
Fuzzing IPC with Knowledge Inference
Kun Yang∗†, Hanqing Zhao‡, Chao Zhang∗†�, Jianwei Zhuge∗†, Haixin Duan∗†

∗Institute for Network Sciences and Cyberspace, Tsinghua University
†Beijing National Research Center for Information Science and Technology

‡Chaitin Security Research Lab

Abstract—Sandboxing provides a strong security guarantee for
applications, by isolating untrusted code into separated compart-
ments. Untrusted code could only use IPC (inter-process commu-
nication) to launch sensitive actions, which are implemented in
trusted (and maybe privileged) code. IPC-related security bugs
in trusted code could facilitate jailbreaks of sandboxing, and thus
are becoming high-value targets. However, finding vulnerabilities
that could be triggered by IPC is challenging, due to the fact that
IPC communication is stateful and format-sensitive.

In this paper, we propose a new fuzzing solution to discover
IPC bugs in IPC services without source code, by combining
static analysis and dynamic analysis. We use static analysis to
recognize format checks and help construct IPC messages of valid
formats. We then use dynamic analysis to infer the constraints
between IPC messages, and model the stateful logic with a
probability matrix. Therefore, we are able to generate high-
quality IPC messages to test IPC services, and discover deep and
complex IPC bugs. Without loss of generality, we implemented a
prototype MACHFUZZER, for a specific complicated and crucial
IPC service, i.e., WindowServer in macOS. This prototype helps
us find 12 previously unknown vulnerabilities in WindowServer
in 48 hours. Among them, three vulnerabilities are confirmed
exploitable, and could be exploited to escape the sandbox and
gain root privilege.

Index Terms—IPC, Fuzzing, macOS

I. INTRODUCTION

The code base of modern applications is getting larger
and larger. Inevitably, they are prone to have vulnerabilities,
e.g., memory corruption bugs which could enable control flow
hijacking attacks. Defenders cannot eliminate all vulnerabili-
ties in an application or stop all potential attacks against it.
Applications often get compromised.

Sandboxing is a promising solution to stop compromised
applications from causing further damages to the system.
In general, it isolates untrusted or vulnerable code of target
applications into confined processes, and drops all sensitive or
privileged permissions of such processes. For example, it could
enforce that no subprocess could get spawned inside the sand-
boxed process. As a result, even in the case that the vulnerable
process is compromised, attackers cannot perform sensitive
actions. Due to its effectiveness, sandboxing is adopted by
more and more modern applications. For example, Google
implemented a sandbox for Chrome, which is later used by
Adobe Reader. Safari has a sandbox built on top of macOS’s
mach IPC mechanism.

Jailbreaking is critical for attackers who intend to perform
sensitive actions. Note that, the sandboxed process could
communicate with other processes (e.g., services with trusted
code) via IPC (inter-process communication). Therefore, to

Resource
Scheduling

I/O Stack DriversVMFS

VMX

sandboxed

Hostd

Plugin

etc.

Virtual
Hardware

VMM

Guest
Machine

Physical Hardwares

S
an

db
ox

Content process

Sandbox Profile

Accessible Daemons

Kernel Mode

IPC Handlers

IOKit/mach traps

Kernel IPC Server

: mach messages

Forwarded by kernel

U
nsandboxed

User Mode

Fig. 1. Illustration of a classic macOS sandbox escape, which exploits vulner-
abilities in the unsandboxed services via a popular macOS IPC mechanism,
i.e., mach IPC.

escape the sandbox, one of the most common ways used by a
compromised sandboxed process is exploiting vulnerabilities
in an IPC counterpart unsandboxed process to launch sensitive
actions, as shown in many previous exploits [1]. Figure 1
illustrates a classic macOS sandbox escape.

So, IPC services that are unsandboxed and privileged have
become the everlasting attack surfaces. Finding IPC-related
vulnerabilities in such services is thus crucial to the security
of the sandbox, both for attackers and defenders.

Currently, fuzzing is the best practice for finding IPC
vulnerabilities, which involves repeatedly sending an arbitrary
sequence of randomly generated IPC messages. Many security
experts and researchers have proposed different fuzzers for
different IPC mechanisms or targets. The fuzzer [2] leverage
coverage-guided fuzzing to test the Android Binder IPC.
Another fuzzer [3] specifically targets parcelization in An-
droid Binder IPC. There are also some researches on fuzzing
Intent, i.e., a high-level messaging object used in IPC between
Android applications, to detect vulnerabilities that could cause
logical permission leaks [4]. RPC (remote procedure call)
is the IPC mechanism used in Windows. Back to 2006,
iSEC published a fuzzing tool [5] to test Windows RPC. It
utilized a straightforward and random-fashion method, which
hooks handlers of named pipes and then changes the values
randomly. Ret2 Systems [6] proposed a passive fuzzer to
test the Mach IPC mechanism in macOS. By using Frida
DBI (dynamic binary instrumentation) framework, this fuzzer
hooks the target process and injects bitflips at runtime into the
hijacked communication channel.

However, existing fuzzing solutions either work in a random
way or fail to handle IPC-specific challenges. As a result, these
fuzzers have a very high failure ratio at generating valid test
cases to test the target IPC services. In other words, most
IPC messages generated by the fuzzer fail to reach deeper
code in target IPC services, not to mention to trigger potential
vulnerabilities in them. We believe there are two challenges
to address when fuzzing IPC services.

First, IPC services usually perform format checks on the
incoming request messages, before actually processing these
messages. For example, the handlers of MIG (Mach Interface
Generator) Mach IPC messages in macOS have built-in inline
code to verify the message headers. Without considering the
format check, randomly generated IPC messages will quickly
be rejected in the early stage of message handling. Therefore,
the fuzzer has to generate well-structured IPC messages in
order to find bugs in IPC services that may hide in deep.

Second, IPC services’ message handling process is usually
stateful, and a sequence of messages is required to trigger
complicated actions. More importantly, the message sequence
should be in a specific order (i.e., ordering dependence),
and the parameters and return values of different messages
are related to each other (i.e., value dependence). In order
to explore the state machine of target IPC services and
find potential vulnerabilities, the fuzzer has to generate IPC
message sequences satisfying these dependences.

In this paper, we propose a new fuzzing solution to discover
IPC bugs in IPC services without source code. To address
the challenges above, we combine static and dynamic analysis
to infer the knowledge of IPC messages, including message
format constraints and message sequences’ order and value
dependences. With these knowledge, our fuzzer can better
generate sequences of IPC messages to test target IPC services,
and uncover deep bugs in IPC services.

More specifically, we use static analysis to analyze the bi-
nary code of target IPC services, in order to extract constraints
of IPC message formats. One of the challenge to solve here is
that, we have to first recognize the message handler functions,
before extracting the IPC message format constraints. Our
solution is following the message dispatching process. By
feeding the extracted constraints to the follow-on message
generators, we could use constraint solvers to generate valid
IPC messages, in order to bypass the message format checks
and reach deeper code during fuzzing.

