
PROTOCOL STATE FUZZING OF 
TLS IMPLEMENTATIONS

Joeri de Ruiter
University of Birmingham



Short introduction to TLS

Client

ClientHello

ClientKeyExchange

ChangeCipherSpec

Finished

ApplicationData

Server

ServerHello

Certificate

ServerHelloDone

ChangeCipherSpec

Finished

ApplicationData



● Every application that implements a protocol has to 
implement the corresponding state machine

● Mealy machines
– Set of states
– Input alphabet
– Output alphabet

● Specify in all states for each input
– Returned output
– Next state 

● It is unambiguous 

State machines



● Extract state machines from implementations by 
communicating with them

● Fuzzing of message order
● Discover bugs
● Provides interesting insights in the code
● Will not find carefully hidden backdoors

State machine inference



State machine inference



State machine inference
→ ClientHello
← ServerHello



State machine inference
→ ClientHello
← ServerHello

ClientHello
ServerHello



State machine inference
→ ClientHello
← ServerHello

→ Other messages
← Fatal alert / Connection close

ClientHello
ServerHello



State machine inference
→ ClientHello
← ServerHello

→ Other messages
← Fatal alert / Connection close

ClientHello
ServerHello

Other messages
Fatal alert / Connection close



State machine inference
→ ClientHello
← ServerHello

→ Other messages
← Fatal alert / Connection close

→ ClientHello, ClientHello
← Fatal alert / Connection close

ClientHello
ServerHello

Other messages
Fatal alert / Connection close



State machine inference

ClientHello
ServerHello

→ ClientHello
← ServerHello

→ Other messages
← Fatal alert / Connection close

→ ClientHello, ClientHello
← Fatal alert / Connection close

Other messages
Fatal alert / Connection close

ClientHello
Fatal alert / Connection close



● Deterministic Mealy machine
● Learner

– Adapted L* algorithm by Niese

● Teacher
– Equivalence queries approximated

● Random traces
● Chow's W-method

Learner Teacher

Reset

Output query

Output

Equivalence query

Yes / Counterexample

Automated learning



Automated learning
● LearnLib by TU Dortmund

– Implementation of adapted L* and equivalence algorithms

● Equivalence checking using modified W-method
– Given an upper bound it is guaranteed to find the correct state machine
– Depth specified to search for counter-examples
– After a socket is closed no data will be received

● Custom test harness for TLS
● Manual analysis if we see unexpected behavior



Test harness
● (Almost) stateless TLS implementation
● Minimal state in test harness to handle encryption
● Support to test clients and servers
● All regular TLS messages and Heartbeat extensions

– RSA and DH key exchange
– Client authentication
– Some special symbols that correspond to exceptions in the test harness



Analysis of TLS servers
● 9 TLS implementations

– OpenSSL
– GnuTLS
– Java Secure Socket Extension
– mbed TLS (previously PolarSSL)
– NSS
– RSA BSAFE for C
– RSA BSAFE for Java
– miTLS
– nqsb-TLS

● Every learned model different



Learned models



Learned models



Results
● Used demo applications when provided
● 6 to 16 states
● 6 minutes to over 8 hours

– Under 1 hour if connections are properly closed

– Dependent on implementation specific time-outs (100ms to 1,5s)
● Several new flaws in different implementations



Java Secure Socket Extension
● Possible to skip ChangeCipherSpec message
● Server will accept plaintext data
● Problem also present in client
● Also found by the Prosecco group at INRIA
● Fixed in January 2015



GnuTLS
● Shadow path after sending HeartbeatRequest during 

handshake
● Buffer handshake messages for hash in Finished reset
● Same problem present in the client



OpenSSL
● Sending a ChangeCipherSpec after 

successful handshake gets server in 
invalid state

● Client key set to server key
● Same keys used for both directions
● Fixed in 1.0.1k
● Same issue present in LibreSSL



OpenSSL
● Able to detect EarlyCCS bug by Kikuchi
● By modifying the test harness we can successfully exploit 

this flaw



nqsb-TLS
● Plaintext alerts returned after ChangeCipherSpec
● No security flaw
● Quickly fixed
● Shows it is a useful technique during development
● Different interpretation of the specification



nqsb-TLS
● Plaintext alerts returned after ChangeCipherSpec
● No security flaw
● Quickly fixed
● Shows it is a useful technique during development
● Different interpretation of the specification



Conclusions
● Protocol state fuzzing is a useful technique to find 

security flaws and other bugs related to the 
implementation of state machines

● Everybody interprets specifications differently and makes 
different design decisions

● It would be good to include state machines in 
specifications



Conclusions
● Protocol state fuzzing is a useful technique to find 

security flaws and other bugs related to the 
implementation of state machines

● Everybody interprets specifications differently and makes 
different design decisions

● It would be good to include state machines in 
specifications

Thank you for your attention!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

