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Abstract—Differential testing uses similar programs as cross-
referencing oracles to find semantic bugs that do not exhibit
explicit erroneous behaviors like crashes or assertion failures.
Unfortunately, existing differential testing tools are domain-
specific and inefficient, requiring large numbers of test inputs
to find a single bug. In this paper, we address these issues by
designing and implementing NEZHA, an efficient input-format-
agnostic differential testing framework. The key insight behind
NEZHA’s design is that current tools generate inputs by simply
borrowing techniques designed for finding crash or memory
corruption bugs in individual programs (e.g., maximizing code
coverage). By contrast, NEZHA exploits the behavioral asymme-
tries between multiple test programs to focus on inputs that are
more likely to trigger semantic bugs. We introduce the notion of
δ-diversity, which summarizes the observed asymmetries between
the behaviors of multiple test applications. Based on δ-diversity,
we design two efficient domain-independent input generation
mechanisms for differential testing, one gray-box and one black-
box. We demonstrate that both of these input generation schemes
are significantly more efficient than existing tools at finding
semantic bugs in real-world, complex software.

NEZHA’s average rate of finding differences is 52 times and 27
times higher than that of Frankencerts and Mucerts, two popular
domain-specific differential testing tools that check SSL/TLS
certificate validation implementations, respectively. Moreover,
performing differential testing with NEZHA results in 6 times
more semantic bugs per tested input, compared to adapting
state-of-the-art general-purpose fuzzers like American Fuzzy Lop
(AFL) to differential testing by running them on individual test
programs for input generation.

NEZHA discovered 778 unique, previously unknown discrep-
ancies across a wide variety of applications (ELF and XZ
parsers, PDF viewers and SSL/TLS libraries), many of which
constitute previously unknown critical security vulnerabilities. In
particular, we found two critical evasion attacks against ClamAV,
allowing arbitrary malicious ELF/XZ files to evade detection. The
discrepancies NEZHA found in the X.509 certificate validation
implementations of the tested SSL/TLS libraries range from
mishandling certain types of KeyUsage extensions, to incorrect
acceptance of specially crafted expired certificates, enabling man-
in-the-middle attacks. All of our reported vulnerabilities have
been confirmed and fixed within a week from the date of
reporting.

I. INTRODUCTION

Security-sensitive software must comply with different high-

level specifications to guarantee its security properties. Any

semantic bug that causes deviations from these specifications

might render the software insecure. For example, a malware

detector must parse input files of different formats like ELF

(the default executable format in Linux/Unix-based systems),
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PDF, or XZ (a popular archive format), according to their

respective specifications, in order to accurately detect mali-

cious content hidden in such files [41]. Similarly, SSL/TLS

implementations must validate X.509 certificates according to

the appropriate protocol specifications for setting up a secure

connection in the presence of network attackers [24], [33].

However, most semantic bugs in security-sensitive software

do not display any explicitly erroneous behavior like a crash

or assertion failure, and thus are very hard to detect without

specifications. Unfortunately, specifications, even for highly

critical software like SSL/TLS implementations or popular

file formats like ELF, are usually documented informally in

multiple sources such as RFCs and developer manuals [10]–

[18], [20], [62], [63]. Converting these informal descriptions

to formal invariants is tedious and error-prone.

Differential testing is a promising approach towards over-

coming this issue. It finds semantic bugs by using differ-

ent programs of the same functionality as cross-referencing

oracles, comparing their outputs across many inputs: any

discrepancy in the programs’ behaviors on the same input is

marked as a potential bug. Differential testing has been used

successfully to find semantic bugs in diverse domains like

SSL/TLS implementations [24], [32], C compilers [65], and

JVM implementations [31]. However, all existing differential

testing tools suffer from two major limitations as described

below.

First, they rely on domain-specific knowledge of the in-

put format to generate new test inputs and, therefore, are

brittle and difficult to adapt to new domains. For instance,

Frankencerts [24] and Mucerts [32] incorporate partial gram-

mars for X.509 certificates and use domain-specific mutations

for input generation. Similarly, existing differential testing

tools for C compilers, Java virtual machines, and malware

detectors, all include grammars for the respective input format

and use domain-specific mutations [31], [41], [65].

Second, existing differential testing tools are inefficient at

finding semantic bugs, requiring large numbers of inputs to

be tested for finding each semantic bug. For example, in

our experiments, Frankencerts required testing a total of 10
million inputs to find 10 distinct discrepancies, starting from a

corpus of 100, 000 certificates. Mucerts, starting from the same

100, 000 certificates, reported 19 unique discrepancies, using

2, 660 optimized certificates it generated from the corpus, but

required six days to do so.

In this paper, we address both the aforementioned prob-
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wcventure
插入号
差异测试使用与交叉引用oracles类似的程序来查找没有表现出明显的错误行为（如崩溃或断言失败）的语义错误。

wcventure
插入号
遗憾的是，现有的差异测试工具是特定领域且效率低下的，需要大量的测试输入来查找单个错误。

wcventure
插入号
在本文中，我们通过设计和实现NEZHA来解决这些问题，NEZHA是一种高效的输入格式不可知差分测试框架。 NEZHA设计背后的关键见解是，当前工具通过简单借用专门用于查找单个程序中的崩溃或内存损坏错误的技术（例如，最大化代码覆盖率）来生成输入。

wcventure
插入号
相比之下，NEZHA利用多个测试程序之间的行为不对称来关注更有可能触发语义错误的输入。 我们引入了δ-多样性的概念，它总结了多个测试应用的行为之间观察到的不对称性。 基于δ-多样性，我们设计了两种有效的与域无关的输入生成机制，用于差分测试，一个灰盒子和一个黑盒子。 我们证明，在现实世界的复杂软件中发现语义错误时，这两种输入生成方案都比现有工具更有效。

wcventure
插入号
NEZHA的平均发现率是Frankencerts和Mucerts的52倍和27倍，Frankencerts和Mucerts是分别检查SSL / TLS证书验证实现的两种流行的域特定差异测试工具。 此外，使用NEZHA进行差分测试会导致每个测试输入的语义错误增加6倍，相比之下，通过在各个测试程序上运行它们，将美国模糊Lop（AFL）等最先进的通用模糊器调整为差分测试。 输入生成。

wcventure
插入号
NEZHA在各种应用程序（ELF和XZ解析器，PDF查看器和SSL / TLS库）中发现了778个独特的，以前未知的差异，其中许多构成了以前未知的关键安全漏洞。 特别是，我们发现针对ClamAV的两次关键逃避攻击，允许任意恶意ELF / XZ文件逃避检测。 在测试的SSL / TLS库的X.509证书验证实现中发现的NEZHA差异包括错误处理某些类型的KeyUsage扩展，以及错误接受特制的过期证书，从而实现中间人攻击。 我们报告的所有漏洞都已在报告之日起一周内得到确认和修复。

wcventure
插入号
安全敏感软件必须符合不同的高级规范才能保证其安全属性。 任何导致偏离这些规范的语义错误都可能导致软件不安全。

wcventure
插入号
同样，SSL / TLS实现必须根据适当的协议规范验证X.509证书，以便在存在网络攻击者的情况下建立安全连接

wcventure
插入号
但是，安全敏感软件中的大多数语义错误都不会显示任何明显错误的行为，如崩溃或断言失败，因此在没有规范的情况下很难检测到。 不幸的是，即使对于像SSL / TLS实现这样的高度关键的软件或像ELF这样的流行文件格式，规范通常也会在多种来源中非正式地记录，例如RFC和开发人员手册[10]  -  [18]，[20]，[62]，[63]。 将这些非正式描述转换为正式不变量是繁琐且容易出错的。

wcventure
插入号
差分测试是克服这个问题的有前景的方法。 它通过使用与交叉引用oracles相同功能的不同程序来查找语义错误，将它们的输出与许多输入进行比较：程序在同一输入上的行为中的任何差异都被标记为潜在错误。 差异测试已成功用于查找不同域中的语义错误，如SSL / TLS实现[24]，[32]，C编译器[65]和JVM实现[31]。 但是，所有现有的差分测试工具都存在两个主要限制，如下所述。

wcventure
插入号
首先，他们依赖于特定领域的输入格式知识来生成新的测试输入，因此很脆弱，难以适应新的领域。 例如，Frankencerts [24]和Mucerts [32]为X.509证书合并了部分语法，并使用特定于域的突变进行输入生成。 类似地，用于C编译器，Java虚拟机和恶意软件检测器的现有差异测试工具都包括用于相应输入格式的语法并使用特定于域的突变。

wcventure
插入号
其次，现有的差异测试工具在查找语义错误方面效率很低，需要测试大量输入来查找每个语义错误。 例如，在我们的实验中，Frankencerts要求测试总共1000万个输入，以便从10万个证书的语料库中找到10个不同的差异。 Mucerts从相同的100,000个证书开始，报告了19个独特的差异，使用从语料库生成的2,660个优化证书，但需要6天才能完成。



lems by designing and implementing NEZHA1, a differential

testing tool that uses a new domain-independent approach

for detecting semantic bugs. NEZHA does not require any

detailed knowledge of the input format, but still significantly

outperforms existing domain-specific approaches at finding

new semantic bugs.
Our key observation is that existing differential testing tools

ignore asymmetries observed across the behaviors of all tested

programs, and instead generate test inputs simply based on the

behaviors of individual programs in isolation. For instance,

Mucerts try to maximize code coverage solely on a single

program (e.g., OpenSSL) to generate inputs. However, this

approach cannot efficiently find high numbers of unique se-

mantic bugs since all information on the differences each input

might introduce across the tested programs is ignored. As a

result, despite using domain-specific guided input generation,

existing differential testing tools are inefficient. In this paper,

we address this issue by introducing the notion of δ-diversity

—a method for summarizing the behavioral asymmetries of

the tested programs. Under δ-diversity guidance, these asym-

metries can be expressed in different ways, examining each

individual program’s behavior in either a black-box (based on

program log/warning/error messages, program outputs, etc.) or

gray-box (e.g., program paths taken during execution) manner.
The main difference between our approach and prior dif-

ferential testing tools is that we generalize the tracking of

guidance information across all tested programs, examining

their behaviors relative to each other, not in isolation, for

guided input generation. For example, if two test programs

execute paths p1 and p2, respectively, for the same input, a "δ-

diversity-aware" representation of the execution will consist of

the tuple 〈p1, p2〉. Our guidance mechanism for input gener-

ation is designed to maximize δ-diversity, i.e., the number of

such tuples. We demonstrate in Section V that our scheme is

significantly more efficient at finding semantic bugs than using

standalone program testing techniques. We compare NEZHA

with Frankencerts, Mucerts, as well as with two state-of-the-art

fuzzers, namely AFL [66] and libFuzzer [4]. In our testing of

certificate validation using major SSL/TLS libraries, NEZHA

finds 52 times, 27 times, and 6 times more unique semantic

bugs than Frankencerts, Mucerts, and AFL respectively.
NEZHA is input-format-agnostic and uses a set of initial

seed inputs to bootstrap the input generation process. Note

that the seed files themselves do not need to trigger any

semantic bugs. We empirically demonstrate that NEZHA can

efficiently detect subtle semantic differences in large, complex,

real-world software. In particular, we use NEZHA for testing:

(i) ELF and XZ file parsing in two popular command-line

applications and the ClamAV malware detector, (ii) X.509

certificate validation across six major SSL/TLS libraries and

(iii) PDF parsing/rendering in three popular PDF viewers.

