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Motivation
IJG jpeg libjpeg-turbo libpng libtiff mozjpeg PHP Mozilla Firefox Internet Explorer PCRE sqlite OpenSSL LibreOffice poppler 
freetype GnuTLS GnuPG PuTTY ntpd nginx bash tcpdump JavaScriptCore pdfium ffmpeg libmatroska libarchive ImageMagick 
BIND QEMU lcms Adobe Flash Oracle BerkeleyDB Android libstagefright iOS ImageIO FLAC audio library libsndfile less lesspipe 
strings file dpkg rcs systemd-resolved libyaml Info-Zip unzip libtasn1OpenBSD pfctl NetBSD bpf man mandocIDA Pro clamav 

libxml2glibc clang llvmnasm ctags mutt procmail fontconfig pdksh Qt wavpack  OpenSSH redis lua-cmsgpack taglib privoxy perl 
libxmp radare2 SleuthKit fwknop X.Org exifprobe jhead capnproto Xerces-C metacam djvulibre exiv Linux btrfs Knot DNS curl 

wpa_supplicant Apple Safari libde265 dnsmasq libbpg lame libwmf uudecode MuPDF imlib2 libraw libbson libsass yara W3C tidy-
html5 VLC FreeBSD syscons John the Ripper screen tmux mosh UPX indent openjpeg MMIX OpenMPT rxvt dhcpcd Mozilla NSS 
Nettle mbed TLS Linux netlink Linux ext4 Linux xfs botan expat Adobe Reader libav libical OpenBSD kernel collectd libidn 

MatrixSSL jasperMaraDNS w3m Xen OpenH232 irssi cmark OpenCV Malheur gstreamer Tor gdk-pixbuf audiofilezstd lz4 stb cJSON 
libpcre MySQL gnulib openexr libmad ettercap lrzip freetds Asterisk ytnefraptor mpg123 exempi libgmime pev v8 sed awk make 

m4 yacc PHP ImageMagick freedesktop.org patch libtasn1 libvorbis zsh lua ninja ruby busybox gcrypt vim Tor poppler libopus 
BSD sh gcc qemu w3m zsh dropbear wireshark libtorrent git rust gravity e2fsprogs parrot lodepng json-glib cabextract libmspack 
qprint gpsbabel dmg2img antiword arj unrar unace zoo rzip lrzip libiso libtta duktape splint zpaq assimp cppcheck fasm catdoc 
pngcrush cmark p7zip libjbig2 aaphoto t1utils apngopt sqlparser mdp libtinyxml freexl bgpparser testdisk photorec btcd gumbo 
chaiscript teseq colcrt pttbbs capstone dex2oat pillow elftoolchain aribas universal-ctags uriparser jq lha xdelta gnuplot libwpd 

teseq cimg libiberty policycoreutils libsemanage renoise metapixel openclone mp3splt podofo Apache httpd glslang UEFITool 
libcbor lldpd pngquant muparserx mochilo pyhocon sysdig Overpass-API fish-shell gumbo-parser mapbox-gl-native rapidjson 

libjson FLIF MultiMarkdown astyle pax-utils zziplib PyPDF spiffing apk pgpdump icoutils msitools dosfstools
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Related Work

Fast Crash Tolerant OS Independent Binary Only
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Goal

Build a kernel fuzzer that is all of this: 

▪Fast 
▪Reliable 
▪(mostly) OS independent 
▪No source level access required  

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



Fuzzing in a nutshell
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Fuzzing in a nutshell

Fuzzer Target
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Fuzzing in a nutshell

Fuzzer Target

Inputs

Grammar 
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Fuzzing in a nutshell

Fuzzer Target

Inputs

Grammar 

Randomized Inputs
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Fuzzing in a nutshell

Fuzzer Target

Inputs

Grammar 

Randomized Inputs

Feedback
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Blackbox Fuzzing

Target

exit

"EFG"
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Blackbox Fuzzing

Target

exit

"TZG"
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Blackbox Fuzzing

Target

"ABC"

Crash
kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels



Coverage-Guided Fuzzing
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Coverage-Guided Fuzzing

input[0] == 'A'

input[2] == 'C'

exit()

input[1] == 'B'

crash()
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Coverage-Guided Fuzzing

input[0] == 'A'

input[2] == 'C'

exit()

input[1] == 'B'

crash() exit()

input[0] == 'A'
ZZZZ
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Intel Processor Trace

