
KRACE: Data Race Fuzzing for Kernel File Systems
Meng Xu Sanidhya Kashyap Hanqing Zhao Taesoo Kim

Georgia Institute of Technology

Abstract—Data races occur when two threads fail to use
proper synchronization when accessing shared data. In kernel file
systems, which are highly concurrent by design, data races are
common mistakes and often wreak havoc on the users, causing
inconsistent states or data losses. Prior fuzzing practices on file
systems have been effective in uncovering hundreds of bugs, but
they mostly focus on the sequential aspect of file system execution
and do not comprehensively explore the concurrency dimension
and hence, forgo the opportunity to catch data races.

In this paper, we bring coverage-guided fuzzing to the concur-
rency dimension with three new constructs: 1) a new coverage
tracking metric, alias coverage, specially designed to capture
the exploration progress in the concurrency dimension; 2) an
evolution algorithm for generating, mutating, and merging multi-
threaded syscall sequences as inputs for concurrency fuzzing;
and 3) a comprehensive lockset and happens-before modeling for
kernel synchronization primitives for precise data race detection.
These components are integrated into KRACE, an end-to-end
fuzzing framework that has discovered 23 data races in ext4,
btrfs, and the VFS layer so far, and 9 are confirmed to be harmful.

I. INTRODUCTION

In the current multi-core era, concurrency has been a major
thrust for performance improvements, especially for system
software. As is evident in kernel and file system evolutions [1–
4], a whole zoo of programming paradigms is introduced
to exploit multi-core computation, including but not limited
to asynchronous work queues, read-copy-update (RCU), and
optimistic locking such as sequence locks. However, alongside
performance improvements, concurrency bugs also find their
ways to the code base and have become particularly detrimental
to the reliability and security of file systems due to their
devastating effects such as deadlocks, kernel panics, data
inconsistencies, and privilege escalations [5–12].

In the broad spectrum of concurrency bugs, data races are
an important class in which two threads erroneously access
a shared memory location without proper synchronization
or ordering. Obstructed by the non-determinism in thread
interleavings, data races are notoriously difficult to detect and
diagnose, as they only show up in rare interleavings that require
precise timing to trigger. Even worse, unlike memory errors
that tend to crash the system immediately upon triggering, data
races do not usually raise visible signals in the short term and
are often identified retrospectively when analyzing assertion
failures or warnings in production logs [13].

As the state of the practice, file system developers often rely
on stress testing to find data races proactively [14, 15]. By
saturating a file system with intensive workloads, the chance
of triggering uncommon thread interleavings, and thus data
races, can be increased. However, while useful, stress testing

has significant shortcomings: handwritten test suites are far
from sufficient to cover the enormous state space in file system
execution, not to mention keeping up with the rapid increase
in file system size and complexity.

More recently, coverage-guided fuzzing has proven to be a
useful complement to handwritten test suites, with thousands of
vulnerabilities found in userspace programs [16–20]. Without
a doubt, kernel file systems can be fuzzed, and generic OS
fuzzers [21–23] have demonstrated their viability with over 200
bugs found. In addition, file system-specific fuzzers, Janus [5]
and Hydra [6], have extended the scope of file system fuzzing
from memory errors into a broad set of semantic bugs, while
the data race-specific fuzzer, Razzer [24], has shed lights on
data race detection by combining fuzzing and static analysis.
At the core of these fuzzers is the coverage measurement
scheme, which summarizes unique program behaviors triggered
by a given input in bitmaps. The fuzzer compares per-input
coverage against the accumulated coverage bitmaps to measure
the “novelty” of the input and determines whether it should
serve as the seed for future fuzzing rounds.

However, almost all existing coverage-guided fuzzers focus
on tracking the sequential aspect of program execution only
and fail to treat concurrency as a first-class citizen. To illustrate,
branch coverage (i.e., control flow transition between basic
blocks) has been the predominant coverage measurement metric.
But such a metric captures little information about thread
interleavings: different interleavings are likely to result in the
same branch coverage (Figure 2), while only a small fraction
may trigger a data race (Figure 3).

With the sequential view of program execution, existing
kernel fuzzers have been very effective in mutating and
synthesizing single-threaded syscall sequences based on seed
traces [25, 26] to maximize branch coverage. But no heuristics
have been proposed in synthesizing multi-threaded sequences
to maximize thread interleaving coverage. Last but not least,
given that data races often lead to silent failures, treating only
kernel panics or assertions as bug signals is not sufficient: a
data race checker that handles kernel complexity is needed.

To bring coverage-guided fuzzing to the concurrency dimen-
sion, in this paper, we present KRACE, an end-to-end fuzzing
framework that fills the gap with new components in three
fundamental aspects in kernel file system fuzzing:
Coverage tracking [§III] KRACE adopts two coverage tracking
mechanisms. Branch coverage is tracked as usual to capture
code exploration in the sequential dimension, analogous to
the line coverage metric used in unit testing. In addition, to
approximate exploration progress in the concurrency domain,
KRACE proposes a novel coverage metric: alias instruction

pair coverage, short for alias coverage. Conceptually, if we
could collect all pairs of memory access instructions X↔Y such
that X in one thread may-interleave against Y in another thread,
alias coverage tracks how many such interleaving points have
been covered in execution. Consequently, if the growth of alias
coverage stalls, it signals the fuzzer to stop probing for new
interleavings in the current multi-threaded seed input.

Input generation [§IV] KRACE generates and mutates in-
dividual syscalls according to a specification [21, 27]. The
novel part of KRACE lies in evolving multi-threaded seeds and
merging them in an interleaved manner to preserve already-
found coverage as well as to maximize the chances of inducing
new interleavings. Another job of the input generator is to
produce thread schedulings, (to explore the hidden input space).
Although enforcing fine-grained control over thread scheduling
is possible [7], the scheduling algorithm does not scale to
whole-kernel concurrency, as the latter consists of not only user
threads, but also background threads internally forked by file
systems, work queues, the block layer, loop devices, RCUs, etc.,
and the total number of contexts often exceeds 60 at runtime.
As a result, KRACE adopts a lightweight delay injection scheme
and relies on the alias coverage metric as feedback to determine
whether more delay schedules are needed.

Bug manifestation [§V] KRACE incorporates an in-house
developed detector to reason about data races given an
execution trace. In essence, KRACE hooks every memory access
and for each pair of accesses to the same memory address,
KRACE checks whether 1) they belong to two threads and at
least one is a memory write; 2) these two accesses are strictly
ordered (i.e., happens-before relation); and 3) at least one shared
lock exists that guards such accesses (i.e., lockset analysis). The
challenges for KRACE lie in modeling the diverse set of kernel
synchronization mechanisms comprehensively, especially those
uncommon primitives such as optimistic locking, RCU, and
ad-hoc schemes implemented in each file system.

KRACE adopts the software rejuvenation strategy to avoid
the aging OS problem, i.e., every execution is a fresh run from
a clean-slate kernel and empty file system image. Doing so
trades performance for trackability and debuggability but is
worthwhile for data race detection. As shown in §VII-B, the
exploration gradually catches up and bypasses conventional
speed-oriented fuzzers (e.g., Syzkaller) upon saturation. KRACE
also decouples data race checking from state exploration. Unlike
prior works where the bug checker runs inline in each execution,
in KRACE, the checker only kicks in when new coverage (either
branch or alias) is reported. This prevents the expensive data
race checking from slowing down the state exploration while
still preserving the opportunity to test every new execution state
found through fuzzing. The checking progress will eventually
catch up when the coverage growth is toward saturation.

We evaluated KRACE by fuzzing two popular and heavily
tested kernel file systems (ext4 and btrfs) in recent kernel
versions and we found 23 data races, nine of which are
confirmed as potentially harmful races, and 11 are benign
races (for performance or allowed by the POSIX specification).

Fig. 1: A data race found by KRACE. This figure shows the complete
call stack, thread ordering information, and locking information when
the data race happens and the inconsistency it may cause (1 - 4).

Summary: This paper makes the following contributions:
• Concept: The alias coverage metric and interleaved multi-

threaded syscall sequence merging are novel concepts that
make coverage-guided fuzzing more effective in highly
concurrent programs, possibly as a first step toward fuzzing
for a wide range of concurrency bugs.

• Implementation: KRACE’s data race checker encodes a
comprehensive model of kernel synchronization mechanisms
in the form of over 100 kernel patches (for code instrumen-
tation), which are regularly updated as the kernel upgrades.

• Impact: KRACE has found 23 data races and will be
continuously running to find new cases. We will open-
source KRACE as well as the collection of syscall primitives
for multi-threaded execution as quality seeds for future
concurrent file system fuzzing research.

II. BACKGROUND AND RELATED WORK

The past three decades have witnessed several efforts to find
data races using various techniques. In this section, we show a
data race example, discuss the types of approaches that prior
works have taken, and introduce coverage-guided fuzzing as a
generic bug finding technique.
Example. Intuitively, a data race is caused by two threads
trying to perform unordered and unprotected memory oper-
ations to the same address. Figure 1 shows two data races
found by KRACE that happen to make a complete scenario.
The read of full is in race with both writes, as the read is
not protected by the corresponding delayed_rsv->lock as is
done on the writers’ side. According to btrfs developers, this
results in ineffective management of the reserve space internally
used by btrfs, in particular, delays in releasing the reserved
space or space releasing followed by reservation instead of
migration from one reserve to another. Reflected in the call
stack, if the execution takes the order of 1 → 2 → 3 → 4 , then

2

block_rsv_release_bytes is inadvertently releasing bytes that
will be used by the fsync. Such a case might eventually cause
integer overflows in the reserve space but would probably
require thousands of concurrent file operations to trigger.

Data race is a special type of race condition, and hunting
data races in complex software involves two facets: 1) how to
confirm an execution is racy and 2) how to produce meaningful
executions by exploring code and thread-scheduling.

Dynamic data race detection algorithms. Most of the initial
works [28] found race conditions by relying on the happens-
before analysis [29]. However, one of the prime issues with
this approach is that it leads to false negatives. To improve the
detection accuracy, Eraser [30] proposed the lockset analysis,
in which users annotate the common lock/unlock methods and
find atomicity violations. Later, several works [31, 32] proposed
optimizations to either mitigate the overhead or minimize false
positives. To further improve the effectiveness of dynamic data
race detection, several works [33, 34] combined the idea of
happens-before relation with lockset analysis.

Unfortunately, most of these works target userspace programs
using simple synchronization primitives (e.g., those provided by
pthread or Java runtime), which only represent a small subset
of synchronization mechanisms available in the Linux kernel.
KRACE follows the same trend in combining happens-before
and lockset analysis, but unlike prior works, KRACE provides a
comprehensive framework that includes not only simple locking
methods, such as pessimistic locks (e.g., mutex, readers-writer
lock, spinlock, etc.), but also optimistic locking protocols,
such as sequence locks, and other forms of synchronization
mechanisms that imply more than just mutual exclusion, e.g.,
RCU [35] and other publisher-subscriber models.

Both lockset and happens-before analysis require code
annotations and suffer from incompleteness, i.e., a missing lock
model leads to false positives. Several works overcome this
issue with timing-based detection, i.e., a thread is delayed for
a certain duration at some memory accesses while the system
observes whether there are conflicting accesses to the same
memory during the delay [13, 36, 37]. Moreover, most of these
works resort to sampling [13, 34, 37–39], as an optimization
over completeness, to further minimize the runtime overhead
caused by tracking memory accesses or code paths.

However, complete timing-based detection relies on precise
control of thread execution speed and results in an enormous
search space (both in where to delay and how long to delay),
which again is not scalable in the kernel scope. As a result,
in terms of race detection, KRACE resorts to a trial-and-
error approach and fixes false positives introduced by ad-hoc
mechanisms along with the development. Fortunately, due to
the high coding standard and strict code review practice, ad-hoc
synchronization is not common in kernel file systems.

Code/thread-schedule exploration. The effectiveness of a
data race checker depends not only on the detection algorithm
but also on how well the checker can explore execution states
and cover as many code paths and thread interleavings as
possible. For code path exploration, prior detectors mostly rely

on manually written test suites [7, 36, 37] that do not capture
complicated cases. As shown in Figure 1, triggering the data
race would require a user thread to mkdir on the same block the
background uuid_rescan thread is working on, which (almost)
in no way can be specified in manually written test cases. An
alternative is to enumerate code paths statically [40–44], but
this is not scalable. Recent OS fuzzers adopt specification-
based syscall synthesization [5, 6, 21, 27]. However, these
fuzzers mostly focus on generating sequential programs instead
of multi-threaded programs and are not intended to explore
interleavings in syscall execution. KRACE adopts a similar
synthesization approach, but instead of focusing on single-
threaded sequences, KRACE evolves multi-threaded programs.

In the case of thread-schedule exploration, prior approaches
fall into three categories, in decreasing order of scalability but
increasing order of completeness: 1) stressing the random
scheduler with multiple trials [14]; 2) injecting delays at
runtime [13, 36, 37]; and 3) enumerating every possible thread
interleaving [7, 24]. KRACE uses delay injection, a trade-off
among scalability, practicality, and completeness.
Data race detection in kernels. KRACE shares its design
ideology with four prominent works [7, 24, 45, 46]. DataCol-
lider [45] is the first work that tackles this problem by using
randomized sampling of a small number of memory accesses
in conjunction with code breakpoint and data breakpoint
facilities for efficient sampling. DataCollider is simple enough
to detect several bugs in the Windows kernel modules. A similar
strategy is used by Syzkaller [21] with its Kernel Concurrent
Sanitizer [46] (KCSan) module. KCSan is a dynamic data
race detector that uses compiler instrumentation, i.e., software
watchpoints instead of hardware watchpoints, to detect bugs
on non-atomic accesses that violate the Linux kernel memory
model [47] using happens-before analysis.

SKI [7] focuses on comprehensive enumeration of thread
schedules with the PCT algorithm [48] and hardware break-
points. However, SKI permutes user threads only to find data
races in the syscall handlers and thus forgoes the opportunities
to find data races in kernel background threads. Furthermore,
even with user threads only, the number of permutations can
be huge to test thoroughly. In addition, the test suites used by
SKI may be too small to explore an OS for bugs.

Razzer [24] combines static analysis with fuzzing for
data race detection. In particular, Razzer first runs a points-
to analysis across the whole kernel code base to identity
potentially alias instruction pairs, i.e., memory accesses that
may point to the same memory location. After that, per each
alias pair identified, Razzer tries to generate syscalls that reach
the racy instructions at runtime. It does so with fuzzy syscall
generation [21, 27], and sequential syscall traces are generated
first. Once the alias relation is confirmed in the sequential
execution, the trace is then parallelized into multi-threaded
traces for actual data race detection.

Razzer presents an elegant pipeline for data race fuzzing, but
it can be further improved: 1) running points-to analysis [49]
on kernel file systems produces millions of may-alias pairs,
which is almost impossible to enumerate one by one; 2) even

3

for one alias pair, how to generate syscalls that may reach the
racy instructions is less clear. KRACE aims to improve both
aspects with the novel notion of alias coverage. Instead of pre-
calculating the search space with points-to analysis, KRACE
relies on coverage-guided fuzzing to expand the search in the
concurrency dimension gradually. Analogically, this is similar
to not enumerating every path in the control-flow graph but
instead using an edge-coverage bitmap to capture the search
progress. Doing so also eliminates the concern on how to
generate syscalls that lead execution to specific locations.

Fuzzing in general. Fuzzing has proven to be a practical
approach to find bugs in today’s software stack, both in the
userspace [16, 20, 50–54] and in the kernel space [5, 6, 21,
22, 27, 55]. Unfortunately, existing works cannot be trivially
adopted for data race fuzzing. One reason is that the main
focus of fuzzing has been on finding memory corruptions or
triggering assertions. Although Hydra [6] extends the scope
beyond memory errors into semantic bugs in file systems, it
does not provide any insight into finding data races.

Moreover, since modern coverage-guided fuzzing originates
and prospers from testing single-threaded programs such as
binutils, encoder/decoders, and the CGC and LAVA-M fuzzing
benchmarks, recent fuzzing efforts have focused on optimizing
fuzzers’ performance on single-threaded executions too, such as
approximating sequential execution with neural networks [51].
Not surprisingly, when the fuzzing practice is carried down to
the OS level [21, 22, 27, 55–59], the same sequential view of
program execution is inherited.

Although generating structured inputs has been a challenge
for kernel fuzzing, many improvements have been proposed.
For example, MoonShine [25] captures dependencies between
syscalls and DIFUZE [26] generates interface-aware inputs.
However, lacking a coverage metric and a seed evolution
algorithm to handle state exploration in the concurrency
dimension, existing OS fuzzers miss the opportunities to find
the broad spectrum of concurrency bugs, including data races.
The motivation behind KRACE is to fill this gap and to bring
coverage-guided fuzzing to the concurrency dimension.

