M. Lastly, Angora shows an extraordinary result as
well, due to its gradient descent algorithm. However, it may
get stuck in local minimum and fail to find certain bugs.

Unique crashes. Figure 5 shows the growth trend of
unique crashes found by various fuzzers. Thanks to the ac-
curate taint-guided mutation and stable conformance-based
evolution, GREYONE shows a strong and stable growth trend
in finding unique crashes. It finds about 1X more unique
crashes than the second best fuzzer Angora.

AFL and CollAFL barely could satisfy the complicated
path constraints, becasue they are insensitive to data flow
features. Interestingly, Anogra shows a fast growth in the be-
ginning and reaches a bottleneck after a few hours. Again, it
shows gradient descent is effective at generating interesting
test cases. However, it will be trapped soon, due to the inac-
curacy of taint and local optimum issue of gradient descent.

4.6 Heuristic Constraints Solving
Note that, GREYONE could bypass a wide range of compli-
cated constraints, by utilizing FTI. In order to further evaluate
its effectiveness, we compare it with a state-of-the-art sym-
bolic execution assisted fuzzer QSYM.

To perform fair comparison, we setup similar environments
for QSYM and GREYONE. First, we followed the same con-
figuration in the original paper [43] to evaluate QSYM. More
specifically, QSYM works together with a master AFL and a
slave AFL instance, occupying three CPU cores and 256GB
memory. On the other hand, we setup GREYONE to work with



Figure 6: The growth trend of number of unique paths (average of 5 runs) detected by QSYM-* and GREYONE-*.

a slave AFL by simply sharing their seed queues, occupying
only two CPU cores and 8GB memory.

Table 5 shows the head-to-head comparison results, in 5
runs with 60 hours each time. Although GREYONE takes
fewer computing resources, it outperforms QSYM in terms of
both code coverage and vulnerabilities discovery. On average,
GREYONE found 1.2X unique paths, 1.12X edges, 2.15X
unique crashes and 1.52X vulnerabilities than QSYM.

To further demonstrate the effectiveness of constraints solv-
ing, we tracked the growth trend of paths coverage and pre-
sented in Figure 6. We could find GREYONE cover more
paths in a faster pace than QSYM in most subjects.

According to the above evaluation, the heuristic constraint
solving capability provided by GREYONE outperforms sym-
bolic constraint solver when applied to hybrid fuzzing.

5 Further Analysis

We further evaluated GREYONE’s ability of data flow anal-
ysis and the outcome of applying such data flow features to
fuzzing, to better understand the improvements of GREYONE.

5.1 Performance of FTI
Our taint analysis engine FTI provides support for further
taint-guided mutation and conformance-guided evolution,
playing an important role in GREYONE. In this section, we
evaluated the efficiency and performance of FTI.

5.1.1 Completeness of Taint Inference

As aforementioned, FTI is sound and has no over-taint issues.
However, it may have under-taint issues due to its incomplete
testing in the pilot fuzzing. We hereby evaluated the under-
taint issues FTI is facing.

Figure 7: Proportion of tainted untouched branches reported
by FTI-only, DTA-only and both FTI and DTA.

Note that, it is infeasible to get the ground truth of the accu-
rate taint information, even if the source code is given, due to
challenges like implicit data flows and external dependencies.
As a result, we directly compare FTI with another dynamic
taint analysis (DTA) engine, to roughly estimate under-taint.

Experiment Setup. There are several taint analysis engines
available [2, 20], we chose DFSan [2] as the DTA engine to
compare with, since it is the official engine shipped with the
LLVM [22] compilation framework and has good runtime
performance and platform support.

As aforementioned, solutions like DFSan not only suffer
from implicit data flows, but also external dependencies. For
example, if an external library is not processed with DFSan,
the taint propagation will be broken once it flows into the
library. To mitigate this issue, we built taint models for all
external libraries used in the experiment. Therefore, DFSan
could get more taint information than its default configuration.

Then, we built a variation of GREYONE, named as GREY-
ONE-DTA by replacing its taint analysis engine with DFSan.



Figure 8: Average speed of analyzing one seed by FTI.

Figure 9: Average speed of inferring taint for one branch
instruction, given input seeds of 1KB size.

Further we tested GREYONE and GREYONE-DTA on 11 real
world applications and 4 applications from LAVA-M. For each
application, we randomly selected hundreds of unique pro-
gram paths that have been explored by both GREYONE and
GREYONE-DTA. Then we examined all untouched branches
in these paths, and counted the number of untouched branches
that are related to input bytes (i.e., tainted).