Moreover, we use dynamic analysis to infer the dependences
between IPC messages. First, we collect a large number of
valid message sequences by monkey testing [7]. Then we infer
the dependences between messages by building a probability
matrix and a lookup table to model the transfer probability.
Following this probability matrix and lookup table, our fuzzer
could generate sequences of IPC messages satisfying the order
and value dependences with a higher probability, and thus
could trigger stateful actions in target IPC services as well
as trigger hidden vulnerabilities.

To evaluate our design, we implemented a prototype
named MACHFUZZER to fuzz a specific IPC service, i.e.,

misc.defs
programmer-provided
MIG specification file

miscServer.c
MIG-generated server
interface module

misc.h
MIG-generated user
interface header

miscUser.c
MIG-generated user
interface module

/user/bin/mig

server_main.c
programmer-provided

server code

client_main.c
programmer-provided

client code

server
compiled server program

client
compiled client program

misc_types.h
any programmer-

provided header file(s)

#include

C compiler

#include

C compiler

Fig. 2. Stub Generation Process of MIG IPC [8]

WindowServer, a critical system component responsible for
graphic operations in macOS. This IPC service processes
complicated IPC messages, and is also a well-known target
for attacks in real world. For example, it has been exploited
multiple times in Pwn2Own contests in history, to escape the
Safari’s sandbox.

We evaluated our system on macOS High Sierra (version
10.13) in 4 virtual machines for 48 hours. The results showed
that, MACHFUZZER is very effective at finding unknown
vulnerabilities. It has discovered 12 unknown bugs on the
latest macOS at the time of this writing. Among them,
three vulnerabilities are confirmed exploitable, and could be
exploited to escape the sandbox and gain root privilege.

Overall, this paper makes the following contributions:
1) We proposed a general fuzzing solution to test binary IPC

services with knowledge inference.
2) We proposed a solution to use static binary analysis to

extract IPC message format constraints and help construct
valid IPC messages.

3) We proposed a solution to use dynamic analysis to infer
constraints between IPC messages and help generate
sequences of IPC messages.

4) We implemented a prototype MACHFUZZER and eval-
uated on an important IPC service WindowServer in
macOS, and found 12 0day vulnerabilities.

II. BACKGROUND AND MOTIVATION

In this section, we first depict some fundamentals of IPC
mechanisms. Also, we give a brief introduction to existing
IPC fuzzers and explain why they cannot test IPC software
effectively. We then summarize the challenges in IPC fuzzing.

A. Fundamentals of IPC

Interprocess communication (IPC) refers to the mechanisms
provided by operating systems, which allows processes to
manage shared data or collaborate. Typically, IPC involves two
parties, i.e., a client and a server, where the client requests data
or service and the server responds to client requests [9].

In general, IPC services are implemented in two different
ways. First, commodity OSes and software provide interface

definition language (IDL) for developers to build IPC services,
which is the most widely adopted way. Developers can specify
message format and IPC interfaces in the IDL file, which will
later be compiled to code stubs (including message format
validation) for IPC client and server. A bunch of IDLs have
been designed to fit different use cases, such as MIG [10],
MIDL [11], and AIDL [12].

Let’s take MIG (Mach Interface Generator) IPC, the IDL-
based IPC in macOS, as an example. Fig. 2 shows the
procedure of how MIG IPC is used to construct IPC client
and server. First of all, developers define message type and
prototype in IDL files (e.g. misc.defs in Fig. 2). Next, the
IDL compiler /usr/bin/mig will compile the IDL files
and generate code stubs for client and server (e.g. misc-
Server.c, miscUser.h and misc.h in Fig. 2). Finally,
developers fulfill the implementation based on the stub files.

The second way of implementing IPC service is reusing sys-
tem APIs. Some OSes provide IPC programming framework
for developers to build IPC services. Those IPC frameworks
are usually encapsulation of primary IPC primitives, such as
message sending and receiving. For example, XPC [13] is an
IPC framework in macOS. Developers can register custom IPC
services and define message handlers by calling XPC APIs.

The IPC message format is crucial for the communication.
In macOS, an IPC message is consisted of a message header
and a message body. The message header specifies the type of
the message (i.e., ID), the size of message and some attributes
(or flags) of the message.

B. IPC Fuzzing

Fuzzing, a highly popular software testing strategy, has
become one of the de-facto standard strategies to uncover
software vulnerabilities. In this section, we describe some
existing IPC fuzzers and explain why they are ineffective to
uncover deep bugs. In general, these fuzzers test the IPC server
by sending a sequence of proper IPC messages that can be
accepted by the target.

1) Hooking-based IPC Fuzzers: Some fuzzers attempt to
fuzz the IPC services by intercepting IPC messages sending
on the fly. We call such fuzzers hooking-based IPC fuzzers.
Ret2 Systems implemented a fuzzer [6] that intercepts IPC
messages delivered to WindowServer and injects bit flips into
the intercepted messages. iSEC developed a fuzzing tool [5]
that hooks primitives of named pipe IPC in Windows.

Fuzzers in this category generate test cases passively. Their
code coverage primarily depends on the variety of intercepted
IPC messages, which is hard to manipulate. Besides, even if
a crash is found, it is hard to reproduce, since the original
intercepted message is not recorded during fuzzing.

2) Grammar-based IPC Fuzzers: Existing fuzzers [2], [3],
[14], [15], [16], [17] use pre-defined grammar template to
generate structured messages. However, most of them need
the assistant of source codes. Meanwhile, they fail to explore
the dependence between messages. For example, the Chrome
IPC fuzzer records some messages in the process and mutates

1// a1 is a pointer to a mach message
2// Check if it is a complex message
3if (*(_DWORD *)a1 >= 0
4 // check the number of descriptors
5 || *(_DWORD *)(a1 + 24) != 2
6 // check message size
7 || *(_DWORD *)(a1 + 4) != 76
8 // check the type of the first descriptor
9 || (v3 = -300, (*(_DWORD *)(a1 + 36) & 0

xFF000000) != 0x1000000)
10 // check the type of the second descriptor
11 || (*(_DWORD *)(a1 + 52) & 0xFF000000) != 0

x1000000
12 || ...) { fail(); } // refuse the message}
13else { acceptTheMessage(); }

Listing 1. Message Format Check Example of MIG IPC Handlers

the content by some pre-defined FuzzTraits templates. It could
help the fuzzer to generate a lot of formatted messages
blindly and correctly. But it fails to generate a sequence
of dependence-aware messages dynamically. Chizpurfle [17]
is designed for fuzzing proprietary Android services using
a rich library of fuzz operators. It utilizes dynamic binary
instrumentation to collect code block coverages as feedbacks,
enabling the gray-box fuzzing. However, it did not consider
the dependence between messages either.

