
kAFL: Hardware-Assisted Feedback  
Fuzzing for OS Kernels  

Sergej Schumilo1, Cornelius Aschermann1, Robert Gawlik1, Sebastian Schinzel2, Thorsten Holz1 
1Ruhr-Universität Bochum, 2Münster University of Applied Sciences



2

Motivation
IJG jpeg libjpeg-turbo libpng libtiff mozjpeg PHP Mozilla Firefox Internet Explorer PCRE sqlite OpenSSL LibreOffice poppler 
freetype GnuTLS GnuPG PuTTY ntpd nginx bash tcpdump JavaScriptCore pdfium ffmpeg libmatroska libarchive ImageMagick 
BIND QEMU lcms Adobe Flash Oracle BerkeleyDB Android libstagefright iOS ImageIO FLAC audio library libsndfile less lesspipe 
strings file dpkg rcs systemd-resolved libyaml Info-Zip unzip libtasn1OpenBSD pfctl NetBSD bpf man mandocIDA Pro clamav 

libxml2glibc clang llvmnasm ctags mutt procmail fontconfig pdksh Qt wavpack  OpenSSH redis lua-cmsgpack taglib privoxy perl 
libxmp radare2 SleuthKit fwknop X.Org exifprobe jhead capnproto Xerces-C metacam djvulibre exiv Linux btrfs Knot DNS curl 

wpa_supplicant Apple Safari libde265 dnsmasq libbpg lame libwmf uudecode MuPDF imlib2 libraw libbson libsass yara W3C tidy-
html5 VLC FreeBSD syscons John the Ripper screen tmux mosh UPX indent openjpeg MMIX OpenMPT rxvt dhcpcd Mozilla NSS 
Nettle mbed TLS Linux netlink Linux ext4 Linux xfs botan expat Adobe Reader libav libical OpenBSD kernel collectd libidn 

MatrixSSL jasperMaraDNS w3m Xen OpenH232 irssi cmark OpenCV Malheur gstreamer Tor gdk-pixbuf audiofilezstd lz4 stb cJSON 
libpcre MySQL gnulib openexr libmad ettercap lrzip freetds Asterisk ytnefraptor mpg123 exempi libgmime pev v8 sed awk make 

m4 yacc PHP ImageMagick freedesktop.org patch libtasn1 libvorbis zsh lua ninja ruby busybox gcrypt vim Tor poppler libopus 
BSD sh gcc qemu w3m zsh dropbear wireshark libtorrent git rust gravity e2fsprogs parrot lodepng json-glib cabextract libmspack 
qprint gpsbabel dmg2img antiword arj unrar unace zoo rzip lrzip libiso libtta duktape splint zpaq assimp cppcheck fasm catdoc 
pngcrush cmark p7zip libjbig2 aaphoto t1utils apngopt sqlparser mdp libtinyxml freexl bgpparser testdisk photorec btcd gumbo 
chaiscript teseq colcrt pttbbs capstone dex2oat pillow elftoolchain aribas universal-ctags uriparser jq lha xdelta gnuplot libwpd 

teseq cimg libiberty policycoreutils libsemanage renoise metapixel openclone mp3splt podofo Apache httpd glslang UEFITool 
libcbor lldpd pngquant muparserx mochilo pyhocon sysdig Overpass-API fish-shell gumbo-parser mapbox-gl-native rapidjson 

libjson FLIF MultiMarkdown astyle pax-utils zziplib PyPDF spiffing apk pgpdump icoutils msitools dosfstools

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



2

Motivation
IJG jpeg libjpeg-turbo libpng libtiff mozjpeg PHP Mozilla Firefox Internet Explorer PCRE sqlite OpenSSL LibreOffice poppler 
freetype GnuTLS GnuPG PuTTY ntpd nginx bash tcpdump JavaScriptCore pdfium ffmpeg libmatroska libarchive ImageMagick 
BIND QEMU lcms Adobe Flash Oracle BerkeleyDB Android libstagefright iOS ImageIO FLAC audio library libsndfile less lesspipe 
strings file dpkg rcs systemd-resolved libyaml Info-Zip unzip libtasn1OpenBSD pfctl NetBSD bpf man mandocIDA Pro clamav 

libxml2glibc clang llvmnasm ctags mutt procmail fontconfig pdksh Qt wavpack  OpenSSH redis lua-cmsgpack taglib privoxy perl 
libxmp radare2 SleuthKit fwknop X.Org exifprobe jhead capnproto Xerces-C metacam djvulibre exiv Linux btrfs Knot DNS curl 

wpa_supplicant Apple Safari libde265 dnsmasq libbpg lame libwmf uudecode MuPDF imlib2 libraw libbson libsass yara W3C tidy-
html5 VLC FreeBSD syscons John the Ripper screen tmux mosh UPX indent openjpeg MMIX OpenMPT rxvt dhcpcd Mozilla NSS 
Nettle mbed TLS Linux netlink Linux ext4 Linux xfs botan expat Adobe Reader libav libical OpenBSD kernel collectd libidn 

MatrixSSL jasperMaraDNS w3m Xen OpenH232 irssi cmark OpenCV Malheur gstreamer Tor gdk-pixbuf audiofilezstd lz4 stb cJSON 
libpcre MySQL gnulib openexr libmad ettercap lrzip freetds Asterisk ytnefraptor mpg123 exempi libgmime pev v8 sed awk make 

m4 yacc PHP ImageMagick freedesktop.org patch libtasn1 libvorbis zsh lua ninja ruby busybox gcrypt vim Tor poppler libopus 
BSD sh gcc qemu w3m zsh dropbear wireshark libtorrent git rust gravity e2fsprogs parrot lodepng json-glib cabextract libmspack 
qprint gpsbabel dmg2img antiword arj unrar unace zoo rzip lrzip libiso libtta duktape splint zpaq assimp cppcheck fasm catdoc 
pngcrush cmark p7zip libjbig2 aaphoto t1utils apngopt sqlparser mdp libtinyxml freexl bgpparser testdisk photorec btcd gumbo 
chaiscript teseq colcrt pttbbs capstone dex2oat pillow elftoolchain aribas universal-ctags uriparser jq lha xdelta gnuplot libwpd 

teseq cimg libiberty policycoreutils libsemanage renoise metapixel openclone mp3splt podofo Apache httpd glslang UEFITool 
libcbor lldpd pngquant muparserx mochilo pyhocon sysdig Overpass-API fish-shell gumbo-parser mapbox-gl-native rapidjson 

libjson FLIF MultiMarkdown astyle pax-utils zziplib PyPDF spiffing apk pgpdump icoutils msitools dosfstools

Internet Explorer

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



2

Motivation
IJG jpeg libjpeg-turbo libpng libtiff mozjpeg PHP Mozilla Firefox Internet Explorer PCRE sqlite OpenSSL LibreOffice poppler 
freetype GnuTLS GnuPG PuTTY ntpd nginx bash tcpdump JavaScriptCore pdfium ffmpeg libmatroska libarchive ImageMagick 
BIND QEMU lcms Adobe Flash Oracle BerkeleyDB Android libstagefright iOS ImageIO FLAC audio library libsndfile less lesspipe 
strings file dpkg rcs systemd-resolved libyaml Info-Zip unzip libtasn1OpenBSD pfctl NetBSD bpf man mandocIDA Pro clamav 

libxml2glibc clang llvmnasm ctags mutt procmail fontconfig pdksh Qt wavpack  OpenSSH redis lua-cmsgpack taglib privoxy perl 
libxmp radare2 SleuthKit fwknop X.Org exifprobe jhead capnproto Xerces-C metacam djvulibre exiv Linux btrfs Knot DNS curl 

wpa_supplicant Apple Safari libde265 dnsmasq libbpg lame libwmf uudecode MuPDF imlib2 libraw libbson libsass yara W3C tidy-
html5 VLC FreeBSD syscons John the Ripper screen tmux mosh UPX indent openjpeg MMIX OpenMPT rxvt dhcpcd Mozilla NSS 
Nettle mbed TLS Linux netlink Linux ext4 Linux xfs botan expat Adobe Reader libav libical OpenBSD kernel collectd libidn 