Static and symbolic analysis on kernels. Although KRACE
is a dynamic analysis system, we are also aware of works that
aim to find concurrency bugs with static analysis [40–44]. Most
of these approaches rely on static lockset analysis and, hence,
suffer from the high false-positive rate caused by missing the
happens-before relation in the execution as well as the inherent
limitations of the points-to analysis. For instance, RacerX [41]
suffers from 50% false positives on the Linux kernel.

Beyond concurrency bugs, static analysis has proven effective
in finding many security issues in kenrel drivers. For example,
SymDrive [60] uses symbolic execution to emulate devices
and verify the properties of kernel drivers; DrChecker [61] is
capable of finding eight types of security issues by relaxing the
completely sound analysis on unbounded loops with mostly
sound versions. However, a major challenge in applying these
works to data race detection in file systems is their lack of
statefulness, i.e., although extremely effective in finding bugs

A=1 A=0

T1 T2

i1 i3

B=A+1

C=A*2

i2

i4

G[B]=false

cond=G[C]

SYS_symlink

SYS_readlink

SYS_truncate

if(flag & DIR)
B=1

if(size >= res)

…… W

R

e1

e2

e3

Fig. 2: A data race found by KRACE when symlink, readlink, and
truncate on the same inode run in parallel (simplified for illustration).
The race is on the indexed accesses to a global array G and occurs only
when B==C. A is lock-protected. This is one example showing branch
coverage is not sufficient in approximating execution states of highly
concurrent programs. It is not difficult to cover all branches in this
case with existing fuzzers, but to trigger the data race, merely covering
branches e1-e3 is not enough. The thread interleavings between four
instructions i1-i4 are equally important. The valid interleavings that
may trigger the data race are shown in Figure 3.

A=1
B=A+1

A=0
C=A*2

T1 T2

A=1

B=A+1
A=0

C=A*2

T1 T2

A=1

B=A+1

A=0
C=A*2

T1 T2

A=1
B=A+1

A=0
C=A*2

T1 T2

A=1

B=A+1

A=0

C=A*2

T1 T2

A=1
B=A+1

A=0

C=A*2

T1 T2

<nil> i3→i2 i3→i2
B=2, C=0 B=1, C=0 B=1, C=0

<nil> i1→i4 i1→i4
B=2, C=0 B=2, C=2 B=2, C=2

① ② ③

④ ⑤ ⑥

Fig. 3: Possible thread interleavings among the four instructions
shown in Figure 2. Out of the 6 interleavings, only 3 interleavings
(1 / 4 , 2 / 3 , 5 / 6) are effective depending on A’s value when B and
C read it. Each effective interleaving results in different alias coverage.
Only 5 / 6 may trigger the data race.

within one syscall execution, they miss bugs that occur because
of the interaction between multiple syscalls, which happen to
be the majority of cases in file system operations.

III. A COVERAGE METRIC FOR CONCURRENT PROGRAMS

In this section, we show why branch coverage, the golden
metric for fuzzing, might be insufficient to represent the
exploration in the concurrency dimension, while at the same
time, why alias coverage, our new proposal, fits this purpose.

A. Branch coverage for the sequential dimension

Branch coverage originates from the program control-flow
graph (CFG), which is inherently a sequential view of program

4

execution. As shown in Figure 2, in CFGs, execution flows
through basic blocks and user-controllable inputs, e.g., size in
SYS_truncate, determine the set of edges that join the basic
blocks. For a branch coverage-guided fuzzer: given an input
(e.g., a list of syscalls), it tracks the set of edges that are hit at
runtime and leverages this feedback to decide whether this input
is “useful” and should be kept for more mutations. Intuitively,
the fuzzer expects to probe more branches by mutating the
seed, and not surprisingly, once the branch coverage growth
stalls, the fuzzer will shift focus to other seeds.

In the case shown in Figure 2, exhausting all branches
sequentially will only yield the status of B==1, B==2, and
C==0. After that, these execution paths (represented by the
seeds covering them) will be de-prioritized and considered
non-interesting by the fuzzer. However, this is not the end of
the story. To trigger the data race when B==C==2, the execution
of four critical instructions (i1-i4) has to be interleaved in
a special way, as shown in Figure 3. Unfortunately, all six
interleavings yield the same branch coverage, and the fuzzer
is likely to give up the seed upon hitting a few of them.

Further note that this is an extremely simplified example
that involves only six possible interleavings among two threads.
In actual executions, the concurrency dimension can be huge,
as the instructions executed by each thread are usually in the
thousands or even millions, while there will be tens of threads
running at the same time. As a result, when fuzzing highly
concurrent programs, we need to pay attention to not only
code paths explored, but also meaningful thread interleavings
explored that yield to the same branch coverage. In other words,
if the fuzzer believes that there could be unexplored thread
interleavings in a seed, the seed should not be de-prioritized.

B. Alias coverage for the concurrency dimension

Intuition. At first thought, recording the exploration of thread
interleavings can be futile. A realistic kernel file system at
its peak time may use over 60 internal threads, where each
thread may execute over 100,000 instructions. The total possible
number of thread interleavings is 60100000, an enormous search
space that no bitmap can ever approximate.

However, it is worth noting that not all interleaved executions
are useful. In fact, only interleavings of memory-accessing
instructions to the same memory address matters. As shown
in Figure 2, interleaving instructions apart from i1-i4 has no
effect on the final results of B, C, as well as the manifestation
of the data race. This is true in the actual code, where hundreds
and thousands of instructions sit between i1, i3 and i2, i4.

In other words, based on the crucial observation that data
races, and even in the broader term, concurrency bugs, typically
involve unexpected interactions among a few instructions
executed by a small number of threads [7, 62, 63], if KRACE is
able to track how many interactions among these few memory-
accessing instructions have been explored, it is sufficient to
represent thread interleaving coverage and to find data races.
This is precisely what gets tracked by alias coverage.
A formal definition. First, suppose all memory-accessing
instructions in a program are uniquely labeled: i1, i2,, iN.

At runtime, each memory address M keeps track of its last
define operation, i.e., the last instruction that writes to it as
well as the context (thread) that issues the write, represented
by A ← <ix, tx>. Now, in the case in which a new access to
M is observed, carried by instruction iy from context ty: if iy
is a write instruction, update A ← <iy, ty> to reflect the fact
that A is redefined. Otherwise:

• if tx == ty, i.e., same context memory access, do nothing,
• or else, record directed pair ix→iy in the alias coverage.

Figure 3 is a working example of this alias coverage tracking
rule. In cases 1 and 4 , there is no inter-context define-then-
use of memory address A, and hence, the alias coverage map is
empty. On the other hand, in cases 2 and 3 , the calculation
of B in T1 relies on A defined in T2, hence the pair i3→i2.
The same rule applies to cases 5 and 6 .
Feedback mechanism. Essentially, alias coverage provides a
signal to the fuzzer on whether it should expect more useful
thread interleavings out of the current test case, i.e., a multi-
threaded syscall sequence. If the alias coverage keeps growing,
the fuzzer should come up with more delay schedules to inject
at the memory-accessing instructions (detailed in §IV-B) in the
hope of probing unseen interleavings. Otherwise, if the coverage
growth stalls, it is a sign that the concurrency dimension of the
current test case is toward saturation, and the most economical
choice is to switch to other seeds for further exploration.
Coverage sensitivity fine-tuning. Finding one-suits-all cover-
age criteria has been a never-ending quest in software engineer-
ing [64]. Even the branch coverage has several variations, such
as N-gram branch coverage, context-sensitive coverage [52],
etc., which are well-documented and compared in a recent
survey [65]. However, despite the fact that branch coverage
is always subsumed by program whole-path coverage, branch
coverage is still preferred over path coverage, as the latter is
overly sensitive to input changes and thus requires a much
larger bitmap to hold and compare. On the other hand, branch
coverage strikes a balance among effectiveness, execution speed,
and bitmap accounting overhead.

Similarly, alias coverage strives to find such a balance point
in the concurrency dimension. In our experiments with kernel
file system fuzzing, KRACE observed 63,590 unique pairs of
alias instructions (directed access). Based on the data, for
an empirical estimation, a bitmap of size 128KB should be
sufficient to avoid heavy collisions, which is close to AFL’s
branch coverage bitmap size (64KB). In addition, if more
sensitivity is needed for alias coverage, KRACE can be easily
adopted from 1st-order alias pair (alias coverage) to 2nd-order
alias pair, Nth-order alias pair, and up-to total interleaving
coverage. We leave this for future exploration.

IV. INPUT GENERATION FOR CONCURRENCY FUZZING

In this section, we present how to synthesize and merge
multi-threaded syscall sequences for file system fuzzing, as
well as how to exploit a hidden input domain—thread delay
schedule—to accelerate thread interleaving probing.

5

Fig. 4: Illustration of four basic syscall sequence evolution strategies
supported in KRACE: mutation, addition, deletion, and shuffling. For
KRACE, each seed contains multi-threaded syscall sequences and each
thread trace is highlighted in different shades of grayscale.

A. Multi-threaded syscall sequences

Specification-based synthesization. The goal of syscall
generation and mutation is to generate diverse and complex file
operations that are otherwise difficult for human developers
to contemplate. Given that syscalls are highly structured data,
it is almost fruitless to mutate their arguments blindly. As
a result, we use a specification to guide the generation and
mutation of syscall arguments. A feature worth highlighting in
KRACE’s specification is the encoding of inter-dependencies
among syscalls, especially path components and file descriptors
(fd), which are most relevant to file system fuzzing. To illustrate,
as shown in Figure 5, the open syscall in seed 1 reuses the
same path component in the mkdir syscall, while the write
syscall in seed 2 relies on the return value of creat.
Seed format. The seed input for KRACE is a multi-threaded
syscall sequence. Internally, it is represented by a single list
of syscalls (a.k.a, the main list) and a configurable number
of sub-lists (3 in KRACE) in which each sub-list contains a
disjoint sequence of syscalls in the main list. Each sub-list
represents what will be executed by each thread at runtime. To
illustrate, as shown in Figure 5, seed 1 has three threads, where
each thread will be executing mkdir-close, mknod-open-close,
and dup2-symlink, respectively, marked in different grayscale.
Evolution strategies. KRACE uses four strategies to evolve a
seed for both branch and alias coverage, as shown in Figure 4.

• Mutation: a randomly picked argument in one syscall will
be modified according to specification. If a path compo-
nent is mutated, it is cascaded to all its dependencies.

• Addition: a new syscall can be added to any part of the
trace in any thread, but must be after its origins.

• Deletion: a random syscall is kicked out of the main list
and the sub-list. In case a file descriptor is deleted, its
dependencies are forced to re-select another valid file.

• Shuffling: syscalls in the main list are redistributed to
sub-lists, but their orders in the main list are preserved.

Merging multi-threaded seeds. The power of fuzzing lies
not only in evolving a single seed but also in joining two seeds
to produce more interesting test cases. To enable seed merging

Fig. 5: Semantic-preserving combination of two seeds. For KRACE,
each seed contains multi-threaded syscall sequences and each thread
trace is highlighted in different shades of grayscale.

in KRACE, a naive solution might be simply to concatenate
two traces. However, this is not the most economical use of
seeds, as it forgoes the opportunities to find new coverage by
further interleaving these high-quality executions.

KRACE adopts a more advanced merging scheme: upon
merging, the main lists of the two seeds are interweavingly
joined, i.e., the relative orders of syscalls are still preserved in
the resulting main list as well as in the sub-lists. As a result,
the syscall inter-dependencies are preserved too. As shown
in Figure 5, all the dependencies on path and fds are properly
preserved after merging (highlighted in corresponding colors).
Primitive collection. Successful syscalls are valuable assets
out of the file system fuzzing practice, not only because they
lead to significantly broader coverage than failed syscalls, but
also because they can be difficult, and sometimes even fortunate,
to generate due to the dependencies among them. This is true
especially for long traces of closely related syscalls. As a result,
upon discovering a new seed, KRACE first prunes it and retains
only successful syscalls and further splits these syscalls into
non-disjoint primitives where each primitive is self-contained,
i.e., for any syscall, all its path and fd dependencies (also
syscalls) are captured in the same primitive.

Over the course of fuzzing, KRACE has accumulated a
pool of around 10,000 primitives covering 68 file system
related syscalls for which KRACE has a specification. In each
primitive, file operations span across 3 threads, with each thread
containing 1-10 syscalls, and most importantly, all syscalls
succeed. We will open-source this collection in the hope that
these primitives may serve as quality seeds for future concurrent
file system fuzzing.

B. Thread scheduling control (weak form)

Thread scheduling is a hidden input domain for concur-
rency programs. Unfortunately, there is no way to control
kernel scheduling by merely mutating syscall traces. Hooking
the scheduling implementation (or using a hypervisor) and
systematically permuting the schedules might be possible
for small-scale programs [63] or for a few user threads in
the kernel [7, 24]. But these algorithms are far from being

6

Fig. 6: The delay injection scheme in KRACE. In this example, white
and black circles represent the memory access points before and after
delay injection. Injecting delays uncovers new interleavings in this
case, as the read and write order to the memory address x is reversed.

scalable enough to cover all kernel threads. For a taste of
the scalability requirement, Figure 14 shows the level of
concurrency introduced by the btrfs module alone, not to
mention other background threads forked by the block layer,
loop device, timers, and RCU.
Runtime delay injection. KRACE resorts to delay injection
to achieve a weak (and indirect) control of kernel scheduling,
based on the observation that only shared memory accesses
matter in thread interleavings. KRACE’s delay injection scheme
is extremely simple, as shown in Figure 6. Before launching
the kernel, KRACE generates a ring buffer of random numbers
and maps it to the kernel address space. At every memory
access point, the instrumented code fetches a random number
from the ring buffer, say T, and delays for T memory accesses
observed by KRACE system-wise (i.e., in other threads).

A ring buffer is used to hold the random numbers, as KRACE
cannot pre-determine how many injection points are needed
for each execution, not to mention that such a number may
be extremely large. Injecting delays at memory access points
is at the finest granularity for delay injection. Although this
works well in file system fuzzing, it might nevertheless be too
fine-grained and introduces too much overhead. The injection
points can be at the granularity of basic blocks or functions or
even customized locations such as locking operations, etc.

V. A DATA RACE CHECKER FOR KERNEL COMPLEXITY

Although the definition of data races is simple, finding them
in a kernel execution trace can be difficult, primarily because of
the variety of synchronization primitives available in the kernel
code base as well as the ad-hoc mechanisms implemented
by each individual file system. In this section, we enumerate
the major categories of kernel synchronization primitives and
describe how they can be modeled in KRACE.

A. Data race detection procedure

Overview. We say a pair of memory operations, <ix, iy>, is
a data race candidate if, at runtime, we observed that

• they access the same memory location,
• they are issued from different contexts tx and ty,
• at least one of them is a write operation.
Such information is trivial to obtain dynamically by simply

hooking every memory access. The difficulty lies in confirming
whether a data race candidate is a true race. For this, we need
two more analysis steps to check that:

• no locks are commonly held by both contexts, tx and ty,
at the time when memory operations ix and iy are issued
from them, respectively. [lockset (§V-B)]

• no ordering between ix and iy can be inferred based on
the execution: i.e., there is no reason ix must happen-
before iy or the other way around, regardless of how tx
and ty are scheduled. [happens-before (§V-C)]

Conceptually, lockset analysis produces no false negatives,
i.e., if there is a data race in the execution trace, it is guaranteed
to be flagged by the lockset analysis. But lockset analysis is
prone to false positives, as it ignores the ordering information.
Happens-before analysis helps in filtering these false positives.
Kernel complexity. Although conceptually simple, lockset
analysis requires a complete model of all locking mechanisms
available in the kernel, and similarly, happens-before analysis
requires all thread ordering primitives to be annotated. Other-
wise, false positives will arise. However, after nearly 30 years
of development, the Linux kernel has accumulated a rich set
of synchronization mechanisms. KRACE takes a best-effort
approach in modeling all major synchronization primitives as
well as ad-hoc ones if we encounter them in our experiment.
Due to space constraints, we present some representative ad-hoc
schemes modeled by KRACE in appendix §C.

Besides the variety of synchronization events, the number
of ordering points in the kernel execution is enormous. To get
a taste of the complexity in real-world executions, Figure 18
shows a snippet of the ordering relation (e.g., task queuing,
waiting for conditions, etc.) across all user and kernel threads.

B. Lockset analysis

Most kernel locking primitives differentiate between reader
and writer roles. The major difference is that a reader-lock can
be acquired by multiple threads at the same time, as long as
its corresponding writer-lock is not held; while a writer-lock
can only be held by at most one thread. KRACE follows this
distinction and tracks the acquisitions and releases of both
reader- and writer-locks for each thread at runtime. Formally,
such information is stored in the form of a lockset: denoted by
LSR

<t,i> for the reader-side lockset for thread t at instruction
i as well as LSW

<t,i> for the writer-side lockset. Both locksets
are cached and attached to a memory cell whenever a memory
access on that thread is observed, as shown in Figure 7.