C. Challenges of Fuzzing IPC Services

We encapsulate the challenges of fuzzing IPC services by
studying some examples in macOS, and propose our general
intuitions in designing MACHFUZZER to surmount these chal-
lenges. Without loss of generality, our insights are applicable
to other IPCs as well.

1) Formulating Messages with Proper Format: Many IPC
services validate the format of messages before handling
them. Especially for IDL-based IPC, the format check code
is added during IDL compilation. Without considering the
message format, inputs generated by fuzzers will immediately
be rejected. Some grammar-aware fuzzers have some basic
ability to infer type information, but they rely on source code.

Listing. 1 presents an example of an MIG IPC handler,
which is a pseudocode decompiled from the binary code by
Hex-Rays decompiler. In the code snippet, it checks different
fields of the mach message, such as message type, the message
size and number of descriptors. If the message does not pass
the check, the IPC invocation will fail.

The basic idea of our approach to tackle the problem is
applying static binary analysis to extract the constraints of the
message format, and use it to generate valid messages.

2) Identifying Message Handlers: To enable static analysis
of message format constraints, we first need to identify mes-
sage handlers. For open source IPC services, message handlers
can be easily found by reviewing the source code. However,
our design aims at fuzzing closed source IPC software. Given
the IPC binaries with symbols stripped, collecting all the
entries of IPC handlers will be challenging.

We discuss our basic idea to overcome the challenge accord-
ing to how the IPC services are implemented. For IPC services

1void makeScreenCapture() {
2 CGDirectDisplayID displays[256];
3 uint32_t dispCount = 0;
4 CGImageRef img;
5 CGDirectDisplayID dispId;
6 // Invoke IPC handler _XGetDisplaySystemState()
7 SLGetActiveDisplayList(256, displays, &dispCount);
8 for (int i = 0; i < dispCount; i++) {
9 dispId = displays[i];

10 // Invoke IPC handler _XHWCaptureDesktop()
11 img = SLDisplayCreateImage(dispId);
12 ...
13 }
14}

Listing 2. Code snippet that utilizes the mach IPC to take screen captures

built on top of IPC framework, message handlers are registered
and created via specific APIs. Handlers can be identified by
tracking these API calls. For IDL-based IPC services, there is
no explicit APIs to register handlers. Handlers can be identified
by tracking the procedure of message dispatching.

3) Generating Dependence-aware Message Sequences:
IPC message handling is stateful. A message may only be
consumed when IPC service is in certain state. And to reach
that state, other messages should be consumed first. In other
words, to trigger some complicated IPC functions, a sequence
of dependent messages are required. However, few IPC fuzzers
have taken message dependence into account.

To understand more about dependence between IPC mes-
sages, we present an example in macOS. The code snippet in
Listing 2 is utilizing IPC in macOS to take screen captures.
The two functions prefixed with SL are client APIs provided
by CoreGraphics library, which are used for sending IPC
messages to corresponding handlers. The second IPC call
SLDisplayCreateImage() takes in dispId as input,
which is returned by the first IPC call SLGetActiveDis-
playList().

This example shows some operations like screen captures
could be invoked only when we send IPC messages in a
specific order with specific data, which highlights the difficulty
in message generation. It’s worth noting that, there are two
types of dependences. The first one is ordering dependence,
specifying in which order IPC messages should be sent. The
second one is value dependence, specifying which value in the
previous message reply should be used in the next message.

Ordering Dependence: From the previous example, the
IPC handler _XHWCaptureDesktop() is invoked after the
other handler _XGetDisplaySystemState(), as display
ID should be retrieved first. We call such dependence as
ordering dependence.

Value Dependence: Some IPC handlers take in data returned
from another IPC handler. When a returned value of IPC
handler A is used as input to a call to IPC handler B, we
say that two IPC handlers have value dependence. From
the previous example, display IDs returned by the handler
_XGetDisplaySystemState() is used as input in the
handler _XHWCaptureDesktop().

Existing IPC fuzzers all focus on generating and mutating

hook

message

generate

input

reduce

M������ C��������

log

Message Profiler

execute &
monitor

F	

��

Static
Analyzer

Program

Bugs

Dependency

Messages Input

Message IDs
Constraints

Program'

Fig. 3. Architecture of MACHFUZZER. The upper part is responsible for
knowledge inference, while the lower part is the fuzzer based on the inferred
knowledge. To infer the knowledge, static binary analysis is utilized to
extract message format constraints, and dynamic analysis is utilized to collect
sequences of messages and perform profiling.

a single message itself. To equip our fuzzer with dependence-
aware message generation ability, the two types of dependence
information should be inferred. The basic intuition to solve this
challenge is to dynamically collect normal IPC messages and
make analysis on them.

D. Techniques Involved

Monkey testing is a technique in software testing, where
the user tests the application or system by providing random
inputs (without knowledge or feedback) [7]. Monkey testing
has been widely adopted in automated testing. In our scenario,
we use it to trigger and capture IPC messages in the system.

Static analysis is a type of widely-used solutions which
analyzes programs without actually executing them. It can
be used to extract data-flow and control-flow information
from programs [18]. Symbolic execution is another technique
that interprets a program using symbolic values rather than
concrete values. It is widely used in scenarios that require
reasoning [19].

In this paper, we utilize all these program analysis tech-
niques to learn the IPC message format, and construct valid
messages to bypass sanity checks in programs under test.

III. SYSTEM DESIGN

In this section, we describe the holistic design of our IPC
fuzzer MACHFUZZER.

A. Intuition

As aforementioned, to address the challenges of IPC
fuzzing, we could use knowledge inference to guide fuzzing.

More specifically, we could use static analysis to extract the
IPC message format constraints from binary code, then infer
the dependence between IPC messages by analyzing a large
number of valid message sequences with dynamic analysis.

Further, with the inferred knowledge of IPC messages, we
could build a custom fuzzer to generate messages of valid
format and generate sequences of dependence-aware messages
to test target IPC services.

B. Architecture of MACHFUZZER

The overall architecture is shown in Fig. 3. MACHFUZZER
is composed of 4 modules: an IPC message collector, an IPC
message profiler, a static analyzer, and a fuzzer.

Message collector is used for logging IPC messages going
through the target IPC service. The messages collected will
be fed to message profiler as input. Message profiler is
responsible for analyzing collected messages and generate
dependences between messages and value constants in the
messages. The first two modules establish a dynamic analysis
procedure to assist the fuzzer in message generation.

The static analyzer first recognizes messages handlers and
then analyzes the instructions in message handlers, generat-
ing constraints for different fields in messages. It can help
the fuzzer to produce valid structured messages readily and
effectively.

The message collector hooks target IPC services and records
all incoming messages. Together with some techniques such as
monkey testing [7], the collector could gather a large number
of valid sequences of messages. Then the message profiler
will analyze this corpus of message sequences to infer the
dependences between messages.

Combining the results from the static and dynamic anal-
ysis, the fuzzer component is responsible for generating
dependence-aware and format-valid IPC messages and sending
them to the target IPC services. For the convenience of bug
analysis, an input reducer is also integrated here to help extract
simplified proof of concept (PoC) messages.