MatrixSSL jasperMaraDNS w3m Xen OpenH232 irssi cmark OpenCV Malheur gstreamer Tor gdk-pixbuf audiofilezstd lz4 stb cJSON 
libpcre MySQL gnulib openexr libmad ettercap lrzip freetds Asterisk ytnefraptor mpg123 exempi libgmime pev v8 sed awk make 

m4 yacc PHP ImageMagick freedesktop.org patch libtasn1 libvorbis zsh lua ninja ruby busybox gcrypt vim Tor poppler libopus 
BSD sh gcc qemu w3m zsh dropbear wireshark libtorrent git rust gravity e2fsprogs parrot lodepng json-glib cabextract libmspack 
qprint gpsbabel dmg2img antiword arj unrar unace zoo rzip lrzip libiso libtta duktape splint zpaq assimp cppcheck fasm catdoc 
pngcrush cmark p7zip libjbig2 aaphoto t1utils apngopt sqlparser mdp libtinyxml freexl bgpparser testdisk photorec btcd gumbo 
chaiscript teseq colcrt pttbbs capstone dex2oat pillow elftoolchain aribas universal-ctags uriparser jq lha xdelta gnuplot libwpd 

teseq cimg libiberty policycoreutils libsemanage renoise metapixel openclone mp3splt podofo Apache httpd glslang UEFITool 
libcbor lldpd pngquant muparserx mochilo pyhocon sysdig Overpass-API fish-shell gumbo-parser mapbox-gl-native rapidjson 

libjson FLIF MultiMarkdown astyle pax-utils zziplib PyPDF spiffing apk pgpdump icoutils msitools dosfstools

Internet Explorer
Adobe Flash

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



2

Motivation
IJG jpeg libjpeg-turbo libpng libtiff mozjpeg PHP Mozilla Firefox Internet Explorer PCRE sqlite OpenSSL LibreOffice poppler 
freetype GnuTLS GnuPG PuTTY ntpd nginx bash tcpdump JavaScriptCore pdfium ffmpeg libmatroska libarchive ImageMagick 
BIND QEMU lcms Adobe Flash Oracle BerkeleyDB Android libstagefright iOS ImageIO FLAC audio library libsndfile less lesspipe 
strings file dpkg rcs systemd-resolved libyaml Info-Zip unzip libtasn1OpenBSD pfctl NetBSD bpf man mandocIDA Pro clamav 

libxml2glibc clang llvmnasm ctags mutt procmail fontconfig pdksh Qt wavpack  OpenSSH redis lua-cmsgpack taglib privoxy perl 
libxmp radare2 SleuthKit fwknop X.Org exifprobe jhead capnproto Xerces-C metacam djvulibre exiv Linux btrfs Knot DNS curl 

wpa_supplicant Apple Safari libde265 dnsmasq libbpg lame libwmf uudecode MuPDF imlib2 libraw libbson libsass yara W3C tidy-
html5 VLC FreeBSD syscons John the Ripper screen tmux mosh UPX indent openjpeg MMIX OpenMPT rxvt dhcpcd Mozilla NSS 
Nettle mbed TLS Linux netlink Linux ext4 Linux xfs botan expat Adobe Reader libav libical OpenBSD kernel collectd libidn 

MatrixSSL jasperMaraDNS w3m Xen OpenH232 irssi cmark OpenCV Malheur gstreamer Tor gdk-pixbuf audiofilezstd lz4 stb cJSON 
libpcre MySQL gnulib openexr libmad ettercap lrzip freetds Asterisk ytnefraptor mpg123 exempi libgmime pev v8 sed awk make 

m4 yacc PHP ImageMagick freedesktop.org patch libtasn1 libvorbis zsh lua ninja ruby busybox gcrypt vim Tor poppler libopus 
BSD sh gcc qemu w3m zsh dropbear wireshark libtorrent git rust gravity e2fsprogs parrot lodepng json-glib cabextract libmspack 
qprint gpsbabel dmg2img antiword arj unrar unace zoo rzip lrzip libiso libtta duktape splint zpaq assimp cppcheck fasm catdoc 
pngcrush cmark p7zip libjbig2 aaphoto t1utils apngopt sqlparser mdp libtinyxml freexl bgpparser testdisk photorec btcd gumbo 
chaiscript teseq colcrt pttbbs capstone dex2oat pillow elftoolchain aribas universal-ctags uriparser jq lha xdelta gnuplot libwpd 

teseq cimg libiberty policycoreutils libsemanage renoise metapixel openclone mp3splt podofo Apache httpd glslang UEFITool 
libcbor lldpd pngquant muparserx mochilo pyhocon sysdig Overpass-API fish-shell gumbo-parser mapbox-gl-native rapidjson 

libjson FLIF MultiMarkdown astyle pax-utils zziplib PyPDF spiffing apk pgpdump icoutils msitools dosfstools

OpenSSH

Internet Explorer
Adobe Flash

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



2

Motivation
IJG jpeg libjpeg-turbo libpng libtiff mozjpeg PHP Mozilla Firefox Internet Explorer PCRE sqlite OpenSSL LibreOffice poppler 
freetype GnuTLS GnuPG PuTTY ntpd nginx bash tcpdump JavaScriptCore pdfium ffmpeg libmatroska libarchive ImageMagick 
BIND QEMU lcms Adobe Flash Oracle BerkeleyDB Android libstagefright iOS ImageIO FLAC audio library libsndfile less lesspipe 
strings file dpkg rcs systemd-resolved libyaml Info-Zip unzip libtasn1OpenBSD pfctl NetBSD bpf man mandocIDA Pro clamav 

libxml2glibc clang llvmnasm ctags mutt procmail fontconfig pdksh Qt wavpack  OpenSSH redis lua-cmsgpack taglib privoxy perl 
libxmp radare2 SleuthKit fwknop X.Org exifprobe jhead capnproto Xerces-C metacam djvulibre exiv Linux btrfs Knot DNS curl 

wpa_supplicant Apple Safari libde265 dnsmasq libbpg lame libwmf uudecode MuPDF imlib2 libraw libbson libsass yara W3C tidy-
html5 VLC FreeBSD syscons John the Ripper screen tmux mosh UPX indent openjpeg MMIX OpenMPT rxvt dhcpcd Mozilla NSS 
Nettle mbed TLS Linux netlink Linux ext4 Linux xfs botan expat Adobe Reader libav libical OpenBSD kernel collectd libidn 

MatrixSSL jasperMaraDNS w3m Xen OpenH232 irssi cmark OpenCV Malheur gstreamer Tor gdk-pixbuf audiofilezstd lz4 stb cJSON 
libpcre MySQL gnulib openexr libmad ettercap lrzip freetds Asterisk ytnefraptor mpg123 exempi libgmime pev v8 sed awk make 

m4 yacc PHP ImageMagick freedesktop.org patch libtasn1 libvorbis zsh lua ninja ruby busybox gcrypt vim Tor poppler libopus 
BSD sh gcc qemu w3m zsh dropbear wireshark libtorrent git rust gravity e2fsprogs parrot lodepng json-glib cabextract libmspack 
qprint gpsbabel dmg2img antiword arj unrar unace zoo rzip lrzip libiso libtta duktape splint zpaq assimp cppcheck fasm catdoc 
pngcrush cmark p7zip libjbig2 aaphoto t1utils apngopt sqlparser mdp libtinyxml freexl bgpparser testdisk photorec btcd gumbo 
chaiscript teseq colcrt pttbbs capstone dex2oat pillow elftoolchain aribas universal-ctags uriparser jq lha xdelta gnuplot libwpd 

teseq cimg libiberty policycoreutils libsemanage renoise metapixel openclone mp3splt podofo Apache httpd glslang UEFITool 
libcbor lldpd pngquant muparserx mochilo pyhocon sysdig Overpass-API fish-shell gumbo-parser mapbox-gl-native rapidjson 

libjson FLIF MultiMarkdown astyle pax-utils zziplib PyPDF spiffing apk pgpdump icoutils msitools dosfstools