The lockset analysis is simple as the following: for each data
race candidate <tx, ix> and <ty, iy>, if any of the following
conditions holds, this candidate cannot be a true data race.

LSR
<tx,ix> ∩ LSW

<ty,iy> ̸= ∅ (1)

LSW
<tx,ix> ∩ LSR

<ty,iy> ̸= ∅ (2)

LSW
<tx,ix> ∩ LSW

<ty,iy> ̸= ∅ (3)
On the other hand, if none of the conditions hold for a

data race candidate, then the execution of tx and ty can be
interleaved without restrictions around those memory accesses,
as shown in the reading and writing of addresses 0x34 and
0x46 in Figure 7, hence, leading to data races.

7

Fig. 7: Illustration of lockset analysis in KRACE. This example shows
almost all locking mechanisms commonly used in the kernel, including
1) spin lock and mutexes—[un]lock(RW, -),
2) reader/writer lock—[un]lock(R/W, *),
3) RCU lock—specially denoted with symbol ∆, and
4) sequence lock—begin/end/retry(R/W, *).
The left column shows the content in the reader lockset at the time of
memory operation or changes to the lockset caused by other operations
(/ denotes no change). The right column shows the writer counterpart.
The two data races are highlighted in red and blue squares.

Pessimistic locking. Most of the kernel locking primitives
are pessimistic locking, i.e., whoever tries to acquire the lock
will be blocked from further execution until the lock holder
releases it. As a result, their APIs are always in pairs of lock
and unlock to mark the start and end of a critical section.
Examples of such locks include spin lock, reader/writer spin
lock, mutex, reader/writer semaphore, and bit locks.

A slightly trickier primitive is the RCU lock, in
which only reader-side critical sections are marked with
rcu_read_[un]lock and the writer-side critical section is not
marked by any lock/unlock APIs, instead, it is guaranteed
by the RCU grace period waiting. More specifically, when
__rcu_reclaim schedules an RCU callback into execution,
it is guaranteed that there is no RCU reader-side critical
section running. Hence, in KRACE, we hook the RCU callback
dispatcher and mark RCU writer lock and unlock before and
after the callback execution.

Optimistic locking. The Linux kernel is gradually shifting
toward lock-free design and the most prominent evidence in
recent years is the wide adoption of sequence locks [66]. A
sequence lock is, in fact, more similar to a transaction than to
a conventional lock. The reader is allowed to run optimistically
into the critical section, hoping that the data it reads will not
be modified during the transaction (hence the optimism), and
aborts and retries if the data does get modified.

While boosting performance, a challenge brought by the
sequence lock is that there is no clear end of the reader-side
critical section. As shown in Figure 7, after a transaction
begins, the retry can be called multiple times, perhaps one for
mid-of-progress checking and the other one for before-commit
checking; in theory, each retry could be an unlock-equivalent
that marks the end of the critical section. If the lockset analysis
is performed online (i.e., during execution), the lockset states
should fork to capture that the retry may or may not be an

Fig. 8: Illustration of happens-before reasoning in KRACE. This
example shows a very typical execution pattern in kernel file systems
where the user thread schedules two asynchronous works on the
work queue and checks for their results later in the execution. In
particular, one of the asynchronous works is a delayed work that also
goes through the timer thread. Fork-style, join-style, and publisher-
subscriber relations are represented by dashed, dotted, and solid arrows,
respectively. The only data race is highlighted in the red square.

unlock. For KRACE, since it uses offline lockset analysis, it
may simply read the execution trace ahead to know whether
there are more retries and behave correspondingly.

C. Happens-before analysis

Intuitively, happens-before analysis tries to find the causal
relations between specific execution points in the threads. For
example, a kernel thread only gets into running if another
thread forks it; as a result, there is no way to schedule the
spawned thread before the parent thread creates it. This implies
that whatever happens before the thread creation points cannot
be data racing against anything in the spawned thread. In the
example shown in Figure 8, there is no way for i2 to be racing
against i6, as without queuing the work on the work queue
(c2→c8), i6 won’t even be executed in the first place. Similarly,
scheduling a thread that is waiting for a condition to be true
will not make it run bypassing the barrier. Therefore, it is not
possible for i4 to race against i8, as only when the wake_up
call is reached (c12→c5) can i4 be executed.

This intuition shows how a happens-before relation can be
formally checked: by hooking kernel synchronization APIs, e.g.,
when a callback function is queued and when it is executed, we
could find the synchronization points (nodes) between threads
as well as the causality events (represented by edges), as shown
in Figure 8. Since the nodes in one thread are already inherently
connected according to program order, the whole execution
becomes a directed acyclic graph. Consequently, determining
whether two points, <tx, ix> and <ty, iy>, may race is
translated into a graph reachability problem. If a path exists
from <tx, ix> to <ty, iy>, it means that point X happens-
before Y and thus cannot be racing. The same applies if we

8

Fig. 9: An overview of KRACE’s architecture and major components.
Components in italic fonts are either new proposals from KRACE or
existing techniques customized to meet KRACE’s purpose.

can establish Y happens-before X. On the other hand, if no
such path can be found, a happens-before relation cannot be
established and the pair should be flagged, as in the case of
i3 and i8. All other accesses are reachable in the graph, and
hence, they cannot be racing even without lock protections.

The happens-before relation commonly found in kernel file
systems can be broadly categorized into three types:
Fork-style relations include RCU callbacks registered with
call_rcu, work queues and kthread-simulated work queues,
direct kthread forking, timers, software interrupts (softirq),
as well as inter-processor interrupts (IPI). Hooking their kernel
APIs is as easy as finding corresponding functions that register
the callback and dispatch the callback.
Join-style relations include the completion API and a wide
variety of wait_* primitives such as wait_event, wait_bit,
and wait_page. Hooking their kernel APIs requires locating
their corresponding wake_up calls besides the wait calls.
Publisher-subscriber model mainly refers to the RCU pointer
assignment and dereference procedure [35]. For example, if
one user thread retrieves a file descriptor (fd) from the fdtable
which is RCU-guarded, the new fd must have been published
first, hence the causality ordering. The object allocate-and-use
pattern also falls into this realm: the publisher thread allocates
memory spaces for an object, initializes its fields, and inserts
the pointer to a global or heap-based data structure (usually a
list or hashtable), while the subscriber thread later dereferences
the pointer and uses the object. As a result, KRACE also tracks
the memory allocation APIs and monitors when the allocated
pointer is first stored into a public memory slot and when it is
used again to establish the ordering automatically.

VI. PUTTING EVERYTHING TOGETHER

A. Architecture

Figure 9 shows the overall architecture of KRACE. The
primary purpose of having the compile-time preparation is to
embed a KRACE runtime into the kernel such that alias coverage
(as well as branch coverage) can be collected dynamically. The

runtime is also responsible for collecting information for data
race checking, leveraging the kernel API hooking. On the
other hand, the fuzzing loop is still conventional, covering seed
selection, mutation, and execution, with the exception that in
KRACE, a test case is considered “interesting” as long as new
progress is found in either of the coverage bitmaps. In addition,
all components are updated to handle the new seed format for
concurrency fuzzing: multi-threaded syscall sequences.
Code instrumentation. Since the focus of KRACE is file
systems, we only instrument memory access instructions in
the target file system module and its related components such
as the virtual file system layer (VFS) or the journaling module,
e.g., jbd2 for ext4. On the other hand, API annotations are
performed on the main kernel code base and have an effect even
when the execution goes out of the functions in our target file
system: the locks acquired and released, as well as the ordering
primitives (e.g., queuing a timer), will be faithfully recorded.
In this way, KRACE does not suffer from false positives in
cases like block layer calls into a callback in the file system
layer but we do not know the prior locking contexts.
Fuzzing loop. Figure 15 shows the fuzzing evolution algorithm
in KRACE. Fuzzing starts with producing a new program
by merging two existing seeds. The seed selection criterion
used in KRACE so far is simply frequency count, i.e., less
used seeds receive priority. We expect more advanced seed
selection algorithms to be developed later. After merging, each
program goes through several extension loops on which the
program structure is altered with syscalls added and deleted.
Each structurally changed program will further go through
several modification loops in which the syscall arguments
and distribution among the threads are mutated. Finally, each
modified program runs repeatedly for several times, each with
a different delay schedule, to probe for alias coverage.

Several implicit parameters can be used to fine-tune the
process, e.g., how many times to loop at each stage (see §B
for details). In general, we give preference to alias coverage
exploration over growing the multi-threaded syscall sequences,
as we prefer to explore the concurrency domain as much as
possible when the number of syscalls executed is small, making
it easier for kernel developers to debug a reported data race.
Offline checking. Data race checking is conducted offline, i.e.,
only when new coverage, either branch or alias, is found. The
reason is that data race checking is slow (several minutes) and
significantly hinders the fast fuzzing experience (which only
requires a few seconds to finish one execution). As a result, we
allow the fuzzers to quickly expand coverage and only dump
execution logs without checking them. A few background
threads check the execution logs for data races whenever they
have free capacity. The checking progress has difficulty keeping
up with seed generation in the beginning but will gradually
catch up, especially when the coverage is toward saturation.

B. Benign vs harmful data races

An unexpected problem we encountered when reporting the
data races found by KRACE is on differentiating benign and

9

harmful data races. Despite the common belief that being data-
race free is one of the coding practices in the kernel, benign
data races are not totally uncommon. One major category is
statistics accounting, such as __part_stat_add in the block
layer. These statistics are meant for information and hints only
and do not provide any accuracy guarantees. Another example
is the reading and writing of different bits in the same 2-, 4-,
8-byte variable, especially bit-flags such as inode->i_flag or
flags in file system control structures like fs_info.

Based on our experience, checking whether a data race is
benign or harmful is often time consuming, as it requires careful
analysis of the code and documentation to infer developers’
intentions. In the worst cases, it may require consulting the file
system developers, who may not even agree among themselves.
One possibility to confirm a harmful data race is to keep the
system running until the data race causes any visible effects
such as violating assertions or memory errors. However, this is
not always feasible, as shown in the case in Figure 1. It might
need thousands of file operations running in parallel to trigger
an integer overflow. By then, debugging such an execution
trace will be another problem.

To avoid reporting benign data races to developers, KRACE
uses several simple heuristics to filter the reports. In particular,
a data race is mostly benign if:

• the race involves variables that have stat in their names
or occurs within functions for statistics accounting;

• the race involves reading and writing to different bits of
the same variable;

• the race involves kernel functions that can tolerate being
racy, e.g., list_empty_careful.

Unfortunately, these heuristics typically offer limited help for
the more complicated cases.

C. The aging OS problem

When fuzzing file systems, most generic OS fuzzers do
not reload a fresh copy of the kernel instance or file system
image [21–23] for a new fuzzing session. Instead, they directly
issue the syscall sequence on the old kernel state. The intention
is to remove the overhead of kernel booting, as a VM emulator
might take seconds to load and boot the kernel, as is evident
in our evaluations as well (§VII-B). However, this also means
that any bugs found in this approach might come from the
accumulated effects of hundreds or even thousands of prior
runs, making them extremely difficult to debug and confirm by
kernel developers, as is evident in the case when many bugs
found by Syzkaller cannot be confirmed [67].

The aging OS problem is already difficult for fuzzing in the
sequential domain, and bringing in the concurrency dimension
further complicates the story. Moreover, for KRACE, the aging
OS situation creates more problems, as the lengthy thread
interleaving traces are not only difficult to debug but also
renders analysis impossible. Slicing the execution traces does
not seem feasible either, as cutting the trace at the wrong
points means losing the locking and happens-before context,
ultimately leading to false alarms. As a result, KRACE is forced

to use a clean-slate execution for every fuzzing run, i.e., a fresh
kernel and a clean file system image.

The aging OS problem is also reported by Janus [5], which
uses a library OS—LKL [68]—to enable quick reloading. But
unfortunately, LKL does not support the symmetrical multi-
processing (SMP) architecture, which is the prerequisite for
multi-threading (e.g., without SMP, all spin_locks becomes
no-ops). As a result, LKL is mostly suitable for sequential
fuzzing, not for concurrency fuzzing.

D. Discussion and limitations

Deterministic replay. Being able to replay an execution
deterministically is extremely helpful for debugging and also
opens the door for advanced data race triaging techniques
such as controlled re-interleaving of thread executions. Un-
fortunately, we are sorry to report that even with a totally
linearized trace of basic block enter/exit, memory accesses,
lock acquisition/releases, and kernel synchronization API calls,
KRACE is unable to deterministically replay an execution end-
to-end. Part of the reason is the missing instrumentation in other
kernel components, including the kernel core (including the
task and IO scheduler), memory management, device drivers
(except the block device), and most of the library routines.
We expect that deterministic replay may be possible if we
instrument all kernel components but at the expense of huge
execution footprints (e.g., GB-level logs) as well as significant
performance drops. We are unaware of a system that permits
deterministic replay of over 60 kernel threads, but we are eager
to integrate if possible.
Debuggability. To partially compensate for not being able
to replay a found data race deterministically, KRACE tries to
generate a comprehensive report for each data race, including
1) the conflicting lines in source code, 2) the full call stack for
each thread, and 3) the callback graph. Since each instruction
is labeled with a compile-time random number, KRACE is able
to pinpoint the conflicting lines in the source code when a data
race occurs. Further coupled with the basic block branching
information, KRACE is able to recover the full call trace, up
to the syscall entry point or the thread creation point, for all
involving threads during the race condition. The report may
also involve the callback graph derived from the happens-
before analysis, to further assist the developers with the origin
of the threads. In fact, kernel developers have never asked
for a deterministic replay of the trace and are able to judge
whether the race is harmful or benign based on the information
provided.
Missing bugs. Offlining the data race checker means that
KRACE might miss data race bugs. As discussed in §III-B,
alias coverage is just an approximation of state exploration
progress in the concurrency dimension, and there might be new
program states explored at runtime but that do not show up as
new coverage, i.e., meaningful interleavings missed by alias
coverage. KRACE forgoes the opportunities to check data races
in those cases and is a trade-off made in favor of expanding
the coverage with efficiency.

10

Fig. 10: Implementation of the QEMU VM-based fuzzing executor
in KRACE. The VM instance and the host have three communication
channels: 1) private memory mapping, which contains the test case
program to be executed by the VM and the seed quality report
generated by KRACE runtime; 2) globally shared memory mapping,
which contains the coverage bitmaps globally available to the host
and all VM instances; 3) file sharing under the 9p protocol for sharing
of large files, including the file system image and the execution log.

E. Implementation

KRACE’s code base is divided into two parts: 1) compile-
time preparation, including annotations to the kernel source
code (in the form of kernel patches), an LLVM instrumentation
pass, and the KRACE library compiled into the kernel that
provides coverage tracking and logging at runtime; and 2) a
VM-based fuzzing loop that evolves test cases, executes them
in QEMU VMs, and checks for data races. The complexity
of each component is described in Table III and an overview
of the runtime executor is shown in Figure 10. Due to space
constraints, more details can be found in §D.

VII. EVALUATION

In this section, we evaluate KRACE as a whole as well
as per each component. In particular, we show the overall
effectiveness of KRACE by listing previously unknown data
races found (§VII-A); provide a comprehensive view of
KRACE’s performance characteristics, e.g., speed, scalability,
etc., as a file system fuzzer (§VII-B); justify major design
decisions with controlled experiments (§VII-C); and compare
KRACE against recent OS and data race fuzzers (§VII-D).

Experiment setup. We evaluate KRACE on a two-socket, 24-
core machine running Fedora 29 with Intel Xeon E5-2687W
(3.0GHz) and 256GB memory. All performance evaluations
are done on Linux v5.4-rc5, although the main fuzzer runs
intermittently across versions from v5.3. We build the kernel
core with minimal components but enable as many features as
possible for the btrfs and ext4 file system modules. For all
evaluations, the fuzzing starts with an empty file system image
created from the mkfs.* utilities. We run 24 VM instances in
parallel for fuzzing and each VM runs a three-thread seed.

ID FS Racing access Status

1 btrfs heap struct: cur_trans->state pending
2 btrfs heap struct: cur_trans->aborted harmful
3 btrfs heap struct: delayed_rsv->full harmful
4 btrfs heap struct: sb->s_flags benign
5 btrfs global variable: buffers harmful
6 btrfs heap struct: inode->i_mode benign
7 btrfs heap struct: inode->i_atime harmful
8 btrfs heap struct: BTRFS_I(inode)->disk_i_size harmful
9 btrfs heap struct: root->last_log_commit harmful

10 btrfs heap struct: free_space_ctl->free_space benign
11 btrfs heap struct: cache->item.used harmful
12 ext4 heap struct: inode->i_mtime benign
13 ext4 heap struct: inode->i_state benign
14 ext4 heap struct: ext4_dir_entry_2->inode benign
15 ext4 heap array: ei->i_data[block] harmful
16 VFS heap string: name in link_path_walk pending
17 VFS heap struct: inode->i_state benign
18 VFS heap struct: inode->i_wb_list benign
19 VFS heap struct: inode->i_flag benign
20 VFS heap struct: inode->i_opflags benign
21 VFS heap struct: file->f_mode benign*
22 VFS heap struct: file->f_pos pending
23 VFS heap struct: file->f_ra.ra_pages harmful

TABLE I: List of data races found and reported by KRACE so far.
Status of benign* means that it is a benign race according to the
execution paths we submitted, but the kernel developers suspect that
there might be other paths leading to potentially harmful cases.