In the following subsections, we describe each module in
detail, including design intuitions and decisions.

C. IPC Message Collector

As aforementioned, hooking-based fuzzers usually hook the
target IPC services, to collect valid IPC messages for further
mutation. These fuzzers usually mutate the collected messages
randomly and inject the forged messages into the hijacked
communication channel.

In our fuzzer, we can also take advantage of this hooking-
based technique to collect IPC messages for further use in
dependence analysis. We have addressed the following two
key points in designing the message collector.

First, we need to find a hooking point to log the full content
of all incoming and outgoing messages at runtime. Second, we
need to generate a large number of valid message sequences.
It is obvious that, the bigger amount and variety of messages
we collect, the better result of dependence analysis will be.

Hence, to produce IPC messages as many as possible, and
as diversified as possible, we should drive various IPC clients
to send various IPC requests to the target IPC server, by
triggering different IPC operations in the system. In other
words, we have to make the target IPC service busy.

1) IPC Message Logging: For both framework-based and
IDL-based IPC, there are unified interfaces for clients to send
and receive messages. All IPC messages go through these
interfaces, which are IPC primitives implemented in the form

of library APIs or system calls. For example, MIG IPC relies
on the system call mach_msg in macOS to send and receive
messages.

Therefore, to monitor and record all the IPC messages
passed in and out of the target IPC server, we hook these
IPC APIs or system calls. In the hooks, we also follow fields
in the message object that are potentially pointers, and record
the pointees. For the purpose of value dependence analysis,
we also record message responses.

2) Input Generation: Different IPC services respond to
different input operations. Lots of IPC services are crucial
system services that respond to hardware related events, such
as GUI events, USB events, disk IO events, Wi-Fi events, etc.
We adopt a monkey testing based methodology to trigger the
events, i.e, randomly generate input to simulate related events.

Let’s take WindowServer in macOS, as an example to show
how we generate inputs. WindowServer is responsible for
handling graphics operations, listening to requests via Mach
IPC. Any GUI event will be routed by the system to send IPC
messages to WindowServer. GUI events include window trans-
formation, cursor movement, desktop switching etc., which
can be triggered by mouse and keyboard inputs. Thus we
simulate mouse and keyboard events as a monkey, and wrap
the primitive events to implement high-level GUI operations
like window opening, resizing, minimizing, maximizing and
dragging. By randomly and repeatedly produce mouse and
keyboard inputs and high-level primitives, we could get a
bunch of valid IPC messages generated and sent to the IPC
service, which will then log the messages.

D. IPC Message Profiler

IPC message profiler aims at figuring out the ordering and
value dependences between IPC messages, by learning from
the collected messages. Furthermore, integer value and string
constants are also extracted and put into a dictionary for further
message generation.

1) Ordering Dependence Analysis: The ordering of IPC
messages matters, because some actions need to be fulfilled
by sending multiple IPC messages in specific order. For
example, thinking about a usage scenario in WindowServer,
before setting the property of a window by invoking the
IPC handler _XSetWindowProperty, the user/client needs
to retrieve the window ID by invoking _XFindWindow or
_XCreateWindow first. If the sending order between the
two messages changes, the IPC service handlers will reject
one of the messages.

We quantitatively analyze the ordering dependences be-
tween each pair of messages, with a novel message ordering
dependence probability matrix, as shown below.

ProbabilityMatrix :

P1,1 P1,2 · · · P1,N

P2,1 P2,2 · · · P2,N

...
...

. . .
...

PN,1 PN,2 · · · PN,N

In the matrix, each row and column corresponds to a mes-
sage ID (i.e., type). Let IDi be the message ID corresponding
to the ith row and ith column. Suppose we have a total number
of N messages with different IDs, the matrix should be N x
N. In the matrix, the number located at ith row and jth column
is annotated as Pi,j, which stands for the probability that the
message IDj will appear after the message IDi.

Assuming two messages have ordering dependence, it
means one message should be sent after another. With the
long sequence of collected messages, we use a sliding window
to go through the message queue. The size of the sliding
window is determined according to the complexity of the
state transitions in IPC services. In our evaluation, the target
macOS IPC services are not too complicated, and messages
that have ordering dependence are usually close to each other.
So we choose a small size of 10 for the sliding window in
our implementation. In each window, if message IDj is after
message IDi, we increase Pi,j by 1. In the end, we could
calculate the Pi,j value for each ordered pair of message IDs.
In the last step, Pi,j in the matrix should be normalized to make
the sum of the value in each row (or column) equals to 1.

Message ordering dependence probability matrix roughly
estimats how likely a message follows another, which can
direct the fuzzer to simulate stateful actions.

2) Value Dependence Analysis: Return values (including
those returned in function arguments) of a precedent message,
could be the input parameters of another following message.
This is called value dependence. We employ some heuristics
to analyze value dependences between each ordered pair of
messages.

In each sliding window of the collected message sequence,
after counting the ordering dependence probability, we can
make an additional step to infer the value dependence. More
specifically, we will check if the return values of the first
message and the contents of the second message share the
same integer value or string. If it is true, we will record the
two locations for the matched value.

Thus we can build a lookup table to store these value
dependences. In the table, each row stands for a pair of
ordering dependent messages, and the potential value depen-
dence between this pair will be recorded in this row. Later,
when generating IPC messages, in addition to the ordering
dependence, we would put proper context-sensitive values into
the messages following the lookup table.

In our current prototype, only integer value and null-
terminated ASCII strings are supported. We leave value depen-
dence analysis on more advanced data structures into future
work.

3) Constants Extraction: Messages may contain constants
that are shared across all the messages with same ID (i.e.,
type). The constant or enumeration values may be hard for
the static analyzer to find out from the binary. However, from
the message logs collected by dynamic analysis, we can go
through the messages with same ID and easily extract the
common value as constants to the message.

With these constants, we could further generate valid mes-
sages with correct constants values in specific fields.

E. Static Analyzer

Static analyzer first identifies all the message handlers in
the binary of the IPC server, then it extracts a list of message
IDs with constraints by symbolic execution.

1) Identifying message handlers: As mentioned above,
framework-based IPC uses specific APIs to register and create
message handlers. Typically, handler functions and message
IDs are parameters of these API function. By statically track-
ing these API invocations, we could find all the message
handlers registered in the IPC server.

To identify message handlers for IDL-based IPC, static
analyzer first locates the message dispatcher in the binary of
the IPC server, by statically tracking the invocations of the
handler that is responsible for incoming IPC processing. This
IPC handler is typically a dispatcher, which uses a dispatch
table to dispatch different message IDs to different handlers.
Our static analyzer then leverages a heuristic method to search
for a pointer referenced by the dispatcher, which meanwhile
points to an array of pointers. This array is likely to be the
dispatch table. Finally, by traversing the dispatch table, a list
of message IDs and handlers can be recognized.