Instruction Intel PT Packet
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jmp/call loc_b Inferable from disassembly
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jmp/call [eax] Target IP
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Intel Processor Trace

Instruction Intel PT Packet

jmp/call loc_b Inferable from disassembly

jnz loc_a Taken / Not Taken

jmp/call [eax] Target IP

ret Target IP (if required) 
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Intel Processor Trace
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Implementation

CPU: 
▪generates raw Intel-PT data 
▪writes data to main memory 
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Implementation

KVM-PT: 
▪configures Intel PT via MSRs 
▪enables tracing during VM-Entry transition 
▪disables tracing during VM-Exit transition
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Implementation
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Implementation

kAFL Fuzzer: 
▪generates new fuzz payloads 
▪detects new behavior 
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New Vulnerabilities
Windows: 
▪NTFS (DoS) 

macOS: 
▪HFS (DoS, Memory Corruption) 
▪APFS (Memory Corruption) 

Linux: 
▪EXT4 (DoS, Memory Corruption) 
▪Keyctl (Nullpointer Dereference) 
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Evaluation Driver

5.4 Rediscovery of Known Bugs
We evaluated kAFL on the keyctl interface, which al-
lows a user space program to store and manage vari-
ous kinds of key material in the kernel. More specif-
ically, it features a DER (see RFC5280) parser to load
certificates. This functionality had a known bug (CVE-
2016-07583). We tested kAFL against the same interface
on a vulnerable kernel (version 4.3.2). kAFL was able
to uncover the same problem and one additional previ-
ously unknown bug that was assigned CVE-2016-86504.
kAFL managed to trigger 17 unique KASan reports and
15 unique panics in just one hour of execution time. Dur-
ing this experiment, kAFL generated over 34 million in-
puts, found 295 interesting inputs, and performed nearly
9,000 executions per second. This experiment was per-
formed while running 8 processes in parallel.

5.5 Detected Vulnerabilities
During the evaluation, kAFL found more than a thou-
sand unique crashes. We evaluated some manually and
found multiple security vulnerabilities in all tested op-
erating systems such as Linux, Windows, and macOS.
So far, eight bugs were reported and three of them were
confirmed by the maintainers:

• Linux: keyctl Null Pointer Dereference5 (CVE-
2016-86506)

• Linux: ext4 Memory Corruption7

• Linux: ext4 Error Handling8

• Windows: NTFS Div-by-Zero9

• macOS: HFS Div-by-Zero10

• macOS: HFS Assertion Fail10

• macOS: HFS Use-After-Free10

• macOS: APFS Memory Corruption10

Red Hat has assigned a CVE number for the first re-
ported security flaw, which triggers a null pointer def-
erence and a partial memory corruption in the kernel
ASN.1 parser if an RSA certificate with a zero expo-
nent is presented. For the second reported vulnerabil-
ity, which triggers a memory corruption in the ext4 file

3https://access.redhat.com/security/cve/cve-2016-0758
4https://access.redhat.com/security/cve/cve-2016-8650
5http://seclists.org/fulldisclosure/2016/Nov/76
6https://access.redhat.com/security/cve/cve-2016-8650
7http://seclists.org/fulldisclosure/2016/Nov/75
8http://seclists.org/bugtraq/2016/Nov/1
9Reported to Microsoft Security.

10Reported to Apple Product Security.

system, a mainline patch was proposed. The last re-
ported Linux vulnerability, which calls in the ext4 error
handling routine panic() and hence results in a kernel
panic, was at the time of writing not investigated any fur-
ther. The NTFS bug in Windows 10 is a non-recoverable
error condition which leads to a blue screen. This bug
was reported to Microsoft, but has not been confirmed
yet. Similarly, Apple has not yet verified or confirmed
our reported macOS bugs.

5.6 Fuzzing Performance
We compare the overall performance of kAFL across dif-
ferent operating systems. To ensure comparable results,
we created a simple driver that contains a JSON parser
based on jsmn11 for each aforementioned operating sys-
tem and used it to decode user input (see Listing 2). If
the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.