NEZHA discovered 778 distinct discrepancies across all tested

families of applications, many of which constitute previously

1Nezha [5] is a Chinese deity commonly depicted in a “three heads and
six arms” form. His multi-headed form is analogous to our tool, which peers
into different programs to pinpoint discrepancies.

unknown security vulnerabilities. For example, we found two

evasion attacks against ClamAV, one for each of the ELF and

XZ parsers. Moreover, NEZHA was able to pinpoint 14 unique

differences even among forks of the same code base like the

OpenSSL, LibreSSL, and BoringSSL libraries.

In summary, we make the following contributions:

• We introduce the concept of δ-diversity, a novel scheme

that tracks relative behavioral asymmetries between mul-

tiple test programs to efficiently guide the input genera-

tion process of differential testing.

• We build and open-source NEZHA, an efficient, domain-

independent differential testing tool that significantly

outperforms both existing domain-specific tools as well

as domain-independent fuzzers adapted for differential

testing.

• We demonstrate that NEZHA is able to find multiple

previously unknown semantic discrepancies and security

vulnerabilities in complex real-world software like SS-

L/TLS libraries, PDF viewers, and the ClamAV malware

detector.

The rest of the paper is organized as follows. We provide

a high-level overview of our techniques with a motivating

example in Section II. Section III details our methodology.

We describe the design and implementation of NEZHA in

Section IV and present the evaluation results of our system

in Section V. We highlight selected case studies of the bugs

NEZHA found in Section VI. Finally, we discuss related work

in Section VII, future work in Section VIII, and conclude in

Section X.

II. OVERVIEW

A. Problem Description

Semantic bugs are particularly dangerous for security-

sensitive programs that are designed to classify inputs as either

valid or invalid according to certain high-level specifications

(e.g., malware detectors parsing different file formats or SS-

L/TLS libraries verifying X.509 certificates). If an input fails

to conform to these specifications, such programs typically

communicate the failure to the user by displaying an error

code/message. For the rest of the paper, we focus on using

differential testing to discover program discrepancies in this

setting, i.e., where at least one test program validates and ac-

cepts an input and another program with similar functionality

rejects the same input as invalid. Attackers can exploit this

class of discrepancies to mount evasion attacks on malware

detectors. They can also compromise the security guarantees of

SSL/TLS connections by making SSL/TLS implementations

accept invalid certificates.

B. A Motivating Example

To demonstrate the basic principles of our approach, let

us consider the following example: suppose A and B are

two different programs with similar functionality and that

checkVer_A and checkVer_B are the functions validating

the version number of the input files used by A and B respec-

tively, as shown in Figure 1. Both of these functions return
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wcventure
插入号
在本文中，我们通过设计和实现NEZHA1来解决上述问题，NEZHA1是一种差异测试工具，它使用一种新的独立于域的方法来检测语义错误。 NEZHA不需要任何有关输入格式的详细知识，但在查找新的语义错误时仍然明显优于现有的特定于域的方法。

wcventure
插入号
我们的关键观察是现有的差异测试工具忽略了所有测试程序的行为中观察到的不对称性，而是简单地基于单个程序的行为单独生成测试输入。例如，Mucerts尝试仅在单个程序（例如，OpenSSL）上最大化代码覆盖以生成输入。然而，这种方法不能有效地找到大量独特的语义错误，因为忽略了每个输入可能在测试程序中引入的差异的所有信息。因此，尽管使用特定于域的引导输入生成，但现有的差分测试工具效率低下。在本文中，我们通过引入δ-多样性的概念来解决这个问题 - 一种用于总结测试程序的行为不对称性的方法。在δ-多样性指导下，这些不对称性可以用不同的方式表达，检查每个单独程序在黑盒子中的行为（基于程序日志/警告/错误消息，程序输出等）或灰盒子（例如，执行期间采取的程序路径）。

wcventure
插入号
我们的方法与先前的差异测试工具之间的主要区别在于，我们概括了所有测试程序中的指导信息跟踪，检查了它们相对于彼此的行为，而不是孤立地，用于引导输入生成。例如，如果两个测试程序分别对相同的输入执行路径p1和p2，则执行的“多样性感知”表示将由元组p1，p2组成。我们的输入生成指导机制旨在最大化Î'多样性，即这种元组的数量。我们在第五节中演示，我们的方案在查找语义错误方面比使用独立程序测试技术更有效。我们将NEZHA与Frankencerts，Mucerts以及两种最先进的模糊器进行比较，即AFL [66]和libFuzzer [4]。在我们使用主要SSL / TLS库进行证书验证测试中，NEZHA发现的独特语义错误分别是Frankencerts，Mucerts和AFL的52倍，27倍和6倍。

wcventure
插入号
NEZHA是输入格式不可知的，它使用一组初始种子输入来引导输入生成过程。 请注意，种子文件本身不需要触发任何语义错误。 我们凭经验证明，NEZHA可以有效地检测大型，复杂，真实世界软件中的细微语义差异。 特别是，我们使用NEZHA进行测试：（i）在两个流行的命令行应用程序和ClamAV恶意软件检测器中进行ELF和XZ文件解析，（ii）跨六个主要SSL / TLS库的X.509证书验证和（iii）PDF 解析/渲染三个流行的PDF查看器。 NEZHA在所有测试的应用程序系列中发现了778个明显的差异，其中许多是以前未知的安全漏洞。 例如，我们发现了针对ClamAV的两次逃避攻击，每个攻击都针对ELF和XZ解析器。 此外，NEZHA能够确定14个独特的差异，即使在OpenSSL，LibreSSL和BoringSSL库等相同代码库的分支中也是如此。

wcventure
插入号
本文的其余部分安排如下。 我们通过第二部分中的激励示例提供了我们技术的高级概述。 第三节详述了我们的方法。 我们在第IV节中描述了NEZHA的设计和实现，并在第V节中介绍了我们系统的评估结果。我们重点介绍了第VI节中发现的NEZHA缺陷的选定案例研究。 最后，我们将讨论第VII节中的相关工作，第VIII节中的未来工作，以及第X节中的结论。

wcventure
插入号
语义错误对于安全敏感程序特别危险，安全敏感程序旨在根据某些高级规范（例如，解析不同文件格式的恶意软件检测器或验证X.509证书的SSL / TLS库）将输入分类为有效或无效。

wcventure
插入号
如果输入不符合这些规范，则这些程序通常通过显示错误代码/消息将失败传达给用户。

wcventure
插入号
对于本文的其余部分，我们专注于使用差分测试来发现此设置中的程序差异，即，至少一个测试程序验证并接受输入，而另一个具有类似功能的程序拒绝相同的输入作为无效。

wcventure
插入号
攻击者可以利用这类差异来对恶意软件检测器进行规避攻击。 他们还可以通过使SSL / TLS实现接受无效证书来破坏SSL / TLS连接的安全保证。
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int checkVer_A(int v) {
  if (v % 2 != 0)
    return -1;
  if (v < 1 || v > 7)
    return -2;
  return 0;    
}
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Fig. 1: (Top) Simplified example of a semantic discrepancy and

(Bottom) the corresponding simplified Control Flow Graphs.

0 to indicate a valid version number or a negative number

(−1 or −2) to indicate an error. While almost identical, the

two programs have a subtle discrepancy in their validation

behavior. In particular, checkVer_A accepts an input of v=2
as valid while checkVer_B rejects it with an error code of

-2.

The above example, albeit simplified, is similar to the

semantic bugs found in deployed, real-world applications.

This leads us to the following research question: how can
NEZHA efficiently generate test inputs that demonstrate dis-
crepancies between similar programs? Our key intuition is

that simultaneously testing multiple programs on the same

input offers a wide range of information that can be used

to compare the tested programs’ behaviors relative to each

other. Such examples include error messages, debug logs,

rendered outputs, return values, observed execution paths of

each program, etc. Semantic discrepancies across programs

are more likely for the inputs that cause relative variations of

features like the above across multiple test programs. Adopting

an evolutionary algorithm approach, NEZHA begins with a

corpus of seed inputs, applies mutations to each input in the

corpus, and then selects the best-performing inputs for further

mutations. The fitness of a given input is determined based on

the diversity it introduces in the observed behaviors across the

tested programs. NEZHA builds upon this notion of differential

diversity, utilizing two different δ-diversity guidance engines,

one black-box and one-gray box.

1) Scenario 1: Gray-box Guidance: If program instrumen-

tation is a feasible option, we can collect detailed runtime

execution information from the test programs, for each input.

For instance, knowledge of the portions of the Control Flow

Graph (CFG) that are accessed during each program execution,

can guide us into only mutating the inputs that are likely

to visit new edges in the CFG. An edge in a CFG exists

between two basic blocks if control may flow from one basic

block to the other (e.g., A1 is an edge in the simplified CFG

for checkVer_A as shown in Figure 1). We illustrate how

this information can be collectively tracked across multiple

programs revisiting the example of Figure 1.

Suppose that our initial corpus of test files (seed corpus)

consists of three input files, with versions 7, 0, and 1 (I0 =
{7, 0, 1}). We randomly extract one input from I0 to start

our testing: suppose the input with v=7 is selected and then

passed to both checkVer_A and checkVer_B. As shown

in Table I, the execution paths for programs A and B (i.e.,

the sequence of unique edges accessed during the execution

of each program) are {A1} and {B3, B2} respectively. The

number of edges covered in each program is thus 1 and

2 for A and B respectively, whereas the coverage achieved

across both programs is 1 + 2 = 3. One may drive the

input generation process favoring the mutation of inputs that

increase coverage (i.e., exercise previously unexplored edges).