2) Extracting constraints: Code for message format check
usually appears at the very beginning of a message handler.
After finding the message handlers, we can quickly locate code
entries for message format check. Typically, the verification
code contains a number of conditional statements to check
common fields in the message header, such as message type
and message size, just as the example illustrated in Listing 1.

The goal for static analyzer is to find code paths that
can make the message pass the format verification. Symbolic
execution can be easily applied in this scenario. Our static
analyzer first symbolizes the input message, then explores the
execution space by symbolic execution. Once the code paths
exploration reaches the points where format verification is
passed, the static analyzer records the constraints along the
execution path.

F. Fuzzer

The fuzzer module takes in ordering and value dependences
(i.e. ordering dependence probability matrix and value de-
pendence table), and a list of supported message IDs with
constraints for each message ID as input. In the following
subsections, we will describe how we generate IPC messages
for testing, and how we reduce the input for bug analysis when
a crash is identified.

1) Test Message Generation: For each test, we will send a
maximum of T messages (T is set to 10000 in our experiment).
For each message, we generate the full content by following
the steps below:

(I) In the first step, we select the message ID to send. We
have two modes to decide which message ID to choose,
random mode and dependence-aware mode. In random

mode, we simply choose a message ID from the full list
randomly. In dependence-aware mode, we could choose
the message ID according to the probability value in the
message ordering dependence probability matrix. Sup-
pose we send a message of ID X in the previous round,
we can look up the ordering dependence probability
values for each message ID sent after message ID X,
and choose one of them in the probability accordingly.
We could switch between the two modes randomly in
order to achieve good message variety and ordering
dependence at the same time. In our implementation,
we use the two modes in probabilities of half and half.

(II) In the second step, we use constraint solver to solve the
constraints of selected message ID generated by static
analyzer, and filled the results in corresponding fields
of the message. For example, the fields of message type
and size for selected message ID will be figured out
from the constraints in this step.

(III) When the message ID is selected in dependence-aware
mode, we may also have value dependences between
the previous message and current message. By looking
up the value dependence table, we could infer which
integer or string value in the reply of previous message
is used in current message. This dependent value also
can be slightly mutated (e.g. bit flipping). When the
message ID is selected in random mode, we do not
generate dependent values in the message.

(IV) Constants extracted by message collector and message
profiler could be used to fill into the corresponding
location in the message.

(V) In the last step, we still have unspecified data in the
message, which is not detected to have constraints in the
format check, value dependences and constant values.
We just fill them with randomly generated data.

We logged the full content of every message we sent.
When a crash is triggered, proof of concept input could be
reproduced for bug analysis.

2) Input Reducing: In our crash logs, the input usually
contains thousands of messages. It is extremely difficult to
figure out the root cause of the crash, since too much noise
input is involved.

To remove the irrelevant messages in the proof of con-
cept and effectively reduce the input, we employ a simple
but effective fix-point algorithm—bisection, which has been
wieldy utilized in the community. When start reducing, the
reducer will select 1/2 in a test case randomly. If the rest
part can trigger the bug continuously, the reducer will reject
the selected content then starts a new iteration. By contrast,
if it cannot trigger the bug again, the reducer will select 1/4,
1/8, 1/16, ... , 1/n of the whole content randomly until it can
trigger the bug again. As a result, we could fetch a minuscule
reproducible case which can trigger the bug steadily.

IV. IMPLEMENTATION

MACHFUZZER is implemented in a mixture of Python
and Objective-C and composed of several compartmentalized

building blocks.
a) Message collector and profiler.: The messages are

traced and collected by a script of Frida DBI framework.
For input generation, we use PyUserInput library to trigger
keyboard and mouse events and manipulate graphics layout
automatically. The message profiler is written in Python.

b) Static analyzer.: To automatically identify and locate
the message handlers, we use IDA Python APIs to extract
some necessary information of it. Besides, we utilize IDA
hex-rays to obtain the decompiled code of entries of message
handlers; and thus, we use KLEE, a symbolic execution
engine based on LLVM, to generate numerous proper message
headers.

c) Fuzzer and infrastructures.: We run the fuzzer inside
macOS virtual machines. To avoid an explosion of recorded
messages during fuzzing, we specify an upper limit on the
number of messages sent in each round of fuzzing. Before
each round of fuzzing, we reset the fuzzing environment
to a clean state by reverting to a prepared virtual machine
snapshot, which is automated by VMware API. Moreover, the
component responsible for generating and sending message
sequences is implemented in Objective-C, while the status of
target IPC servers is monitored by LLDB-Python scripts.

V. EVALUATION

We performed empirical evaluations to answer the following
questions regarding the efficiency of MACHFUZZER.

(I) Can MACHFUZZER find realistic vulnerabilities?
(II) Is dependence analysis useful in finding the vulnerabil-

ities?
(III) Compared to existing mach IPC fuzzers, how does

MACHFUZZER perform?

A. Experimental Setup

To evaluate the bug hunting capability of MACHFUZZER,
we ran it on 4 virtual machines running macOS High Sierra
version 10.13 and 4 virtual machines running macOS Mojave
10.14, on 4 vCPUs with 8 GB of memory. The host machine
is running VMware ESXi 6.5 on dual Intel Xeon E5-2683v3
CPUs with 128 GB of memory. Meanwhile, the fuzzer has
been applied to WindowServer, a closed source system com-
ponent in macOS.

1) Dynamic Analysis (Profiler): We ran the message col-
lector for half an hour in a single virtual machine and
collected around 500,000 messages triggered by generated
input. It took message profiler about 10 minutes to generate
the results, including message ordering dependence probability
matrix, value dependence table and possible constants for each
message ID. We choose sliding window size as 10.

2) Static Analysis: We ran the static analyzer on the bi-
naries, which contains all the code of IPC handlers. It took
around 10 minutes to extract the constraints for a total of 584
message handlers.

Idx Crash Point IPC Handler Error Type Impact
1 XHWCaptureWindowListToIOSurface XHWCaptureWindowListToIOSurface NULL pointer deref DoS(NULL)
2 WSWindowHasActiveBlur XHWCaptureWindowListToIOSurface NULL pointer deref DoS(NULL)
3 PKGSpaceIsOrderedIn / EXC BAD ACCESS DoS
4 CFHash XGetWindowProperty NULL pointer deref DoS(NULL)
5 PKGSpacesWindowDidUpdateConstraints block invoke XPackagesSetWindowConstraints Assert error DoS
6 x list create cf type array XCopyManagedDisplaySpaces EXC BAD ACCESS DoS
7 PKGWindowSetMovementParent XSetWindowOriginRelativeToWindow NULL pointer deref DoS(NULL)
8 PKGSpaceContainsWindow block invoke XPackagesAddWindowToDraggingSpace Use after free exploitable
9 PKGSpaceIsOrderedIn XSetWorkspace Type confusion exploitable
10 CFTypeCollectionRelease XSetConnectionProperty Out of bound access exploitable
11 CFBasicHashAddValue XRegisterClient Integer Overflow DoS
12 XGetDebugOption XGetDebugOption Out of bound access infoleak

TABLE I
UNIQUE WINDOWSERVER BUGS FOUND ON MACOS WITH MACHFUZZER

3) Fuzzing: After static and dynamic analysis results were
ready, we ran the fuzzer on all the 8 virtual machines for 48
hours. For each time of fuzzing, we generate a maximum of
10000 messages. Hundreds of crashes were produced.

