
1

NEZHA: Efficient Domain-Independent Differential Testing

Theofilos Petsios*, Adrian Tang*,  
Salvatore Stolfo, Angelos D. Keromytis, and Suman Jana

Columbia University

IEEE Security & Privacy (Oakland) 2017 
*Joint primary authors



Differential Testing

2



3

Differential Testing

•Fuzzing: memory corruption bugs 

•Differential testing: logic bugs



4

Differential Testing

∙ Multiple apps of the same functionality 

∙ Applications usually follow some specification/standard



5

Differential Testing

∙ Multiple apps of the same functionality 

∙ All usually to follow some specification/standard 

∙ Deviations from the specifications/standards likely to be bugs



6

Differential Testing

∙ Multiple apps of the same functionality 

∙ All usually to follow some specification/standard 

∙ Deviations from the specifications/standards likely to be bugs



7

Differential Testing

∙ Multiple apps of the same functionality 

∙ All usually to follow some specification/standard 

∙ Deviations from the specifications/standards likely to be bugs 

∙ Applicable in different domains (e.g., compiler testing)



8

•Existing tools are domain-specific 

•Inefficient input generation

Key challenges



9

Efficient domain-independent differential testing

Goal of NEZHA



Domain-Independent Evolutionary Testing

10

New Inputs Application

Seed Inputs

Input Generation  
Guidance



Domain-Independent Evolutionary Testing

Input Generation  
Guidance

11

New Inputs Application

Runtime Monitoring

…
Seed Inputs



Domain-Independent Evolutionary Testing

Input Generation  
Guidance

12

New Inputs Application

State Information
Runtime Monitoring

…
Seed Inputs



Domain-Independent Evolutionary Testing

Input Generation  
Guidance

13

New Inputs Application

State Information
Runtime Monitoring

…
Seed Inputs

Evolve an input corpus that is guided based on an analysis engine



Domain-Independent Evolutionary Testing

Input Generation  
Guidance

14

New Inputs Application

State Information
Runtime Monitoring

…
Seed Inputs

Evolve an input corpus that is guided based on an analysis engine



15

All possible code paths

Code Coverage - Single-App



All possible code paths

Code coverage - Global

Code coverage - Input
Per-Input 
Coverage

Input Corpus

16

Code Coverage - Single-App



All possible code paths

Code coverage - Global
Per-Input 
Coverage

Input Corpus

Input 1

17

Code coverage - Input

Code Coverage - Single-App



All possible code paths

Code coverage - Global

Input 1

Per-Input 
Coverage

Input Corpus

18

Code coverage - Input

Code Coverage - Single-App



All possible code paths

Code coverage - Global

Code coverage - Input

Input 1

Per-Input 
Coverage

Input Corpus

19

Code Coverage - Single-App



All possible code paths

Code coverage - Global

Code coverage - Input

Input 1

Per-Input 
Coverage

Input Corpus

Input 1

20

Code Coverage - Single-App



All possible code paths

Code coverage - Global

Code coverage - Input

Input 1

Per-Input 
Coverage

Input Corpus

Input 2

21

Code Coverage - Single-App



All possible code paths

Code coverage - Global

Code coverage - Input

Input 1

Per-Input 
Coverage

Input Corpus

Input 2

22

Code Coverage - Single-App



All possible code paths

Code coverage - Global

Code coverage - Input

Input 1 Input 2

Per-Input 
Coverage

Input Corpus

Input 2

23

Code Coverage - Single-App



All possible code paths

Code coverage - Global

Code coverage - Input

Input 1 Input 2

Per-Input 
Coverage

Input Corpus

Input 3

24

Code Coverage - Single-App



All possible code paths

Code coverage - Global

Code coverage - Input

Input 1 Input 2

Per-Input 
Coverage

Input Corpus

Input 3

25

Code Coverage - Single-App



All possible code paths

Code coverage - Global

Code coverage - Input

Input 1 Input 2 Input 3

Per-Input 
Coverage

Input Corpus

Input 3

26

Code Coverage - Single-App



All possible code paths

Code coverage - Global

Code coverage - Input

Input 1 Input 2 Input 3

Per-Input 
Coverage

Input Corpus

Input 4

27

Code Coverage - Single-App



All possible code paths

Code coverage - Global

Code coverage - Input

Input 1 Input 2 Input 3

Disca
rd!

Per-Input 
Coverage

Input Corpus

Input 4

28

Code Coverage - Single-App



Domain-Independent Evolutionary Testing

Input Generation  
Guidance

29

New Inputs Application

State Information
Runtime Monitoring

…
Seed Inputs



30

1. Use program states solely from single application, like 
most modern fuzzers 

2. Use global program states combined across all 
applications  

3. Re-design guidance engine geared towards differential 
testing

Evolutionary Differential Testing - Multiple-Apps

What are the options to driving input generation?



31

Evolutionary Differential Testing - Multiple-Apps

1. Use program states solely from single application, like 
most modern fuzzers 

2. Use global program states combined across all 
applications  

3. Re-design guidance engine geared towards differential 
testing

What are the options for driving input generation?