OpenSSH

Internet Explorer

Apple Safari

Adobe Flash

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



2

Motivation
IJG jpeg libjpeg-turbo libpng libtiff mozjpeg PHP Mozilla Firefox Internet Explorer PCRE sqlite OpenSSL LibreOffice poppler 
freetype GnuTLS GnuPG PuTTY ntpd nginx bash tcpdump JavaScriptCore pdfium ffmpeg libmatroska libarchive ImageMagick 
BIND QEMU lcms Adobe Flash Oracle BerkeleyDB Android libstagefright iOS ImageIO FLAC audio library libsndfile less lesspipe 
strings file dpkg rcs systemd-resolved libyaml Info-Zip unzip libtasn1OpenBSD pfctl NetBSD bpf man mandocIDA Pro clamav 

libxml2glibc clang llvmnasm ctags mutt procmail fontconfig pdksh Qt wavpack  OpenSSH redis lua-cmsgpack taglib privoxy perl 
libxmp radare2 SleuthKit fwknop X.Org exifprobe jhead capnproto Xerces-C metacam djvulibre exiv Linux btrfs Knot DNS curl 

wpa_supplicant Apple Safari libde265 dnsmasq libbpg lame libwmf uudecode MuPDF imlib2 libraw libbson libsass yara W3C tidy-
html5 VLC FreeBSD syscons John the Ripper screen tmux mosh UPX indent openjpeg MMIX OpenMPT rxvt dhcpcd Mozilla NSS 
Nettle mbed TLS Linux netlink Linux ext4 Linux xfs botan expat Adobe Reader libav libical OpenBSD kernel collectd libidn 

MatrixSSL jasperMaraDNS w3m Xen OpenH232 irssi cmark OpenCV Malheur gstreamer Tor gdk-pixbuf audiofilezstd lz4 stb cJSON 
libpcre MySQL gnulib openexr libmad ettercap lrzip freetds Asterisk ytnefraptor mpg123 exempi libgmime pev v8 sed awk make 

m4 yacc PHP ImageMagick freedesktop.org patch libtasn1 libvorbis zsh lua ninja ruby busybox gcrypt vim Tor poppler libopus 
BSD sh gcc qemu w3m zsh dropbear wireshark libtorrent git rust gravity e2fsprogs parrot lodepng json-glib cabextract libmspack 
qprint gpsbabel dmg2img antiword arj unrar unace zoo rzip lrzip libiso libtta duktape splint zpaq assimp cppcheck fasm catdoc 
pngcrush cmark p7zip libjbig2 aaphoto t1utils apngopt sqlparser mdp libtinyxml freexl bgpparser testdisk photorec btcd gumbo 
chaiscript teseq colcrt pttbbs capstone dex2oat pillow elftoolchain aribas universal-ctags uriparser jq lha xdelta gnuplot libwpd 

teseq cimg libiberty policycoreutils libsemanage renoise metapixel openclone mp3splt podofo Apache httpd glslang UEFITool 
libcbor lldpd pngquant muparserx mochilo pyhocon sysdig Overpass-API fish-shell gumbo-parser mapbox-gl-native rapidjson 

libjson FLIF MultiMarkdown astyle pax-utils zziplib PyPDF spiffing apk pgpdump icoutils msitools dosfstools

OpenSSH

Internet Explorer

Apple Safari
Adobe Reader

Adobe Flash

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



2

Motivation
IJG jpeg libjpeg-turbo libpng libtiff mozjpeg PHP Mozilla Firefox Internet Explorer PCRE sqlite OpenSSL LibreOffice poppler 
freetype GnuTLS GnuPG PuTTY ntpd nginx bash tcpdump JavaScriptCore pdfium ffmpeg libmatroska libarchive ImageMagick 
BIND QEMU lcms Adobe Flash Oracle BerkeleyDB Android libstagefright iOS ImageIO FLAC audio library libsndfile less lesspipe 
strings file dpkg rcs systemd-resolved libyaml Info-Zip unzip libtasn1OpenBSD pfctl NetBSD bpf man mandocIDA Pro clamav 

libxml2glibc clang llvmnasm ctags mutt procmail fontconfig pdksh Qt wavpack  OpenSSH redis lua-cmsgpack taglib privoxy perl 
libxmp radare2 SleuthKit fwknop X.Org exifprobe jhead capnproto Xerces-C metacam djvulibre exiv Linux btrfs Knot DNS curl 

wpa_supplicant Apple Safari libde265 dnsmasq libbpg lame libwmf uudecode MuPDF imlib2 libraw libbson libsass yara W3C tidy-
html5 VLC FreeBSD syscons John the Ripper screen tmux mosh UPX indent openjpeg MMIX OpenMPT rxvt dhcpcd Mozilla NSS 
Nettle mbed TLS Linux netlink Linux ext4 Linux xfs botan expat Adobe Reader libav libical OpenBSD kernel collectd libidn 

MatrixSSL jasperMaraDNS w3m Xen OpenH232 irssi cmark OpenCV Malheur gstreamer Tor gdk-pixbuf audiofilezstd lz4 stb cJSON 
libpcre MySQL gnulib openexr libmad ettercap lrzip freetds Asterisk ytnefraptor mpg123 exempi libgmime pev v8 sed awk make 

m4 yacc PHP ImageMagick freedesktop.org patch libtasn1 libvorbis zsh lua ninja ruby busybox gcrypt vim Tor poppler libopus 
BSD sh gcc qemu w3m zsh dropbear wireshark libtorrent git rust gravity e2fsprogs parrot lodepng json-glib cabextract libmspack 
qprint gpsbabel dmg2img antiword arj unrar unace zoo rzip lrzip libiso libtta duktape splint zpaq assimp cppcheck fasm catdoc 
pngcrush cmark p7zip libjbig2 aaphoto t1utils apngopt sqlparser mdp libtinyxml freexl bgpparser testdisk photorec btcd gumbo 
chaiscript teseq colcrt pttbbs capstone dex2oat pillow elftoolchain aribas universal-ctags uriparser jq lha xdelta gnuplot libwpd 

teseq cimg libiberty policycoreutils libsemanage renoise metapixel openclone mp3splt podofo Apache httpd glslang UEFITool 
libcbor lldpd pngquant muparserx mochilo pyhocon sysdig Overpass-API fish-shell gumbo-parser mapbox-gl-native rapidjson 

libjson FLIF MultiMarkdown astyle pax-utils zziplib PyPDF spiffing apk pgpdump icoutils msitools dosfstools

OpenSSH

Internet Explorer

Apple Safari
Adobe Reader

Wireshark

Adobe Flash

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



2

Motivation
IJG jpeg libjpeg-turbo libpng libtiff mozjpeg PHP Mozilla Firefox Internet Explorer PCRE sqlite OpenSSL LibreOffice poppler 
freetype GnuTLS GnuPG PuTTY ntpd nginx bash tcpdump JavaScriptCore pdfium ffmpeg libmatroska libarchive ImageMagick 
BIND QEMU lcms Adobe Flash Oracle BerkeleyDB Android libstagefright iOS ImageIO FLAC audio library libsndfile less lesspipe 
strings file dpkg rcs systemd-resolved libyaml Info-Zip unzip libtasn1OpenBSD pfctl NetBSD bpf man mandocIDA Pro clamav 

libxml2glibc clang llvmnasm ctags mutt procmail fontconfig pdksh Qt wavpack  OpenSSH redis lua-cmsgpack taglib privoxy perl 
libxmp radare2 SleuthKit fwknop X.Org exifprobe jhead capnproto Xerces-C metacam djvulibre exiv Linux btrfs Knot DNS curl 

wpa_supplicant Apple Safari libde265 dnsmasq libbpg lame libwmf uudecode MuPDF imlib2 libraw libbson libsass yara W3C tidy-
html5 VLC FreeBSD syscons John the Ripper screen tmux mosh UPX indent openjpeg MMIX OpenMPT rxvt dhcpcd Mozilla NSS 
Nettle mbed TLS Linux netlink Linux ext4 Linux xfs botan expat Adobe Reader libav libical OpenBSD kernel collectd libidn 

MatrixSSL jasperMaraDNS w3m Xen OpenH232 irssi cmark OpenCV Malheur gstreamer Tor gdk-pixbuf audiofilezstd lz4 stb cJSON 
libpcre MySQL gnulib openexr libmad ettercap lrzip freetds Asterisk ytnefraptor mpg123 exempi libgmime pev v8 sed awk make 

m4 yacc PHP ImageMagick freedesktop.org patch libtasn1 libvorbis zsh lua ninja ruby busybox gcrypt vim Tor poppler libopus 
BSD sh gcc qemu w3m zsh dropbear wireshark libtorrent git rust gravity e2fsprogs parrot lodepng json-glib cabextract libmspack 
qprint gpsbabel dmg2img antiword arj unrar unace zoo rzip lrzip libiso libtta duktape splint zpaq assimp cppcheck fasm catdoc 
pngcrush cmark p7zip libjbig2 aaphoto t1utils apngopt sqlparser mdp libtinyxml freexl bgpparser testdisk photorec btcd gumbo 
chaiscript teseq colcrt pttbbs capstone dex2oat pillow elftoolchain aribas universal-ctags uriparser jq lha xdelta gnuplot libwpd 

teseq cimg libiberty policycoreutils libsemanage renoise metapixel openclone mp3splt podofo Apache httpd glslang UEFITool 
libcbor lldpd pngquant muparserx mochilo pyhocon sysdig Overpass-API fish-shell gumbo-parser mapbox-gl-native rapidjson 

libjson FLIF MultiMarkdown astyle pax-utils zziplib PyPDF spiffing apk pgpdump icoutils msitools dosfstools

OpenSSH

Internet Explorer

Apple Safari
Adobe Reader

Wireshark

Apache httpd

Adobe Flash

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



3

Stephens, Nick, et al. "Driller: Augmenting Fuzzing Through Selective 
Symbolic Execution." Proceedings of the Network and Distributed System 
Security Symposium (NDSS). 2016.