B. Bugs Discovered

We categorized the crashes according to the context infor-
mation of the crash scene and do manual investigation. Finally,
we figured out MACHFUZZER has found a total number
of 12 unique bugs that are unknown previously. Combining
manual analysis with crash log, the bugs have a variety of
error types including NULL pointer dereference, bad access
of memory, assert error, use after free, integer overflow, and
type confusion, as summarized in Table I.

The second column shows which function the crashing in-
struction belongs to. We can see in the table, the memory error
could happen in different functions that belong to different
libraries, since WindowServer replies on multiple libraries.

The third column indicates which IPC handler each crash
happens in. The bug of index 3 crashes in a callback function
instead of any IPC handler.

The fourth column describes the cause of each crash. Most
of the crashes were due to memory access error except
one is caused by assert error. By manually analyzing the
memory errors, we filled more specific vulnerability types in
the table. Other than the simple NULL pointer dereference
bugs, MACHFUZZER has found 4 more advanced memory bug
types: use after free, type confusion, out of bound access and
integer overflow.

Finally, the fifth column depicts the impact of each bug.
We manually investigated each of them, and label them
either with “DoS” or “exploitable”. For the bug labeled with
“infoleak”, we have written a working exploit to achieve
address information leakage. For each of the 3 bugs labeled
with “exploitable”, we have written some working exploits to
achieve sandbox escape and privilege escalation. It is worth
mentioning that, we have successfully chained one of the 3
bugs with Safari exploit to demo a full remote root attack
against macOS in Pwn2Own 2017. All the bugs have been
reported to Apple and got fixed. The last 5 bugs have been
assigned CVE numbers CVE-2017-2537, CVE-2018-4449,
CVE-2018-4450, CVE-2018-4415, and CVE-2019-6220, re-

1void trigger() {
2 // Invoke IPC handler
3 // _XPackagesAddWindowToDraggingSpace()
4 SLSPackagesAddWindowToDraggingSpace(window_id1);
5 // Create a new space
6 // Invoke IPC handler _XSpaceCreate()
7 int sid = SLSSpaceCreate(gDefaultCID, 0, 0);
8 // Destroying Space
9 // Invoke IPC handler _XSpaceDestroy()

10 // Free the Dragging Space
11 // leaving a dangling pointer
12 SLSSpaceDestroy(gDefaultCID, sid - 1);
13 // Invoke IPC handler
14 // _XPackagesAddWindowToDraggingSpace()
15 // Use the dangling pointer
16 SLSPackagesAddWindowToDraggingSpace(window_id2);
17}

Listing 3. Proof-Of-Concept of CVE-2017-2537 that was discovered by
MACHFUZZER

spectively. Note that CVE-2018-4415 (Integer Overflow in
CA::Render::InterpolatediFunction::Interp-
olatedFunction) was not assigned to us, because another
security researcher reported it before us.

C. Case Study

To understand how dependence analysis helps us to find
bugs, let’s take one of the 3 exploitable bugs as an example.

The use after free bug CVE-2017-2537 in WindowServer
can be triggered by 4 IPC messages. In the code snippet
from Listing 3, all the functions that are prefixed with SLS
are client APIs, which are equivalent to sending an IPC
message to the corresponding handler. For example, calling
SLSSpaceCreate is equivalent to sending an IPC message
to _XSpaceCreate. For convenience, we do not show the
full content of the messages that can trigger the bug, we use
client API calls to show the specific steps to trigger the bug.

The first IPC message, i.e. a call to SLSPackagesAddWin-
dowToDraggingSpace() allocated a structure on the heap,
which is dragging space. Then a new space is created by
sending the second IPC message, i.e. calling SLSSpace-
Create(). Space ID (sid) is returned. The third IPC call
invokes SLSSpaceDestroy() with parameter sid - 1,
which refers to the dragging space allocated in the first step
so that the dragging space is deallocated, leaving a dangling
pointer. Finally, the last IPC message triggers the use of freed
dragging space and lead to crash.

In the process of producing the use after free vulnerability,
the IPC messages have both ordering and value dependences.
IPC handler _XSpaceDestroy() should be invoked af-
ter _XPackagesAddWindowToDraggingSpace() and
_XSpaceCreate(). Moreover, the integer space ID number
passed to the handler _XSpaceDestroy() in the IPC
message, is dependent on the return value of SLSSpace-
Create(), which is also a space ID number returned in the
IPC handler _XSpaceCreate()’s reply.

By inferring the ordering dependences and value depen-
dences, we can help the fuzzer to generate complicated input
that can trigger deep bugs. The use after bug above is a good
example for dependence analysis.

D. Comparison against Existing Fuzzer

How does MACHFUZZER compare with existing IPC
fuzzers? To answer this question, we compared MACHFUZZER
against the fuzzer described in the blog of Ret2 Systems [6],
which is the only existing IPC fuzzer in macOS prior to our
work. Although Ret2 Systems’s fuzzer is not open sourced,
their idea is simple enough to reimplement the tool. Another
reason is that it also targets WindowServer and has already
found one exploitable bug.

Ret2 Systems’s fuzzer is a hooking-based fuzzer. By in-
stalling API hooks in WindowServer, it mutates IPC messages
by bit flipping. The fuzzer does not generate the message from
scratch, and all the input comes from IPC clients running
on the system. To increase the variety of message traffic to
WindowServer, they simply hold the ‘Enter’ key to trigger
GUI events.

We reimplemented Ret2 Systems’s fuzzer according to the
blog and ran it on the same machines for the same time
duration. It discovers only 2 Null pointers dereference bugs,
which also can be found by MACHFUZZER. MACHFUZZER
can find 5 times more bugs than this fuzzer.

After further investigation, we found that it is reasonable
that Ret2 Systems’s fuzzer did not do well. Hooking-based
fuzzer does not generate message itself, so the variety of
message types for fuzzing is limited. Holding the ‘Enter’ key,
we counted the number of different message IDs received by
WindowServer during fuzzing. The resulting number is 92/584
(15.76%). The message collector of MACHFUZZER is also
running in the similar way with hooking-based fuzzer, but
by running an input generation module, we have collected
292/584 (51.03%) messages, which is 3 times more than Ret2
Systems’s fuzzer. It proves that our input generation module
effectively increased the amount and variety of collected IPC
messages.