Since v=7 increased the code coverage, it is added to the

corpus that will be used for the next generation: I1 = {7}.
In the following stage of the testing, we pick any remaining

inputs from the current corpus and pass them to programs

A and B. Selecting v=0 as the next input will also increase

coverage, since execution touches three previously-unseen

edges (A3, A2 and B1), and thus the file is picked for further

mutations: I1 = {7, 0}. At this stage, the only input of I0 that

has not been executed is v=1. This input’s execution does

not increase coverage, since both edges A1 and B1 have been

visited again, and thus v=1 is not added to I1 and will not be

considered for future mutations. However, we notice that v=1,

with a single increment mutation, could be transformed to an

input that would disclose the discrepancy between programs A

and B, had it not been discarded. This example demonstrates

that simply maximizing edge-coverage often misses interesting

inputs that may trigger semantic bugs. By contrast, had we

tracked the δ-diversity using path tuples across past iterations,

input v=1 would invoke the path tuple 〈{A1}, {B1}〉, which,

as a pair/combination, would have not been seen before. Thus,

using a path δ-diversity state, instead of code coverage, results

in v=1 been considered for further mutations. As seen in

Table I, the mutated input v=2 uncovers the semantic bug.

2) Scenario 2: Black-box Guidance: If program instrumen-

tation or binary rewriting are not feasible options, we may

still adapt the notion of program diversity to a black-box

setting. The key intuition is, again, to look for previously

unseen patterns across the observed outputs of the tested

programs. Depending on the context of the application being

tested, available outputs may vary greatly. For instance, a

malware detector may only provide one bit of information

based on whether some input file contains a malware or not,

whereas other applications may offer richer sets of outputs

such as graphical content, error or debug messages, values

returned to the executing shell, exceptions, etc. In the context

of differential testing, the outputs of a single application A

can be used as a reference against the outputs of all other

applications being tested. For example, if browsers A, B, and C

are differentially tested, one may use browser A as a reference

and then examine the contents of different portions of the
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Execution Paths Add to Corpus Report Bug

Generation Mutation Input A B Path Tuple δ-diversity State Coverage δ-diversity Coverage δ-diversity

seed - 7 {A1} {B3, B2} P1 = 〈{A1}, {B3, B2}〉 {P1} � � � �
seed - 0 {A3, A2} {B1} P2 = 〈{A3, A2}, {B1}〉 {P1, P2} � � � �
seed - 1 {A1} {B1} P3 = 〈{A1}, {B1}〉 {P1, P2, P3} � � � �

1 increment 2 {A3, A4} {B1} P4 = 〈{A3, A4}, {B1}〉 {P1, P2, P3, P4} - � - �

TABLE I: A semantic bug that is missed by differential testing using code coverage but can be detected by NEZHA’s path

δ-diversity (gray-box) during testing of the examples shown in Figure 1. NEZHA’s black-box δ-diversity input generation

scheme (not shown in this example) would also have found the semantic bug.

rendered Web pages with respect to A, using an arbitrary

number of values for the encoding (different values may

denote a mismatch in the CSS or HTML rendering etc.).
Regardless of the output formulation, however, for each

input used during testing, NEZHA may receive a corresponding

set of output values and then only select the inputs that result

in new output tuples for further mutations. In the context of the

example of Figure 1, let us assume that the outputs passed to

NEZHA are the values returned by routines checkVer_A and

checkVer_B. If inputs 0, 7, and 1 are passed to programs

A and B, NEZHA will update its internal state with all unique

output tuples seen so far: {〈−1,−1〉, 〈−2,−2〉, 〈−1,−2〉}.
Any new input which will result in a previously unseen tuple

will be considered for future mutations, otherwise it will

be discarded (e.g., with the aforementioned output tuple set,

input 2 resulting in tuple 〈0,−2〉 would be considered for

future mutations, but input 9 resulting in 〈−1,−2〉 would be

discarded).

III. METHODOLOGY

In each testing session, NEZHA observes the relative be-

havioral differences across all tested programs to maximize

the number of reported semantic bugs. To do so, NEZHA

uses Evolutionary Testing (ET) [53], inferring correlations

between the inputs passed to the tested applications and their

observed behavioral asymmetries, and, subsequently, refines

the input generation, favoring more promising inputs. Contrary

to existing differential testing schemes that drive their input

generation using monolithic metrics such as the code coverage

that is maximized across some or all of the tested programs,

NEZHA utilizes the novel concept of δ-diversity: metrics that

preserve the differential diversity (δ-diversity) of the tested

applications will perform better at finding semantic bugs than

metrics that overlook relative asymmetries in the applications’

execution. The motivation behind δ-diversity becomes clearer

if we examine the following example. Suppose we are per-

forming differential testing between applications A and B.

Now, suppose an input I1 results in a combined coverage

C across A and B, exercising 30% of the CFG edges in A

and 10% of the edges in B. A different input I2, that results

in the same overall coverage C, however exercising 10% of

the edges in A and 28% of the edges of B, would not be

explored further under monolithic schemes, despite the fact

that it exhibits much different behavior in each application

compared to input I1.

Algorithm 1 DiffTest: Report all discrepancies across appli-

cations A after n generations, starting from a corpus I
1: procedure DIFFTEST(I, A, n, GlobalState)
2: discrepancies = ∅ ;reported discrepancies
3: while generation ≤ n do
4: input = RANDOMCHOICE(I)
5: mut_input = MUTATE(input)
6: generation_paths = ∅
7: generation_outputs = ∅
8: for app ∈ A do
9: app_path, app_outputs = RUN(app,mut_input)

10: geneneration_paths ∪ = {app_path}
11: geneneration_outputs ∪ = {app_outputs}
12: end for
13: if NEWPATTERN(generation_paths,

generation_outputs,
GlobalState) then

14: I ← I ∪mut_input
15: end if
16: if ISDISCREPANCY(generation_outputs) then
17: discrepancies ∪ = mut_input
18: end if
19: generation = generation+ 1
20: end while
21: return discrepancies
22: end procedure

We present NEZHA’s core engine in Algorithm 1. In each

testing session, NEZHA examines if different inputs result in

previously unseen relative execution patterns across the tested

programs. NEZHA starts from a set of initial seed inputs I, and

performs testing on a set of programs A for a fixed number of

generations (n). In each generation, NEZHA randomly selects

(line 4) and mutates (line 5) one input (individual) out of the

population I, and tests it against each of the programs in A.

The recorded execution paths and outputs for each application

are added to the sets of total paths and outputs observed during

the current generation (lines 8-12). Subsequently, if NEZHA

determines that a new execution pattern is observed during this

input execution, it adds the respective input to the input corpus,

which will be used to produce the upcoming generation (lines

13-14). Finally, if there is a discrepancy in the outputs of

the tested applications, NEZHA adds the respective input to

the set of total discrepancies found (lines 16-18). Whether a

discrepancy is observed in each generation depends on the

outputs of the tested programs: if at least one application

rejects an input and at least one other accepts it, a discrepancy
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is logged.

A. Guidance Engines

In Algorithm 1, we demonstrated that NEZHA adds an input

to the active corpus only if that input exhibits a newly seen

pattern. In traditional evolutionary algorithms, the fitness of

an individual for producing future generations is determined

by its fitness score. In this section, we explain how δ-diversity

can be used in NEZHA’s guidance engines, both in a gray-box

and a black-box setting.

1) Gray-box guidance: The most prevalent guidance mech-

anism in gray-box testing frameworks is the code coverage

achieved by individual inputs across the sets of tested applica-

tions. Code coverage can be measured using function coverage

(i.e., the functions accessed in one execution run), basic

block coverage or edge coverage. However, as discussed in

Section II, this technique is not well suited for finding semantic

bugs. By contrast, NEZHA leverages relative asymmetries

of the executed program paths to introduce two novel δ-

diversity path selection guidance engines, suitable for efficient

differential testing.

Suppose a program p is executing under an input i. We

call the sequence of edges accessed during this execution the

execution path of p under i, denoted by pathp,i. Tracking

all executed paths (i.e., all the sequences of edges accessed in

the CFG) is impractical for large-scale applications containing

multiple loops and complex function invocations. In order

to avoid this explosion in tracked states, NEZHA’s gray-box

guidance uses two different approximations of the execution

paths, one of coarse granularity and the other offering finer

tracking of the relative execution paths.

Path δ-diversity (coarse): Given a set of programs P
that are executing under an input i, let PCP,i be the Path
Cardinality tuple 〈|pathp1,i|, |pathp2,i|, ..., |pathp|P|,i|〉. Each

PCP,i entry represents the total number of edges accessed

in each program pk ∈ P , for one single input i. Notice

that PCP,i differs from the total coverage achieved in the

execution of programs P under i, in the sense that PCP,i does

not maintain a global, monolithic score, but a per-application

count of the edges accessed, when each program is executing

under input i. Throughout an entire testing session, starting

from an initial input corpus I, the overall (coarse) path δ-

diversity achieved is the cardinality of the set containing all

the above tuples: PDCoarse = |
⋃

i∈I{PCP,i}|.
This representation expresses the maximum number of

unique path cardinality tuples for all programs in P that

have been seen throughout the session. However, we notice

that, although the above formulation offers a semantically

richer representation of the execution, compared to total edge

coverage, it constitutes a coarse approximation of the (real)

execution paths. A finer-grained representation of the execu-

tion can be achieved if we take into account which edges,

specifically, have been accessed.

Path δ-diversity (fine): Consider the path pathp,i, which

holds all edges accessed during an execution of each pro-

gram pk ∈ P under input i. Let path_setp,i be the set

consisting of all unique edges of pathp,i. Thus path_setp,i
contains no duplicate edges, but instead holds only the

CFG edges of p that have been accessed at least once
during the execution. Given a set of programs P , the

(fine) path diversity of input i across P is the tuple

PDP,i = 〈path_setp1,i, path_setp2,i, ..., path_setp|P|,i〉. Es-

sentially, PDP,i acts as a "fingerprint" of the execution of

input i across all tested programs and encapsulates relative

differences in the execution paths across applications. For an

entire testing session, starting from an initial input corpus I,

the (fine) path δ-diversity achieved is the cardinality of the set

containing all the above tuples: PDFine = |
⋃

i∈I{PDP,i}|.
To demonstrate how the above metrics can lead to different

discrepancies, let us consider a differential testing session

involving two programs A and B. Let An, Bn denote edges

in the CFG of A and B, respectively, and let us assume that a

given test input causes the paths 〈A1, A2, A1〉 and 〈B1〉 to be

exercised in A and B respectively. At this point, PDCoarse =
{〈3, 1〉}, and PDFine = {〈{A1, A2}, {B1}〉}. Suppose we

mutate the current input, and the second (mutated) input now

exercises paths 〈A1, A2〉 and 〈B1〉 across the two applications.