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Rawat, Sanjay, et al. "Vuzzer: Application-aware evolutionary fuzzing.“ 
Proceedings of the Network and Distributed System Security Symposium (NDSS). 
2017.

Böhme, Marcel, et al.  "Coverage-based greybox fuzzing as markov chain." 
Proceedings of the 2016 ACM SIGSAC Conference on Computer and 
Communications Security. ACM. 2016.

Motivation



kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels4

Motivation

What about Kernel Security?



5

Related Work

Fast Crash Tolerant OS Independent Binary Only

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



5

Related Work

Fast Crash Tolerant OS Independent Binary Only

TriforceAFL 
(Jesse Hertz & Tim Newsham, 
NCC Group)

✗ ✓ ~ ✓

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



5

Related Work

Fast Crash Tolerant OS Independent Binary Only

TriforceAFL 
(Jesse Hertz & Tim Newsham, 
NCC Group)

✗ ✓ ~ ✓

Syzkaller 
(Dmitry Vyukov) ✓ ✓ ✗ ✗

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



5

Related Work

Fast Crash Tolerant OS Independent Binary Only

TriforceAFL 
(Jesse Hertz & Tim Newsham, 
NCC Group)

✗ ✓ ~ ✓

Syzkaller 
(Dmitry Vyukov) ✓ ✓ ✗ ✗
AFL Filesystem Fuzzer 
(Vegard Nossum & Quentin 
Casanovas, Oracle)

✓ ~ ✗ ✗

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



5

Related Work

Fast Crash Tolerant OS Independent Binary Only

TriforceAFL 
(Jesse Hertz & Tim Newsham, 
NCC Group)

✗ ✓ ~ ✓

Syzkaller 
(Dmitry Vyukov) ✓ ✓ ✗ ✗
AFL Filesystem Fuzzer 
(Vegard Nossum & Quentin 
Casanovas, Oracle)

✓ ~ ✗ ✗

PT Kernel Fuzzer 
(Richard Johnson, Talos) ✓ ✗ ✗ ✓

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



6

Goal

Build a kernel fuzzer that is all of this: 

▪Fast 
▪Reliable 
▪(mostly) OS independent 
▪No source level access required  

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



Fuzzing in a nutshell



8

Fuzzing in a nutshell

Fuzzer Target

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



8

Fuzzing in a nutshell

Fuzzer Target

Inputs

Grammar 

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



8

Fuzzing in a nutshell

Fuzzer Target

Inputs

Grammar 

Randomized Inputs

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



8

Fuzzing in a nutshell

Fuzzer Target

Inputs

Grammar 

Randomized Inputs

Feedback

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



9

Blackbox Fuzzing

Target

exit

"EFG"

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



9

Blackbox Fuzzing

Target

exit

"TZG"

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



9

Blackbox Fuzzing

Target

"ABC"

Crash
kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



Coverage-Guided Fuzzing



11

Coverage-Guided Fuzzing

input[0] == 'A'

input[2] == 'C'

exit()

input[1] == 'B'

crash()

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



11

Coverage-Guided Fuzzing

input[0] == 'A'

input[2] == 'C'

exit()

input[1] == 'B'

crash() exit()

input[0] == 'A'
ZZZZ

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



11

Coverage-Guided Fuzzing

input[0] == 'A'

input[2] == 'C'

exit()

input[1] == 'B'

crash() exit()

input[1] == 'B'

input[0] == 'A'AAAA

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



11

Coverage-Guided Fuzzing

input[0] == 'A'

input[2] == 'C'

exit()

input[1] == 'B'

crash() exit()

input[2] == 'C'

input[1] == 'B'

input[0] == 'A'ABBG

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



11

Coverage-Guided Fuzzing

input[0] == 'A'

input[2] == 'C'

exit()

input[1] == 'B'

crash()crash()

input[2] == 'C'

input[1] == 'B'

input[0] == 'A'ABCJ

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



11

Coverage-Guided Fuzzing

input[0] == 'A'

input[2] == 'C'

exit()

input[1] == 'B'

crash()

AFL stores transitions 
in a bitmap

crash()

input[2] == 'C'

input[1] == 'B'

input[0] == 'A'ABCJ

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



12

Feedback Mechanism
Closed-Source Kernel Stable Fast

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



12

Feedback Mechanism
Closed-Source Kernel Stable Fast

Compile-Time 
Instrumentation ✗ ✓ ✓ ++

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



12

Feedback Mechanism
Closed-Source Kernel Stable Fast

Compile-Time 
Instrumentation ✗ ✓ ✓ ++
Static Rewriting ✓ - ✗ ++

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



12

Feedback Mechanism
Closed-Source Kernel Stable Fast

Compile-Time 
Instrumentation ✗ ✓ ✓ ++
Static Rewriting ✓ - ✗ ++
Dynamic Binary 
Instrumentation ✓ -* ✓ -

* Peter Feiner, et al., DRK: DynamoRIO as a Linux Kernel Module

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



12

Feedback Mechanism
Closed-Source Kernel Stable Fast

Compile-Time 
Instrumentation ✗ ✓ ✓ ++
Static Rewriting ✓ - ✗ ++
Dynamic Binary 
Instrumentation ✓ -* ✓ -
Emulation ✓ ✓ ✓ - -

* Peter Feiner, et al., DRK: DynamoRIO as a Linux Kernel Module

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



12

Feedback Mechanism
Closed-Source Kernel Stable Fast

Compile-Time 
Instrumentation ✗ ✓ ✓ ++
Static Rewriting ✓ - ✗ ++
Dynamic Binary 
Instrumentation ✓ -* ✓ -
Emulation ✓ ✓ ✓ - -
Intel Branch Trace Store ✓ ✓ ✓ +

* Peter Feiner, et al., DRK: DynamoRIO as a Linux Kernel Module

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



12

Feedback Mechanism
Closed-Source Kernel Stable Fast

Compile-Time 
Instrumentation ✗ ✓ ✓ ++
Static Rewriting ✓ - ✗ ++
Dynamic Binary 
Instrumentation ✓ -* ✓ -
Emulation ✓ ✓ ✓ - -
Intel Branch Trace Store ✓ ✓ ✓ +
Intel Processor Trace ✓ ✓ ✓ +++

* Peter Feiner, et al., DRK: DynamoRIO as a Linux Kernel Module

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



Intel Processor Trace



14

Intel Processor Trace

Instruction Intel PT Packet

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



14

Intel Processor Trace

Instruction Intel PT Packet

jmp/call loc_b Inferable from disassembly

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



14

Intel Processor Trace

Instruction Intel PT Packet

jmp/call loc_b Inferable from disassembly

jnz loc_a Taken / Not Taken

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



14

Intel Processor Trace

Instruction Intel PT Packet

jmp/call loc_b Inferable from disassembly

jnz loc_a Taken / Not Taken

jmp/call [eax] Target IP

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



14

Intel Processor Trace

Instruction Intel PT Packet

jmp/call loc_b Inferable from disassembly

jnz loc_a Taken / Not Taken

jmp/call [eax] Target IP

ret Target IP (if required) 

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



15

Intel Processor Trace

Intel PT Data

Not Taken
Target IP (0x1009)
Target IP (0x1055)

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



15

Intel Processor Trace

Intel PT Data

Not Taken
Target IP (0x1009)
Target IP (0x1055)

Target Binary

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



15

Intel Processor Trace

Intel PT Data

Not Taken
Target IP (0x1009)
Target IP (0x1055)

Target Binary

Traces

0x1000
0x1004
0x1009

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



15

Intel Processor Trace

Intel PT Data

Not Taken
Target IP (0x1009)
Target IP (0x1055)

