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● Every application that implements a protocol has to 
implement the corresponding state machine

● Mealy machines
– Set of states
– Input alphabet
– Output alphabet

● Specify in all states for each input
– Returned output
– Next state 

● It is unambiguous 

State machines



● Extract state machines from implementations by 
communicating with them

● Fuzzing of message order
● Discover bugs
● Provides interesting insights in the code
● Will not find carefully hidden backdoors

State machine inference
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● Deterministic Mealy machine
● Learner

– Adapted L* algorithm by Niese

● Teacher
– Equivalence queries approximated

● Random traces
● Chow's W-method

Learner Teacher
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Automated learning
● LearnLib by TU Dortmund

– Implementation of adapted L* and equivalence algorithms

● Equivalence checking using modified W-method
– Given an upper bound it is guaranteed to find the correct state machine
– Depth specified to search for counter-examples
– After a socket is closed no data will be received

● Custom test harness for TLS
● Manual analysis if we see unexpected behavior



Test harness
● (Almost) stateless TLS implementation
● Minimal state in test harness to handle encryption
● Support to test clients and servers
● All regular TLS messages and Heartbeat extensions

– RSA and DH key exchange
– Client authentication
– Some special symbols that correspond to exceptions in the test harness



Analysis of TLS servers
● 9 TLS implementations

– OpenSSL
– GnuTLS
– Java Secure Socket Extension
– mbed TLS (previously PolarSSL)
– NSS
– RSA BSAFE for C
– RSA BSAFE for Java
– miTLS
– nqsb-TLS

● Every learned model different



Learned models



Learned models



Results
● Used demo applications when provided
● 6 to 16 states
● 6 minutes to over 8 hours

– Under 1 hour if connections are properly closed

– Dependent on implementation specific time-outs (100ms to 1,5s)
● Several new flaws in different implementations



Java Secure Socket Extension
● Possible to skip ChangeCipherSpec message
● Server will accept plaintext data
● Problem also present in client
● Also found by the Prosecco group at INRIA
● Fixed in January 2015



GnuTLS
● Shadow path after sending HeartbeatRequest during 

handshake
● Buffer handshake messages for hash in Finished reset
● Same problem present in the client



OpenSSL
● Sending a ChangeCipherSpec after 

successful handshake gets server in 
invalid state

● Client key set to server key
● Same keys used for both directions
● Fixed in 1.0.1k
● Same issue present in LibreSSL



OpenSSL
● Able to detect EarlyCCS bug by Kikuchi
● By modifying the test harness we can successfully exploit 

this flaw



nqsb-TLS
● Plaintext alerts returned after ChangeCipherSpec
● No security flaw
● Quickly fixed
● Shows it is a useful technique during development
● Different interpretation of the specification
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Conclusions
● Protocol state fuzzing is a useful technique to find 

security flaws and other bugs related to the 
implementation of state machines

● Everybody interprets specifications differently and makes 
different design decisions

● It would be good to include state machines in 
specifications
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Thank you for your attention!
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