After the execution of this second input, PDFine remains

unchanged, because the tuple 〈{A1, A2}, {B1}〉 is already in

the PDFine set. Conversely, PDCoarse will be updated to

PDCoarse = {〈3, 1〉, 〈2, 1〉}. Therefore, the new input will be

considered for further mutation under a coarse path guidance,

since it increased the cardinality of the PDCoarse set, however

it will be rejected under fine δ-diversity guidance. Finally, note

that if we use total edge coverage as our metric for input

selection, both the first and second inputs result in the same

code coverage of 3 edges (two unique edges for A plus one

edge for B). Thus, under a coverage-guided engine, the second

input will be rejected as it does not increase code coverage,

despite the fact that it executes in a manner that has not been

previously observed across the two applications.

2) Black-box guidance: As mentioned in Section II-B2,

NEZHA’s input generation can be driven in a black-box manner

using any observable and countable program output, such

as error/debug messages, rendered or parsed outputs, return

values etc. For many applications, especially those implement-

ing particular protocols or RFCs, such outputs often uniquely

identify deterministic execution patterns. For example, when a

family of similar programs returns different error codes/mes-

sages, any change in one test program’s returned error relative

to the error codes returned by the other programs is highly

indicative of the relative behavioral differences between them.

Such output asymmetries can be used to guide NEZHA’s path

selection.

Output δ-diversity: Let p be a program which, given an

input i, produces an output op,i. We define the output diversity

of a family of programs P , executing with a single input

i, as the tuple ODP,i = 〈op1,i, op2,i, ..., op|P|,i〉. Across a

testing session that starts from an input corpus I, output δ-

diversity tracks the number of unique output tuples that are

observed throughout the execution of inputs i ∈ I across

all programs in P: |⋃i∈I{ODP,i}|. Input generation based
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on output δ-diversity aims to drive the tested applications to

result in as many different output combinations across the

overall pool of programs, as possible. This metric requires

no knowledge about the internals of each application and is

completely black-box. As a result, it can even be applied on

applications running on a remote server or in cases were binary

rewriting or instrumentation is infeasible. We demonstrate in

Section V that this metric performs equally well as NEZHA’s

gray-box engines for programs that support fine-grained error

values.

Algorithm 2 Determine if a new pattern has been observed

1: procedure NEWPATTERN(gen_paths,
gen_outputs,
GlobalState)

2: IsNew =false
3: if GlobalState.UsePDCoarse then
4: IsNew | = PDCOARSE(gen_paths,GlobalState)
5: end if
6: if GlobalState.UsePDFine then
7: IsNew | = PDFINE(gen_paths,GlobalState)
8: end if
9: if GlobalState.UseOD then

10: IsNew | = OD(gen_outputs,GlobalState)
11: end if
12: return IsNew
13: end procedure

As described in Algorithm 1, whenever a set of applications

is tested under NEZHA, a mutated input that results in a

previously unseen pattern (Algorithm 1 - lines 13-15) is added

to the active input corpus to be used in future mutations.

Procedure NewPattern is called for each input (at every

generation), after all tested applications have executed, to

determine if the input exhibits a newly observed behavior and

should be added in the current corpus. The pseudocode for

the routine is described in Algorithm 2: for each of the active

guidance engines in use, NEZHA calls the respective routine

listed in Algorithm 3 and, if the path δ-diversity and output δ-

diversity is increased for each of the modes respectively (i.e.,

the input results in a discovery of a previously unseen tuple),

the mutated input is added to the current corpus.

B. Automated Debugging

NEZHA is designed to efficiently detect discrepancies across

similar programs. However, the larger the number of reported

discrepancies and the larger the number of tested applications,

the harder it is to identify unique discrepancies and to localize

the root cause of each report. To aid bug localization, NEZHA

stores each mutated input in its original form throughout the

execution of each generation. NEZHA compares any input

that caused a discrepancy with its corresponding stored copy

(before the mutation occurred), and logs the difference be-

tween the two. As this input pair differs only on the part that

introduced the discrepancy, the two inputs can subsequently

be used for delta-debugging [67] to pinpoint the root cause

of the difference. Finally, to aid manual analysis of reported

Algorithm 3 NEZHA path selection routines

1: ; Path δ-diversity (coarse)
2: ; @generation_paths: paths for each tested app for current input
3: ; @GS: GlobalState (bookkeeping of paths, scores etc.)
4: procedure PDCOARSE(generation_paths,GS)
5: path_card = ∅
6: for path in generation_paths do
7: path_card ∪ = {|path|}
8: end for
9: ; See if the path_card tuple has been seen before:

10: ; check against stored tuples in the GlobalState
11: new_card_tuple = {〈path_card〉} \GS.PDC_tuples
12: if new_card_tuple 	= ∅ then
13: ; If new, add to GlobalState and update score
14: GS.PDC_tuples ∪ = new_card_tuple
15: GlobalState.PDC_Score = |GS.PDC_tuples|
16: return true
17: end if
18: return false
19: end procedure

20: ; Path δ-diversity (fine)
21: procedure PDFINE(generation_paths,GS)
22: path_set = ∅
23: for path in generation_paths do
24: path_set ∪ = {path}
25: end for
26: new_paths = {〈path_set〉} \GS.PDF_tuples
27: if new_path_tuple 	= ∅ then
28: GS.PDF_tuples ∪ = new_path_tuple
29: GlobalState.PDF_Score = |GS.PDF_tuples|
30: return true
31: end if
32: return false
33: end procedure

34: ; Output δ-diversity
35: procedure OD(generation_outputs,GS)
36: new_output_tuple = {〈output_tuple〉} \GS.OD_tuples
37: if new_output_tuple 	= ∅ then
38: GS.OD_tuples ∪ = new_output_tuple
39: GlobalState.OD_Score = |GS.OD_tuples|
40: return true
41: end if
42: return false
43: end procedure

discrepancies, NEZHA performs a bucketing of reported differ-

ences using the return values of the tested programs. Moreover,

it reports the file similarity of reported discrepancies using

context-triggered piece-wise fuzzy hashing [45]. Automated

debugging and bug localization in the context of differential

testing is not trivial. Future additions in the current NEZHA

design, as well as limitations of existing techniques are dis-

cussed further in Section VIII.

IV. SYSTEM DESIGN AND IMPLEMENTATION

A. Architecture Overview

We present NEZHA’s architecture in Figure 2. NEZHA

consists of two main components: its core engine and runtime

components. The runtime component collects all information

necessary for NEZHA’s δ-diversity guidance and subsequently
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Fig. 2: System architecture.

passes it to the core engine. The core engine then generates

new inputs through mutations, and updates the input corpus

based on its δ-diversity guidance.

We implemented NEZHA using Clang v3.8. Our implemen-

tation consists of a total of 1545 lines of C++ code, of which

1145 and 400 lines correspond to NEZHA’s core and runtime

components, respectively.

B. Instrumentation

To enable NEZHA’s gray-box guidance, the test programs

must be instrumented to gather information on the paths

executed for each test input. This can be achieved either

during compilation, using dynamic binary instrumentation, or

using binary rewriting. For our prototype, we instrument pro-

grams at compile-time, using Clang’s SanitizerCoverage [6].

SanitizerCoverage can be combined with one or more of

Clang’s sanitizers, namely AddressSanitizer (ASAN) [57], Un-

definedBehaviorSanitizer (UBSAN) [8], and MemorySanitizer

(MSAN) [60], to achieve memory error detection during test-

ing. In our implementation, we instrument the test programs

with Clang’s ASAN to reap the benefit of finding potential

memory corruption bugs in addition to discrepancies with a

nominal overhead. We note that ASAN is not strictly required

for us to find discrepancies in our experiments.

C. NEZHA Core Engine and Runtime

NEZHA’s core engine is responsible for driving the input

generation process using the guidance engines described in

Section III-A. We implement the core NEZHA engine by

adapting and modifying libFuzzer [4], a popular coverage-

guided evolutionary fuzzer that has been successful in finding

large numbers of non-semantic bugs in numerous large-scale,

real-world software. libFuzzer primarily focuses on library

fuzzing, however it can be adapted to fuzz whole applications,

passing the path and output information needed to guide

the generation of inputs as parameters to the main engine.

NEZHA’s δ-diversity engine is independent of the underlying
testing framework, and can be applied as-is to any existing

Process_i (Data)

NEZHA_TestStart

NEZHA_TestEnd

LLVMFuzzerNezhaPaths
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RunOne

libFuzzer backend NEZHA components 
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1

3
4

5

7
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Fig. 3: Example of how an input is processed through NEZHA.

fuzzer or differential testing engine, whether black-box or

white-box/gray-box. Our choice of extending libFuzzer is due

to its large adoption, as well as its modularity, which allows for

a real-world evaluation of NEZHA’s δ-diversity with a state-

of-the-art code coverage-based framework.

LibFuzzer provides API support for custom input mutations,

however it is not designed for differential testing nor does it

support modifications of its internal structures. With respect to

mutations, we do not customize libFuzzer’s engine so that we

can achieve a fair comparison of NEZHA’s δ-diversity with

the default coverage-based guidance of the fuzzer, keeping

all other components intact. Instead, NEZHA uses libFuzzer’s

built-in engine to apply up to a maximum of five of the

following mutation operators in random order: i) create a new

input by combining random substrings from different inputs,

ii) add/remove an existing byte from an input, iii) randomize

a bit/byte in the input, iv) randomly change the order of a

subset of the input bytes and, v) only randomize the bytes

whose value corresponds to the ASCII code of a digit character

(i.e., 0x30-0x39). Finally, besides adding support for NEZHA’s

δ-diversity to libFuzzer, we also extend its guidance engines

to support (global) code coverage guidance in the context of

differential testing. As we will demonstrate in Section V, δ-

diversity outperforms code coverage, even when the latter is

applied across all tested applications.

A NEZHA-instrumented program can be executed using

any of NEZHA’s guidance engines, as long as the binary

is invoked with the appropriate runtime flags. In libFuzzer,

customized test program invocation is achieved overriding

the LLVMFuzzerTestOneInput function. We override

this function to load NEZHA into a main driver program,

which then performs the differential testing across all ex-

amined applications. We also extend libFuzzer with two

additional API calls, LLVMFuzzerNezhaOutputs and

LLVMFuzzerNezhaPaths that provide interfaces for pass-

ing output values and path execution information between the

core NEZHA engine and the NEZHA library running as part of

the tested programs. Finally, the NEZHA runtime uses two API

calls, namely NEZHA_TestStart and NEZHA_TestEnd,
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that the core engine can use to perform per-program ap-

propriate initialization and cleanup operations respectively

(allocation and deallocation of buffers holding path and output

information throughout the execution etc.).
In Figure 3, we present an example of how an in-

put is used by NEZHA and how the various components

interoperate. Assume that the NEZHA engine begins by

selecting an input from the corpus at Step 1 . It then

mutates the input and dispatches it to the tested pro-

grams through LLVMFuzzerTestOneInput at Step 2 .