1 jsmn_parser parser;
2 jsmntok_t tokens [5];
3 jsmn_init (& parser);
4

5 int res=jsmn_parse (&parser , input , size , tokens , 5);
6 if(res >= 2){
7 if(tokens [0]. type == JSMN_STRING){
8 int json_len = tokens [0]. end - tokens [0].

start;
9 int s = tokens [0]. start;

10 if(json_len > 0 && input[s+0] == �K�){
11 if(json_len > 1 && input[s+1] == �A�){
12 if(json_len > 2 && input[s+2] == �F�){
13 if(json_len > 3 && input[s+3] == �L�){
14 panic(KERN_INFO "KAFL ...\n");
15 }}}}}
16 }

Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested TriforceAFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high

11http://zserge.com/jsmn.html
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handling routine panic() and hence results in a kernel
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the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.

1 jsmn_parser parser;
2 jsmntok_t tokens [5];
3 jsmn_init (& parser);
4

5 int res=jsmn_parse (&parser , input , size , tokens , 5);
6 if(res >= 2){
7 if(tokens [0]. type == JSMN_STRING){
8 int json_len = tokens [0]. end - tokens [0].

start;
9 int s = tokens [0]. start;

10 if(json_len > 0 && input[s+0] == �K�){
11 if(json_len > 1 && input[s+1] == �A�){
12 if(json_len > 2 && input[s+2] == �F�){
13 if(json_len > 3 && input[s+3] == �L�){
14 panic(KERN_INFO "KAFL ...\n");
15 }}}}}
16 }

Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested TriforceAFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high
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Evaluation Driver

5.4 Rediscovery of Known Bugs
We evaluated kAFL on the keyctl interface, which al-
lows a user space program to store and manage vari-
ous kinds of key material in the kernel. More specif-
ically, it features a DER (see RFC5280) parser to load
certificates. This functionality had a known bug (CVE-
2016-07583). We tested kAFL against the same interface
on a vulnerable kernel (version 4.3.2). kAFL was able
to uncover the same problem and one additional previ-
ously unknown bug that was assigned CVE-2016-86504.
kAFL managed to trigger 17 unique KASan reports and
15 unique panics in just one hour of execution time. Dur-
ing this experiment, kAFL generated over 34 million in-
puts, found 295 interesting inputs, and performed nearly
9,000 executions per second. This experiment was per-
formed while running 8 processes in parallel.

5.5 Detected Vulnerabilities
During the evaluation, kAFL found more than a thou-
sand unique crashes. We evaluated some manually and
found multiple security vulnerabilities in all tested op-
erating systems such as Linux, Windows, and macOS.
So far, eight bugs were reported and three of them were
confirmed by the maintainers:

• Linux: keyctl Null Pointer Dereference5 (CVE-
2016-86506)

• Linux: ext4 Memory Corruption7

• Linux: ext4 Error Handling8

• Windows: NTFS Div-by-Zero9

• macOS: HFS Div-by-Zero10

• macOS: HFS Assertion Fail10

• macOS: HFS Use-After-Free10

• macOS: APFS Memory Corruption10

Red Hat has assigned a CVE number for the first re-
ported security flaw, which triggers a null pointer def-
erence and a partial memory corruption in the kernel
ASN.1 parser if an RSA certificate with a zero expo-
nent is presented. For the second reported vulnerabil-
ity, which triggers a memory corruption in the ext4 file
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9Reported to Microsoft Security.

10Reported to Apple Product Security.
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panic, was at the time of writing not investigated any fur-
ther. The NTFS bug in Windows 10 is a non-recoverable
error condition which leads to a blue screen. This bug
was reported to Microsoft, but has not been confirmed
yet. Similarly, Apple has not yet verified or confirmed
our reported macOS bugs.
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We compare the overall performance of kAFL across dif-
ferent operating systems. To ensure comparable results,
we created a simple driver that contains a JSON parser
based on jsmn11 for each aforementioned operating sys-
tem and used it to decode user input (see Listing 2). If
the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.
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Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested TriforceAFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high
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5.4 Rediscovery of Known Bugs
We evaluated kAFL on the keyctl interface, which al-
lows a user space program to store and manage vari-
ous kinds of key material in the kernel. More specif-
ically, it features a DER (see RFC5280) parser to load
certificates. This functionality had a known bug (CVE-
2016-07583). We tested kAFL against the same interface
on a vulnerable kernel (version 4.3.2). kAFL was able
to uncover the same problem and one additional previ-
ously unknown bug that was assigned CVE-2016-86504.
kAFL managed to trigger 17 unique KASan reports and
15 unique panics in just one hour of execution time. Dur-
ing this experiment, kAFL generated over 34 million in-
puts, found 295 interesting inputs, and performed nearly
9,000 executions per second. This experiment was per-
formed while running 8 processes in parallel.