A. Data races in popular file systems

Across intermittent fuzzing runs on two popular kernel file
systems (btrfs and ext4) during two months, KRACE found
and reported 23 new data races, of which nine have been
confirmed to be harmful, 11 are benign, and the rest of them
are still under investigation, as listed in Table I. Note that
besides bugs in concrete file systems, KRACE also finds data
races in the virtual file system (VFS) layer, which might affect
all file systems in the kernel.
Consequence. Based on our preliminary investigation, only
one bug (#5) is likely to cause immediate effects (null-
pointer dereference) when triggered. Others are likely to cause
performance degradation or specification violations, but we do
not see a simple path toward memory errors. This also means
that relying on bug signals such as KASan reports or kernel
panics might not be sufficient to find data races.

B. Fuzzing characteristics

Coverage growth. The growth patterns for both branch and
alias coverage are plotted in Figure 11 (for btrfs) and Figure 12
(for ext4). There are several interesting observations:

Alias coverage size. Although branch coverage for the two
file systems grow into roughly the same level (25K vs 20K),
compared with ext4, btrfs has a significantly larger alias
coverage bitmap, (60K vs 9K). Given that the number of user
threads is the same (3 threads), the difference is caused by
the level of concurrency inherent in btrfs and ext4 design.
As shown in Figure 14, btrfs uses at least 22 background
threads and each thread may additionally fork more helper
threads, while the only background thread for ext4 is the
jbd2 journaling thread. In other words, btrfs is inherently
more concurrent than ext4, and dividing works among more

11

0 25 50 75 100 125 150 175
Fuzzing time (unit: hours)

16K

18K

20K

22K

24K

C

FG
 b

ra
nc

he
s (

br
an

ch
 c

ov
er

ag
e)

Branch
Branch (w/o alias feedback)
Branch (Syzkaller)

30K

35K

40K

45K

50K

55K

60K

al

ia
se

d
in

st
ru

ct
io

n
pa

irs
 (a

lia
s c

ov
er

ag
e)

Alias
Alias (w/o delay injection)
Alias (w/o seed merging)

Fig. 11: Evaluation of the coverage growth of KRACE when fuzzing
the btrfs file system for a week (168 hours) with various settings.

0 25 50 75 100 125 150 175
Fuzzing time (unit: hours)

13K

14K

15K

16K

17K

18K

19K

20K

C

FG
 b

ra
nc

he
s (

br
an

ch
 c

ov
er

ag
e)

Branch
Branch (w/o alias feedback)
Branch (Syzkaller)

1K

2K

3K

4K

5K

6K

7K

8K

9K

al

ia
se

d
in

st
ru

ct
io

n
pa

irs
 (a

lia
s c

ov
er

ag
e)

Alias
Alias (w/o delay injection)
Alias (w/o seed merging)

Fig. 12: Evaluation of the coverage growth of KRACE when fuzzing
the ext4 file system for a week (168 hours) with various settings.

threads naturally leads to more alias pairs. The similar logic
also applies to why alias coverage saturates much faster in
ext4, the less concurrent file system.

Growth synchronization. In general, the two coverage
metrics grow in synchronization. It is expected that progresses
in the branch coverage will yield new alias coverage too because
new code paths mean new memory accessing instructions and
hence, new alias pairs. However, it is the other direction that
matters more: branch coverage saturates but alias coverage
keeps growing, e.g., starting from hour 75 in the btrfs case
or hour 25 in the ext4 case. In other words, KRACE keeps
finding new execution states (thread interleavings) that would
otherwise be missed if only branch coverage is tracked.

Instrumentation overhead. The code instrumentation from
KRACE is heavy, and we expect it to cause significant overhead
in execution. To show this, we present the aggregated statistics
on the execution time for seeds bearing different numbers
of syscalls. For comparison, we also run these seeds on a
bare-metal kernel built without KRACE instrumentation. The
results are plotted in Figure 13. In summary, in the zero-syscall
case, i.e., by merely loading (file system module) → mounting
(image) → unmounting → unloading, KRACE already incurs
47.6% and 34.3% overhead, and the more syscalls KRACE
executes, the more overhead it accumulates.

0 5 10 15 20 25 30
syscalls in the seed input

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

A
ve

ra
ge

 se
ed

 e
xe

cu
tio

n
tim

e
(u

ni
t:

se
co

nd
) btrfs execution time

ext4 execution time
btrfs baseline
ext4 baseline

0

50

100

150

200

250

300

350

400

A
ve

ra
ge

 se
ed

 a
na

ly
si

s t
im

e
(u

ni
t:

se
co

nd
)

btrfs analysis time
ext4 analysis time

Fig. 13: Evaluation of seed execution and analysis time in KRACE
with a varying number of syscalls in the seed

The overhead mainly comes from memory access instrumen-
tation, as every memory access is now turned into a function
call where atomic operations are performed and synchronized,
not only with respect to all other threads on the VM, but also
against all threads across all VMs, as the thread is updating the
global bitmap on the host directly (implicitly handled by the
QEMU ivshmem module). As a result, further optimizations are
possible. For example, a VM instance may accumulate coverage
locally and update the global bitmap in batches instead of on
every memory access.

It is, however, debatable whether the overhead is detrimental
to KRACE as a fuzzer since lower overhead simply means that
the coverage growth will converge and saturates faster. In our
opinion, we consider the overhead caused by tracking more
coverage (including alias coverage) as a trade-off between
execution speed and seed quality. A fuzzer with fast executions
may waste resources in non-interesting test cases, while a
fuzzer with slow executions but finer-grained tracking might
eventually have higher chances to explore more states.
Data race checking cost. Another limiting factor for KRACE
is the time needed to analyze the execution logs for data
race detection, which also depends on the length of the
execution trace. The trend is also plotted in Figure 13. In
summary, the analysis time ranges from 4-7 minutes (0-30
syscalls per seed) for btrfs and 2-6 minutes for ext4. Such a
time cost is obviously not feasible for online checking (even
after optimization) but can be tolerated for offline checking,
i.e., KRACE schedules a data race check only when a seed
is discovered. This strategy works especially when fuzzing
saturates, as the bottleneck for making further progress then
becomes finding new execution states instead of checking the
trace. Based on our experience, running four checker processes
alongside 24 fuzzing VM instances is more than sufficient to
catch up to the progress within 96 hours in both cases.

C. Component evaluations

Coverage effectiveness. Although the two coverage metrics
represent different aspects of program execution, we are also
curious whether tracking explorations in the concurrency
dimension may help in finding new code paths (represented by

12

branch coverage). To check this, we disabled the alias coverage
feedback and let KRACE explore the states mimicking the
feedback loop of existing OS and file system fuzzers. The
results (Figure 11 and Figure 12) show that exploring the
concurrency domain also helps to find new code coverage.
Most notably, without alias coverage feedback, branch coverage
grows much faster at the beginning, because it does not
spend fuzzing effort on exploring the thread interleavings, but
saturates at a lower number (7.2% and 4.0% less). Moreover, if
just counting the new branches explored (besides the branches
in the initial seed), the coverage reduces by 20.4% and 10.7%,
respectively. The more concurrent the file system is, the more
branch coverage will be explored by enabling alias coverage
feedback. This is not surprising, as certain code paths exist to
handle contention in the system, such as the paths executed
when try_lock fails or when sequence lock retries. Exploring
in the concurrency dimension helps to reveal these paths and
boost the branch coverage.

Delay injection effectiveness. To test whether injecting
delays helps in exploration in the concurrency dimension, we
disabled delay injection in this fuzzing experiment, and the
alias coverage growth is shown in Figure 11 and Figure 12.
With delay injection disabled, KRACE found 28.7% and 12.3%
less alias coverage in btrfs and ext4, respectively. This shows
that delay injection is important in finding more alias coverage.
Especially, when the branch coverage saturates, delay injection
becomes the leading force in finding alias coverage, as shown
by the enlarging gap between the growth. The more concurrent
the file system is, the more important delay injection becomes.

Seed merging effectiveness. To test whether reusing the
seed helps in exploration in the concurrency dimension, we
disabled seed merging in this fuzzing experiment, i.e., KRACE
only adds, deletes, and mutates syscalls but never reuses the
found seeds. The alias coverage growth is shown in Figure 11
and Figure 12. With seed merging disabled, KRACE found
37.7% and 14.2% less alias coverage in btrfs and ext4,
respectively. This experiment shows that reusing the seed is
important in quickly expanding the coverage. More importantly,
preserving the semantics among the syscalls and interleaving
the seeds help find more alias coverage.

Components in the data race checker. To show that it is
important to have both happens-before and lockset analysis (and
their sub-components) in the data race checker, we sampled a
simple fuzzing run: load btrfs module, mount an empty image,
execute two syscalls × three threads, unmount the image, and
unload the btrfs module. The following shows the filtering
effects of each component in the data race checker:

• data race candidates: 35,658
+ after lockset analysis on pessimistic locks: 13,347
+ after lockset analysis on optimistic locks: 8,903
+ after tracking fork-style happen-before relation: 6,275
+ after tracking join-style happen-before relation: 3,509
+ after handling publisher-subscriber model: 103
+ after handling ad-hoc schemes: 7 (all benign races)

D. Comparison with related fuzzers

Execution speed vs coverage. In terms of efficiency, KRACE
is not comparable to other OS and file system fuzzers, as
one execution takes at least seven seconds in KRACE, while
the number can be as low as 10 milliseconds for libOS-
based fuzzers [5, 6] or never-refreshing VM-based fuzzers
like Syzkaller. However, the effectiveness of a fuzzer is not
solely decided by fuzzing speed. A more important metric
is the coverage size, especially when saturated. Intuitively, if
the saturated coverage is low, being fast in execution only
implies that the coverage will converge faster and mostly stall
afterward.

On the metric of saturated coverage, KRACE outperforms
Syzkaller for both btrfs and ext4 by 12.3% and 5.5%,
respectively, as shown in Figure 11 and Figure 12. Even
without the alias coverage feedback, the branch coverage from
KRACE still outperforms Syzkaller, showing the effectiveness
of KRACE’s seed evolution strategies, especially the merging
strategy for multi-threaded seeds, which is currently not
available in Syzkaller. In fact, KRACE is able to catch up
to the branch coverage progress with Syzkaller within 30 hours
and eight hours for btrfs and ext4, respectively.
Data race detection. Razzer [24] reports four data races in
file systems and we find the patches for two of them, both in
the VFS layer. To check that KRACE may detect these cases,
we manually revert the patches in the kernel and confirm that
both cases are found. We would like to do the same for SKI [7],
but the data races found by SKI are too old (in 3.13 kernels)
and locating and reverting the patches is not easy.

VIII. CONCLUSION AND FUTURE WORK

This paper presents KRACE, an end-to-end fuzzing frame-
work that brings the concurrency aspects into coverage-guided
file system fuzzing. KRACE achieves this with three new
constructs: 1) the alias coverage metric for tracking exploration
progress in the concurrency dimension, 2) the algorithm for
evolving and merging multi-threaded syscall sequences, and
3) a comprehensive lockset and happens-before modeling for
kernel synchronization primitives. KRACE has uncovered 23
new data races so far and will keep running for more reports.

Looking forward, we plan to extend KRACE in at least three
directions: 1) data race detection in other kernel components;
2) semantic checking for more types of concurrency bugs; and
3) fuzzing distributed file systems that involve not only thread
interleavings but also network event ordering, which requires
completely new coverage metrics to capture.

IX. ACKNOWLEDGMENT

We thank the anonymous reviewers and our shepherd, Yan
Shoshitaishvili, for their insightful feedback. This research
was supported, in part, by NSF under award CNS-1563848,
CNS-1704701, CRI-1629851, and CNS-1749711; ONR under
grant N00014-18-1-2662, N00014-15-1-2162, and N00014-17-
1-2895; DARPA TC (No. DARPA FA8650-15-C-7556); ETRI
IITP/KEIT[B0101-17-0644]; and gifts from Facebook, Mozilla,
Intel, VMware, and Google.

13

REFERENCES

[1] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu, “A study
of linux file system evolution,” Trans. Storage, vol. 10, no. 1, pp. 3:1–3:32,
Jan. 2014. [Online]. Available: http://doi.acm.org/10.1145/2560012

[2] J. Huang, M. K. Qureshi, and K. Schwan, “An Evolutionary Study of
Linux Memory Management for Fun and Profit,” in Proceedings of the
2016 USENIX Annual Technical Conference (ATC), Berkeley, CA, USA,
Jun. 2016, pp. 465–478.

[3] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger, and
G. Amvrosiadis, “File Systems Unfit As Distributed Storage Backends:
Lessons from 10 Years of Ceph Evolution,” in Proceedings of the 27th
ACM Symposium on Operating Systems Principles (SOSP). New York,
NY, USA: ACM, Oct. 2019, pp. 353–369.

[4] C. Min, S. Kashyap, S. Maass, W. Kang, and T. Kim, “Understanding
Manycore Scalability of File Systems,” in Proceedings of the 2016
USENIX Annual Technical Conference (ATC), Denver, CO, Jun. 2016.

[5] W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim, “Fuzzing File
Systems via Two-Dimensional Input Space Exploration,” in Proceedings
of the 40th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2019.

[6] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim, “Finding
Semantic Bugs in File Systems with an Extensible Fuzzing Framework,”
in Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP), Ontario, Canada, Oct. 2019.

[7] P. Fonseca, R. Rodrigues, and B. B. Brandenburg, “SKI: Exposing
Kernel Concurrency Bugs Through Systematic Schedule Exploration,”
in Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Broomfield, Colorado, Oct. 2014.

[8] MITRE Corporation, “CVE-2009-1235,” https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2009-1235, 2009.

[9] J. Corbet, “Unprivileged filesystem mounts, 2018 edition,” https://lwn.
net/Articles/755593, 2018.

[10] Kernel.org Bugzilla, “Btrfs bug entries,” https://bugzilla.kernel.org/buglist.
cgi?component=btrfs, 2018.

[11] MITRE Corporation, “F2FS CVE entries,” http://cve.mitre.org/cgi-bin/
cvekey.cgi?keyword=f2fs, 2018.

[12] Kernel.org Bugzilla, “ext4 bug entries,” https://bugzilla.kernel.org/buglist.
cgi?component=ext4, 2018.

[13] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye, “Efficient Scalable
Thread-safety-violation Detection: Finding Thousands of Concurrency
Bugs During Testing,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP). New York, NY, USA: ACM,
Oct. 2019, pp. 162–180.

[14] Silicon Graphics Inc. (SGI), “(x)fstests is a filesystem testing suite,”
https://github.com/kdave/xfstests, 2018.

[15] SGI, OSDL and Bull, “Linux Test Project,” https://github.com/linux-test-
project/ltp, 2018.

[16] M. Zalewski, “American Fuzzy Lop (2.52b),” http://lcamtuf.coredump.
cx/afl, 2019.

[17] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware Evolutionary Fuzzing,” in Proceedings of
the 24th ACM Conference on Computer and Communications Security
(CCS), Dallas, TX, Oct.–Nov. 2017.

[18] Google Inc., “honggfuzz,” http://honggfuzz.com/, 2019.
[19] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed

Greybox Fuzzing,” in Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), Dallas, TX, Oct.–Nov.
2017.

[20] Google, “OSS-Fuzz - Continuous Fuzzing for Open Source Software,”
https://github.com/google/oss-fuzz, 2018.

[21] Google Inc., “Syzkaller is an Unsupervised, Coverage-guided Kernel
Fuzzer,” https://github.com/google/syzkaller, 2019.

[22] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz, “kAFL:
Hardware-Assisted Feedback Fuzzing for OS Kernels,” in Proceedings
of the 26th USENIX Security Symposium (Security), Vancouver, Canada,
Aug. 2017.

[23] NCC Group, “AFL/QEMU Fuzzing with Full-system Emulation,” https:
//github.com/nccgroup/TriforceAFL, 2017.

[24] D. R. Jeong, K. Kim, B. A. Shivakumar, B. Lee, and I. Shin, “Razzer:
Finding Kernel Race Bugs through Fuzzing,” in Proceedings of the 40th
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2019.