Target Binary

Traces

0x1000
0x1004
0x1009

Transitions

0x0000 / 0x1000
0x1000 / 0x1004
0x1004 / 0x1009

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



15

Intel Processor Trace

Intel PT Data

Not Taken
Target IP (0x1009)
Target IP (0x1055)

Target Binary

Traces

0x1000
0x1004
0x1009

Transitions

0x0000 / 0x1000
0x1000 / 0x1004
0x1004 / 0x1009

AFL Bitmap

011001010010

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



Architecture



17

Architecture

Kernel

AgentFuzzer

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



17

Architecture

Kernel

AgentFuzzer

Intel PT Driver

coverage

Benefits:
✓Coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



17

Architecture

Kernel

AgentFuzzer

Intel PT Driver

coverage

Benefits:
✓Coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



17

Architecture

Kernel

AgentFuzzer

Intel PT Driver

coverage

Benefits:
✓Coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



17

Architecture

Virtual Machine

Kernel

AgentFuzzer

Intel PT Driver

coverage

Benefits:
✓Coverage
✓Crash Tolerance

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



17

Architecture

Virtual Machine

Kernel

AgentFuzzer

Intel PT Driver

coverage

Benefits:
✓Coverage
✓Crash Tolerance
✓OS Independence

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



17

Architecture

Virtual Machine

Kernel

AgentFuzzer

Intel PT Driver

coverage

Benefits:
✓Coverage
✓Crash Tolerance
✓OS Independence
✓Scalable

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



18

Trace Filtering

Virtual Machine

Kernel

AgentFuzzer

Intel PT Driver

coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



18

Trace Filtering

Virtual Machine

Kernel

AgentFuzzer

Intel PT Driver

coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Full System Tracing



18

Trace Filtering

Virtual Machine

Kernel

AgentFuzzer

Intel PT Driver

coverage

Intel PT aware 
Hypervisor

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

✓vCPU
Filter-Mechanisms: 

vCPU Tracing



18

Trace Filtering

Virtual Machine

Kernel

AgentFuzzer

Intel PT Driver

coverage

Intel PT aware 
Hypervisor

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

✓vCPU
✓Supervisor

Filter-Mechanisms: 

Guest Ring-0 Tracing



18

Trace Filtering

Virtual Machine

Kernel

AgentFuzzer

Intel PT Driver

coverage

Intel PT aware 
Hypervisor

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

✓vCPU
✓Supervisor

Filter-Mechanisms: 

Guest Ring-0 Tracing

Kernel Space

User Space

0xFFFFFFFFFFFFFFFF

0x0000000000000000

syscall



18

Trace Filtering

Virtual Machine

Kernel

AgentFuzzer

Intel PT Driver

coverage

Intel PT aware 
Hypervisor

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

✓vCPU
✓Supervisor
✓CR3

Filter-Mechanisms: 

Guest Ring-0 Tracing 

(Fuzzing-Process)



18

Trace Filtering

Virtual Machine

Kernel

AgentFuzzer

Intel PT Driver

coverage

Intel PT aware 
Hypervisor

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

✓vCPU
✓Supervisor
✓CR3
✓IP-Range

Filter-Mechanisms: 

Guest Ring-0 Tracing 

(Fuzzing-Process & Target Range)



19

Inter-VM Communication

Virtual Machine

Intel PT Driver

coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Kernel

AgentFuzzer

Intel PT aware 
Hypervisor



19

Inter-VM Communication

Virtual Machine

Intel PT Driver

coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Kernel

AgentFuzzer

Intel PT aware 
Hypervisor



19

Inter-VM Communication

Virtual Machine

Intel PT Driver

coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Guest to Host:

Kernel

AgentFuzzer

Intel PT aware 
Hypervisor



19

Inter-VM Communication

Virtual Machine

Intel PT Driver

coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Guest to Host:
▪Synchronization

Kernel

AgentFuzzer

Intel PT aware 
Hypervisor



19

Inter-VM Communication

Virtual Machine

Intel PT Driver

coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Guest to Host:
▪Synchronization
▪Next payload

Kernel

AgentFuzzer

Intel PT aware 
Hypervisor



19

Inter-VM Communication

Virtual Machine

Intel PT Driver

coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Guest to Host:
▪Synchronization
▪Next payload
▪Disclose CR3 value

Kernel

AgentFuzzer

Intel PT aware 
Hypervisor



19

Inter-VM Communication

Virtual Machine

Intel PT Driver

coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Guest to Host:
▪Synchronization
▪Next payload
▪Disclose CR3 value
▪Panic handler address Kernel

AgentFuzzer

Intel PT aware 
Hypervisor



19

Inter-VM Communication

Virtual Machine

Intel PT Driver

coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Guest to Host:
▪Synchronization
▪Next payload
▪Disclose CR3 value
▪Panic handler address
▪Signal kernel panic

Kernel

AgentFuzzer

Intel PT aware 
Hypervisor



19

Inter-VM Communication

Virtual Machine

Intel PT Driver

coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Guest to Host:
▪Synchronization
▪Next payload
▪Disclose CR3 value
▪Panic handler address
▪Signal kernel panic

Host to Guest:

Kernel

AgentFuzzer

Intel PT aware 
Hypervisor



19

Inter-VM Communication

Virtual Machine

Intel PT Driver

coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Guest to Host:
▪Synchronization
▪Next payload
▪Disclose CR3 value
▪Panic handler address
▪Signal kernel panic

Host to Guest:
▪Agent

Kernel

AgentFuzzer

Intel PT aware 
Hypervisor



19

Inter-VM Communication

Virtual Machine

Intel PT Driver

coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Guest to Host:
▪Synchronization
▪Next payload
▪Disclose CR3 value
▪Panic handler address
▪Signal kernel panic

Host to Guest:
▪Agent
▪Payloads

Kernel

AgentFuzzer

Intel PT aware 
Hypervisor



19

Inter-VM Communication

Virtual Machine

Intel PT Driver

coverage

Host

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Guest to Host:
▪Synchronization
▪Next payload
▪Disclose CR3 value
▪Panic handler address
▪Signal kernel panic

Host to Guest:
▪Agent
▪Payloads
▪Overwrite panic handler

Kernel

AgentFuzzer

Intel PT aware 
Hypervisor



20

Implementation

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



20

Implementation

CPU: 
▪generates raw Intel-PT data 
▪writes data to main memory 

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



20

Implementation

KVM-PT: 
▪configures Intel PT via MSRs 
▪enables tracing during VM-Entry transition 
▪disables tracing during VM-Exit transition

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



20

Implementation

QEMU-PT: 
▪usermode counterpart 
▪decodes Intel PT data on-the-fly

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



20

Implementation

kAFL Fuzzer: 
▪generates new fuzz payloads 
▪detects new behavior 

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



Evaluation



22

New Vulnerabilities
Windows: 
▪NTFS (DoS) 

macOS: 
▪HFS (DoS, Memory Corruption) 
▪APFS (Memory Corruption) 

Linux: 
▪EXT4 (DoS, Memory Corruption) 
▪Keyctl (Nullpointer Dereference) 

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



23

Evaluation Driver

5.4 Rediscovery of Known Bugs
We evaluated kAFL on the keyctl interface, which al-
lows a user space program to store and manage vari-
ous kinds of key material in the kernel. More specif-
ically, it features a DER (see RFC5280) parser to load
certificates. This functionality had a known bug (CVE-
2016-07583). We tested kAFL against the same interface
on a vulnerable kernel (version 4.3.2). kAFL was able
to uncover the same problem and one additional previ-
ously unknown bug that was assigned CVE-2016-86504.
kAFL managed to trigger 17 unique KASan reports and
15 unique panics in just one hour of execution time. Dur-
ing this experiment, kAFL generated over 34 million in-
puts, found 295 interesting inputs, and performed nearly
9,000 executions per second. This experiment was per-
formed while running 8 processes in parallel.