At Step 3 , the NEZHA library initializes all its bookkeep-

ing data structures for each of the invoked applications via

the NEZHA_TestStart call, and subsequently invokes the

program-specific functionality under test at Step 4 . Upon

completion, NEZHA deinitializes temporary bookkeeping data

at Step 5 . The runtime execution information is dispatched

back to the NEZHA engine through the designated API invo-

cations at Step 6 . Finally, at Step 7 , the δ-diversity engine

in use determines if the input will be added to the corpus

for further testing. If so, the input is added to the corpus at

Step 8 .

V. EVALUATION

In this section, we assess the effectiveness of NEZHA both in

terms of finding discrepancies in security-critical, real-world

software, as well as in terms of its core engine’s efficiency

compared to other differential testing tools. In particular,

we evaluate NEZHA by differentially testing six major SSL

libraries, file format parsers, and PDF viewers. We also com-

pare NEZHA against two domain-specific differential testing

engines, namely Frankencerts [24] and Mucerts [32], and two

state-of-the-art domain-agnostic guided mutational fuzzers:

American Fuzzy Lop (AFL) [66], and libFuzzer [4]. Our

evaluation aims at answering the following research questions:

1) is NEZHA effective at finding semantic bugs? 2) does it

perform better than domain-specific testing engines? 3) does it

perform better than domain-agnostic coverage-guided fuzzers?

4) what are the benefits and limitations of each of NEZHA’s

δ-diversity engines?

A. Experimental Setup

X.509 certificate validation: We examine six major SSL

libraries, namely OpenSSL (v1.0.2h), LibreSSL (v2.4.0), Bor-

ingSSL (f0451ca2), wolfSSL (v3.9.6), mbedTLS (v2.2.1) and

GnuTLS (v3.5.0). Each of the SSL/TLS libraries is instru-

mented with SanitizerCoverage and AdressSanitizer so that

NEZHA has access to the programs’ path and output informa-

tion. For each library, NEZHA invokes its built-in certificate

validation routines and compares the respective error codes: if

at least one library returns an error code on a given certificate

whereas another library accepts the same certificate, this is

counted as a discrepancy.

For our experiments, our pool of seed inputs consists of

205,853 DER certificate chains scraped from the Web. Out of

2This refers to a git commit hash from BoringSSL’s master branch

these, we sampled certificates to construct 100 distinct groups

of 1000 certificates each. Initially, no certificate in any of the
initial 100 groups introduced a discrepancy between the tested

applications thus all reported discrepancies in our results are

introduced solely due to the differential testing of the examined

frameworks.

ELF and XZ parsing: We evaluate NEZHA on parsers

of two popular file formats, namely the ELF and the XZ

formats. For parsing of ELF files, we compare the parsing im-

plementations in the ClamAV malware detector with that of the

binutils package, which is ubiquitous across Unix/Linux

systems. In each testing session, NEZHA loads a file and

validates it using ClamAV and binutils (the respective

validation libraries are libclamav and libbfd), and either

reports it as a valid ELF binary or returns an appropriate error

code. Both programs, including all their exported libraries,

are instrumented to work with NEZHA and are differentially

tested for a total of 10 million generations. In our experiments,

we use ClamAV 0.99.2 and binutils v.2.26-1-1_all. Our

seed corpus consists of 1000 Unix malware files sampled from

VirusShare [9] and a plain ‘hello world’ program.

Similar to the setup for ELF parsing, we compare the

XZ parsing logic of ClamAV and XZ Utils [19], the default

Linux/Unix command-line decompression tool for XZ archive

files. The respective versions of the tested programs are

ClamAV 0.99.2 and xzutils v5.2.2. Our XZ seed corpus

uses the XZ files from the XZ Utils test suite (a total of 74

archives) and both applications are differentially tested for a

total of 10 million generations.

PDF Viewers: We evaluate NEZHA on three popular PDF

viewers, namely the Evince (v3.22.1), MuPDF (v1.9a) and

Xpdf (v3.04) viewers. Our pool of tested inputs consists of

the PDFs included in the Isartor [3] testsuite. All applications

are differentially tested for a total of 10 million generations.

During testing, NEZHA forks a new process for each tested

program, invokes the respective binary through execlp, and

uses the return values returned by the execution to the parent

process to guide the input generation using its output δ-

diversity. Determined based on the return values of the tested

programs, the discrepancies constitute a conservative estimate

of the total discrepancies, because while the return values of

the respective programs may match, the rendered PDFs may

differ.

All our measurements were performed on a system run-

ning Debian GNU/Linux 4.5.5-1 while our implementation of

NEZHA was tested using Clang version 3.8.

Q1: How effective is NEZHA in discovering discrepancies?

The results of our analysis with respect to the discrepancies

and memory errors found are summarized in Table II. NEZHA

found 778 validation discrepancies and 8 memory errors in

total. Each of the reported discrepancies corresponds to a

unique tuple of error codes, where at least one application

accepts an input and at least another application rejects it.

Examples of semantic bugs found are presented in Section VI.
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Type SSL Certificate XZ Archive ELF Binary PDF File

Discrepancies 764 5 2 7
Errors & Crashes 6 2 0 0

TABLE II: Result summary for our analysis of NEZHA.

We observe that, out of the total 778 discrepancies, 764

were reported during our evaluation of the tested SSL/TLS

libraries. The disproportionately large number of discrepancies

found for SSL/TLS is attributed to the fine granularity of

the error codes returned by these libraries, as well as to the

larger number of applications being tested (six applications for

SSL/TLS versus three for PDF and two for ELF/XZ).

To provide an insight into the impact that the number of

tested programs has over the total reported discrepancies, we

measure the total discrepancies observed between every pair
of the six SSL/TLS libraries. In the pair-wise comparison of

Table III, two different return-value tuples that have the same

error codes for libraries A and B are not counted twice for the

(A, B) pair (i.e., we regard the output tuples 〈0, 1, 2, 2, 2, 2〉
and 〈0, 1, 3, 3, 3, 3〉 as one pairwise discrepancy with respect

to the first two libraries). We observe that even in cases of
very similar code bases (e.g., OpenSSL and LibreSSL which

are forks of the same code base), NEZHA successfully reports
multiple unique discrepancies.

LibreSSL BoringSSL wolfSSL mbedTLS GnuTLS

OpenSSL 10 1 8 33 25

LibreSSL - 11 8 19 19

BoringSSL - - 8 33 25

wolfSSL - - - 6 8

mbedTLS - - - - 31

TABLE III: Number of unique pairwise discrepancies between

different SSL libraries. Note that the input generation is still

guided using all of the tested SSL/TLS libraries.

The results presented in Table II are new reports and

not reproductions of existing ones. They include multiple

confirmed, previously unknown semantic errors. Moreover,

NEZHA was more efficient at reporting discrepancies than all

guided or unguided frameworks we compared it against (see

Q2 & Q3 for further details on this analysis). We present some

examples of semantic bugs that have already been identified
and patched by the respective software development teams in

Section VI.

Result 1: NEZHA reported 778 previously unknown dis-

crepancies (including confirmed security vulnerabilities

and semantic errors), in total, across all the applications

we tested, even when the latter shared similar code bases.

In addition to finding semantic bugs, NEZHA was equally

successful in uncovering previously unknown memory corrup-

tion vulnerabilities and crashes in the tested applications. In

particular, five of them were crashes due to invalid memory

accesses (four cases in wolfSSL and one in GnuTLS), one

was a memory leak in GnuTLS and two were use-after-free

bugs in ClamAV. As NEZHA’s primary goal is to find semantic

bugs (not memory corruption issues), we do not describe them

in detail here. Interested readers can find further details in

Section XI-A of the Appendix.

Q2: How does NEZHA perform compared to domain-specific
differential testing frameworks like Frankencerts and Mucerts?

One may argue that being domain-independent, NEZHA

may not be as efficient as successful domain-specific frame-

works. To address this concern, we compared NEZHA against

Frankencerts [24], a popular black-box unguided differential

testing framework for SSL/TLS certificate validation, as well

as Mucerts [32], which builds on top of Frankencerts per-

forming Markov Chain Monte Carlo (MCMC) sampling to

diversify certificates using coverage information. Frankencerts

generates mutated certificates by randomly combining X.509

certificate fields that are decomposed from a corpus of seed

certificates. Despite its unguided nature, Frankencerts suc-

cessfully uncovered a multitude of bugs in various SSL/TLS

libraries. Mucerts adapt many of Frankencerts core compo-

nents but also stochastically optimize the certificate generation

process based on the coverage each input achieves in a

single application (OpenSSL). Once the certificates have been

generated from this single program, they are used as inputs to

differentially test all SSL/TLS libraries.

To make a fair comparison between NEZHA, Frankencerts,

and Mucerts, we ensure that all tools are given the same sets

of input seeds. Furthermore, since Frankencerts is a black-

box tool, we restrict NEZHA to only use its black-box output

δ-diversity guidance, across all experiments.

Since the input generation is stochastic in nature due to the

random mutations, we perform our experiments with multiple

runs to obtain statistically sound results. In particular, for each

of the input groups of certificates we created (100 groups

of 1000 certificates each), we generate 100, 000 certificate

chains using Frankencerts, resulting in a total of 10 million

Frankencerts-generated chains. Likewise, passing as input each

of the above 100 corpuses, we run NEZHA for 100, 000
generations (resulting in 10 million NEZHA-executed inputs).

Mucerts also start from the same sets of inputs and execute in

mode 2, which according to [32] yields the most discrepancies

with highest precision. We use the return value tuples of

the respective programs to identify unique discrepancies (i.e.,

unique tuples of return values seen during testing).

We present the relative number and distribution of dis-

crepancies found across Frankencerts, Mucerts and NEZHA

in Figures 4 and 5. Overall, NEZHA reported 521 unique

discrepancies, compared to 10 and 19 distinct discrepancies

for Frankencerts and Mucerts respectively. NEZHA reports 52

times and 27 times more discrepancies than Frankencerts and

Mucerts respectively, starting from the same sets of initial
seeds and running for the same number of iterations, achieving

a respective coverage increase of 15.22% and 33.48%.
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Fig. 4: Probability of finding at least n unique discrepancies

starting from the same seed corpus of 1000 certificates and

running 100, 000 iterations. The results are averages of 100

runs each starting with a different seed corpus.

510 154  73

NEZHA (Black-box)

Frankencerts
Mucerts

Distributions of Discrepancies Found

Fig. 5: Unique discrepancies observed by Frankencerts,

Mucerts and NEZHA (black-box). The results are averages

of 100 runs each starting with a different seed corpus of

1000 certificates.