[25] S. Pailoor, A. Aday, and S. Jana, “MoonShine: Optimizing OS Fuzzer

Seed Selection with Trace Distillation,” in Proceedings of the 27th
USENIX Security Symposium (Security), Baltimore, MD, Aug. 2018.

[26] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna, “DIFUZE: Interface Aware Fuzzing for Kernel Drivers,”
in Proceedings of the 24th ACM Conference on Computer and Commu-
nications Security (CCS), Dallas, TX, Oct.–Nov. 2017.

[27] D. Jones, “Linux system call fuzzer,” https://github.com/kernelslacker/
trinity, 2018.

[28] R. N. Netzer and B. P. Miller, “Detecting Data Races in Parallel Program
Executions,” in In Advances in Languages and Compilers for Parallel
Computing, 1990 Workshop. MIT Press, 1989, pp. 109–129.

[29] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.
[Online]. Available: http://doi.acm.org/10.1145/359545.359563

[30] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A Dynamic Data Race Detector for Multithreaded Programs,”
ACM Trans. Comput. Syst., vol. 15, no. 4, pp. 391–411, Nov. 1997.

[31] M. D. Bond, K. E. Coons, and K. S. McKinley, “PACER: Proportional
Detection of Data Races,” in Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI). New York, NY, USA: ACM, Jun. 2010, pp. 255–268.

[32] Z. Anderson, D. Gay, R. Ennals, and E. Brewer, “SharC: Checking
Data Sharing Strategies for Multithreaded C,” in Proceedings of the
2008 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). New York, NY, USA: ACM, Jun. 2008,
pp. 149–158.

[33] E. Pozniansky and A. Schuster, “Efficient On-the-fly Data Race Detection
in Multithreaded C++ Programs,” in Proceedings of the 9th ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP).
New York, NY, USA: ACM, Jun. 2003, pp. 179–190.

[34] D. Marino, M. Musuvathi, and S. Narayanasamy, “LiteRace: Effective
Sampling for Lightweight Data-race Detection,” in Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). New York, NY, USA: ACM, Jun. 2009,
pp. 134–143.

[35] P. McKenney, “The RCU API, 2019 edition,” https://lwn.net/Articles/
777036/, 2019.

[36] S. Park, S. Lu, and Y. Zhou, “CTrigger: Exposing Atomicity Violation
Bugs from Their Hiding Places,” in Proceedings of the 14th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). New York, NY, USA:
ACM, Mar. 2009, pp. 25–36.

[37] K. Sen, “Race Directed Random Testing of Concurrent Programs,” in
Proceedings of the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). New York, NY, USA:
ACM, Jun. 2008, pp. 11–21.

[38] Y. Cai, J. Zhang, L. Cao, and J. Liu, “A Deployable Sampling Strategy for
Data Race Detection,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 810–821.

[39] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: Data Race
Detection in Practice,” in Proceedings of the Workshop on Binary
Instrumentation and Applications, ser. WBIA ’09. New York, NY,
USA: ACM, 2009, pp. 62–71.

[40] P. Deligiannis, A. F. Donaldson, and Z. Rakamaric, “Fast and Precise
Symbolic Analysis of Concurrency Bugs in Device Drivers (T),” in
Proceedings of the 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), ser. ASE ’15. Washington, DC,
USA: IEEE Computer Society, 2015, pp. 166–177.

[41] D. Engler and K. Ashcraft, “RacerX: Effective, Static Detection of Race
Conditions and Deadlocks,” in Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP), Bolton Landing, NY, Oct.
2003.

[42] S. Hong and M. Kim, “Effective Pattern-driven Concurrency Bug
Detection for Operating Systems,” J. Syst. Softw., vol. 86, no. 2, pp.
377–388, Feb. 2013.

[43] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou,
“MUVI: Automatically Inferring Multi-variable Access Correlations and
Detecting Related Semantic and Concurrency Bugs,” in Proceedings
of the 21st ACM Symposium on Operating Systems Principles (SOSP).
Stevenson, WA: ACM, Oct. 2007, pp. 103–116.

[44] J. W. Voung, R. Jhala, and S. Lerner, “RELAY: Static Race Detection on
Millions of Lines of Code,” in Proceedings of the the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT

14

http://doi.acm.org/10.1145/2560012
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1235
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1235
https://lwn.net/Articles/755593
https://lwn.net/Articles/755593
https://bugzilla.kernel.org/buglist.cgi?component=btrfs
https://bugzilla.kernel.org/buglist.cgi?component=btrfs
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=f2fs
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=f2fs
https://bugzilla.kernel.org/buglist.cgi?component=ext4
https://bugzilla.kernel.org/buglist.cgi?component=ext4
https://github.com/kdave/xfstests
https://github.com/linux-test-project/ltp
https://github.com/linux-test-project/ltp
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
http://honggfuzz.com/
https://github.com/google/oss-fuzz
https://github.com/google/syzkaller
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
http://doi.acm.org/10.1145/359545.359563
https://lwn.net/Articles/777036/
https://lwn.net/Articles/777036/

Symposium on The Foundations of Software Engineering, ser. ESEC-FSE
’07. New York, NY, USA: ACM, 2007, pp. 205–214.

[45] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk, “Effective
Data-race Detection for the Kernel,” in Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).
Berkeley, CA, USA: USENIX Association, Oct. 2010, pp. 151–162.

[46] M. Elver, “Add Kernel Concurrency Sanitizer (KCSAN),” https://lwn.
net/Articles/802402/, 2019.

[47] J. Alglave, W. Deacon, B. Feng, D. Howells, D. Lustig, L. Maranget, P. E.
McKenney, A. Parri, N. Piggin, A. Stern, A. Yokosawa, and P. Zijlstra,
“Who’s afraid of a big bad optimizing compiler?” https://lwn.net/Articles/
793253/, 2019.

[48] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A
Randomized Scheduler with Probabilistic Guarantees of Finding Bugs,” in
Proceedings of the 15th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
New York, NY, USA: ACM, Mar. 2010, pp. 167–178.

[49] Y. Sui and J. Xue, “SVF: Interprocedural Static Value-Flow Analysis
in LLVM,” in Proceedings of the 25th International Conference on
Compiler Construction (CC), Barcelona, Spain, Mar. 2016.

[50] LLVM Project, “libFuzzer - a library for coverage-guided fuzz testing,”
https://llvm.org/docs/LibFuzzer.html, 2018.

[51] P. Chen and H. Chen, “Angora: Efficient Fuzzing by Principled Search,”
in Proceedings of the 39th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2018.

[52] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL:
Path Sensitive Fuzzing,” in Proceedings of the 39th IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, May 2018.

[53] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox
fuzzing as markov chain,” in Proceedings of the 23rd ACM Conference
on Computer and Communications Security (CCS), Vienna, Austria, Oct.
2016.

[54] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), Dallas, TX, Oct.–Nov.
2017.

[55] NCC Group, “AFL/QEMU fuzzing with full-system emulation.” https:
//github.com/nccgroup/TriforceAFL, 2017.

[56] MWR Labs, “Cross Platform Kernel Fuzzer Framework,” https://github.
com/mwrlabs/KernelFuzzer, 2016.

[57] H. Han and S. K. Cha, “IMF: Inferred Model-based Fuzzer,” in Proceed-
ings of the 24th ACM Conference on Computer and Communications
Security (CCS), Dallas, TX, Oct.–Nov. 2017.

[58] NCC Group, “A linux system call fuzzer using TriforceAFL,” https:
//github.com/nccgroup/TriforceLinuxSyscallFuzzer, 2017.

[59] MWR Labs, “macOS Kernel Fuzzer,” https://github.com/mwrlabs/
OSXFuzz, 2017.

[60] M. J. Renzelmann, A. Kadav, and M. M. Swift, “SymDrive: Testing
Drivers without Devices,” in Proceedings of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Hollywood,
CA, Oct. 2012.

[61] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and
G. Vigna, “DR. Checker: A Soundy Analysis for Linux Kernel Drivers,”
in Proceedings of the 26th USENIX Security Symposium (Security),
Vancouver, Canada, Aug. 2017.

[62] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from Mistakes - A Com-
prehensive Study on Real World Concurrency Bug Characteristics,” in
Proceedings of the 13th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Seattle, WA, Mar. 2008.

[63] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A
Randomized Scheduler with Probabilistic Guarantees of Finding Bugs,” in
Proceedings of the 15th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Pittsburgh, PA, Mar. 2010.

[64] P. Ammann and J. Offutt, Introduction to Software Testing, 2nd ed. New
York, NY, USA: Cambridge University Press, 2016.

[65] J. Wang, Y. Duan, W. Song, H. Yin, and C. Song, “Be sensitive
and collaborative: Analyzing impact of coverage metrics in greybox
fuzzing,” in 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019). Chaoyang District, Beijing:
USENIX Association, Sep. 2019, pp. 1–15. [Online]. Available:
https://www.usenix.org/conference/raid2019/presentation/wang

[66] K. Owens and A. Arcangeli, “Seqlock implementation in linux,” https:

//github.com/torvalds/linux/blob/master/include/linux/seqlock.h, 2019.
[67] Google, “syzbot,” https://syzkaller.appspot.com, 2018.
[68] O. Purdila, L. A. Grijincu, and N. Tapus, “LKL: The Linux kernel

library,” in Proceedings of the 9th Roedunet International Conference
(RoEduNet). IEEE, 2010.

[69] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma, “Ad Hoc Synchroniza-
tion Considered Harmful,” in Proceedings of the 9th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Vancouver,
Canada, Oct. 2010.

15

https://lwn.net/Articles/802402/
https://lwn.net/Articles/802402/
https://lwn.net/Articles/793253/
https://lwn.net/Articles/793253/
https://llvm.org/docs/LibFuzzer.html
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://github.com/mwrlabs/KernelFuzzer
https://github.com/mwrlabs/KernelFuzzer
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/mwrlabs/OSXFuzz
https://github.com/mwrlabs/OSXFuzz
https://www.usenix.org/conference/raid2019/presentation/wang
https://github.com/torvalds/linux/blob/master/include/linux/seqlock.h
https://github.com/torvalds/linux/blob/master/include/linux/seqlock.h
https://syzkaller.appspot.com

APPENDIX

A. Level of concurrency in the btrfs file system

1 struct btrfs_fs_info {
2 /* work queues */
3 struct btrfs_workqueue *workers;
4 struct btrfs_workqueue *delalloc_workers;
5 struct btrfs_workqueue *flush_workers;
6 struct btrfs_workqueue *endio_workers;
7 struct btrfs_workqueue *endio_meta_workers;
8 struct btrfs_workqueue *endio_raid56_workers;
9 struct btrfs_workqueue *endio_repair_workers;

10 struct btrfs_workqueue *rmw_workers;
11 struct btrfs_workqueue *endio_meta_write_workers;
12 struct btrfs_workqueue *endio_write_workers;
13 struct btrfs_workqueue *endio_freespace_worker;
14 struct btrfs_workqueue *submit_workers;
15 struct btrfs_workqueue *caching_workers;
16 struct btrfs_workqueue *readahead_workers;
17 struct btrfs_workqueue *fixup_workers;
18 struct btrfs_workqueue *delayed_workers;
19 struct btrfs_workqueue *scrub_workers;
20 struct btrfs_workqueue *scrub_wr_completion_workers;
21 struct btrfs_workqueue *scrub_parity_workers;
22 struct btrfs_workqueue *qgroup_rescan_workers;
23 /* background threads */
24 struct task_struct *transaction_kthread;
25 struct task_struct *cleaner_kthread;
26 };

Fig. 14: 20 work queues and 2 background threads used by btrfs.
This does not cover all asynchronous activities observable at runtime.

B. Seed evolution in KRACE

1 def fuzzing_loop(ext_limit, mod_limit, rep_limit):
2 while True:
3 program = merge_seeds(select_seed_pair())
4

5 ext_stall = 0
6 while ext_stall < ext_limit:
7 ext_stall++
8 [50%] program.add_syscall()
9 [50%] program.del_syscall()

10

11 mod_stall = 0
12 while mod_stall < mod_limit:
13 mod_stall++
14 [80%] program.mutate()
15 [20%] program.shuffle()
16

17 rep_stall = 0
18 while rep_stall < rep_limit:
19 rep_stall++
20 delay = randomize_delay()
21 cov, log = run(program, delay)
22

23 if not cov.empty():
24 rep_stall = mod_stall = ext_stall = 0
25 schedule_data_race_check(log)
26 prune_and_save_seed(program)

Fig. 15: The seed evolution process (a.k.a the fuzzing loop) in KRACE

Three parameters tunes the behaviors of the seed evolution
loop: namely ext_limit, mod_limit, and rep_limit as shown
in Figure 15. In KRACE, they take the values of 10, 10, and 5
respectively. That is,

• if any new coverage, either branch or alias, is observed
in 5 consecutive runs, KRACE will continue to run the
same multi-threaded seed for 5 more times but with a
new delay schedule each time;

• if no new coverage is observed for 5 consecutive runs,
KRACE starts to mutate the syscall arguments in the multi-
threaded trace or shuffle the syscalls;

• if no new coverage is observed for 50 consecutive runs,
KRACE starts to alter the input structure by adding or
deleting the syscalls in the multi-threaded traces;

• if no new coverage is observed for 500 consecutive runs,
KRACE starts to merge two seeds for a new seed.

C. Ad-hoc synchronization schemes in kernel file systems

Although ad-hoc synchronization schemes are considered
harmful [69], they may still exist in kernel file systems
for performance or functionality enhancements. Whenever
we encounter an ad-hoc scheme (usually when analyzing
false positives), we annotate it in the same way as major
synchronization APIs so that subsequent runs will not report
the false data races caused by it. In this section, we present
two examples we encountered in btrfs.
Ad-hoc locking. An ad-hoc lock has two implications: 1)
there will be data races in the lock implementation and these
data races are all benign races; and 2) lock internals should
be abstracted in a way that the lockset analysis can easily
understand. A representative example is the btrfs tree lock, and
the purpose of having the tree lock is to be convertible between
blocking and non-blocking mode, as shown in Figure 16.

1 /* acquire a spinning write lock, wait for both
2 * blocking readers or writers */
3 void btrfs_tree_lock(struct extent_buffer *eb)
4 {
5 u64 start_ns = 0;
6 if (trace_btrfs_tree_lock_enabled())
7 start_ns = ktime_get_ns();
8

9 WARN_ON(eb->lock_owner == current->pid);
10 again:
11 wait_event(eb->read_lock_wq,
12 atomic_read(&eb->blocking_readers) == 0);
13 wait_event(eb->write_lock_wq, eb->blocking_writers == 0);
14 write_lock(&eb->lock);
15 if (atomic_read(&eb->blocking_readers)
16 || eb->blocking_writers) {
17 write_unlock(&eb->lock);
18 goto again;
19 }
20 btrfs_assert_spinning_writers_get(eb);
21 btrfs_assert_tree_write_locks_get(eb);
22 eb->lock_owner = current->pid;
23 }
24 /* drop a spinning or a blocking write lock. */
25 void btrfs_tree_unlock(struct extent_buffer *eb)
26 {
27 int blockers = eb->blocking_writers;
28 BUG_ON(blockers > 1);
29

30 btrfs_assert_tree_locked(eb);
31 eb->lock_owner = 0;
32 btrfs_assert_tree_write_locks_put(eb);
33

34 if (blockers) {
35 btrfs_assert_no_spinning_writers(eb);
36 eb->blocking_writers--;
37 cond_wake_up(&eb->write_lock_wq);
38 } else {
39 btrfs_assert_spinning_writers_put(eb);
40 write_unlock(&eb->lock);
41 }
42 }

Fig. 16: A snippet of the btrfs tree lock (writer side only).

16

Tree lock API Lockset mapping

tree_lock writer-lock

tree_unlock writer-unlock

tree_read_lock reader-lock

tree_read_lock_atomic reader-lock

tree_read_unlock reader-unlock

tree_read_unlock_blocking reader-unlock

tree_set_lock_blocking_read no-op if read-locked

tree_set_lock_blocking_write no-op if write-locked

try_tree_read_lock reader-lock if succeed

try_tree_write_lock writer-lock if succeed

TABLE II: Semantic mapping between the tree lock and conventional
locks (in particular, the readers-writer lock).

In these functions, almost every memory access to the fields
in the extent buffer, eb, could be racing against other accesses.
e.g., eb->lock_owner at line 12 against eb->lock_owner = 0
at line 40. So the first annotation for KRACE is to assume all
data races within these functions are safe and benign races.

To further encode the locking semantics for lockset analysis,
we study the tree lock APIs and map their functionality into a
simple reader-writer lock format as shown in Table II. In other
words, calling the, e.g., tree_lock will be treated equally as
calling the writer-lock in the conventional locking mechanisms.
Although tree_lock performs much more computation (e.g.,
waiting for both blocking and non-blocking readers), from the
lockset perspective, it is equivalent to a writer-lock.
Ad-hoc ordering. Ad-hoc ordering implies undocumented
casual relations between thread executions and a good example
is the customization of the conventional kernel work queue in
btrfs, as shown in Figure 17.