5.5 Detected Vulnerabilities
During the evaluation, kAFL found more than a thou-
sand unique crashes. We evaluated some manually and
found multiple security vulnerabilities in all tested op-
erating systems such as Linux, Windows, and macOS.
So far, eight bugs were reported and three of them were
confirmed by the maintainers:

• Linux: keyctl Null Pointer Dereference5 (CVE-
2016-86506)

• Linux: ext4 Memory Corruption7

• Linux: ext4 Error Handling8

• Windows: NTFS Div-by-Zero9

• macOS: HFS Div-by-Zero10

• macOS: HFS Assertion Fail10

• macOS: HFS Use-After-Free10

• macOS: APFS Memory Corruption10

Red Hat has assigned a CVE number for the first re-
ported security flaw, which triggers a null pointer def-
erence and a partial memory corruption in the kernel
ASN.1 parser if an RSA certificate with a zero expo-
nent is presented. For the second reported vulnerabil-
ity, which triggers a memory corruption in the ext4 file

3https://access.redhat.com/security/cve/cve-2016-0758
4https://access.redhat.com/security/cve/cve-2016-8650
5http://seclists.org/fulldisclosure/2016/Nov/76
6https://access.redhat.com/security/cve/cve-2016-8650
7http://seclists.org/fulldisclosure/2016/Nov/75
8http://seclists.org/bugtraq/2016/Nov/1
9Reported to Microsoft Security.

10Reported to Apple Product Security.

system, a mainline patch was proposed. The last re-
ported Linux vulnerability, which calls in the ext4 error
handling routine panic() and hence results in a kernel
panic, was at the time of writing not investigated any fur-
ther. The NTFS bug in Windows 10 is a non-recoverable
error condition which leads to a blue screen. This bug
was reported to Microsoft, but has not been confirmed
yet. Similarly, Apple has not yet verified or confirmed
our reported macOS bugs.

5.6 Fuzzing Performance
We compare the overall performance of kAFL across dif-
ferent operating systems. To ensure comparable results,
we created a simple driver that contains a JSON parser
based on jsmn11 for each aforementioned operating sys-
tem and used it to decode user input (see Listing 2). If
the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.

1 jsmn_parser parser;
2 jsmntok_t tokens [5];
3 jsmn_init (& parser);
4

5 int res=jsmn_parse (&parser , input , size , tokens , 5);
6 if(res >= 2){
7 if(tokens [0]. type == JSMN_STRING){
8 int json_len = tokens [0]. end - tokens [0].

start;
9 int s = tokens [0]. start;

10 if(json_len > 0 && input[s+0] == �K�){
11 if(json_len > 1 && input[s+1] == �A�){
12 if(json_len > 2 && input[s+2] == �F�){
13 if(json_len > 3 && input[s+3] == �L�){
14 panic(KERN_INFO "KAFL ...\n");
15 }}}}}
16 }

Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested TriforceAFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high

11http://zserge.com/jsmn.html

10

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



23

Evaluation Driver

5.4 Rediscovery of Known Bugs
We evaluated kAFL on the keyctl interface, which al-
lows a user space program to store and manage vari-
ous kinds of key material in the kernel. More specif-
ically, it features a DER (see RFC5280) parser to load
certificates. This functionality had a known bug (CVE-
2016-07583). We tested kAFL against the same interface
on a vulnerable kernel (version 4.3.2). kAFL was able
to uncover the same problem and one additional previ-
ously unknown bug that was assigned CVE-2016-86504.
kAFL managed to trigger 17 unique KASan reports and
15 unique panics in just one hour of execution time. Dur-
ing this experiment, kAFL generated over 34 million in-
puts, found 295 interesting inputs, and performed nearly
9,000 executions per second. This experiment was per-
formed while running 8 processes in parallel.

5.5 Detected Vulnerabilities
During the evaluation, kAFL found more than a thou-
sand unique crashes. We evaluated some manually and
found multiple security vulnerabilities in all tested op-
erating systems such as Linux, Windows, and macOS.
So far, eight bugs were reported and three of them were
confirmed by the maintainers:

• Linux: keyctl Null Pointer Dereference5 (CVE-
2016-86506)

• Linux: ext4 Memory Corruption7

• Linux: ext4 Error Handling8

• Windows: NTFS Div-by-Zero9

• macOS: HFS Div-by-Zero10

• macOS: HFS Assertion Fail10

• macOS: HFS Use-After-Free10

• macOS: APFS Memory Corruption10

Red Hat has assigned a CVE number for the first re-
ported security flaw, which triggers a null pointer def-
erence and a partial memory corruption in the kernel
ASN.1 parser if an RSA certificate with a zero expo-
nent is presented. For the second reported vulnerabil-
ity, which triggers a memory corruption in the ext4 file

3https://access.redhat.com/security/cve/cve-2016-0758
4https://access.redhat.com/security/cve/cve-2016-8650
5http://seclists.org/fulldisclosure/2016/Nov/76
6https://access.redhat.com/security/cve/cve-2016-8650
7http://seclists.org/fulldisclosure/2016/Nov/75
8http://seclists.org/bugtraq/2016/Nov/1
9Reported to Microsoft Security.

10Reported to Apple Product Security.

system, a mainline patch was proposed. The last re-
ported Linux vulnerability, which calls in the ext4 error
handling routine panic() and hence results in a kernel
panic, was at the time of writing not investigated any fur-
ther. The NTFS bug in Windows 10 is a non-recoverable
error condition which leads to a blue screen. This bug
was reported to Microsoft, but has not been confirmed
yet. Similarly, Apple has not yet verified or confirmed
our reported macOS bugs.

5.6 Fuzzing Performance
We compare the overall performance of kAFL across dif-
ferent operating systems. To ensure comparable results,
we created a simple driver that contains a JSON parser
based on jsmn11 for each aforementioned operating sys-
tem and used it to decode user input (see Listing 2). If
the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.

1 jsmn_parser parser;
2 jsmntok_t tokens [5];
3 jsmn_init (& parser);
4

5 int res=jsmn_parse (&parser , input , size , tokens , 5);
6 if(res >= 2){
7 if(tokens [0]. type == JSMN_STRING){
8 int json_len = tokens [0]. end - tokens [0].

start;
9 int s = tokens [0]. start;

10 if(json_len > 0 && input[s+0] == �K�){
11 if(json_len > 1 && input[s+1] == �A�){
12 if(json_len > 2 && input[s+2] == �F�){
13 if(json_len > 3 && input[s+3] == �L�){
14 panic(KERN_INFO "KAFL ...\n");
15 }}}}}
16 }

Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested TriforceAFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high

11http://zserge.com/jsmn.html

10

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



23

Evaluation Driver

5.4 Rediscovery of Known Bugs
We evaluated kAFL on the keyctl interface, which al-
lows a user space program to store and manage vari-
ous kinds of key material in the kernel. More specif-
ically, it features a DER (see RFC5280) parser to load
certificates. This functionality had a known bug (CVE-
2016-07583). We tested kAFL against the same interface
on a vulnerable kernel (version 4.3.2). kAFL was able
to uncover the same problem and one additional previ-
ously unknown bug that was assigned CVE-2016-86504.
kAFL managed to trigger 17 unique KASan reports and
15 unique panics in just one hour of execution time. Dur-
ing this experiment, kAFL generated over 34 million in-
puts, found 295 interesting inputs, and performed nearly
9,000 executions per second. This experiment was per-
formed while running 8 processes in parallel.

5.5 Detected Vulnerabilities
During the evaluation, kAFL found more than a thou-
sand unique crashes. We evaluated some manually and
found multiple security vulnerabilities in all tested op-
erating systems such as Linux, Windows, and macOS.
So far, eight bugs were reported and three of them were
confirmed by the maintainers:

• Linux: keyctl Null Pointer Dereference5 (CVE-
2016-86506)

• Linux: ext4 Memory Corruption7

• Linux: ext4 Error Handling8

• Windows: NTFS Div-by-Zero9

• macOS: HFS Div-by-Zero10

• macOS: HFS Assertion Fail10

• macOS: HFS Use-After-Free10

• macOS: APFS Memory Corruption10

Red Hat has assigned a CVE number for the first re-
ported security flaw, which triggers a null pointer def-
erence and a partial memory corruption in the kernel
ASN.1 parser if an RSA certificate with a zero expo-
nent is presented. For the second reported vulnerabil-
ity, which triggers a memory corruption in the ext4 file

3https://access.redhat.com/security/cve/cve-2016-0758
4https://access.redhat.com/security/cve/cve-2016-8650
5http://seclists.org/fulldisclosure/2016/Nov/76
6https://access.redhat.com/security/cve/cve-2016-8650
7http://seclists.org/fulldisclosure/2016/Nov/75
8http://seclists.org/bugtraq/2016/Nov/1
9Reported to Microsoft Security.