Figure 7 shows the proportion of tainted untouched
branches reported by GREYONE of version FTI and DTA.
Note that, FTI has no over-taint issues, but DTA may have
over-taint issues (e.g., due to wrong taint propagation in XOR
instructions etc.). From the figure, we can learn that:

• DTA still has serious under-taint issues in all applica-
tions, even though we have mitigated some (caused by ex-
ternal dependencies). All the tainted untouched branches
reported by FTI-only are missed by DTA. Most of these
under-taint issues are caused by implicit data flows.

• FTI has fewer under-taint issues. It also finds much
more taint (without over-taint) than DTA, even if DTA
could have over-claimed. For example, DTA could only
identify 25% of taint reported by FTI in the application
fig2dev. On average, FTI could find 1.3X times more
tainted untouched branches than DTA.

Figure 10: Code coverage improvement brought by FTI.

5.1.2 Overhead of Taint Inference

As aforementioned, for each seed, FTI first performs byte-
level mutation to generate new test cases. It then tests the
target applications and tracks the code coverage. During test-
ing, FTI monitors the value changes and infers taint for all
untouched branches in the path explored by the original seed.

Figure 8 shows the average speed of analyzing one seed
by FTI. The bar named tracking-path-only represents the
time used for byte-level mutation and fuzzing. The bar FTI
also includes the time of taint inference including value mon-
itoring. It shows that taint inference introduces less than 25%
overheads. Figure 9 further shows the time of inferring taint
for one branch instruction in the path. On average, FTI spends
0.15 seconds on inferring taint for one branch instruction..

5.2 Improvements Breakdown
GREYONE adopts two major data flow features, i.e., taint
and constraint conformance, and several schemes to improve
the efficiency of fuzzing. We hereby breakdown the improve-
ments of each scheme.

a) Taint Inference. Figure 10 shows the code coverage
brought by GREYONE and GREYONE-DTA, which replaces
the taint inference engine FTI with another engine DFSan. It
shows that, on average, FTI could double the code coverage
on all targets, comparing to GREYONE-DTA. Thus, our taint
analysis engine FTI is useful.

b) Bytes prioritization. GREYONE uses taint to guide mu-
tation, by prioritizing input bytes to mutate, and determine
the way to mutate. We hereby measured the improvements
brought by byte prioritization. As shows in Table 6, after
disabling bytes prioritization, GREYONE-BP could explore
much less code and find fewer vulnerabilities on all applica-
tions. On average, it has 14% fewer unique paths and 42%
fewer unique crashes than GREYONE.



Figure 11: Improvements brought by byte prioritization and
conformance-guided evolution, in terms of code coverage and
unique crashes found in two applications.

We further tracked the growth trend of unique paths and
unique crashes. Figure 11 shows that, in terms of code cover-
age, with byte prioritization, GREYONE could find about 20%
more paths in applications tiff2pdf and libwpd. In terms
of unique crashes, with byte prioritization, GREYONE could
find unique crashes faster, and find much more. Especially,
when testing the application tiff2pdf, GREYONE could not
find any crashes in 60 hours if byte prioritization is turned
off.

c) Conformance-guided Evolution. GREYONE utilizes
conformance to guide the evolution direction of fuzzing. We
also evaluated the improvements of this scheme, in a way sim-
ilar to byte prioritization. As shows in Table 6, after disabling
conformance-guided, GREYONE-CE explores much less code
and find fewer vulnerabilities on all applications, even worse
than GREYONE-BP. On average, it has 21.9% fewer unique
paths and 63.2% fewer unique crashes than GREYONE.

Specially, without conformance-guided evolution, GREY-
ONE found 30% fewer paths in all applications, and failed to
find any unique crashes in Tiff2pdf and libwpd.

d) Selective execution.The advantage of selective mecha-
nism is to avoid selecting the correspondent instance to ex-
ecute when the new seed is mutated too many bytes or has
low probability to generate better conformance. By taking
this strategy, the most intuitive effect to fuzzing is to improve
the overall execution speed. To show the promotion, we con-
ducted two selective mode in GREYONE, one was the default
set, the other was only to select the instance with monitoring
conformance to execute. As shown in Fig 12, we tested 14
subjects and evaluated the average execution speed on each
subject. Comparing to AFL, GREYONE with selective mecha-

z

Figure 12: The speed impact brought by selective execution
in GREYONE (60 hours).

nism can reach a speed at over 80%, while GREYONE without
selective mechanism could only reach a speed at less than
65%.