We observe that, while both Frankencerts and Mucerts

reported a much smaller number of discrepancies than NEZHA,

they found 3 and 15 discrepancies respectively that were

missed by NEZHA. We posit that this is due to the differences

in their respective mutation engines. Frankencerts and Mucerts

start from a corpus of certificates, break all the certificates

in the corpus into the appropriate fields (extensions, dates,

issuer etc.), then randomly sample and mutate those fields to

merge them back together in new chains, however respecting

the semantics of each field (for instance, Frankencerts might

mutate and merge the extensions of two or three certificates to

form the extensions field of a new chain but will not substitute

a date field with an extension field). On the contrary, NEZHA

performs its mutations sequentially, without mixing together

different components of the certificates in the seed corpus, as

it does not have any knowledge of the input format.

It is noteworthy that, despite the fact that NEZHA’s mutation

operators are domain-independent, NEZHA’s guidance mech-

anism allows it to favor inputs that are mostly syntactically
correct. Compared to Frankencerts or Mucerts that mutate cer-

tificates at the granularity of X.509 certificate fields, without

violating the core structure of a certificate, NEZHA still yields

more bugs. Finally, when running NEZHA’s mutation engine

without any guidance, on the same inputs, we observe that

no discrepancies were found. Therefore, NEZHA’s efficacy in

finding discrepancies can only be attributed to its black-box

δ-diversity-based guidance.

Result 2: NEZHA reports 52 times and 27 times more

discrepancies than Frankencerts and Mucerts respectively,

per input. In terms of testing performance, NEZHA an-

alyzes more than 400 certificates per second, compared

to 271 and 0.08 certificates per second for Frankencerts

and Mucerts respectively.

Q3: How does NEZHA perform compared to state-of-the
art coverage-guided domain-independent fuzzers like AFL/lib-
fuzzer?

Fig. 6: Probability of finding at least n unique discrepancies

after 100, 000 executions, starting from a corpus of 1000

certificates. The results are averages of 100 runs each

starting from a different seed corpus of 1000 certificates.

None of the state-of-the-art domain-agnostic fuzzers like

AFL natively support differential testing. However, they can

be adapted for differential testing by using them to generate

inputs with a single test application and then invoking the

full set of tested applications with the generated inputs. To

differentially test our suite of six SSL/TLS libraries, we

first generate certificates using a coverage-guided fuzzer on

OpenSSL, and then pass these certificates to the rest of the

SSL libraries, similar to how differential testing is performed

by Mucerts. The discrepancies reported across all tested SSL

libraries, if we run AFL (v. 2.35b)3 and libFuzzer on a stan-

dalone program (OpenSSL) are reported in Figure 6. We notice

3Since version 2.33b, AFL implements the explore schedule as presented
in AFLFast [23], thus we omit comparison with the latter.
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Fig. 7: Probability of finding at least n unique discrepancies

for each of NEZHA’s δ-diversity engines after 100, 000
executions. The results are averages of 100 runs each

starting from a different seed corpus of 1000 certificates.
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Fig. 8: Unique discrepancies observed for each of NEZHA’s

δ-diversity engines per generation. The results are averages

of 100 runs each starting from a different seed corpus of

1000 certificates.

that NEZHA yields 6 times and 3.5 times more differences per

tested input, on average, than AFL and libFuzzer respectively.

This demonstrates that driving input generation with a

single application is ill-suited for differential testing. In the

absence of a widely-adopted domain-agnostic differential test-

ing framework, we modified libFuzzer’s guidance engine to

support differential testing using global code coverage. Apart

from its guidance mechanisms, this modified libFuzzer 4 is

identical to NEZHA in terms of all other aspects of the engine

(mutations, corpus minimization etc.). Even so, as shown in

Figure 6, NEZHA still yields 30% more discrepancies per

tested input. Furthermore, NEZHA also achieves 1.3% more

code coverage.

Result 3: NEZHA finds 6 times more discrepancies than

AFL adapted to differentially test multiple applications

using a single test program for input generation.

Q4: How does the performance of NEZHA’s δ-diversity black-
box and gray-box engines compare to each other?

To compare the performance of NEZHA’s δ-diversity en-

gines, we run NEZHA on the six SSL/TLS libraries used in

our previous experiments, enabling a single guidance engine

at a time. Before evaluating NEZHA’s δ-diversity guidance, we

ensured that the discrepancies reported are a result of NEZHA’s

guidance and not attributed to NEZHA’s mutations. Indeed,

when we use NEZHA without any δ-diversity guidance, no
discrepancies were found across the SSL/TLS libraries.

Figures 7 and 8 show the relative performances of dif-

ferent δ-diversity engines in terms of the number of unique

discrepancies they discovered. Figure 7 shows the probability

of finding at least n unique discrepancies across the six tested

SSL/TLS libraries, starting from a corpus of 1000 certificates

and performing 100, 000 generations. For this experimental

4Corresponding git commit is 1f0a7ed0f324a2fb43f5ad2250fba68377076622

setting, we notice that NEZHA reports at least 57 discrepancies

with more than 90% probability regardless of the engine used.

Furthermore, all δ-diversity engines report more discrepancies

than global coverage. Figure 8 shows the rate at which each

engine finds discrepancies during execution. We observe that

both δ-diversity guidance engines report differences at higher

rates than global coverage using the same initial set of inputs.

Overall throughout this experiment, NEZHA’s output δ-

diversity yielded 521 discrepancies, while path δ-diversity

yielded 491 discrepancies, resulting in 30% and 22.75% more

discrepancies than using global code coverage to drive the

input generation (global coverage resulted in 400 unique

discrepancies). With respect to the coverage of the CFG that

is achieved, output δ-diversity and path δ-diversity guidance

achieves 1.38% and 1.21% higher coverage then global cover-

age guidance (graphs representing the coverage and population

increase at each generation are presented in Section XI-B).

Distributions of Discrepancies Found

Output δ-diversity

Path δ-diversity

Global Coverage

48

3484

26

143

Fig. 9: Distribution of bugs found by NEZHA’s δ-diversity

engines versus NEZHA using global-coverage-based guid-

ance.

The distribution of the discrepancies reported by the dif-

ferent engines is presented in Figure 9. We notice that 348

discrepancies have been found by all three guidance en-

gines, 121 discrepancies are reported using δ-diversity and
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48 discrepancies are reported by our custom libFuzzer global

code coverage engine. This result is a clear indication that

δ-diversity performs differently than global code coverage

with respect to input generation, generating a broader set of

discrepancies for a given time budget, while exploring similar

portions of the application CFG (1.21% difference in coverage

for the same setup).

One notable result from this experiment is that output

δ-diversity, despite being black-box, achieves equally good

coverage with NEZHA’s gray-box engines and even reports

more unique discrepancies. This is a very promising result as

it denotes that the internal state of an application can, in some

cases, be adequately approximated based on its outputs alone

assuming that there is enough diversity in the return values.

Result 4: NEZHA’s output and path δ-diversity guidance

finds 30% and 22.75% more discrepancies, respectively,

than NEZHA using global-coverage-based guidance.

However, we expect that output δ-diversity will perform

worse for applications for which the granularity of the outputs

is very coarse. For instance, the discrepancies that will be

found in an application that provides debug messages or

fine-grained error codes are expected to be more than those

found in applications with less expressive outputs, (e.g., a web

application firewall that only returns ACCEPT or REJECT

based on its input). To verify this assumption, we perform

an experiment with only three SSL libraries, i.e., OpenSSL,

LibreSSL and BoringSSL, in which all libraries are only

returning a subset of their supported error codes, namely at

most 32, 64, 128 and 256 error codes. Our results are presented

in Figure 10. We notice that a limit of 32 error codes results in

significantly fewer discrepancies than a more expressive set of

error values. Finally, we should note that when we decreased

this limit further, to only allow 16 possible error codes across

all three libraries, NEZHA did not find any discrepancies.

VI. CASE STUDIES OF BUGS

In this section, we describe selected semantic and crash-

inducing bugs that NEZHA found during our experiments.

A. ClamAV File Format Validation Bugs

As described in Section II, discrepancies in the file format

validation logic across programs can have dire security impli-

cations. Here we highlight two critical bugs, where ClamAV

fails to parse specially crafted ELF and XZ files and thus

does not scan them, despite the fact that the programs that

commonly execute/extract these types of files process them

correctly. These bugs allow an attacker to launch evasion

attacks against ClamAV by injecting malware into specially

crafted files.
1) ELF - Mishandling of Malformed Header: According

to the ELF specification [1], the ELF header contains the

e_ident[EI_CLASS] field, which specifies the type of

machine (32- or 64-bit) the ELF file is compiled to run on.

Values greater than 2 for this field are left undefined.

Fig. 10: Probability of finding at least n unique discrep-

ancies across OpenSSL, LibreSSL, and BoringSSL with

NEZHA running under output δ-diversity, for varying num-

bers of error codes, after 100, 000 executions (average of

100 runs, starting from a different seed corpus of 1000
certificates in each run).

In parsing ELF binaries, ClamAV differs from binutils
when it encounters illegal values in e_ident[EI_CLASS].

As shown in Listing 1, ClamAV treats ELF binaries config-

ured with such illegal values as being of an invalid format

(CL_EFORMAT) and does not scan the respective files. By

contrast, binutils correctly parses such ELF binaries. We

verified that such ELF binaries can in fact be successfully

executed. In Listing 2, the Linux kernel’s ELF loader does not

validate this field while loading a binary. As a result, a malware

with such a corrupted ELF header can evade the detection of

ClamAV, while retaining its capability to execute in the host

OS.

1 static int cli_elf_fileheader(...) {
2 ...
3 switch(file_hdr->hdr64.e_ident[4]) {
4 case 1:
5 ...
6 case 2:
7 ...
8 default:
9 ...
10 return CL_EFORMAT;

Listing 1: ClamAV code that parses the e_ident field.

1 static int load_elf_binary(struct linux_binprm *bprm) {
2 ...
3 retval = -ENOEXEC;
4 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
5 goto out;
6 if (loc->elf_ex.e_type != ET_EXEC &&

loc->elf_ex.e_type != ET_DYN)
7 goto out;
8 if (!elf_check_arch(&loc->elf_ex))
9 goto out;
10 ...

Listing 2: Error checks for ELF loading in the Linux kernel

(the e_ident field is not checked).

2) XZ - Mishandling of the Dictionary Size Field: Accord-

ing to the XZ specifications [62], the LZMA2 decompression

algorithm in an archive can use a dictionary size ranging from
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4kB to 4GB. The dictionary size varies from file to file and

is stored in the XZ header of a file. ClamAV differs from XZ

Utils when parsing this dictionary size field.