1 static inline void __btrfs_queue_work(struct __btrfs_workqueue *wq,
2 struct btrfs_work *work)
3 {
4 unsigned long flags;
5 work->wq = wq;
6 if (work->ordered_func) {
7 spin_lock_irqsave(&wq->list_lock, flags);
8 list_add_tail(&work->ordered_list, &wq->ordered_list);
9 spin_unlock_irqrestore(&wq->list_lock, flags);

10 }
11 queue_work(wq->normal_wq, &work->normal_work);
12 }
13 static void normal_work_helper(struct btrfs_work *work) {
14 /* ... */
15 work->func(work);
16 if (need_order)
17 set_bit(WORK_DONE_BIT, &work->flags);
18 /* ... */
19 }
20 static void run_ordered_work(struct __btrfs_workqueue *wq) {
21 /* ... */
22 work = list_entry(list->next, struct btrfs_work, ordered_list);
23 if (test_bit(WORK_DONE_BIT, &work->flags))
24 work->ordered_func(work);
25 /* ... */
26 }

Fig. 17: A snippet of the btrfs work queue implementation.

In this example, the set_bit and test_bit (line 17 and
23), establish an additional causal relation beyond the normal
queue_work semantic: the ordered function only gets into
execution when the normal function finishes. Thus, although
the observed happens-before relation is line 8 → line 24 and
line 11 → line 15, the actual relation is line 8 → line 11 →
line 15 → line 24.

D. KRACE implementation details

Component LoC Languange

Compile-time preparation
Kernel annotations 5,653 C
LLVM instrumentation pass 1,977 C++
KRACE kernel runtime library 1,749 C

Fuzzing loop
Seed evolution (including syscall spec.) 9,394 Python
QEMU-based fuzzing executor 5,878 Python
Initramfs and the init program 2,527 Python
Data race checker 6,883 Python
Debugging tools and utilities 1,096 Python

TABLE III: Implementation complexity of KRACE in terms of LoC
measurement of the major components shown in Figure 9.

Runtime executor. The most challenging part of KRACE’s
implementation is to establish information-sharing channels
between the host and VM-based fuzzing instances for seed
injection, coverage tracking, and feedback collection. KRACE
uses private memory mapping (PCI memory bar), public
memory mapping (ivshmem), and the 9p file sharing protocols
for this purpose, as shown in Figure 10.
Kernel building. Building the Linux kernel with LLVM is
straightforward since kernel v5.3 and LLVM 9.0. In addition, to
get the smallest possible boot time, we opt for a minimal kernel
build with only necessary components enabled, including the
block layer, loopback device, and all other related drivers to
support and accelerate execution in QEMU and KVM. File
systems are built as modules, not built-in, and these modules
will be loaded by our fuzzing agent (i.e., the init program)
such that we could track the modules in full, including the
thread they fork on loading and their synchronization orders.
Initramfs. Again, to shorten the execution time, KRACE does
not rely on full-blown OSes, not even tools like busybox, as
they may interfere with the file system under testing. Instead,
the init program in KRACE is the fuzzing agent that takes the
multi-threaded seed and interprets it. In particular, the init 1)
starts tracing, 2) loads file system modules, 3) mounts the file
system image, 4) interprets the program, 5) unmounts the file
system image, 6) unloads the modules, and 7) stops tracing.
Coverage tracking. Coverage tracking is handled by the
instrumented code which are essentially stub calls, e.g.,
on_basic_block_enter, on_memory_read, etc., into the KRACE
runtime library. KRACE directly updates the coverage bitmaps
maintained in the host memory regions that are globally visible
to all VM instances (and their threads). Effectively, each update
is a test_and_set_bit operation while the QEMU ivshmem
protocol ensures atomicity.
Execution log. An execution log is simply an array of
[<event-type>, <thread-id>, <arg1>, <arg2>, ...] filled
by the KRACE runtime library and consumed by the data race
checker for data race detection as well as reporting purposes
such as call trace reconstruction.