6 Related Work

Evolutionary mutation-based fuzzing achieved a great success
in practice, due to its scalability and efficiency. The represen-
tative solution AFL [44] takes achieving higher code coverage
as evolution direction, and mutates seeds in a nearly random
manner. Many other solutions, including taint analysis, have
been proposed to improve mutation-based fuzzing.

6.1 Taint Inference
Taint analysis is a fundamental technique for many appli-
cations including fuzzing. Traditional taint analysis solu-
tions [2, 20] heavily rely on manual efforts of compose taint
propagation rules for each instruction, and suffer from serious
under-taint and over-taint problems.

Improvements to traditional taint analysis. Many alle-
viated schemes are proposed to mitigate the inaccuracy issue
for traditional taint analysis. Dytan [11] keeps track of indi-
rect taint propagation to mitigate the under-taint issue, but
brings lots of false positives. DTA++ [19] locates implicit
control flow branch and diagnose under-taint using offline
symbolic execution. However, it suffers from solving compli-
cated conditions and high performance overheads. TAINTIN-
DUCE [46] adopts a testing-based solution to infer taint prop-
agation rules automatically. But it is very heavy-weight, and
cannot solve the inaccuracy issues.

Mutation-based inference. Some recent works proposed
mutation-based taint inference which have better performance
in certain applications. Sekar [31] adopts black-box testing
and leverages predefined mutation rules to infer taint, able
to detect injection attacks. MutaFlow [26] monitors changes
of security-sensitive APIs by mutating sensitive source APIs,
able to detect vulnerable information flow. These two focus



Table 6: Number of unique paths and crashes (average in 5 runs with 60 hours one run) found in real world programs by
GREYONE, GREYONE-CE and GREYONE-BP, where GREYONE-CE is the mode of GREYONE disabling conformance-guided
evolution and GREYONE-BP is the mode of GREYONE disabling bytes prioritization.

Unique Paths Unique CrashesApplications GREYONE GREYONE-CE GREYONE-BP GREYONE GREYONE-CE GREYONE-BP
Readelf 6834 6222(-9%) 5757(-15.8%) 28 21(-25%) 25(-10.7%)

Nm 4342 3432(-21%) 3886(-10.5%) 16 4(-75%) 7(-56.3%)
C++filt 10523 9870(-6.2%) 9932(-5.6%) 268 127(-52.6%) 225(-16%)
Tiff2pdf 5681 4107(-27.8%) 4598(-19%) 6 0(-100%) 0(-100%)
Tiffset 1757 1345(-23.4%) 1434(-18.4%) 83 28(-66.3%) 49(-41%)

Libwpd 5644 4220(-25.2%) 4982(-11.7%) 21 0(-100%) 7(-66%)
libsndfile 1185 1069(-10%) 1081(-8.2%) 23 7(-69.6%) 9(-60.9%)
Fig2dev 1622 999(-38.4%) 1211(-25.3%) 40 24(-40%) 33(-17.5%)
Nasm 9443 6578(-30.3%) 7979(-15.5%) 157 28(-82.2%) 79(-49.7%)

libncurses 2926 2112(-27.8%) 2543(-13%) 28 22(-21.4%) 25(-10.7%)
Average Reduction - -21.9% -14.3% - -63.2% -42.9%

on local program behaviors and are limited to information
flow detection. In fuzzing applications, REDQUEEN [4] uses
random mutation to colorize inputs, to infer taint related to di-
rect copy of inputs. Fairfuzz [24] and ProFuzzer [42] monitor
the pattern of control flow changes among multiple runs, to in-
fer partial type of mutated bytes. None of these solutions have
ever considered the variables’ value changes after mutation,
Thus, they all fail to provide accurate taint information.

In this paper, we propose a fuzzing-driven taint inference
solution FTI. We perform a systematic byte-level mutation
to perform a pilot fuzzing. During fuzzing, we monitor vari-
ables’ value changes and infer taint attributes accordingly.
This solution is automated, lightweight and more accurate.