1 extern lzma_ret lzma_lz_decoder_init(...) {
2 ...
3 // Allocate and initialize the dictionary.
4 if (next->coder->dict.size != lz_options.dict_size) {
5 lzma_free(next->coder->dict.buf, allocator);
6 next->coder->dict.buf
7 = lzma_alloc(lz_options.dict_size, allocator);
8 ...
9

10 lzma_alloc(size_t size, const lzma_allocator

*allocator) {
11 ...
12 if (allocator != NULL && allocator->alloc != NULL)
13 ptr = allocator->alloc(allocator->opaque, 1, size);
14 else
15 ptr = malloc(size);
16 ...

Listing 3: XZ Utils parses the dictionary size correctly.

As shown in Listing 3, XZ Utils strictly conforms to the

specifications and allocates a buffer based on the permitted

dictionary sizes. On the other hand, ClamAV includes an

additional check on the dictionary size that deviates from the

specifications. It fails to parse archives with a dictionary size

greater than 182MB (line 15 in Listing 4). As a result of

this bug, when parsing such an archive containing a malware,

ClamAV does not consider the file as an archive, and thus

skips scanning the compressed malware.

1 SRes LzmaDec_Allocate(.., const Byte *props, ...) {
2 ...
3 dicBufSize = propNew.dicSize;
4 if (p->dic == 0 || dicBufSize != p->dicBufSize){
5 ...
6 // Invoke __xz_wrap_alloc()
7 p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);
8 if (p->dic == 0) {
9 ...

10 return SZ_ERROR_MEM;
11 ...
12

13 void *__xz_wrap_alloc(void *unused, size_t size) {
14 // Fails if size > (182*1024*1024)
15 if(!size || size > CLI_MAX_ALLOCATION)
16 return NULL;
17 ...

Listing 4: ClamAV’s additional erroneous check on

dictionary size.

B. X.509 Certificate Validation Discrepancies

In this Section, we present two examples of certificate

validation semantic bugs found by NEZHA, one involving

LibreSSL and one GnuTLS. Another example of a discrep-

ancy between LibreSSL and BoringSSL is presented in the

Appendix.
1) LibreSSL - Incorrect parsing of time field types:

The RFC standards for X.509 certificates restrict the Time
fields to only two forms, namely the ASN.1 representations

of UTCTime (YYMMDDHHMMSSZ) and GeneralizedTime
(YYYYMMDDHHMMSSZ) [15] which are 13 and 15 characters

wide respectively. Time fields are also encoded with an

ASN.1 tag that specifies their format. Despite the standards, in

practice, we observe that 11- and 17-character time fields are

used in the wild, by searching within the SSL observatory [7].

Indeed, some SSL libraries like OpenSSL and BoringSSL are

more permissive while parsing such time fields.

LibreSSL, on the other hand, tries to comply strictly with the

standards when parsing the validity time fields in a certificate.

However, while doing so, LibreSSL introduces a bug. Unlike

the other libraries, LibreSSL ignores the ASN.1 time format

tag, and infers the time format type based on the length of

the field (Lines 10 and 16 in Listing 5). In particular, the

time fields in a certificate can be crafted to trick LibreSSL to

erroneously parse the time fields using an incorrect type. For

instance, when the time field of ASN.1 GeneralizedTime
type is crafted to have the same length as the UTCTime (i.e.,

13), LibreSSL treats the GeneralizedTime as UTCTime.

As a result of this confusion, LibreSSL may erroneously

treat a valid certificate as not yet valid, when in fact it is valid;

or, it may erroneously accept an expired certificate. For exam-

ple, while other libraries may interpret a GeneralizedTime
time in history, 201201010101Z as Jan 1 01:01:00
2012 GMT, LibreSSL will incorrectly interpret this time as a

UTCTime time in future, i.e., as Dec 1 01:01:01 2020
GMT. Note that finding time fields of non-standard lengths

in the wild suggests that CAs do not actively enforce these

standards length requirement. Furthermore, we also found

certificates with GeneralizedTime times that are of the

length 13 in the SSL observatory dataset.

1 int asn1_time_parse(..., size_t len, ..., int mode) {
2 ...
3 int type = 0;
4 /* Constrain to valid lengths. */
5 if (len != UTCTIME_LENGTH && len != GENTIME_LENGTH)
6 return (-1);
7 ...
8 switch (len) {
9 case GENTIME_LENGTH:
10 // mode is "ignored" -- configured to 0 here
11 if (mode == V_ASN1_UTCTIME)
12 return (-1);
13 ...
14 type = V_ASN1_GENERALIZEDTIME;
15 case UTCTIME_LENGTH:
16 if (type == 0) {
17 if (mode == V_ASN1_GENERALIZEDTIME)
18 return (-1);
19 type = V_ASN1_UTCTIME;
20 }
21 ...

Listing 5: LibreSSL time field parsing bug.

2) GnuTLS - Incorrect validation of activation time: As

shown in Listing 6, GnuTLS lacks a check for cases where

the year is set to 0. As a result, while other SSL libraries reject

a malformed certificate causing t to be 0, GnuTLS erroneously

accepts it.

1 static unsigned int check_time_status(gnutls_x509_crt_t
crt, time_t now) {

2 int status = 0;
3 time_t t = gnutls_x509_crt_get_activation_time(crt);
4 if (t == (time_t) - 1 || now < t) {
5 status |= GNUTLS_CERT_NOT_ACTIVATED;
6 status |= GNUTLS_CERT_INVALID;
7 return status;
8 ...

Listing 6: GnuTLS activation time parsing error.
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C. PDF Viewer Discrepancies

As mentioned in Section V-A, NEZHA uncovered 7 unique

discrepancies in the tested three PDF browsers (Evince, Xpdf

and MuPDF) over a total of 10 million generations. Examples

of the found discrepancies include PDF files that could be

opened in one viewer but not another and PDFs rendered with

different contents across viewers. One interesting discrepancy

includes a PDF that Evince treats as encrypted (thus opening it

with a password prompt) but Xpdf recognizes as unencrypted

(MuPDF and Xpdf abort with errors trying to render the file).

VII. RELATED WORK

Unguided Testing: Unguided testing tools generate test

inputs independently across iterations without considering the

test program’s behavior on past inputs. Domain-specific evo-

lutionary unguided testing tools have successfully uncovered

numerous bugs across a diverse set of applications [2], [40],

[42], [52], [56]. Another parallel line of work explored build-

ing different grammar-based testing tools that rely on a context

free grammar for generating test inputs [48], [50]. LangFuzz

[38] uses a grammar to randomly generate valid JavaScript

code fragments and test JavaScript VMs, while GLADE [22]

synthesizes a context-free grammar encoding the language of

valid program inputs and leverages it for fuzzing. TestEra

[49] uses specifications to automatically generate test inputs

for Java programs. lava [58] is a domain-specific language

designed for specifying grammars that can be used to generate

test inputs for testing Java VMs. Unlike NEZHA’s guided

approach, the input generation process of these tools does not

use any information from past inputs and essentially creates

new inputs at random from a prohibitively large input space.

This makes the testing process highly inefficient, since large

numbers of inputs need to be generated to find a single bug.

Guided Testing: Evolutionary testing was designed to make

the input generation process more efficient by taking pro-

gram behavior information for past inputs into account, while

generating new inputs [53]. Researchers have since explored

different forms of code coverage heuristics (e.g., basic block,

function, edge, or branch coverage) to efficiently guide the

search for bug-inducing inputs. Coverage-based tools such

as AFL [66], libFuzzer [4], and the CERT Basic Fuzzing

Framework (BFF) [39] refine their input corpus by maximizing

the code coverage with every new input added to the corpus.

However, these tools are not well suited for differential testing

as they do not exploit the relative differences across multiple

test applications. In particular, to the best of our knowledge,

NEZHA is the first testing framework to particularly design a

path selection mechanism fitted towards to differential testing.

Even if a state-of-the-art testing framework such as libFuzzer,

was modified to perform differential testing using global cov-

erage across multiple programs, it would still be outperformed

by both NEZHA’s gray-box and black-box engines, as shown

in Section V.

Another line of research builds on the observation that the

problem of new input generation from existing inputs can be

modeled as a stochastic process. These tools leverage a diverse

set of statistical techniques to drive input generation [23],

[31], [47], or leverage static and dynamic analysis to prioritize

deeper paths [55]. However, most of these tools do not

support differential testing. Finally, Chen et al.’s tool perform

differential testing of JVMs using MCMC sampling for input

generation [31]. However, their tool is domain-specific (i.e.,

requires details knowledge of the Java class files and uses

custom domain-specific mutations). Moreover, MCMC tends

to be computationally very expensive, significantly slowing

down the input generation process. NEZHA, by contrast, uses

a fast guidance mechanism well suited for differential testing

that seeks to maximize the diversity of relative behaviors of

the test programs in search of discrepancies-inducing inputs.

Symbolic execution: Symbolic execution [43] is a white-

box technique that executes a program symbolically, computes

constraints along different paths, and uses a constraint solver to

generate inputs that satisfy the collected constraints along each

path. KLEE [26] uses symbolic execution to generate tests that

achieve high coverage for several popular UNIX applications,

however, due to path explosion, it does not scale to large

applications. UC-KLEE [43], [54] aims to tackle KLEE’s

scalability issues by performing under-constrained symbolic

execution, i.e., directly executing a function by skipping the

whole invocation path up to that function. However, this may

result in an increase in the number of false positives.

To mitigate path explosion, several lines of work utilize

symbolic execution only in portions of their analysis to aid

the testing process, and combine it with concrete inputs [27].

Another approach towards addressing the limitations of pure

symbolic execution is to outsource part of the computation

away from the symbolic execution engine using fuzzing [28],

[34]–[37], [61]. A major limitation of symbolic-execution-

assisted testing tools in the context of differential testing is

that the path explosion problem increases significantly as the

number of test programs increase. Therefore, it is very hard

to scale symbolic execution techniques to perform differential

testing of multiple large programs.

Differential Testing: Differential testing [51] has been very

successful in uncovering semantic differences between inde-

pendent implementations with similar intended functionality.

Researchers have leveraged this approach to find bugs across

many types of programs, such as web applications [29], differ-

ent Java Virtual Machine (JVM) implementations [31], various

security implementations of security policies for APIs [59],

compilers [65] and multiple implementations of network pro-

tocols [25]. KLEE [26] used symbolic execution to perform

differential testing, however suffers from scalability issues.

SFADiff [21] performs black-box differential testing using

Symbolic Finite Automata (SFA) learning, however, contrary

to NEZHA, can only be applied to applications such as XSS

filters that can be modeled by an SFA.