10Reported to Apple Product Security.

system, a mainline patch was proposed. The last re-
ported Linux vulnerability, which calls in the ext4 error
handling routine panic() and hence results in a kernel
panic, was at the time of writing not investigated any fur-
ther. The NTFS bug in Windows 10 is a non-recoverable
error condition which leads to a blue screen. This bug
was reported to Microsoft, but has not been confirmed
yet. Similarly, Apple has not yet verified or confirmed
our reported macOS bugs.

5.6 Fuzzing Performance
We compare the overall performance of kAFL across dif-
ferent operating systems. To ensure comparable results,
we created a simple driver that contains a JSON parser
based on jsmn11 for each aforementioned operating sys-
tem and used it to decode user input (see Listing 2). If
the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.

1 jsmn_parser parser;
2 jsmntok_t tokens [5];
3 jsmn_init (& parser);
4

5 int res=jsmn_parse (&parser , input , size , tokens , 5);
6 if(res >= 2){
7 if(tokens [0]. type == JSMN_STRING){
8 int json_len = tokens [0]. end - tokens [0].

start;
9 int s = tokens [0]. start;

10 if(json_len > 0 && input[s+0] == �K�){
11 if(json_len > 1 && input[s+1] == �A�){
12 if(json_len > 2 && input[s+2] == �F�){
13 if(json_len > 3 && input[s+3] == �L�){
14 panic(KERN_INFO "KAFL ...\n");
15 }}}}}
16 }

Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested TriforceAFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high

11http://zserge.com/jsmn.html

10

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



23

Evaluation Driver

5.4 Rediscovery of Known Bugs
We evaluated kAFL on the keyctl interface, which al-
lows a user space program to store and manage vari-
ous kinds of key material in the kernel. More specif-
ically, it features a DER (see RFC5280) parser to load
certificates. This functionality had a known bug (CVE-
2016-07583). We tested kAFL against the same interface
on a vulnerable kernel (version 4.3.2). kAFL was able
to uncover the same problem and one additional previ-
ously unknown bug that was assigned CVE-2016-86504.
kAFL managed to trigger 17 unique KASan reports and
15 unique panics in just one hour of execution time. Dur-
ing this experiment, kAFL generated over 34 million in-
puts, found 295 interesting inputs, and performed nearly
9,000 executions per second. This experiment was per-
formed while running 8 processes in parallel.

5.5 Detected Vulnerabilities
During the evaluation, kAFL found more than a thou-
sand unique crashes. We evaluated some manually and
found multiple security vulnerabilities in all tested op-
erating systems such as Linux, Windows, and macOS.
So far, eight bugs were reported and three of them were
confirmed by the maintainers:

• Linux: keyctl Null Pointer Dereference5 (CVE-
2016-86506)

• Linux: ext4 Memory Corruption7

• Linux: ext4 Error Handling8

• Windows: NTFS Div-by-Zero9

• macOS: HFS Div-by-Zero10

• macOS: HFS Assertion Fail10

• macOS: HFS Use-After-Free10

• macOS: APFS Memory Corruption10

Red Hat has assigned a CVE number for the first re-
ported security flaw, which triggers a null pointer def-
erence and a partial memory corruption in the kernel
ASN.1 parser if an RSA certificate with a zero expo-
nent is presented. For the second reported vulnerabil-
ity, which triggers a memory corruption in the ext4 file

3https://access.redhat.com/security/cve/cve-2016-0758
4https://access.redhat.com/security/cve/cve-2016-8650
5http://seclists.org/fulldisclosure/2016/Nov/76
6https://access.redhat.com/security/cve/cve-2016-8650
7http://seclists.org/fulldisclosure/2016/Nov/75
8http://seclists.org/bugtraq/2016/Nov/1
9Reported to Microsoft Security.

10Reported to Apple Product Security.

system, a mainline patch was proposed. The last re-
ported Linux vulnerability, which calls in the ext4 error
handling routine panic() and hence results in a kernel
panic, was at the time of writing not investigated any fur-
ther. The NTFS bug in Windows 10 is a non-recoverable
error condition which leads to a blue screen. This bug
was reported to Microsoft, but has not been confirmed
yet. Similarly, Apple has not yet verified or confirmed
our reported macOS bugs.

5.6 Fuzzing Performance
We compare the overall performance of kAFL across dif-
ferent operating systems. To ensure comparable results,
we created a simple driver that contains a JSON parser
based on jsmn11 for each aforementioned operating sys-
tem and used it to decode user input (see Listing 2). If
the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.

1 jsmn_parser parser;
2 jsmntok_t tokens [5];
3 jsmn_init (& parser);
4

5 int res=jsmn_parse (&parser , input , size , tokens , 5);
6 if(res >= 2){
7 if(tokens [0]. type == JSMN_STRING){
8 int json_len = tokens [0]. end - tokens [0].

start;
9 int s = tokens [0]. start;

10 if(json_len > 0 && input[s+0] == �K�){
11 if(json_len > 1 && input[s+1] == �A�){
12 if(json_len > 2 && input[s+2] == �F�){
13 if(json_len > 3 && input[s+3] == �L�){
14 panic(KERN_INFO "KAFL ...\n");
15 }}}}}
16 }

Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested TriforceAFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high

11http://zserge.com/jsmn.html

10

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



23

Evaluation Driver

5.4 Rediscovery of Known Bugs
We evaluated kAFL on the keyctl interface, which al-
lows a user space program to store and manage vari-
ous kinds of key material in the kernel. More specif-
ically, it features a DER (see RFC5280) parser to load
certificates. This functionality had a known bug (CVE-
2016-07583). We tested kAFL against the same interface
on a vulnerable kernel (version 4.3.2). kAFL was able
to uncover the same problem and one additional previ-
ously unknown bug that was assigned CVE-2016-86504.
kAFL managed to trigger 17 unique KASan reports and
15 unique panics in just one hour of execution time. Dur-
ing this experiment, kAFL generated over 34 million in-
puts, found 295 interesting inputs, and performed nearly
9,000 executions per second. This experiment was per-
formed while running 8 processes in parallel.

5.5 Detected Vulnerabilities
During the evaluation, kAFL found more than a thou-
sand unique crashes. We evaluated some manually and
found multiple security vulnerabilities in all tested op-
erating systems such as Linux, Windows, and macOS.
So far, eight bugs were reported and three of them were
confirmed by the maintainers:

• Linux: keyctl Null Pointer Dereference5 (CVE-
2016-86506)

• Linux: ext4 Memory Corruption7

• Linux: ext4 Error Handling8

• Windows: NTFS Div-by-Zero9

• macOS: HFS Div-by-Zero10

• macOS: HFS Assertion Fail10

• macOS: HFS Use-After-Free10

• macOS: APFS Memory Corruption10

Red Hat has assigned a CVE number for the first re-
ported security flaw, which triggers a null pointer def-
erence and a partial memory corruption in the kernel
ASN.1 parser if an RSA certificate with a zero expo-
nent is presented. For the second reported vulnerabil-
ity, which triggers a memory corruption in the ext4 file

3https://access.redhat.com/security/cve/cve-2016-0758
4https://access.redhat.com/security/cve/cve-2016-8650
5http://seclists.org/fulldisclosure/2016/Nov/76
6https://access.redhat.com/security/cve/cve-2016-8650
7http://seclists.org/fulldisclosure/2016/Nov/75
8http://seclists.org/bugtraq/2016/Nov/1
9Reported to Microsoft Security.

10Reported to Apple Product Security.

system, a mainline patch was proposed. The last re-
ported Linux vulnerability, which calls in the ext4 error
handling routine panic() and hence results in a kernel
panic, was at the time of writing not investigated any fur-
ther. The NTFS bug in Windows 10 is a non-recoverable
error condition which leads to a blue screen. This bug
was reported to Microsoft, but has not been confirmed
yet. Similarly, Apple has not yet verified or confirmed
our reported macOS bugs.

5.6 Fuzzing Performance
We compare the overall performance of kAFL across dif-
ferent operating systems. To ensure comparable results,
we created a simple driver that contains a JSON parser
based on jsmn11 for each aforementioned operating sys-
tem and used it to decode user input (see Listing 2). If
the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.