5.5 Detected Vulnerabilities
During the evaluation, kAFL found more than a thou-
sand unique crashes. We evaluated some manually and
found multiple security vulnerabilities in all tested op-
erating systems such as Linux, Windows, and macOS.
So far, eight bugs were reported and three of them were
confirmed by the maintainers:

• Linux: keyctl Null Pointer Dereference5 (CVE-
2016-86506)

• Linux: ext4 Memory Corruption7

• Linux: ext4 Error Handling8

• Windows: NTFS Div-by-Zero9
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Red Hat has assigned a CVE number for the first re-
ported security flaw, which triggers a null pointer def-
erence and a partial memory corruption in the kernel
ASN.1 parser if an RSA certificate with a zero expo-
nent is presented. For the second reported vulnerabil-
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system, a mainline patch was proposed. The last re-
ported Linux vulnerability, which calls in the ext4 error
handling routine panic() and hence results in a kernel
panic, was at the time of writing not investigated any fur-
ther. The NTFS bug in Windows 10 is a non-recoverable
error condition which leads to a blue screen. This bug
was reported to Microsoft, but has not been confirmed
yet. Similarly, Apple has not yet verified or confirmed
our reported macOS bugs.

5.6 Fuzzing Performance
We compare the overall performance of kAFL across dif-
ferent operating systems. To ensure comparable results,
we created a simple driver that contains a JSON parser
based on jsmn11 for each aforementioned operating sys-
tem and used it to decode user input (see Listing 2). If
the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.
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6 if(res >= 2){
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8 int json_len = tokens [0]. end - tokens [0].

start;
9 int s = tokens [0]. start;
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12 if(json_len > 2 && input[s+2] == �F�){
13 if(json_len > 3 && input[s+3] == �L�){
14 panic(KERN_INFO "KAFL ...\n");
15 }}}}}
16 }

Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested TriforceAFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high
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5.4 Rediscovery of Known Bugs
We evaluated kAFL on the keyctl interface, which al-
lows a user space program to store and manage vari-
ous kinds of key material in the kernel. More specif-
ically, it features a DER (see RFC5280) parser to load
certificates. This functionality had a known bug (CVE-
2016-07583). We tested kAFL against the same interface
on a vulnerable kernel (version 4.3.2). kAFL was able
to uncover the same problem and one additional previ-
ously unknown bug that was assigned CVE-2016-86504.
kAFL managed to trigger 17 unique KASan reports and
15 unique panics in just one hour of execution time. Dur-
ing this experiment, kAFL generated over 34 million in-
puts, found 295 interesting inputs, and performed nearly
9,000 executions per second. This experiment was per-
formed while running 8 processes in parallel.

5.5 Detected Vulnerabilities
During the evaluation, kAFL found more than a thou-
sand unique crashes. We evaluated some manually and
found multiple security vulnerabilities in all tested op-
erating systems such as Linux, Windows, and macOS.
So far, eight bugs were reported and three of them were
confirmed by the maintainers:

• Linux: keyctl Null Pointer Dereference5 (CVE-
2016-86506)

• Linux: ext4 Memory Corruption7

• Linux: ext4 Error Handling8

• Windows: NTFS Div-by-Zero9

• macOS: HFS Div-by-Zero10

• macOS: HFS Assertion Fail10

• macOS: HFS Use-After-Free10

• macOS: APFS Memory Corruption10

Red Hat has assigned a CVE number for the first re-
ported security flaw, which triggers a null pointer def-
erence and a partial memory corruption in the kernel
ASN.1 parser if an RSA certificate with a zero expo-
nent is presented. For the second reported vulnerabil-
ity, which triggers a memory corruption in the ext4 file
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system, a mainline patch was proposed. The last re-
ported Linux vulnerability, which calls in the ext4 error
handling routine panic() and hence results in a kernel
panic, was at the time of writing not investigated any fur-
ther. The NTFS bug in Windows 10 is a non-recoverable
error condition which leads to a blue screen. This bug
was reported to Microsoft, but has not been confirmed
yet. Similarly, Apple has not yet verified or confirmed
our reported macOS bugs.