32

Techniques that work well in the context of single application 
testing may not be optimal for differential testing!

Key Insight



33

Multi-App Code Coverage

App1 App2

All possible code paths

Code coverage - Global

Code coverage - Input
Per-Input 
Coverage

Input Corpus



34

App1 App2

All possible code paths

Code coverage - Global

Code coverage - Input
Per-Input 
Coverage

Input Corpus

Input 1

Multi-App Code Coverage



35

App1 App2

All possible code paths

Code coverage - Global

Code coverage - Input
Per-Input 
Coverage

Input Corpus

Input 1

Multi-App Code Coverage



36

App1 App2

All possible code paths

Code coverage - Global

Code coverage - Input
Per-Input 
Coverage

Input Corpus

Input 1

Multi-App Code Coverage



37

All possible code paths

Code coverage - Global

Code coverage - Input

App1 App2

Input 1

Per-Input 
Coverage

Input Corpus

Input 1

Multi-App Code Coverage



38

All possible code paths

Code coverage - Global

Code coverage - Input

App1 App2

Input 1

Per-Input 
Coverage

Input Corpus

Input 2

Multi-App Code Coverage



39

All possible code paths

Code coverage - Global

Code coverage - Input

Input 1 Input 2

Per-Input 
Coverage

Input Corpus

App1 App2

Multi-App Code Coverage



40

All possible code paths

Code coverage - Global

Code coverage - Input

Input 1 Input 2

Per-Input 
Coverage

Input Corpus

App1 App2

Multi-App Code Coverage

Input 3



41

All possible code paths

Code coverage - Global

Code coverage - Input

Input 1 Input 2

Per-Input 
Coverage

Input Corpus

App1 App2

Disca
rd!

Multi-App Code Coverage

Input 3



42

All possible code paths

Code coverage - Global

Code coverage - Input

Input 1 Input 2

Per-Input 
Coverage

Input Corpus

App1 App2

Multi-App Code Coverage

Input 4



43

All possible code paths

Code coverage - Global

Code coverage - Input

Input 1 Input 2

Per-Input 
Coverage

Input Corpus

App1 App2

Disca
rd!

Multi-App Code Coverage

Input 4



44

App1

App2

Input 3

Multi-App Code Coverage
Input 3



45

Multi-App Code Coverage
Input 3

Input 4App1

App2

Input 3
Input 4



46

Multi-App Code Coverage
Input 3

Input 4App1

App2

Input 3
Input 4

∙ These inputs exercise disproportionate code regions in the two apps 

∙ This disproportion might imply differences in handling logic 

∙ Retaining them in corpus speed up process of finding discrepancies



47

Relative program behavior is important in this context!



48

δ-diversity: a new approach to guided differential testing



49

Differential Testing under δ-diversity

∙ Obtain State Information 

- White-box (e.g., at compile time) 

- Gray-box (e.g., using Dynamic Binary Instrumentation) 
- Black-box (e.g., only examining system response to inputs) 

∙ Behavioral Diversity



50

Differential Testing under δ-diversity



51

Differential Testing under δ-diversity



52

Differential Testing under δ-diversity



53

Differential Testing under δ-diversity

Behavioral Asymmetries



54

Differential Testing under δ-diversity

Behavioral Asymmetries



55

Differential Testing under δ-diversity

∙ Two examples: 

∙ Gray-box 
∙ Black-box 

∙ Both outperform code coverage



56

B1 
B1 

Keep track of unique edges

Input 2Input 1 Input 3

A1 
A2 
A3

B1

(3,1)

A1 
A2

B1 
B2 
B3

(2,3)

A1 
A2 
A3

(3,1)

✓ ✓

I

A
A

I
Path δ-diversity: gray-box

App1
App2

✗



57

B1 
B1 

Keep track of unique edges

Input 2Input 1 Input 3

A1 
A2 
A3

B1

(3,1)

A1 
A2

B1 
B2 
B3

(2,3)

A1 
A2 
A3

(3,1)

✓ ✓

I

A
A

I
Path δ-diversity: gray-box

App1
App2

✗



58

App1 App2

All possible code paths
Return values 
Error codes 
Exception messages

Input         App1      App2 

0x0         0x0 

0x1         0xdead 

0x0         0x0 

0x0         0xbeef 

0xbabe   0x0 

0x0         0xbeef

✓
✗

✓

✗

✓

✓

Output δ-diversity: black-box



59

δ-diversity

∙ Domain Independence 

∙ Efficient differential guidance



60

∙ NEZHA prototype 

∙ Gray-box and black-box δ-diversity metrics 
∙ Path δ-diversity (fine & coarse) 

∙ Output δ-diversity 

∙ Domain-independent input generation 

∙ Evolutionary, feedback-guided 

∙ Built upon libFuzzer with NEZHA-specific hooks 

∙ 1545 lines of C++

Implementation



61

∙ SSL libraries 

∙ PDF readers 

∙ ClamAV & XZ Parsers

Use cases



62

∙ SSL libraries 

∙ PDF readers 

∙ ClamAV & XZ Parsers

Use cases



63

One library accepts one certificate, while another rejects it with 
an error code.