E. A taste of the happens-before complexity in actual execution

17

46-46-7979

46-46-8194

46-8-134694

46-8-134695

65599-0-0

46-8-113651

46-8-116219

46-8-40342

46-8-41245

65588-2-0

46-43-809541

46-43-81752165553-1-0

46-8-1181703

46-8-1181704

16842752-9-0

46-8-303605

46-8-303606

65609-0-0

46-43-4841

46-43-5782 16908288-46-0

46-43-623228

46-43-629941

46-8-1156633

46-8-1157044

65588-20-0

46-43-897551

46-43-910616 16973824-83-0

46-43-792153

46-43-792154

65594-2-0

46-8-206509

46-8-206510

65543-9-0

46-43-849921

46-43-851782 16973824-69-0

46-43-722815

46-43-73484416973824-35-0

46-43-421358

46-43-421359

16908288-60-0

46-8-1247905

46-8-1248616

46-8-241622

46-8-242081

46-8-41246

46-8-97326

46-8-242082

46-8-242313

46-43-762794

46-43-762795

65589-2-0

46-47-925

46-46-8416

46-8-118363

46-8-120016

46-8-1173338

46-8-1173635

65588-24-0

46-8-192790

46-8-205483

46-8-118240

46-8-11836265591-1-0

46-43-9926

46-43-9927

16973824-5-0

46-8-1194188

46-8-1194189

16842752-15-0

46-8-1140121

46-8-1144077

46-42-3737

46-8-206015

46-8-128446

46-8-130418

46-46-1102

46-46-7826

46-8-1209795

46-8-1210092

65588-33-0

46-8-1110705

46-8-1111436

65588-10-0

46-8-1169821

46-8-1229506

46-8-1229507

16842752-33-0

46-42-3678

46-42-3726

46-43-0

46-8-228601

46-8-229152

65588-8-0

46-8-23801

46-8-30698

46-43-616158

46-43-616486

65588-62-0

46-8-1144488

65588-17-0

46-8-229153

65543-14-0

46-43-4230

16908288-45-0

46-43-789858

46-43-789859

65605-2-0

46-43-9570

46-43-9571

16973824-2-0

46-8-1157045

16908288-39-0

46-8-217341

46-8-217342

65543-11-0

46-8-1264823

46-8-1264824

65543-26-0

46-8-1213915

46-8-1213916

16842752-25-0

46-46-7978

65588-69-0

46-8-1148400

46-8-1148811

65588-18-0

46-8-136778

46-8-13690065600-1-0

46-8-1264132

46-8-1264591

46-8-113650

65589-0-0

46-8-1181406

65588-26-0

46-8-139106

46-8-13922865601-1-0

46-8-12013865592-1-0

46-8-1165902

46-8-1169523

46-43-792339

46-8-141083

46-8-14120565602-1-0

46-43-622024

46-43-622618

65615-6-0

46-8-303023

46-8-303024

65608-0-0

46-43-421870

46-8-1130967

46-8-1131378

65588-14-0

46-8-122693

46-8-122694

65593-0-0

46-8-1126776

46-8-1160609

46-8-1161020

65588-21-0

46-43-878649

46-43-878654 33619968-270-0

46-8-1190029

46-8-1190030

16842752-13-0

46-8-132402

46-8-13252465598-1-0

46-8-1247904

65543-21-0

46-8-1272665

46-8-1272666

65610-0-0

46-43-762980

46-43-623227 65615-7-0

65591-0-0

46-43-88238

46-43-312342 16908288-48-0

46-43-795641

46-43-795642

65593-2-0

46-43-10438

46-43-549007

46-43-550114 16973824-18-0

46-8-1140120

16908288-31-0

46-43-79389665553-0-0

46-8-206014

65543-8-0

46-8-217644

46-46-1101

16973824-87-0

46-43-735708

46-43-74700965580-0-0

46-8-241090

46-8-241621

65588-9-0

46-8-1185785

46-8-1186082

65588-27-0

46-8-192558

46-8-192789

46-43-313791 16908288-49-0

46-8-1169820

16842752-3-0

46-47-0

46-47-494

46-8-116490

46-8-23800

16908288-3-0

46-8-31318

46-8-11648965590-1-0

46-43-618740

46-43-618741

16973824-22-0

46-43-885691

46-43-885692

16973824-76-0

46-8-192291

46-8-192557

46-8-1139709

65588-16-0

46-43-790888

46-46-8405

46-43-451684

46-43-453525 16973824-13-0

46-43-764754 65587-0-0

46-8-1281317

46-8-1281946

46-43-863897

46-43-865758 16973824-72-0

46-43-885056

16973824-75-0

46-8-175619

46-8-175620

65543-2-0

46-8-141206

46-8-143060

46-43-441614

46-43-441615

16973824-12-0

65588-6-0

46-8-112920

65589-1-0

46-43-421871

16908288-61-0

46-8-242314

46-8-302901

46-8-303483

65609-1-0

46-8-22907

65588-1-0

46-8-1221958

46-8-1225615

46-43-785215

46-43-78670965541-1-0

46-8-1225913

46-8-1229209

46-8-149340

46-8-151194

46-8-149217

46-8-14933965606-1-0

46-8-1173636

46-8-1177151

46-43-795827

65579-3-0

46-43-10439

16973824-6-0

46-43-775053

46-43-775054

65601-2-0

46-8-1264592

65543-25-0

46-43-788184

46-43-788185

65595-1-0

46-8-1217947

46-8-1221660

46-43-638170

46-43-638171

16973824-31-0

46-43-315721

46-43-414484 16908288-52-0

46-43-894904

46-43-895269 16973824-80-0

46-43-415417

46-43-415820 65588-54-0

46-8-191759

46-8-192290

65588-5-0

46-43-619065

46-43-886760

65543-4-0

46-8-174187

46-8-175102

65588-4-0

46-43-766398

46-43-766399

65600-2-0

46-8-1281316

65579-2-0

46-43-420286

46-43-420287

16908288-56-0

46-43-615379

46-43-615830

65588-60-0

46-46-8338

46-43-79727465563-1-0

46-8-143183

46-8-145037

46-43-892708

46-43-892872

65563-2-0

46-8-1189732

65588-28-0

46-43-892873

65563-3-0

46-43-7316

46-43-7317

65612-1-0

46-43-457688 16973824-14-0

46-43-424902

46-8-216780

46-8-1221957

65588-36-0

46-43-910685

46-43-91070216973824-85-0

46-43-619066

16973824-25-0

46-43-6713

46-43-6714

65543-29-0

46-43-433633

46-43-44076965615-2-0

16973824-19-0

46-8-130541

46-43-6374

65543-28-0

46-8-151317

46-8-162142

46-8-122571

65593-1-0

46-8-1122233

46-8-1122234

16908288-23-0

46-43-853643

16973824-71-0

65588-23-0

46-8-1225912

16842752-31-0

46-8-1272470

46-9-0

46-9-295

46-43-775239

46-43-869941

16973824-74-0

46-43-788370

46-8-1263698

46-8-1264131

65588-40-0

46-43-704772

46-8-1217946

16842752-27-0

46-43-3036

46-43-3600 16908288-43-0

46-43-314756

16908288-51-0

46-8-1198075

46-8-1198076

16842752-17-0

46-8-1248617

46-8-1186083

46-8-1135631

46-8-124709

46-8-124710

65594-0-0

46-8-147237

46-8-147238

65605-0-0

46-8-175103

46-9-312

46-8-1284676

46-43-766584

46-43-420846

16908288-50-0

46-8-217643

46-43-420016

46-43-420017

16908288-55-0

65558-0-0

46-8-1217649

46-43-637305

65588-67-0

46-43-2263

16908288-42-0

46-8-1144489

46-43-459423

46-43-463451 16973824-16-0

46-43-887085

16973824-77-0

46-43-78341765580-1-0

46-8-1161021

46-8-1165604

46-43-734845

65596-2-0

46-8-143182

65603-0-0

46-42-2877

46-42-3041

65548-1-0

65580-2-0

46-43-893115

46-8-1148812

16908288-35-0

46-43-817522

65599-2-0

46-43-70841616973824-32-0

46-8-1111437

46-8-1117684

46-43-7227

65608-1-0

46-43-794082

65621-0-0

46-8-124587

65588-37-0

46-43-415093

65588-53-0

46-43-425898

46-43-425899

16973824-8-0

16973824-84-0

46-43-786895

65563-0-0

46-8-1193891

46-8-31317

16908288-5-0

46-8-130540

65597-0-0

46-8-1281046

46-8-151316

65607-0-0

46-8-1131379

46-8-1135219

65588-38-0

46-8-1206135

46-8-1206136

16842752-21-0

46-8-1202367

46-8-1205838

65588-55-0

46-43-793897

65606-2-0

46-42-3042

46-43-747195

46-43-76072065576-1-0

65543-22-0

16842752-11-0

46-46-498

16973824-86-0

46-8-1135630

16908288-29-0

46-8-1118391

46-8-1118392

16908288-21-0

46-43-817707

46-43-83102465558-1-0

46-8-1152915

65543-1-0

46-8-139229

46-8-120139

65588-68-0

46-8-1284665

46-8-145159

46-8-145160

65604-0-0

16908288-33-0

65588-11-0

46-43-630290

65615-9-0

65588-32-0

16908288-41-0

46-8-132525

46-8-134572

46-8-1197778

65588-30-0

46-43-797275

65607-2-0

65543-17-0

46-8-128323

46-8-12844565596-1-0

46-43-425511

65564-1-0

16908288-8-0

65616-0-0

65543-18-0

16908288-19-0

65588-29-0

46-43-433288

46-8-97516

46-8-104575 65576-0-0

65543-6-0

65588-35-0

46-4-867

65588-0-0

65588-15-0

65579-1-0

16908288-27-0

46-8-1247163

65588-39-0

65564-0-0

16908288-44-0

65596-0-0

46-8-126690

65595-0-0

46-47-495

33619968-273-0

46-8-1202366

16842752-19-0

46-43-887170

16973824-79-0

46-43-786710

65604-2-0

65548-0-0

46-8-136901

46-8-1213618

65588-34-0

46-8-1177449

65548-2-0

46-8-1152914

16908288-37-0

46-43-887086

16973824-78-0

46-43-897179

16973824-82-0

65543-24-0

46-8-1126364

46-8-1126775

65588-13-0

65601-0-0

65592-0-0

46-46-8195

46-8-1165901

16842752-1-0

16973824-70-0

65548-3-0

46-8-229455

65594-1-0

46-8-147115

65605-1-0

46-47-907

16973824-88-0

16973824-81-0

46-43-747010

65592-2-0

65588-63-0

65599-1-0

65598-0-0

16973824-17-0

46-43-797460

46-43-719854

16973824-34-0

46-43-420847

16908288-59-0

65588-61-0

65541-0-0

33685504-3-0

46-8-1210093

65588-59-0

65615-1-0

46-43-831573

16973824-65-0

46-43-831574

16973824-66-0

46-43-809355

46-43-809356

65598-2-0

16908288-12-0

65588-7-0

65543-12-0

16908288-25-0

65543-5-0

65590-0-0

65588-52-0

65607-1-0

16908288-6-0

65579-4-0

65600-0-0

16842752-36-0

65612-4-0

46-8-1177448

16842752-7-0

46-8-105361

46-8-1202069

65588-22-0

65588-31-0

65602-0-0

65610-1-0

65588-70-0

16973824-27-0

46-8-1152465

65588-19-0

46-8-229454

65543-15-0

65588-25-0

65543-19-0

65603-1-0

16908288-47-0

16842752-29-0

65604-1-0

46-8-1121822

65588-12-0

65570-0-0

46-8-105360

65588-3-0

65606-0-0

16842752-23-0

16842752-5-0

46-43-848060

65597-1-0

16973824-15-0

65615-10-0

16973824-73-0

16973824-68-0

16908288-10-0

16973824-33-0

47-0-89046

47-0-92297

47-0-87245

47-0-87246

16842752-41-0

47-0-85226

47-0-85550

65588-43-0

65588-44-0

47-0-84453

47-0-84902

65588-41-0

47-0-89045

47-0-103472

47-0-103473

16842752-49-0

65588-42-0

47-0-93553

47-0-93554

16842752-46-0

47-0-92967

65554-1-0

47-0-102782

65611-2-0

16842752-44-0

65554-0-0

47-0-102441

65611-1-0

48-0-95939

65541-1-58663

16777216-21-0

65541-1-78

65541-1-5850916777216-16-0

65541-0-41468

16777216-15-0

65541-0-78

65541-0-41314 16777216-9-0

65541-1-58552

16777216-19-0

65541-0-41358

65541-0-41357

16777216-10-0

65541-1-58553

16777216-20-0

16777216-11-0

65543-18-93

65543-16-1113

65543-22-93

65543-21-93

65543-11-93

65543-10-474

65543-24-93

65543-31-0

65543-31-80

65543-13-461

65543-13-462

65543-0-844

65543-0-845

65543-28-18167

65543-28-18168

65543-13-1738

65543-13-1739

65543-16-461

65543-16-462

65543-7-457

65543-7-458

65543-16-2102

65543-3-6257

65543-28-16123

65543-28-16490

65543-1-137

65543-14-96

65543-7-8252

65543-7-8253

65543-30-0

65543-10-473

65543-20-2549

65543-20-2550

65543-3-0

65543-3-457

65543-6-93

65543-23-2637

65543-23-2638

65543-10-3268

65543-10-3269

65543-5-93

65543-9-93

65543-8-93

65543-16-2103

65543-15-93

65543-12-93

65543-17-96

65543-0-4329

65543-0-4330

65543-20-0

65543-20-461

65543-30-33039

65543-23-1113

65543-30-33335

65543-29-144

65543-3-1117

65543-3-6256

65543-20-462

65543-25-93

65543-3-458

65543-3-1116

65543-23-462

65543-23-1112

65543-2-93

65543-30-33272

65543-4-93

65543-26-93

65543-13-0

65543-16-1112

65543-19-93

65543-28-1310

65543-16-0

65543-23-0

65543-23-461

65543-0-0

65543-7-0

65543-10-0

65548-3-1936

65548-3-43226 16777216-6-0

65548-1-1024

65548-1-102

65548-3-43270

65548-3-43396

65548-3-1905

16777216-5-0

65548-2-136

65548-1-1023

16777216-18-0

33685504-0-0

65548-3-43269

16777216-7-0

16777216-8-0

65553-1-78

65553-1-41394 16842752-63-0

65553-0-41616

16842752-60-0

65553-0-41506

65553-0-78

65553-0-4146216842752-55-0

65553-1-41437

16842752-64-0

65553-1-41438

65553-1-41548

16842752-67-0

65553-0-41505

16842752-56-0

16842752-65-0

16842752-57-0

65554-0-970

65588-45-0

65558-0-78

65558-0-41319

65558-0-41362

16908288-69-0

65558-1-41327

65558-1-41328

16908288-76-0

65558-1-41284

16908288-75-0

65558-1-78

65558-1-41438

16908288-77-0

16908288-68-0

65558-0-41363

65558-0-41473

16908288-73-0

16908288-74-0

16908288-70-0

65563-0-41370

65563-0-41371

16973824-48-0

65563-3-96

65563-2-264

65563-1-41358

65563-1-41468

65563-1-41314

65563-1-41357

16973824-59-0

65563-0-41624

65563-2-263

16973824-60-0

65563-0-78

65563-0-41327 16973824-45-0

16973824-55-0

16973824-47-0

65563-1-100

65563-4-0

16973824-58-0

16973824-64-0

65564-0-683

65588-56-0

65570-0-887

65612-0-0

65576-1-41689

65576-1-41799

16908288-71-0

65576-1-41645

65576-1-41688

16908288-63-0

65576-1-78

16908288-62-0

16908288-64-0

65579-4-78

65579-4-41329 16842752-59-0

65579-4-41372

65579-4-41373

16842752-62-0

65579-1-102

65579-4-41483

16842752-66-0

65579-1-690

65579-1-691

65579-2-212

65579-3-41454

16842752-58-0

65579-3-78

65579-3-41300 16842752-52-0

65579-3-41343

65579-3-41344

16842752-54-0

16842752-61-0

33751040-0-0

16842752-53-0

65580-1-78

65580-1-4130316973824-42-0

65580-0-194

65580-0-41372 16973824-36-0

65580-1-41346

65580-1-41347

16973824-44-0

65580-0-41399

65580-0-41524

16973824-38-0

65580-1-41457

65580-2-50836

16973824-62-0

65580-0-41525

65580-0-41703

65580-2-78

65580-2-5068216973824-50-0

65580-2-50725

65580-2-50726

16973824-52-0

16973824-39-0

16973824-49-0

16973824-41-0

16973824-43-0

16973824-37-0

16973824-51-0

65587-0-60434

65587-0-60544

16908288-72-0

65587-0-78

65587-0-6039016908288-65-0

65587-0-60433

16908288-66-0

16908288-67-0

65588-59-748

65588-59-749

33619968-249-0

65588-5-1436

65588-5-2469

65588-4-3148

65588-4-3549

65588-21-3153

65588-21-3554

65588-49-2997

65588-49-4118

65588-0-4171

65588-48-0

65588-0-4182

65588-0-5308

65588-0-5386

65588-10-1120

65588-0-929

65588-0-2520

65588-0-2531

65588-59-1292

65588-0-4903

65588-57-0

65588-57-744

65588-16-3161

65588-16-3562

65588-44-748

65588-44-749

33619968-187-0

65588-0-1274

65588-0-1285

65588-5-3326

65588-5-3727

65588-18-576

65588-18-1434

65588-0-128

65588-0-206

65588-0-3065

65588-0-3143

65588-44-4131

65588-44-4646

65588-0-1897

65588-0-1908

65588-44-1882

65588-44-1883

33619968-188-0

65588-0-3688

65588-0-3723

65588-39-1435

65588-39-2293

65588-53-744

65588-0-4093

65588-32-3606

65588-0-2887

65588-57-745

65588-57-1260

65588-19-1434

65588-19-1435

33619968-66-0

65588-29-3156

65588-29-3157

33619968-115-0

65588-51-745

65588-51-1866

65588-61-2983

65588-61-4217

65588-68-31

65588-24-3629

65588-0-2175

65588-60-1864

65588-60-2982

65588-11-2293

65588-11-2294

33619968-35-0

65588-30-3152

65588-30-3153

33619968-120-0

65588-0-2698

65588-0-2709

65588-35-3156

65588-35-3157

33619968-145-0

65588-26-1551

65588-26-2409

65588-0-4263

65588-50-0

65588-0-4274

65588-49-4119

33619968-205-0

65588-55-12085

65588-55-13206

65588-18-575

65588-0-3243

65588-0-3321

65588-6-1431

65588-6-1432

33619968-17-0

65588-9-2298

65588-9-3164

65588-33-575

65588-15-3153

65588-15-3554

65588-17-3554

65588-17-369716908288-32-0

65588-68-32

65588-54-7476

65588-54-7477

33619968-228-0

65588-62-4549

65588-62-4577 33751040-11-0

65588-54-11981

65588-54-13106

65588-39-3574

65588-39-360233619968-166-0

65588-13-3715

65588-0-1196

65588-21-1435

65588-21-2293

65588-0-3780

65588-0-3815

65588-0-4981

65588-0-4992

65588-14-575

65588-1-676

65588-1-1121

65588-43-4110

65588-43-4111

33619968-185-0

65588-9-575

65588-9-576

33619968-28-0

65588-48-1867

65588-48-2988

65588-0-1452

65588-0-1463

65588-51-1867

65588-51-2988

65588-20-2294

65588-20-3152

65588-40-1435

65588-40-2293

65588-41-5266

65588-41-5294 33619968-176-0

65588-0-3734

65588-0-3769

65588-0-4444

65588-0-4455

65588-0-217

65588-0-1997

65588-0-2075

65588-18-1435

33619968-62-0

65588-58-0

65588-58-572

65588-0-751

65588-0-829

65588-54-6354

65588-54-6355

33619968-227-0

65588-62-2915

65588-62-4033

65588-9-3709

65588-0-840

65588-55-13722

65588-55-13750 33685504-2-0

65588-37-2294

65588-37-3160

65588-66-872

65588-66-90033751040-15-0

65588-0-5073

65588-0-5084

65588-55-10963

65588-55-12084

65588-9-3566

16908288-17-0

65588-17-2294

65588-17-3152

65588-9-3165

33619968-31-0

65588-60-1863

33619968-251-0

65588-48-2989

65588-48-4118

65588-25-1435

65588-25-2293

65588-38-1442

65588-38-1443

33619968-158-0

65588-54-1867

65588-54-2988

65588-15-1435

65588-15-2293

65588-54-744

65588-33-3602

65588-0-2976

65588-13-2302

65588-13-3160

65588-0-4536

65588-0-4547

65588-69-83

65588-66-569

65588-59-1264

65588-4-3147

33619968-11-0

65588-3-575

65588-3-576

33619968-7-0

65588-32-2298

65588-32-3156

65588-52-4227

65588-52-4722

65588-37-1434

65588-37-1435

33619968-153-0

65588-0-5564

65588-0-5575

65588-19-575

65588-4-575

65588-4-576

33619968-8-0

65588-17-1434

65588-17-1435

33619968-58-0

65588-34-575

65588-36-3788

65588-54-8599

65588-54-9720

65588-44-3009

65588-44-4130

65588-40-575

65588-40-576

33619968-167-0

65588-4-2292

65588-63-4561

65588-63-4589 33751040-12-0

65588-16-3160

33619968-56-0

65588-46-1296

65588-0-4004

65588-0-384

65588-0-395

65588-0-3332

65588-7-3155

65588-7-3156

33619968-23-0

65588-68-52

65588-42-745

65588-42-2030

65588-33-576

33619968-132-0

65588-23-3574

65588-23-360233619968-86-0

33619968-190-0

65588-35-2298

65588-15-575

65588-0-1819

65588-54-745

65588-54-1866

65588-0-1007

65588-23-2293

65588-23-2294

33619968-84-0

65588-29-3578

65588-20-3554

65588-20-369716908288-38-0

65588-0-5486

65588-19-2301

65588-26-2410

65588-26-3268

65588-38-2301

65588-38-2302

33619968-159-0

65588-35-3578

65588-26-1550

33619968-98-0

65588-28-4182

65588-28-421033619968-111-0

65588-36-2480

65588-36-3338

65588-26-576

65588-29-360633619968-116-0

65588-6-2296

65588-6-3151

65588-49-4634

65588-0-3499

65588-0-3510

65588-5-575

65588-5-576

33619968-12-0

65588-62-4034

65588-31-1434

65588-31-1435

33619968-123-0

65588-1-126616908288-2-0

65588-14-2293

65588-14-2294

33619968-47-0

65588-0-1552

65588-54-11980

33619968-232-0

65588-11-1434

65588-11-1435

33619968-34-0

65588-16-3715

65588-0-573

65588-0-651

65588-25-3344

65588-25-3345

33619968-95-0

65588-34-3273

65588-34-3694

65588-34-576

33619968-137-0

65588-6-3152

65588-6-3553

65588-22-576

65588-22-1442

65588-17-3153

33619968-60-0

65588-55-744

65588-24-3180

65588-24-3601

65588-52-4865

65588-0-4409

65588-43-4626

65588-48-1866

33619968-199-0

65588-22-3169

65588-22-3590

65588-60-745

65588-0-4217

65588-49-0

65588-0-4228

65588-40-1434

33619968-168-0

65588-20-2293

33619968-71-0

65588-55-745

33619968-234-0

65588-28-575

65588-0-2253

65588-0-2264

65588-2-576

65588-2-977

65588-26-3269

65588-26-3690

65588-35-575

65588-27-3602

65588-0-2442

65588-0-1018

65588-62-1832

65588-62-2914

65588-54-9721

65588-54-10858

65588-27-3574

33619968-106-0

65588-19-2302

65588-19-3160

65588-0-2798

65588-0-2876

65588-16-2302

33619968-260-0

65588-39-3152

65588-39-3153

33619968-165-0

65588-67-756

65588-67-757

33619968-269-0

65588-18-3554

65588-18-370716908288-34-0