5.6 Fuzzing Performance
We compare the overall performance of kAFL across dif-
ferent operating systems. To ensure comparable results,
we created a simple driver that contains a JSON parser
based on jsmn11 for each aforementioned operating sys-
tem and used it to decode user input (see Listing 2). If
the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.

1 jsmn_parser parser;
2 jsmntok_t tokens [5];
3 jsmn_init (& parser);
4

5 int res=jsmn_parse (&parser , input , size , tokens , 5);
6 if(res >= 2){
7 if(tokens [0]. type == JSMN_STRING){
8 int json_len = tokens [0]. end - tokens [0].
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10 if(json_len > 0 && input[s+0] == �K�){
11 if(json_len > 1 && input[s+1] == �A�){
12 if(json_len > 2 && input[s+2] == �F�){
13 if(json_len > 3 && input[s+3] == �L�){
14 panic(KERN_INFO "KAFL ...\n");
15 }}}}}
16 }

Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested TriforceAFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high
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5.4 Rediscovery of Known Bugs
We evaluated kAFL on the keyctl interface, which al-
lows a user space program to store and manage vari-
ous kinds of key material in the kernel. More specif-
ically, it features a DER (see RFC5280) parser to load
certificates. This functionality had a known bug (CVE-
2016-07583). We tested kAFL against the same interface
on a vulnerable kernel (version 4.3.2). kAFL was able
to uncover the same problem and one additional previ-
ously unknown bug that was assigned CVE-2016-86504.
kAFL managed to trigger 17 unique KASan reports and
15 unique panics in just one hour of execution time. Dur-
ing this experiment, kAFL generated over 34 million in-
puts, found 295 interesting inputs, and performed nearly
9,000 executions per second. This experiment was per-
formed while running 8 processes in parallel.

5.5 Detected Vulnerabilities
During the evaluation, kAFL found more than a thou-
sand unique crashes. We evaluated some manually and
found multiple security vulnerabilities in all tested op-
erating systems such as Linux, Windows, and macOS.
So far, eight bugs were reported and three of them were
confirmed by the maintainers:

• Linux: keyctl Null Pointer Dereference5 (CVE-
2016-86506)

• Linux: ext4 Memory Corruption7

• Linux: ext4 Error Handling8

• Windows: NTFS Div-by-Zero9

• macOS: HFS Div-by-Zero10

• macOS: HFS Assertion Fail10

• macOS: HFS Use-After-Free10

• macOS: APFS Memory Corruption10

Red Hat has assigned a CVE number for the first re-
ported security flaw, which triggers a null pointer def-
erence and a partial memory corruption in the kernel
ASN.1 parser if an RSA certificate with a zero expo-
nent is presented. For the second reported vulnerabil-
ity, which triggers a memory corruption in the ext4 file
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system, a mainline patch was proposed. The last re-
ported Linux vulnerability, which calls in the ext4 error
handling routine panic() and hence results in a kernel
panic, was at the time of writing not investigated any fur-
ther. The NTFS bug in Windows 10 is a non-recoverable
error condition which leads to a blue screen. This bug
was reported to Microsoft, but has not been confirmed
yet. Similarly, Apple has not yet verified or confirmed
our reported macOS bugs.

5.6 Fuzzing Performance
We compare the overall performance of kAFL across dif-
ferent operating systems. To ensure comparable results,
we created a simple driver that contains a JSON parser
based on jsmn11 for each aforementioned operating sys-
tem and used it to decode user input (see Listing 2). If
the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.
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6 if(res >= 2){
7 if(tokens [0]. type == JSMN_STRING){
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11 if(json_len > 1 && input[s+1] == �A�){
12 if(json_len > 2 && input[s+2] == �F�){
13 if(json_len > 3 && input[s+3] == �L�){
14 panic(KERN_INFO "KAFL ...\n");
15 }}}}}
16 }

Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested TriforceAFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high
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Performance
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Coverage
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Coverage

Intel i7-6700 / 32GB DDR4

kAFL: 
▪5-7 minutes 

TriforceAFL: 
▪~2 hours 
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Conclusion

▪Intel PT and virtualization for feedback fuzzing 
▪Fast 
▪OS independence (x86-64) 
▪Reliable and long-term 
▪Fully extensible  

▪High bug yield for kernel fuzzing 
▪Opportunities for further fuzzing 

https://github.com/RUB-SysSec/kAFL
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https://github.com/RUB-SysSec/kAFL