6.2 Seed Mutation

Many studies [10, 13, 30, 44] have shown that, seed muta-
tion is one of the most hot and hard direction to increase
the efficiency and accuracy of fuzzing. Many approaches are
proposed to try to solve how and where to mutate.

a) Static-analysis-based optimization. Steelix [25] and
Laf-intel-pass [1] statically decompose those long constant
comparisons into multiple shorter comparisons. So that the
dumb random fuzzer could satisfy the path constraints with
a much higher probability. However, it brings too many
semantic-equivalent paths to explore, and cannot handle non-
constant comparisons. SYMFUZZ [8] leverages static sym-
bolic analysis to detect dependencies among input bits, and
uses it to compute an optimal mutation ratio. However, this
process is slow, and the calculated dependency between bits
do not show many improvements for mutation.

b) Learning-based model. Rajpal et.al. [29] presents a
RNN-based model to predict best locations to mutate in seeds,
based on the history mutations and their corresponding code
coverage feedback. Konstantin et.al. [7] uses deep reinforce-
ment learning to model the fuzzing loop and choose the best
mutation actions in the following fuzzing iteration. These
solutions are in early stage and have not shown significant
improvements yet. NEUZZ [35] identifies the significance of

program smoothing and uses an incremental learning tech-
nique to guide mutation.

c) Symbolic-based solution. This type of solutions essen-
tially utilize symbolic execution to solve the complicated path
constraints that are hard to be satisfied by mutation-based
fuzzing. Driller [37] periodically picks paths that are stuck in
mutation-based fuzzing, and uses symbolic execution to solve
the constraints of those paths. QSYM [43] ports symbolic
execution to native X86 instructions and relaxes the path con-
straints to solve, providing a better analysis performance and
reducing the speed of constraint solving. DigFuzz [45] de-
signs a probabilistic path prioritization model to quantify each
path’s difficulty and prioritize them for concolic execution.
All of these symbolic-based solution cannot scale to large
applications due to the open challenge of constraint solving.

d) Taint-based mutation. Several fuzzers utilize taint to
guide mutations. Dowser [17] and BORG [27] use taint to
locate buffer boundary violations and buffer over-read vul-
nerabilities respectively. BuzzFuzz [15] uses DTA to track
the regions of external seed inputs that affect sensitive library
or system calls. TaintScope [40] leverages fine-grained DTA
to identify checksum branch. VUzzer [30] is able to track
branches that compare variables against constants, e.g., magic
numbers, and guides the mutation accordingly. Angora [10]
performs shape inference and gradient descent computation
based on DTA. These solutions suffer from inaccurate taint,
limiting the efficiency in complicated programs.

In addition, the high overhead of DTA greatly limits the
application of DTA in large applications. Among the light-
weight taint-guide mutation solutions, Fairfuzz [24] and Pro-
fuzzer [42] could not obtain accurate taint attributes of vari-
ables, inefficient at exploring hard-to-reach branches. In addi-
tion, they would repeatedly mutate some input bytes, even if
the relevant branches have already been explored, since they
are insensitive to branch states. REDQUEEN [4] focuses on
identifying direct copy of inputs and branches that use them,
unable to handle the prevalent uses of indirect copy of inputs.

Our solution GREYONE utilizes the lightweight and sound
taint inference solution FTI to get more taint attributes (with-



out over-taint) as well as the precise relationship between
input offsets and branches, to prioritize which branch to ex-
plore and which bytes to mutate, as well as determine how to
precisely mutate them.

6.3 Seed Updating and Selection
Seed updating and selection could adjust the evolution direc-
tion of fuzzing. A good solution would improve the efficiency
of fuzzers in finding more code and bugs [28] and in moving
towards potentially vulnerable target code [5, 9, 39].

Few works focus on seed updating, but many seed selection
solutions are proposed in the past years. These solutions in
general collect more and more auxiliary control flow informa-
tion to guide the seed selection. At the beginning, AFL [44]
prioritizes those seeds with smaller size and shorter execution
time, to generate more test cases in a given time period. Then,
AFLFAST [6] points out the importance of seed selection,
and prioritizes seeds that are rarely picked to mutate and that
explore cold paths. From then on, kinds of control flow charac-
teristics are used to guide seed selection, e.g., by prioritizing
deeper path [30] or untouched neighbour branches [14].

However, these solutions did not consider any data flow
features, and thus are inefficient at exploring paths with com-
plicated constraints. Honggfuzz [38] and LibFuzzer [32] took
a weak data flow feature to guide seed selection. More specif-
ically, they evaluate the distance between operands of all
branches, and use it to guide seed selection.

GREYONE improves this strategy by evaluating the con-
straint conformance on all tainted untouched branches only.
It also utilizes a novel two-dimension seed queue structure
to provide support for efficient seed updating and selection.
It is able to avoid the local minimum problem faced by the
learning-based solution used in Angora [10]. Further, GREY-
ONE applies a novel on-the-fly mutation rebase to further
accelerate the evolution of fuzzing.