1 jsmn_parser parser;
2 jsmntok_t tokens [5];
3 jsmn_init (& parser);
4

5 int res=jsmn_parse (&parser , input , size , tokens , 5);
6 if(res >= 2){
7 if(tokens [0]. type == JSMN_STRING){
8 int json_len = tokens [0]. end - tokens [0].

start;
9 int s = tokens [0]. start;

10 if(json_len > 0 && input[s+0] == �K�){
11 if(json_len > 1 && input[s+1] == �A�){
12 if(json_len > 2 && input[s+2] == �F�){
13 if(json_len > 3 && input[s+3] == �L�){
14 panic(KERN_INFO "KAFL ...\n");
15 }}}}}
16 }

Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested TriforceAFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high

11http://zserge.com/jsmn.html

10

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



23

Evaluation Driver

5.4 Rediscovery of Known Bugs
We evaluated kAFL on the keyctl interface, which al-
lows a user space program to store and manage vari-
ous kinds of key material in the kernel. More specif-
ically, it features a DER (see RFC5280) parser to load
certificates. This functionality had a known bug (CVE-
2016-07583). We tested kAFL against the same interface
on a vulnerable kernel (version 4.3.2). kAFL was able
to uncover the same problem and one additional previ-
ously unknown bug that was assigned CVE-2016-86504.
kAFL managed to trigger 17 unique KASan reports and
15 unique panics in just one hour of execution time. Dur-
ing this experiment, kAFL generated over 34 million in-
puts, found 295 interesting inputs, and performed nearly
9,000 executions per second. This experiment was per-
formed while running 8 processes in parallel.

5.5 Detected Vulnerabilities
During the evaluation, kAFL found more than a thou-
sand unique crashes. We evaluated some manually and
found multiple security vulnerabilities in all tested op-
erating systems such as Linux, Windows, and macOS.
So far, eight bugs were reported and three of them were
confirmed by the maintainers:

• Linux: keyctl Null Pointer Dereference5 (CVE-
2016-86506)

• Linux: ext4 Memory Corruption7

• Linux: ext4 Error Handling8

• Windows: NTFS Div-by-Zero9

• macOS: HFS Div-by-Zero10

• macOS: HFS Assertion Fail10

• macOS: HFS Use-After-Free10

• macOS: APFS Memory Corruption10

Red Hat has assigned a CVE number for the first re-
ported security flaw, which triggers a null pointer def-
erence and a partial memory corruption in the kernel
ASN.1 parser if an RSA certificate with a zero expo-
nent is presented. For the second reported vulnerabil-
ity, which triggers a memory corruption in the ext4 file

3https://access.redhat.com/security/cve/cve-2016-0758
4https://access.redhat.com/security/cve/cve-2016-8650
5http://seclists.org/fulldisclosure/2016/Nov/76
6https://access.redhat.com/security/cve/cve-2016-8650
7http://seclists.org/fulldisclosure/2016/Nov/75
8http://seclists.org/bugtraq/2016/Nov/1
9Reported to Microsoft Security.

10Reported to Apple Product Security.

system, a mainline patch was proposed. The last re-
ported Linux vulnerability, which calls in the ext4 error
handling routine panic() and hence results in a kernel
panic, was at the time of writing not investigated any fur-
ther. The NTFS bug in Windows 10 is a non-recoverable
error condition which leads to a blue screen. This bug
was reported to Microsoft, but has not been confirmed
yet. Similarly, Apple has not yet verified or confirmed
our reported macOS bugs.

5.6 Fuzzing Performance
We compare the overall performance of kAFL across dif-
ferent operating systems. To ensure comparable results,
we created a simple driver that contains a JSON parser
based on jsmn11 for each aforementioned operating sys-
tem and used it to decode user input (see Listing 2). If
the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.

1 jsmn_parser parser;
2 jsmntok_t tokens [5];
3 jsmn_init (& parser);
4

5 int res=jsmn_parse (&parser , input , size , tokens , 5);
6 if(res >= 2){
7 if(tokens [0]. type == JSMN_STRING){
8 int json_len = tokens [0]. end - tokens [0].

start;
9 int s = tokens [0]. start;

10 if(json_len > 0 && input[s+0] == �K�){
11 if(json_len > 1 && input[s+1] == �A�){
12 if(json_len > 2 && input[s+2] == �F�){
13 if(json_len > 3 && input[s+3] == �L�){
14 panic(KERN_INFO "KAFL ...\n");
15 }}}}}
16 }

Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested TriforceAFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high

11http://zserge.com/jsmn.html

10

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



23

Evaluation Driver

5.4 Rediscovery of Known Bugs
We evaluated kAFL on the keyctl interface, which al-
lows a user space program to store and manage vari-
ous kinds of key material in the kernel. More specif-
ically, it features a DER (see RFC5280) parser to load
certificates. This functionality had a known bug (CVE-
2016-07583). We tested kAFL against the same interface
on a vulnerable kernel (version 4.3.2). kAFL was able
to uncover the same problem and one additional previ-
ously unknown bug that was assigned CVE-2016-86504.
kAFL managed to trigger 17 unique KASan reports and
15 unique panics in just one hour of execution time. Dur-
ing this experiment, kAFL generated over 34 million in-
puts, found 295 interesting inputs, and performed nearly
9,000 executions per second. This experiment was per-
formed while running 8 processes in parallel.

5.5 Detected Vulnerabilities
During the evaluation, kAFL found more than a thou-
sand unique crashes. We evaluated some manually and
found multiple security vulnerabilities in all tested op-
erating systems such as Linux, Windows, and macOS.
So far, eight bugs were reported and three of them were
confirmed by the maintainers:

• Linux: keyctl Null Pointer Dereference5 (CVE-
2016-86506)

• Linux: ext4 Memory Corruption7

• Linux: ext4 Error Handling8

• Windows: NTFS Div-by-Zero9

• macOS: HFS Div-by-Zero10

• macOS: HFS Assertion Fail10

• macOS: HFS Use-After-Free10

• macOS: APFS Memory Corruption10

Red Hat has assigned a CVE number for the first re-
ported security flaw, which triggers a null pointer def-
erence and a partial memory corruption in the kernel
ASN.1 parser if an RSA certificate with a zero expo-
nent is presented. For the second reported vulnerabil-
ity, which triggers a memory corruption in the ext4 file

3https://access.redhat.com/security/cve/cve-2016-0758
4https://access.redhat.com/security/cve/cve-2016-8650
5http://seclists.org/fulldisclosure/2016/Nov/76
6https://access.redhat.com/security/cve/cve-2016-8650
7http://seclists.org/fulldisclosure/2016/Nov/75
8http://seclists.org/bugtraq/2016/Nov/1
9Reported to Microsoft Security.

10Reported to Apple Product Security.

system, a mainline patch was proposed. The last re-
ported Linux vulnerability, which calls in the ext4 error
handling routine panic() and hence results in a kernel
panic, was at the time of writing not investigated any fur-
ther. The NTFS bug in Windows 10 is a non-recoverable
error condition which leads to a blue screen. This bug
was reported to Microsoft, but has not been confirmed
yet. Similarly, Apple has not yet verified or confirmed
our reported macOS bugs.

5.6 Fuzzing Performance
We compare the overall performance of kAFL across dif-
ferent operating systems. To ensure comparable results,
we created a simple driver that contains a JSON parser
based on jsmn11 for each aforementioned operating sys-
tem and used it to decode user input (see Listing 2). If
the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.

1 jsmn_parser parser;
2 jsmntok_t tokens [5];
3 jsmn_init (& parser);
4

5 int res=jsmn_parse (&parser , input , size , tokens , 5);
6 if(res >= 2){
7 if(tokens [0]. type == JSMN_STRING){
8 int json_len = tokens [0]. end - tokens [0].

start;
9 int s = tokens [0]. start;

10 if(json_len > 0 && input[s+0] == �K�){
11 if(json_len > 1 && input[s+1] == �A�){
12 if(json_len > 2 && input[s+2] == �F�){
13 if(json_len > 3 && input[s+3] == �L�){
14 panic(KERN_INFO "KAFL ...\n");
15 }}}}}
16 }

Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested TriforceAFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high

11http://zserge.com/jsmn.html

10

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



24

Performance

Intel i7-6700 / 32GB DDR4

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



25

Coverage

Intel i7-6700 / 32GB DDR4

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



25

Coverage

Intel i7-6700 / 32GB DDR4

kAFL: 
▪5-7 minutes 

TriforceAFL: 
▪~2 hours 

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



26

Conclusion

▪Intel PT and virtualization for feedback fuzzing 
▪Fast 
▪OS independence (x86-64) 
▪Reliable and long-term 
▪Fully extensible  

▪High bug yield for kernel fuzzing 
▪Opportunities for further fuzzing 

https://github.com/RUB-SysSec/kAFL

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

https://github.com/RUB-SysSec/kAFL