65588-15-2294

65588-15-3152

65588-24-2321

65588-24-3179

65588-28-3761

65588-27-2293

65588-27-2294

33619968-104-0

65588-8-575

65588-34-2409

65588-34-2410

33619968-139-0

65588-0-3904

65588-0-3915

65588-0-3826

65588-11-3697

33619968-200-0

65588-0-4309

65588-51-0

65588-0-4320

33619968-223-0

65588-0-2086

65588-28-576

65588-28-1434

65588-22-361833619968-81-0

65588-32-1439

65588-32-2297

65588-63-1831

65588-63-1832

33619968-263-0

65588-66-568

33619968-268-0

65588-62-745

65588-62-1831

65588-11-3152

65588-11-3153

33619968-36-0

65588-27-576

65588-27-1434

65588-55-1982

65588-55-1983

33619968-235-0

65588-48-745

33619968-129-0

65588-58-876

65588-58-90433751040-7-0

65588-52-4226

33619968-217-0

65588-37-2293

65588-50-757

65588-50-1878

65588-17-2293

65588-40-2294

65588-40-3179

65588-8-576

65588-8-1434

65588-44-3008

33619968-189-0

65588-54-8598

33619968-229-0

65588-4-2291

33619968-10-0

65588-23-576

65588-23-1434

65588-0-4714

65588-0-4725

65588-9-1438

65588-9-1439

33619968-29-0

65588-42-744

33619968-177-0

65588-53-2988

65588-53-2989

33619968-220-0

65588-48-744

33619968-61-0

65588-0-5119

65588-0-5130

65588-43-2988

65588-43-2989

33619968-184-0

33619968-222-0

65588-0-1185

65588-7-3557

65588-7-370016908288-15-0

65588-0-3054

65588-18-2294

65588-18-3152

65588-15-369716908288-28-0

65588-38-580

65588-63-2950

65588-63-2951

33619968-264-0

65588-0-1730

65588-0-1808

65588-49-748

65588-49-749

33619968-202-0

65588-36-3760

33619968-151-0

65588-29-579

65588-35-576

33619968-142-0

65588-36-2479

33619968-149-0

65588-0-4082

65588-13-3161

33619968-44-0

33619968-90-0

65588-55-7592

65588-55-7593

33619968-240-0

65588-40-3601

65588-40-362933619968-171-0

65588-36-575

65588-36-576

33619968-147-0

65588-41-3628

65588-41-3629

33619968-174-0

65588-31-2293

65588-19-3705

65588-47-872

65588-47-900 33619968-197-0

65588-54-13622

65588-54-1365033685504-1-0

65588-37-3610

65588-41-2308

65588-41-2309

33619968-173-0

65588-0-2620

65588-63-748

65588-63-749

33619968-262-0

65588-25-3766

65588-34-3272

33619968-140-0

65588-60-4645

65588-54-2989

65588-54-4110

65588-0-1374

65588-0-484

65588-0-562

65588-33-1434

65588-33-1435

33619968-133-0

65588-22-3168

33619968-80-0

65588-23-1435

33619968-83-0

65588-60-744

33619968-250-0

65588-0-4814

65588-0-4892

65588-0-5297

65588-65-0

65588-6-369616908288-14-0

65588-49-466233751040-2-0

65588-48-4662

65588-46-1260

33619968-195-0

65588-50-1879

65588-50-3000

33619968-100-0

65588-30-576

65588-30-1434

65588-7-2296

65588-65-1260

65588-65-1288 33751040-14-0

65588-37-575

65588-37-576

33619968-152-0

65588-48-4119

65588-48-4634

33619968-230-0

65588-16-2301

33619968-55-0

65588-67-1272

65588-21-3697

65588-55-6470

65588-55-6471

33619968-239-0

65588-24-2320

33619968-89-0

65588-4-1432

65588-28-3760

33619968-110-0

65588-64-0

65588-64-568

65588-47-0

65588-10-576

65588-10-977

65588-0-5219

65588-32-1438

33619968-128-0

65588-30-575

65588-26-575

33619968-97-0

65588-30-2293

65588-30-2294

33619968-119-0

65588-62-744

33619968-258-0

65588-45-919

65588-11-3554

65588-55-3104

65588-27-1435

33619968-103-0

33619968-198-0

65588-12-3298

65588-12-3699

65588-0-1630

65588-44-4674 33619968-191-0

65588-6-576

65588-30-3574

65588-30-360233619968-121-0

65588-50-756

33619968-206-0

65588-53-4749

65588-20-1435

16908288-30-0

33619968-169-0

65588-0-5027

65588-0-306

65588-33-2293

65588-33-2294

33619968-134-0

65588-45-920

33619968-192-0

65588-10-575

65588-38-3610

65588-0-3421

65588-9-2297

65588-53-4110

65588-53-1866

65588-53-1867

33619968-219-0

65588-0-3232

65588-14-1435

65588-43-4654 33619968-186-0

65588-16-576

65588-16-1434

65588-19-3562

16908288-36-0

65588-27-575

33619968-102-0

65588-61-4761

65588-0-5038

65588-0-1986

65588-56-872

65588-56-900 33751040-5-0

65588-63-4045

65588-36-1621

65588-6-575

65588-7-1440

65588-7-2295

65588-49-1870

65588-54-13107

65588-31-2294

65588-31-3156

65588-41-1088

65588-41-1089

33619968-172-0

65588-31-576

65588-13-3562

33619968-107-0

65588-61-1863

65588-61-1864

33619968-255-0

65588-0-4636

65588-55-8714

65588-0-2609

65588-52-3105

65588-42-3153

65588-42-4274

65588-41-4750

65588-45-1223

65588-45-1251 33619968-193-0

65588-39-2294

65588-6-2295

65588-12-576

65588-12-1463

65588-8-3153

65588-8-3554

65588-55-5348

65588-55-5349

33619968-238-0

65588-24-1462

65588-65-744

65588-12-2439

65588-12-3297

65588-11-576

65588-27-3152

65588-27-3153

33619968-105-0

65588-53-4606

16908288-54-0

65588-46-745

65588-0-5397

33619968-224-0

65588-0-1641

65588-2-113016908288-7-0

65588-61-744

65588-61-745

33619968-254-0

65588-0-740

65588-50-3001

65588-50-4122

65588-31-575

65588-64-569

65588-64-872

65588-51-4626

65588-51-465433751040-4-0

65588-46-0

65588-46-744

65588-8-369716908288-16-0

65588-7-576

65588-7-1439

65588-23-3152

65588-23-3153

33619968-85-0

65588-22-2305

65588-22-2306

33619968-79-0

33619968-207-0

65588-49-1871

33619968-203-0

65588-22-575

33619968-77-0

33619968-201-0

65588-11-575

65588-38-3161

65588-38-3582

65588-0-3599

65588-0-3677

16908288-20-0

65588-4-1431

33619968-9-0

65588-43-1866

65588-43-1867

33619968-183-0

65588-0-5475

65588-52-745

65588-52-1982

65588-39-575

65588-39-576

33619968-162-0

65588-12-384216908288-22-0

65588-17-576

65588-7-575

65588-4-369216908288-11-0

65588-55-4226

65588-55-4227

33619968-237-0

65588-40-3180

65588-60-2983

65588-60-4101

65588-61-2982

65588-42-4818

65588-0-4490

65588-31-3578

65588-31-360633619968-126-0

33619968-40-0

65588-42-2031

65588-42-3152

65588-32-580

65588-67-1300 33751040-16-0

65588-20-1434

33619968-70-0

65588-42-4275

65588-42-4790

65588-13-576

65588-13-1438

65588-51-744

65588-23-575

33619968-82-0

65588-0-2353

65588-0-2431

65588-33-3152

65588-66-0

65588-34-1551

65588-37-3161

33619968-155-0

65588-50-4666

33619968-24-0

65588-0-1107

65588-16-1435

65588-35-2297

33619968-144-0

65588-24-602

65588-14-576

65588-14-1434

65588-0-4625

65588-50-4123

65588-50-4638

33619968-46-0

65588-47-568

65588-63-4046

65588-36-1620

33619968-148-0

33619968-233-0

65588-38-3160

65588-0-2787

65588-21-2294

33619968-75-0

65588-52-3104

33619968-216-0

65588-20-575

33619968-179-0

65588-5-3870

65588-14-3152

65588-8-3152

33619968-27-0

65588-24-1461

33619968-88-0

65588-12-2438

33619968-39-0

33619968-194-0

33619968-117-0

65588-56-569

65588-0-662

65588-0-117

65588-2-575

33619968-6-0

65588-0-4501

33619968-208-0

65588-18-3153

33619968-266-0

65588-55-3105

33619968-236-0

65588-35-1438

65588-35-1439

33619968-143-0

65588-20-576

65588-0-1363

65588-13-1439

33619968-42-0

65588-19-576

65588-49-2996

65588-24-603

33619968-170-0

65588-61-4733

33751040-10-0

65588-34-1550

33619968-91-0

65588-34-3722

65588-57-1288

33619968-67-0

65588-30-1435

33619968-160-0

65588-65-745

33619968-267-0

33619968-51-0

65588-32-579

33619968-127-0

33619968-122-0

65588-25-575

65588-15-576

65588-15-1434

65588-14-3554

65588-14-369716908288-26-0

65588-52-1983

65588-52-744

33619968-214-0

65588-16-575

33619968-53-0

33619968-252-0

65588-26-3718

65588-25-2294

33619968-94-0

65588-31-3157

33619968-125-0

65588-21-575

33751040-6-0

33619968-178-0

33619968-180-0

65588-28-2302

65588-5-2470

33619968-14-0

65588-25-576

65588-25-1434

65588-3-1120

65588-8-2294

33619968-138-0

65588-37-3582

65588-55-9836

65588-55-9837

33619968-242-0

65588-0-3154

65588-1-675

33619968-54-0

65588-0-4803

65588-3-977

16908288-9-0

65588-29-2297

65588-29-2298

33619968-114-0

33619968-209-0

65588-17-575

33619968-57-0

65588-21-576

65588-21-1434

65588-22-1443

33619968-32-0

65588-21-3152

65588-8-1435

65588-8-2293

65588-64-900

65588-0-4398

65588-32-3157

65588-32-3578

65588-43-744

65588-43-745

33619968-182-0

33619968-22-0

65588-0-918

65588-56-568

33619968-246-0

65588-29-580

33619968-112-0

65588-47-569

33619968-196-0

33619968-64-0

65588-14-3153

65588-55-8715

33619968-241-0

65588-0-1541

65588-0-3410

33619968-33-0

65588-0-295

65588-13-2301

33751040-8-0

65588-0-2164

65588-58-573

65588-25-379433619968-96-0

33619968-87-0

65588-12-575

33619968-37-0

65588-41-4751

33619968-175-0

65588-28-1435

65588-28-2301

33619968-118-0

65588-51-2989

33619968-212-0

33751040-1-0

33619968-131-0

65588-35-3606

33619968-156-0

65588-60-4617

33751040-9-0

33619968-215-0

65588-54-5233

65588-20-3153

33619968-92-0

65588-13-575

33619968-41-0

33619968-146-0

33619968-109-0

65588-51-4110

65588-51-4111

33619968-213-0

65588-5-3325

33619968-21-0

33619968-99-0

65588-54-4111

65588-54-5232

33619968-26-0

33619968-16-0

65588-0-473

33619968-18-0

65588-55-10962

33619968-101-0

33619968-261-0

65588-29-1438

65588-29-1439

33619968-113-0

33619968-19-0

33619968-78-0

65588-38-579

33619968-124-0

33619968-25-0

65588-12-1464

33619968-65-0

65588-19-3161

33619968-68-0

33619968-130-0

33619968-164-0

33619968-20-0

65588-33-3153

33619968-135-0

33619968-69-0

65588-53-4111

33619968-221-0

65588-60-4102

65588-0-2965

65588-55-13207

33619968-245-0

65588-61-4218

33619968-257-0

65588-0-1719

33619968-48-0

65588-0-3588

65588-0-3993

65588-54-10859

16908288-40-0

65588-0-5208

65588-0-2342

16908288-18-0

33619968-248-0

65588-53-745

33619968-218-0

65588-36-3339

33619968-108-0

65588-5-1435

33619968-13-0

33619968-76-0

33619968-204-0

33619968-73-0

33751040-13-0

33619968-45-0

33619968-181-0

33619968-226-0

33619968-15-0

16908288-53-0

65588-0-1096

33619968-38-0

33619968-259-0

33619968-72-0

65588-33-3574

33619968-136-0

65588-18-2293

33619968-63-0

65588-39-1434

33619968-163-0

33619968-247-0

33751040-3-0

33619968-157-0

33619968-210-0

33619968-256-0

33619968-225-0

33619968-244-0

16908288-24-0

33619968-30-0

33619968-49-0

33619968-52-0

33619968-161-0

33619968-265-0

33619968-74-0

33619968-211-0

16908288-13-0

33619968-253-0

33619968-5-0

33619968-154-0

33619968-231-0

33619968-243-0

33619968-59-0

33619968-93-0

33619968-141-0

33619968-50-0

33619968-150-0

33619968-43-0

65590-1-1418

65590-2-0

65590-1-1685

65590-3-2598

65590-2-9015

65590-4-1470

65590-4-1533

65590-5-0

65590-4-1726

65590-1-1810

65590-3-2416

65612-3-0

65590-5-1065

65590-1-1749

65590-4-0

65590-3-0

65590-3-1955

65590-2-9217

65590-4-1381

65590-1-385

65590-1-606

65590-1-607

65613-0-0

65613-1-0

65590-2-8773

65590-2-8952

65612-2-0

65611-1-667

65611-4-0

65611-0-0

65611-3-667

65611-3-0

65611-5-0

65612-0-12786

65612-0-12927

65612-2-18323

65612-2-18647

65612-2-17880

65612-1-84

65612-2-18971

65612-0-13731

65612-0-13732

65612-0-10173

65612-0-10032

65613-1-280

65613-1-39765614-1-0

65613-1-398

65614-0-0

65615-3-0

65615-3-667

65615-6-683

65615-9-667 65615-8-0

65615-5-0

65615-1-667

65615-11-0

65615-11-667

65615-4-0

65615-13-0

65615-0-0

65615-12-0

65616-0-78

65616-0-41380

65616-0-41563

65616-0-41336

65616-0-41379

16777216-13-0

16777216-14-0

16777216-12-0

16777216-17-0

65621-0-41374

65621-0-41586

65621-0-78

65621-0-41330

65621-0-41373

16973824-56-0

16973824-63-0

16973824-54-0

16973824-57-0

16777216-11-130

16777216-10-36

16777216-14-122

16777216-10-35

16777216-19-35

16777216-19-36

16777216-13-36

16777216-8-115

16777216-7-36

16777216-7-35

16777216-20-112

16777216-13-35

16842752-15-149

16842752-14-321

16842752-49-236

16842752-0-321

16842752-26-321

16842752-40-792

16842752-40-793

16842752-64-35

16842752-62-117

16842752-46-275

16842752-45-677

16842752-17-149

16842752-16-321

16842752-64-36

16842752-20-320

16842752-20-321

16842752-56-35

16842752-22-0

16842752-22-320

16842752-32-320

16842752-32-321

16842752-27-149

16842752-65-107

16842752-19-149

16842752-34-0

16842752-34-552

16842752-16-0

16842752-16-320

16842752-29-149

16842752-28-321

16842752-48-1174

16842752-24-320

16842752-24-321

16842752-47-0

16842752-47-688

16842752-18-320

16842752-18-321

16842752-44-158

16842752-26-0

16842752-26-320

16842752-54-117

16842752-53-36

16842752-47-1009

16842752-41-158

16842752-7-149

16842752-4-0

16842752-4-320

16842752-61-36

16842752-12-320

16842752-12-321

16842752-1-149

16842752-6-320

16842752-6-321

16842752-43-711

16842752-43-712

16842752-14-0

16842752-14-320

16842752-45-1266

16842752-11-149

16842752-8-0

16842752-8-320

16842752-48-620

16842752-48-621

16842752-10-321

16842752-53-35

16842752-4-321

16842752-10-320

16842752-30-321

16842752-13-149

16842752-23-149

16842752-22-321

16842752-57-116

16842752-8-321

16842752-2-321

16842752-20-0

16842752-25-149

16842752-28-320

16842752-35-0

16842752-35-552

16842752-56-36

16842752-32-0

16842752-30-0

16842752-30-320

16842752-45-0

16842752-45-676

16842752-42-0

16842752-24-0

16842752-0-320

16842752-5-149

16842752-2-0

16842752-2-320

16842752-12-0

16842752-9-149

16842752-48-0

16842752-61-35

16842752-39-0

16842752-21-139

16842752-18-0

16842752-31-149

16842752-33-149

16842752-28-0

16842752-43-0

16842752-40-0

16842752-6-0

16842752-3-149

16842752-0-0

16842752-10-0

16908288-58-1741

16908288-58-2666

16908288-67-115

16908288-26-321

16908288-64-107

16908288-63-36

16908288-69-36

16908288-70-105

16908288-59-96

16908288-56-49

16908288-22-320

16908288-32-320

16908288-32-321

16908288-37-157

16908288-19-160

16908288-34-320

16908288-16-552

16908288-5-98

16908288-5-99

16908288-24-320

16908288-24-321

16908288-61-96

16908288-58-2667

16908288-29-147

16908288-20-357

16908288-58-836

16908288-58-1740

16908288-2-490

16908288-2-491

16908288-26-320

16908288-41-147

16908288-7-361

16908288-40-321

16908288-14-516

16908288-27-157

16908288-28-321

16908288-54-1306

16908288-18-326

16908288-40-320

16908288-10-160

16908288-9-326

16908288-11-612

16908288-66-36

16908288-38-321

16908288-8-244

16908288-54-1305

16908288-75-35

16908288-75-36

16908288-30-321

16908288-7-362

16908288-63-35

16908288-21-241

16908288-60-96

16908288-36-320

16908288-36-321

16908288-57-0

16908288-23-147

16908288-25-147

16908288-3-201

16908288-22-321

16908288-38-320

16908288-20-356

16908288-28-320

16908288-35-147

16908288-17-552

16908288-30-320

16908288-34-321

16908288-54-726

16908288-15-516

16908288-39-157

16908288-6-135

16908288-58-835

16908288-9-325

16908288-69-35

16908288-54-725

16908288-55-96

16908288-66-35

16908288-18-325

16908288-76-117

16908288-58-0

16908288-33-147

16908288-31-147

16908288-13-516

16973824-61-17

16973824-67-0

16973824-66-134

16973824-65-36

16973824-84-102

16973824-77-35

16973824-77-36

16973824-48-112

16973824-47-36

16973824-28-642

16973824-28-984

16973824-59-35

16973824-25-158

16973824-24-672

16973824-56-35

16973824-22-158

16973824-5-96

16973824-4-712

16973824-4-711

16973824-59-36

16973824-37-32047

16973824-30-337

16973824-47-35

16973824-29-0

16973824-29-1044

16973824-4-1726

16973824-44-107

16973824-26-0

16973824-26-506

16973824-12-152

16973824-11-337

16973824-7-0

16973824-7-506

16973824-57-117

16973824-56-36

16973824-1-711

16973824-1-712

16973824-86-98

16973824-4-0

16973824-10-1044

16973824-1-0

16973824-8-149

16973824-7-507

16973824-26-507

16973824-26-1016

16973824-11-0

16973824-11-336

16973824-51-36

16973824-43-36

16973824-6-96

16973824-53-0

16973824-53-11397

16973824-65-35

16973824-7-1022

16973824-78-144

16973824-38-35

16973824-38-36

16973824-60-116

16973824-75-98

16973824-86-99

16973824-23-0

16973824-20-0

16973824-75-99

16973824-30-0

16973824-30-336

16973824-4-1725

16973824-27-132

16973824-2-99

16973824-24-0

16973824-24-671

16973824-61-0

16973824-87-146

16973824-40-0

16973824-39-116

16973824-9-0

16973824-9-640

16973824-21-671

16973824-21-672

16973824-51-35

16973824-76-145

16973824-46-8525

16973824-21-0

16973824-9-980

16973824-31-135

16973824-46-0

16973824-28-0

16973824-43-35

16973824-40-12837

16973824-3-0

16973824-0-0

16973824-52-105

16973824-10-0

33619968-81-32

33619968-96-32

33619968-136-32

33619968-91-32

33619968-181-32

33619968-131-32

33619968-106-32

33619968-146-32

33619968-121-32

33619968-161-32

33619968-193-32

33619968-191-32

33619968-141-32

33619968-116-32

33619968-156-32

33619968-171-32

33619968-151-32

33619968-126-32

33619968-166-32

33619968-195-32

33619968-86-32

33619968-101-32

33619968-111-32

33619968-197-32

33619968-176-32

33619968-186-32

33685504-2-32

33685504-1-32

33751040-14-32

33751040-10-32

33751040-15-32

33751040-4-32

33751040-11-32

33751040-5-32

33751040-8-32

33751040-2-32

33751040-9-32

33751040-3-32

33751040-12-32

33751040-6-32

33751040-13-32

33751040-16-32

33751040-7-32

33751040-1-32

Fig. 18: A taste of the happens-before relation tracking in btrfs file system. This snippet is only around 10% of the actual
happens-before graph tracked in this execution. Each node in the graph is a synchronization point represented by a three-tuple
<thread id, context id, instruction id> and the directed edge between two nodes A and B means A happens-before B.

18

	Introduction
	Background and Related Work
	A Coverage Metric for Concurrent Programs
	Branch coverage for the sequential dimension
	Alias coverage for the concurrency dimension

	Input Generation for Concurrency Fuzzing
	Multi-threaded syscall sequences
	Thread scheduling control (weak form)

	A Data Race Checker for Kernel Complexity
	Data race detection procedure
	Lockset analysis
	Happens-before analysis

	Putting Everything Together
	Architecture
	Benign vs harmful data races
	The aging OS problem
	Discussion and limitations
	Implementation

	Evaluation
	Data races in popular file systems
	Fuzzing characteristics
	Component evaluations
	Comparison with related fuzzers

	Conclusion and Future Work
	Acknowledgment
	Appendix
	Level of concurrency in the [0.5]btrfs file system
	Seed evolution in Krace
	Ad-hoc synchronization schemes in kernel file systems
	Krace implementation details
	A taste of the happens-before complexity in actual execution