VI. RELATED WORK

A. Mutation-Based Fuzzing

Mutation-based fuzzing approaches such as AFL-family are
proposed to produce reasonable test cases by mutating some
well-formed input cases. AFL, AFLgo, and OSSFuzz [20],
[21] use code coverage to guide the mutation of corpus.
CollAFL [22] improves the bitmap algorithm to reduce the

edge collision ratio to nearly zero. AFLFast [23] utilize
markov chain to improve code coverage. Angora [24] uses
gradient descent algorithm to solve constraints and improve
code coverage. Driller [25] uses symbolic execution when
fuzzing is stuck. They could generate high code coverage with
the guidance of feedbacks. However, most of them need the
assistant of source codes to apply necessary instrumentation.
Besides, they cannot generate dependence-aware workloads.
MACHFUZZER utilizes the basic concept of it to examine IPC
servers with proper message headers formulated by symbolic
execution.

B. Generation-Based Fuzzing

Generation-based fuzzing is effective to discover vulnerabil-
ities in interpreters, compilers and parsers. Numerous studies
[26], [27], [28] leverage pre-defined templates and rules to
generate html, css, or javascript codes to fuzz rendering engine
of browsers. They could generate numerous correct input
readily. However, these fuzzers do not take the dependence
of the execution context into account.

C. IPC Fuzzing

Fuzzing has been effectively applied in IPC fuzzing for
years, and lots of bugs in various IPC implementations have
been discovered. According to the different techniques em-
ployed, previous works in IPC fuzzing can be categorized into
the following classes.

1) Hooking-based IPC Fuzzers: Hooking-based IPC
fuzzers [5], [6] do not construct messages from scratch. They
capture and mutate test cases in a passive way.

Their advantage is that mutations all happen on valid mes-
sages, and inputs are not rejected quickly. However, compared
with generation-based fuzzing and our technique, hooking-
based methodology has lower message type coverage, since
it replies on the variety of messages that can be captured.
Moreover, it also has a drawback in reproducing the input
when a crash has been found.

2) Grammer-based IPC Fuzzers: Grammer-based IPC
fuzzers [2], [3], [15], [16] utilize grammar or structure in-
formation to facilitate IPC message generation. However, the
grammar template must be written by human researchers with
knowledge from manual analysis of source code. All the
previous IPC fuzzing tools in this category reply on source
code, IDL decompiler or manual analysis to infer the message
structure, and fail to consider message dependences, while our
fuzzer performs knowledge inference directly from binaries.

D. Static Analysis of IPC Services

There are also several static analysis approaches dedicating
to find logical issues in IPC services. Kratos [29], Ace-
Droid [30] uses static analysis frameworks to examine the
permission issues in Android services. [31] utilizes differential
analysis algorithms to detect security configuration changes
introduced by Android customization. Invetter [32] leverages
static analysis to validate the secure use of sensitive input
validations in Android framework.

VII. DISCUSSION

The ideas we have proposed in this paper for fuzzing IPC
is general and can be applied to other systems. However,
there exits some factors that will affect the implementation.
First, static analyzer and symbolic engine should be altered
to adapt to the programming language used in targeting IPC.
Second, since different IPC services respond to different input
operations, input generation in monkey testing should fit
the functionalities of targeting IPC services. Last, the basic
executor and monitor of the fuzzer should be modified to run
under the targeting IPC mechanism and operating systems.

VIII. CONCLUSION

We present a novel IPC fuzzer that can infer format of
messages and dependence information between messages to
improve the effectiveness of bug discovery. By performing
static analysis on code of message format checks, our fuzzer
constructs IPC messages of valid formats. By performing
dynamic analysis on messages captured during monkey test-
ing, our fuzzer extracts dependence information and help
to generate stateful IPC messages. Then we implemented
MACHFUZZER, and evaluated it on macOS. As a result,
we found 12 previously unknown vulnerabilities in Win-
dowServer. Our experiments show that our method has a
practical impact on finding IPC vulnerabilities.

IX. ACKNOWLEDGMENT

We would like to thank our shepherd, Domenico Cotroneo,
and the anonymous reviewers for their comments and advice.
This work was supported in part by National Natural Science
Foundation of China under Grant 61772308 and U1736209,
BNRist Network and Software Security Research Program
under Grant BNR2019TD01004 and BNR2019RC01009, and
Tsinghua University Initiative Scientific Research Program
under Grant 20151080436.

REFERENCES

[1] iOS/macOS Safari Sandbox Escape via QuartzCore Heap Over-
flow. https://blogs.securiteam.com/index.php/archives/3796. Last ac-
cessed Feb. 2019.

[2] G. Gong. Fuzzing android system services by binder call to escalate
privilege. https://www.blackhat.com/docs/us-15/materials/us-15-Gong-
Fuzzing-Android-System-Services-By-Binder-Call-To-Escalate-
Privilege.pdf. Last accessed Feb. 2019.

[3] Q. He. Hey your parcel looks bad fuzzing and exploiting parcelization
vulnerabilities in android. https://www.blackhat.com/docs/asia-
16/materials/asia-16-He-Hey-Your-Parcel-Looks-Bad-Fuzzing-And-
Exploiting-Parcelization-Vulnerabilities-In-Android.pdf. Last accessed
Feb. 2019.

[4] K. Yang, J. Zhuge, Y. Wang, L. Zhou, and H. Duan, “Intentfuzzer:
detecting capability leaks of android applications,” in Proceedings of
the 9th ACM symposium on Information, computer and communications
security. ACM, 2014, pp. 531–536.

[5] J. Burns. Fuzzing Win32 Interprocess Communication Mechanisms.
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-
Burns.pdf. Last accessed Feb. 2019.

[6] B. Patrick and G. Markus. (2018) Cracking the Walls of the
Safari Sandbox. https://blog.ret2.io/2018/07/25/pwn2own-2018-safari-
sandbox/. Last accessed Feb. 2019.

[7] B. Hofer, B. Peischl, and F. Wotawa, “Gui savvy end-to-end testing with
smart monkeys,” in 2009 ICSE Workshop on Automation of Software
Test. IEEE, 2009, pp. 130–137.

[8] J. Levin, Mac OS X and iOS Internals: To the Apple’s Core, 1st ed.
Birmingham, UK, UK: Wrox Press Ltd., 2012.

[9] Microsoft. Interprocess Communications. https://docs.microsoft.com/
en-us/windows/desktop/ipc/interprocess-communications. Last accessed
Feb. 2019.

[10] M. R. T. Richard P. Draves, Michael B. Jones. MIG - The MACH
Interface Generator. http://www.cs.cmu.edu/afs/cs/project/mach/public/
doc/unpublished/mig.ps. Last accessed Feb. 2019.

[11] Microsoft. Microsoft Interface Definition Language. https://docs.
microsoft.com/en-us/windows/desktop/Midl/midl-start-page. Last ac-
cessed Feb. 2019.