Unique pair-wise discrepancies (based on error code tuples)

Certificate Verification Discrepancies



64

∙ 52X more discrepancies than Frankencerts 
∙ 27X more discrepancies than Mucerts

NEZHA vs domain-specific frameworks



65

∙ Adapted popular evolutionary fuzzers for differential testing 
∙ Code coverage in single application 
∙ Global code coverage 

∙ 6X more discrepancies than testing on a single application 
∙ 30% more discrepancies than modified libFuzzer

NEZHA vs popular evolutionary fuzzers



66

Sample Bugs uncovered by NEZHA 
(disclosed and patched) 



67

Application Category Tests

SSL Libraries
OpenSSL, LibreSSL, 
BoringSSL, GnuTLS, 
wolfSSL, mbedTLS

PDF Readers Evince PDF, MuPDF, Xpdf

Parsers ClamAV vs binutils 
ClamAV vs xz

Experimental Setting



68

BUG 1: Malicious ELF can evade ClamAV detection

CLAMAV (ELF parsing engine)



69

BUG 1: Malicious ELF can evade ClamAV detection

CLAMAV (ELF parsing engine)



70

BUG 1: Malicious ELF can evade ClamAV detection

LINUX ELF loader 

CLAMAV (ELF parsing engine)



71

BUG 1: Malicious ELF can evade ClamAV detection

LINUX ELF loader 

CLAMAV (ELF parsing engine)



72

BUG 2: LibreSSL misinterprets time in ASN.1 format

Time fields can be formatted in 2 ways:

UTC: YYMMDDHHMMSSZ (13 char long)

GMT: YYYYMMDDHHMMSSZ (15 char long)



73

BUG 2: LibreSSL misinterprets time in ASN.1 format

Time fields can be formatted in 2 ways:

UTC: YYMMDDHHMMSSZ (13 char long)

GMT: YYYYMMDDHHMMSSZ (15 char long)

LibreSSL ignores the ASN.1 time format tag, and  
determines format based on length of field



74

BUG 2: LibreSSL misinterprets time in ASN.1 format

LibreSSL ignores the ASN.1 time format tag, and  
determines format based on length of field



75

BUG 2: LibreSSL misinterprets time in ASN.1 format

LibreSSL ignores the ASN.1 time format tag, and  
determines format based on length of field



76

BUG 2: LibreSSL misinterprets time in ASN.1 format

LibreSSL ignores the ASN.1 time format tag, and  
determines format based on length of field

Jan 1 01:01:00 2012 GMT can interpreted as Dec 1 01:01:01 2020 GMT 



77

∙ δ-diversity outperforms code coverage for differential testing 

∙ NEZHA: Domain independent, efficient differential testing 

∙ Differential testing should be integrated, when possible, 
into the testing cycle

Conclusions

https://github.com/nezha-dt

https://github.com/nezha-dt


78

Backup Slides



79

NEZHA: Architecture

NEZHA Runtime Library
Program 1

Program 1Programs
(Instrumented)

Program 1
Program 1Programs
(Original)

Input Mutation

Differential Execution

          Corpus Refinement

Dynamic 
Coverage 

Information

Program 
Return 
Values

Guidance
Engines

Input Corpora

NEZHA Engine

Application Address Space

Instrumentation
Module

Initial 
Seeds

Discrepancy 
Logging



80

NEZHA: Architecture

LLVMTestOneInput

FuzzLoop

libFuzzer backend

Application Address Space

1

2

3
Input corpus

#include <openssl/evp.h> 

extern "C" 
int LLVMFuzzerTestOneInput(const uint8_t *buf, size_t len) { 

 const uint8_t *bufp = buf; 
 EVP_PKEY_free(d2i_AutoPrivateKey(NULL, &bufp, len)); 
 return 0; 

}

clang++ -c -g -O2 -std=c++11 Fuzzer/*.cpp -IFuzzer 
ar ruv libFuzzer.a Fuzzer*.o



81

NEZHA: Architecture

Process_i (Data)

Fuzz_TestStart

Fuzz_TestEnd

LLVMFuzzerCovBuffers

LLVMFuzzerRetVals

LLVMTestOneInput

UpdateDiff

RunOne

libFuzzer backend Components added 

Engine

Tested Applications

1

3
4

5

7
2

8

6

Input corpus



82

Discrepancy Distribution for SSL/TLS Libs

Distributions of Discrepancies Found

Output δ-diversity

Path δ-diversity

Global Coverage

48

3484

26

143

 Same Inputs / Different mode 
 SSL libraries tested



83

0 20000 40000 60000 80000 100000
Generation

0

5000

10000

15000

20000

25000
E

dg
e

C
ov

er
ag

e

Global coverage
(modified libFuzzer)
Path �-diversity (coarse)
Path �-diversity (fine)
Output �-diversity

0 5000 10000 15000
17000

18000

19000

20000

21000



84

0 50 100 150 200 250
Number of unique discrepancies

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
ba

bi
lit

y
Global coverage
(modified libFuzzer)
Path �-diversity (coarse)
Path �-diversity (fine)
Output �-diversity



85


