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Differential Testing

•Fuzzing: memory corruption bugs 

•Differential testing: logic bugs
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Differential Testing

∙ Multiple apps of the same functionality 

∙ All usually to follow some specification/standard 

∙ Deviations from the specifications/standards likely to be bugs 

∙ Applicable in different domains (e.g., compiler testing)
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•Existing tools are domain-specific 

•Inefficient input generation

Key challenges
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Efficient domain-independent differential testing

Goal of NEZHA
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Input Generation  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New Inputs Application

State Information
Runtime Monitoring

…
Seed Inputs
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1. Use program states solely from single application, like 
most modern fuzzers 

2. Use global program states combined across all 
applications  

3. Re-design guidance engine geared towards differential 
testing

Evolutionary Differential Testing - Multiple-Apps

What are the options to driving input generation?
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1. Use program states solely from single application, like 
most modern fuzzers 

2. Use global program states combined across all 
applications  

3. Re-design guidance engine geared towards differential 
testing

What are the options for driving input generation?
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Techniques that work well in the context of single application 
testing may not be optimal for differential testing!

Key Insight
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Multi-App Code Coverage
Input 3

Input 4App1

App2

Input 3
Input 4

∙ These inputs exercise disproportionate code regions in the two apps 

∙ This disproportion might imply differences in handling logic 

∙ Retaining them in corpus speed up process of finding discrepancies
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Relative program behavior is important in this context!
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δ-diversity: a new approach to guided differential testing
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Differential Testing under δ-diversity

∙ Obtain State Information 

- White-box (e.g., at compile time) 

- Gray-box (e.g., using Dynamic Binary Instrumentation) 
- Black-box (e.g., only examining system response to inputs) 

∙ Behavioral Diversity
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Differential Testing under δ-diversity

∙ Two examples: 

∙ Gray-box 
∙ Black-box 

∙ Both outperform code coverage
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App1 App2

All possible code paths
Return values 
Error codes 
Exception messages

Input         App1      App2 

0x0         0x0 

0x1         0xdead 

0x0         0x0 

0x0         0xbeef 

0xbabe   0x0 

0x0         0xbeef

✓
✗

✓

✗

✓

✓

Output δ-diversity: black-box
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δ-diversity

∙ Domain Independence 

∙ Efficient differential guidance
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∙ NEZHA prototype 

∙ Gray-box and black-box δ-diversity metrics 
∙ Path δ-diversity (fine & coarse) 

∙ Output δ-diversity 

∙ Domain-independent input generation 

∙ Evolutionary, feedback-guided 

∙ Built upon libFuzzer with NEZHA-specific hooks 

∙ 1545 lines of C++

Implementation
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One library accepts one certificate, while another rejects it with 
an error code.

Unique pair-wise discrepancies (based on error code tuples)

Certificate Verification Discrepancies
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∙ 52X more discrepancies than Frankencerts 
∙ 27X more discrepancies than Mucerts

NEZHA vs domain-specific frameworks
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∙ Adapted popular evolutionary fuzzers for differential testing 
∙ Code coverage in single application 
∙ Global code coverage 

∙ 6X more discrepancies than testing on a single application 
∙ 30% more discrepancies than modified libFuzzer

NEZHA vs popular evolutionary fuzzers
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Sample Bugs uncovered by NEZHA 
(disclosed and patched) 
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Application Category Tests

SSL Libraries
OpenSSL, LibreSSL, 
BoringSSL, GnuTLS, 
wolfSSL, mbedTLS

PDF Readers Evince PDF, MuPDF, Xpdf

Parsers ClamAV vs binutils 
ClamAV vs xz

Experimental Setting
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BUG 1: Malicious ELF can evade ClamAV detection

CLAMAV (ELF parsing engine)
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72

BUG 2: LibreSSL misinterprets time in ASN.1 format

Time fields can be formatted in 2 ways:

UTC: YYMMDDHHMMSSZ (13 char long)

GMT: YYYYMMDDHHMMSSZ (15 char long)
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BUG 2: LibreSSL misinterprets time in ASN.1 format

LibreSSL ignores the ASN.1 time format tag, and  
determines format based on length of field

Jan 1 01:01:00 2012 GMT can interpreted as Dec 1 01:01:01 2020 GMT 
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∙ δ-diversity outperforms code coverage for differential testing 

∙ NEZHA: Domain independent, efficient differential testing 

∙ Differential testing should be integrated, when possible, 
into the testing cycle

Conclusions

https://github.com/nezha-dt

https://github.com/nezha-dt
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Backup Slides
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NEZHA: Architecture

NEZHA Runtime Library
Program 1

Program 1Programs
(Instrumented)

Program 1
Program 1Programs
(Original)

Input Mutation

Differential Execution

          Corpus Refinement

Dynamic 
Coverage 

Information

Program 
Return 
Values

Guidance
Engines

Input Corpora

NEZHA Engine

Application Address Space

Instrumentation
Module

Initial 
Seeds

Discrepancy 
Logging
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NEZHA: Architecture

LLVMTestOneInput

FuzzLoop

libFuzzer backend

Application Address Space

1

2

3
Input corpus

#include <openssl/evp.h> 

extern "C" 
int LLVMFuzzerTestOneInput(const uint8_t *buf, size_t len) { 

 const uint8_t *bufp = buf; 
 EVP_PKEY_free(d2i_AutoPrivateKey(NULL, &bufp, len)); 
 return 0; 

}

clang++ -c -g -O2 -std=c++11 Fuzzer/*.cpp -IFuzzer 
ar ruv libFuzzer.a Fuzzer*.o
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NEZHA: Architecture

Process_i (Data)

Fuzz_TestStart

Fuzz_TestEnd

LLVMFuzzerCovBuffers

LLVMFuzzerRetVals

LLVMTestOneInput

UpdateDiff

RunOne

libFuzzer backend Components added 

Engine

Tested Applications

1

3
4

5

7
2

8

6

Input corpus
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Discrepancy Distribution for SSL/TLS Libs

Distributions of Discrepancies Found

Output δ-diversity

Path δ-diversity

Global Coverage

48

3484

26

143

 Same Inputs / Different mode 
 SSL libraries tested
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