6.4 Performance Optimization
Performance is an important factor of efficient fuzzing. Sev-
eral solutions have been proposed to improve the fuzzing
performance, by boosting the parallel execution [41] or instru-
mentation [18, 36]. The recent work Untracer [36] removes
unnecessary instrumentation in basic blocks that have been
explored and reduces the overhead. GREYONE also optimizes
the instrumentation, to select more light-weight testing mode
on demand, and switch between different fuzzing mode, to
improve the speed of fuzzing.

7 Conclusion

In this paper, we propose a novel data flow sensitive fuzzing
solution GREYONE. It infers taint during the fuzzing process
by monitoring variable value changes, and further guides seed

mutation with the inferred taint. It also applies a data flow fea-
ture conformance to tune the evolution direction of fuzzing,
driving the fuzzer to quickly reach unexplored branches and
trigger potential vulnerabilities. It outperforms various state-
of-the-art fuzzers in terms of both code coverage and vulnera-
bility discovery, while its taint analysis is more lightweight
and accurate than others.
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A APPENDIX

Due to the space limit, we present some of the evaluation
results here.

A.1 Growth Trend of Code Coverage
In this section, we present the evaluation result of the code
coverage growth trend and the effects of randomness.

Code Coverage. Figure 13 and Fig. 16 show the average
growth trend of paths and edges detected by each fuzzer in
five runs. It shows that GREYONE has a stronger growth trend
than other fuzzers in all applications. Unlike other fuzzers,
GREYONE keeps a steady growth trend for a long time.

http://lcamtuf.coredump.cx/afl/


Figure 14: The growth trend of number of unique crashes (5 runs) detected by AFL, CollAFL-br, Angora and GREYONE.

Figure 15: Path randomness.

Figure 16: Edge coverage.

For example, in the application readelf, GREYONE fell
behind Angora at the beginning. But it caught up with Angora
at 40 hours, and maintained a strong and steady growth trend,

far surpassing Angora finally.
Among other fuzzer tools, Angora could achieve high code

coverage in a very short time in some applications, e.g.,
readelf and nm It proves that its gradient descent based mu-
tation is effective. However, it may fall into local minimum
soon, leading to very poor code coverage on most applications,
e.g., libwpd, fig2dev, libncurses, abd c++filt.

Randomness. As shown in Fig 15, the randomness in
fuzzing does not affect the conclusion, the worst run of GREY-
ONE still shows better code coverage than the best run of
other fuzzers.

A.2 Growth Trend of Unique Crashes
In this section, we present the growth trend of unique crashes
and the effects of randomness.

Unique Crashes. As shown in Fig 14, GREYONE has a
strong growth trend on each application. Comparing to other
fuzzers, GREYONE could find more unique crashes in almost
all applications. It also finds crashes faster than other fuzzers
in all applications except readelf. Similar to growth trend
of paths, Angora could find more crashes than GREYONE
in earlier stage on the subject readelf, but is surpassed by
GREYONE after 50 hours.

Randomness. The number of unique crashes is more sen-
sitive to randomness than code coverage, because crashes are
rare comparing to program path. However, we can see that
worst run of GREYONE in general still shows better code
coverage than the best run of other fuzzers.


	Introduction
	Questions to Address
	Our Solution
	Results

	Design of GreyOne
	Fuzzing-driven Taint Inference
	Taint Inference
	Comparison with Traditional Taint Analysis.
	Identify Direct Copies of Inputs.

	Taint-Guided Mutation
	Prioritize Bytes to Mutate
	Prioritize Branches to Explore
	Determine Where and How to Mutate

	Conformance-Guided Evolution
	Conformance Calculation
	Conformance-Guided Seed Updating
	On-the-fly Mutation Rebase
	Conformance-Guided Seed Selection


	Implementation
	Modularized Framework
	Static Analysis and Instrumentation.

	Evaluation
	Experiment Setup
	Vulnerability Discovery
	Unique Crashes Evaluation
	Code Coverage Evaluation
	Evaluation on LAVA-M
	Heuristic Constraints Solving

	Further Analysis
	Performance of FTI
	Completeness of Taint Inference
	Overhead of Taint Inference

	Improvements Breakdown

	Related Work
	Taint Inference
	Seed Mutation
	Seed Updating and Selection
	Performance Optimization

	Conclusion
	APPENDIX
	 Growth Trend of Code Coverage
	Growth Trend of Unique Crashes