[12] A. D. Documentation. Android Interface Definition Language (AIDL).
https://developer.android.com/guide/components/aidl. Last accessed Feb.
2019.

[13] Apple. Apple XPC. https://developer.apple.com/documentation/
foundation/xpc. Last accessed Feb. 2019.

[14] S. E. Lab. RPC Forge. https://github.com/sogeti-esec-lab/RPCForge.
Last accessed Feb. 2019.

[15] Google. Chromium IPC fuzzer. https://chromium.googlesource.com/
chromium/src.git/+/65.0.3283.0/docs/ipc fuzzer.md. Last accessed Feb.
2019.

[16] N. williamson. Chromium AppCache Fuzzer. https://cs.chromium.org/
chromium/src/content/browser/appcache/appcache fuzzer.cc. Last ac-
cessed Feb. 2019.

[17] A. K. Iannillo, R. Natella, D. Cotroneo, and C. Nita-Rotaru, “Chizpurfle:
A gray-box android fuzzer for vendor service customizations,” in 2017
IEEE 28th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2017, pp. 1–11.

[18] M. Pistoia, S. Chandra, S. J. Fink, and E. Yahav, “A survey of static
analysis methods for identifying security vulnerabilities in software
systems,” IBM Systems Journal, vol. 46, no. 2, pp. 265–288, 2007.

[19] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[20] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2017, pp. 2329–
2344.

[21] Google. OSS-Fuzz - Continuous Fuzzing for Open Source Software.
https://github.com/google/oss-fuzz. Last accessed Feb. 2019.

[22] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL:
Path sensitive fuzzing,” in 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018, pp. 679–696.

[23] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” IEEE Transactions on Software Engi-
neering, 2017.

[24] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 711–725.

[25] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” 01 2016.

[26] Mozilla. Dharma: A generation-based, context-free grammar fuzzer.
https://github.com/MozillaSecurity/dharma. Last accessed Feb. 2019.

[27] S. Veggalam, S. Rawat, I. Haller, and H. Bos, “Ifuzzer: An evolutionary
interpreter fuzzer using genetic programming,” vol. 9878, 09 2016, pp.
581–601.

[28] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with Code Fragments,”
in Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12). Bellevue, WA: USENIX, 2012, pp. 445–458.

[29] Y. Shao, Q. A. Chen, Z. M. Mao, J. Ott, and Z. Qian, “Kratos:
Discovering inconsistent security policy enforcement in the android
framework.” in NDSS, 2016.

[30] Y. Aafer, J. Huang, Y. Sun, X. Zhang, N. Li, and C. Tian, “Acedroid:
Normalizing diverse android access control checks for inconsistency
detection.” in NDSS, 2018.

[31] Y. Aafer, X. Zhang, and W. Du, “Harvesting inconsistent security
configurations in custom android roms via differential analysis,” in 25th
{USENIX} Security Symposium ({USENIX} Security 16), 2016, pp.
1153–1168.

[32] L. Zhang, Z. Yang, Y. He, Z. Zhang, Z. Qian, G. Hong, Y. Zhang,
and M. Yang, “Invetter: Locating insecure input validations in android
services,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 1165–1178.

https://blogs.securiteam.com/index.php/archives/3796
https://www.blackhat.com/docs/us-15/materials/us-15-Gong-Fuzzing-Android-System-Services-By-Binder-Call-To-Escalate-Privilege.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Gong-Fuzzing-Android-System-Services-By-Binder-Call-To-Escalate-Privilege.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Gong-Fuzzing-Android-System-Services-By-Binder-Call-To-Escalate-Privilege.pdf
https://www.blackhat.com/docs/asia-16/materials/asia-16-He-Hey-Your-Parcel-Looks-Bad-Fuzzing-And-Exploiting-Parcelization-Vulnerabilities-In-Android.pdf
https://www.blackhat.com/docs/asia-16/materials/asia-16-He-Hey-Your-Parcel-Looks-Bad-Fuzzing-And-Exploiting-Parcelization-Vulnerabilities-In-Android.pdf
https://www.blackhat.com/docs/asia-16/materials/asia-16-He-Hey-Your-Parcel-Looks-Bad-Fuzzing-And-Exploiting-Parcelization-Vulnerabilities-In-Android.pdf
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Burns.pdf
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Burns.pdf
https://blog.ret2.io/2018/07/25/pwn2own-2018-safari-sandbox/
https://blog.ret2.io/2018/07/25/pwn2own-2018-safari-sandbox/
https://docs.microsoft.com/en-us/windows/desktop/ipc/interprocess-communications
https://docs.microsoft.com/en-us/windows/desktop/ipc/interprocess-communications
http://www.cs.cmu.edu/afs/cs/project/mach/public/doc/unpublished/mig.ps
http://www.cs.cmu.edu/afs/cs/project/mach/public/doc/unpublished/mig.ps
https://docs.microsoft.com/en-us/windows/desktop/Midl/midl-start-page
https://docs.microsoft.com/en-us/windows/desktop/Midl/midl-start-page
https://developer.android.com/guide/components/aidl
https://developer.apple.com/documentation/foundation/xpc
https://developer.apple.com/documentation/foundation/xpc
https://github.com/sogeti-esec-lab/RPCForge
https://chromium.googlesource.com/chromium/src.git/+/65.0.3283.0/docs/ipc_fuzzer.md
https://chromium.googlesource.com/chromium/src.git/+/65.0.3283.0/docs/ipc_fuzzer.md
https://cs.chromium.org/chromium/src/content/browser/appcache/appcache_fuzzer.cc
https://cs.chromium.org/chromium/src/content/browser/appcache/appcache_fuzzer.cc
https://github.com/google/oss-fuzz
https://github.com/MozillaSecurity/dharma

	Introduction
	Background and Motivation
	Fundamentals of IPC
	IPC Fuzzing
	Hooking-based IPC Fuzzers
	Grammar-based IPC Fuzzers

	Challenges of Fuzzing IPC Services
	Formulating Messages with Proper Format
	Identifying Message Handlers
	Generating Dependence-aware Message Sequences

	Techniques Involved

	System Design
	Intuition
	Architecture of MachFuzzer
	IPC Message Collector
	IPC Message Logging
	Input Generation

	IPC Message Profiler
	Ordering Dependence Analysis
	Value Dependence Analysis
	Constants Extraction

	Static Analyzer
	Identifying message handlers
	Extracting constraints

	Fuzzer
	Test Message Generation
	Input Reducing

	Implementation
	Evaluation
	Experimental Setup
	Dynamic Analysis (Profiler)
	Static Analysis
	Fuzzing

	Bugs Discovered
	Case Study
	Comparison against Existing Fuzzer

	Related Work
	Mutation-Based Fuzzing
	Generation-Based Fuzzing
	IPC Fuzzing
	Hooking-based IPC Fuzzers
	Grammer-based IPC Fuzzers

	Static Analysis of IPC Services

	Discussion
	Conclusion
	Acknowledgment
	References