Chen et al. performed coverage-guided differential testing

of SSL/TLS implementations using Mucerts [32]. However,

unlike NEZHA, Mucerts requires knowledge of the partial

grammar of the X.509 certificate format and applies MCMC

algorithm on a single application (i.e., OpenSSL) to drive
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its input generation. The input generation of Mucerts is very

slow requiring multiple days to generate even 10,000 inputs.

As demonstrated in Section V-A, NEZHA manages to find 27
times more discrepancies per input.

Another similar work is Brubaker et al.’s unguided differen-

tial testing system that synthesizes frankencerts by randomly

combining parts of real certificates [24]. They use these

syntactically valid certificates to test for semantic violations

of SSL/TLS certificate validation across multiple implemen-

tations. However, unlike in NEZHA where the selection of

mutated inputs is guided by δ-diversity metrics, the creation

and selection of Frankencerts is completely unguided and

therefore significantly inefficient compared to NEZHA.

Besides testing software, researchers have applied differ-

ential testing to uncover program deviations that could lead

to malicious evasion attacks on security-sensitive programs.

Similar to the way we applied NEZHA to uncover evasion

bugs in ClamAV malware detector, Jana et al. use differential

testing (with manually crafted inputs) to look for discrepancies

in file processing across multiple antivirus scanners [41].

Recent works have applied differential testing to search for

inputs that can evade machine learning classifiers for malware

detection [46], [64]. However, unlike NEZHA, these projects

require a detailed knowledge of the input format.

Differential testing shares parallels with N-version program-

ming [30]. Both aim to improve the reliability of systems by

using independent implementations of functionally equivalent

programs, provided that the failures (or bugs) of the multiple

versions are statistically independent. Therefore, NEZHA’s

input generation scheme will also be helpful to efficiently

identify uncorrelated failures in software written under the N-

version programming paradigm. Both N-version programming

and differential testing suffer from similar limitations when

different test programs demonstrate correlated buggy behaviors

as observed by Knight et al. [44].

VIII. FUTURE WORK

We believe NEZHA is a crucial first step towards building ef-

ficient differential testing tools. However, several components

of the underlying engine offer fertile ground for future work.

Mutation Strategies: NEZHA’s current mutation strategies

are not tailored for differential testing and therefore present a

promising target for further optimization. Moreover, new gray-

box guidance mechanisms that incorporate bookkeeping of

intermediate states explored during a test program’s execution

could be used to more efficiently generate promising inputs.

Bug Localization: Similar improvements can be achieved

towards the problem of automated debugging and bug local-

ization. Prior research has performed bug bucketing for crash-

inducing bugs using stack trace hashes [28]. However, this

method is not suitable for semantic bugs that do not result

in crashes. Moreover, heuristics such as using the average

stack trace depth in order to locate "deeper" bugs cannot be

trivially adapted to differential testing, because the depth of

the root cause of a bug might not be correlated with the

maximum depth of the execution. One possible solution for

this problem is to utilize more complex schemes keeping

track of all successful and failed executions across the tested

applications (e.g., execution paths leading to successful and

failed states may be stored in two distinct groups. Upon a

deviation from a previously unseen behavior, one may lookup

the point at which the deviation occurred in both groups to

pinpoint the root cause.

IX. DEVELOPER RESPONSES

We have responsibly disclosed the vulnerabilities identified

in this work to the respective developers of the affected

programs. Each of our reports includes a description of the bug

alongside a Proof-of-Concept (PoC) test input and a suggested

patch. The wolfSSL team assigned the highest priority to

all the memory corruption errors we reported and addressed

all the bugs within six days of our disclosure, merging the

respective patches in wolfSSL v3.9.8. Likewise, ClamAV de-

velopers have confirmed the reported bugs and are planning to

merge the relevant fixes in v0.99.3. The ClamAV evasions bugs

have been assigned with CVE identifiers CVE-2017-6592 (XZ

archive evasion) and CVE-2017-6593 (ELF binary evasion).

GnuTLS and LibreSSL developers likewise addressed the

reported bugs within three days from our disclosure, pushing

the respective patches to upstream.

X. CONCLUSION

In this paper we design, implement, and evaluate NEZHA,

a guided differential testing tool that realizes the concept of

δ-diversity to efficiently find semantic bugs in large, real-

world applications without knowing any details about the input

formats. NEZHA can generate test inputs using both δ-diversity

black-box and gray-box guidance. Our experimental results

demonstrate that NEZHA is more efficient at finding discrepan-

cies than all of the guided and unguided testing frameworks we

compared it against. NEZHA discovered two evasion attacks

against the ClamAV malware detector and 764 discrepancies

between the implementations of X.509 certificate validation in

six major SSL/TLS libraries.

We have made NEZHA open-source so that the community

can continue to build on it and advance the field of efficient

differential testing for security bugs. The framework can be

accessed at https://github.com/nezha-dt.
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wcventure
插入号
我们相信NEZHA是构建高效差分测试工具的关键第一步。 然而，底层引擎的几个组件为未来的工作提供了肥沃的土壤。

wcventure
插入号
NEZHA目前的突变策略不适合差异测试，因此为进一步优化提供了有希望的目标。 此外，新的灰盒子引导机制结合了在测试程序执行期间探索的中间状态的簿记，可以用于更有效地生成有希望的输入。

wcventure
插入号
对于自动调试和错误定位问题，可以实现类似的改进。 之前的研究已经使用堆栈跟踪哈希对错误诱导错误进行了错误分析[28]。 但是，此方法不适用于不会导致崩溃的语义错误。 此外，诸如使用平均堆栈跟踪深度以便定位“更深”的错误的启发式方法不能轻易地适应差异测试，因为错误的根本原因的深度可能与执行的最大深度无关。 这个问题的一个可能的解决方案是利用更复杂的方案来跟踪测试应用程序中的所有成功和失败的执行（例如，导致成功和失败状态的执行路径可以存储在两个不同的组中。当偏离先前看不见的时 行为，可以查找两组中发生偏差的点以确定根本原因。
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XI. APPENDIX

A. Memory Coruption Bugs Reported by NEZHA

1) ClamAV use-after-free: NEZHA disclosed a use-after-

free heap bug in ClamAV, which is invoked when parsing

a malformed XZ archive. As ClamAV parses the multiple

compression blocks in the archive, it makes a series of

allocation and freeing operations on a single memory buffer.

ClamAV’s memory allocation routine will only do so when the

given memory pointer is NULL. However, the memory freeing
routine fails to nullify the memory pointer after freeing the

buffer. As a result, the bug will be triggered after a series of

allocate-free-allocate operations. An attacker can exploit this

vulnerability by sending a malformed XZ archive that will

crash ClamAV when ClamAV attempts to scan the archive.

2) wolfSSL memory errors: NEZHA uncovered four mem-

ory corruption bugs in wolfSSL, all of which were marked as

critical by the wolfSSL developers and patched within six days

after we reported the bugs. Two of the bugs were caused by

missing checks for malformed PEM certificate headers inside

the PemToDer function, which converts a X.509 certificate

from PEM to DER format. The missing checks resulted

in out-of-bounds memory reads. The third bug was caused

by a missing check for the return value of a PemToDer
call, inside the wolfSSL_CertManagerVerifyBuffer
routine, causing a segmentation fault. In this case, the structure

holding the DER-converted certificate is corrupted. Finally the

fourth bug, also occurring inside Pem2Der, resulted in an

out-of-bounds read, due to a missing check on the size of

the PEM certificate to be converted. This can be triggered

by an intermediate certificate in a chain that has the correct

PEM header but an empty body: the missing check will cause

Pem2Der to not return any error, which in turn results in an

out-of-bounds memory access during the subsequent steps of

the verification process.

3) GnuTLS null pointer dereference: NEZHA found a miss-

ing check inside the gnutls_oid_to_ecc_curve routine

of GnuTLS, where dereferenced pointers were not checked to

be not NULL. This bug resulted in a segmentation fault while

parsing an appropriately crafted certificate.

B. Coverage and population size for NEZHA’s different guid-
ance engines

In Figures 11 and 12, we present the coverage and popu-

lation increases for the different engines of NEZHA for the

experimental setup of Section V-A.
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Fig. 11: Coverage increase for each of NEZHA’s

engines per generation (average of 100 runs with

a seed corpus of 1000 certificates).

C. BoringSSL - Incorrect representation of KeyUsage

According to the RFC standards, the KeyUsage extension

defines the purpose of the certificate key and it uses a

bitstring to represent the various uses of the key. A valid
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NEZHA’s engines per generation (average of 100
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Certificate Authority (CA) certificate must have this extension

present with the keyCertSign bit set.

BoringSSL and LibreSSL differ in the way they parse the

ASN.1 bitstring, which is used for storing the KeyUsage
extension in the X.509 certificates. Each bitstring is

encoded with a “padding” byte that indicates the number of

least significant unused bits in the bit representation of the

structure. This byte should never be more than 7. But if

the byte is set to a value greater than 7, BoringSSL fails to

parse the bitstring and throws an error in Listing 7, whereas

LibreSSL masks that byte with 0x07 and continues to parse

the bitstring as-is as shown in Listing 8.

1 ASN1_BIT_STRING *c2i_ASN1_BIT_STRING(..., char **pp) {
2 ...
3 p = *pp;
4 padding = *(p++);
5 // returns an error if invalid padding byte
6 if (padding > 7) {
7 OPENSSL_PUT_ERROR(ASN1,

ASN1_R_INVALID_BIT_STRING_BITS_LEFT);
8 goto err;
9 }

10 ret->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07);
11 ret->flags |= (ASN1_STRING_FLAG_BITS_LEFT | i);
12 ...

Listing 7: BoringSSL code for validating bitstrings.

1 ASN1_BIT_STRING *c2i_ASN1_BIT_STRING(..., char **pp) {
2 ...
3 p = *pp;
4 i = *(p++);
5 // masks the padding byte, instead of with a check
6 ret->flags&= ~(ASN1_STRING_FLAG_BITS_LEFT| 0x07);
7 ret->flags|=(ASN1_STRING_FLAG_BITS_LEFT | (i&0x07));
8 ...

Listing 8: LibreSSL code for validating bitstrings.

This subtle discrepancy results in two different interpreta-

tions of the same bitstring used in the extension. BoringSSL

fails to parse the bitstring and results in an empty KeyUsage
extension. LibreSSL, by masking the padding byte, success-

fully parses the extension. We also find that these libraries

exhibit this discrepancy during the parsing of a Certificate

Signing Request (CSR). This can have critical security impli-

cations. Consider the scenario where a CA using BoringSSL

parses such a CSR presented by an attacker and does not

interpret the extension correctly. The CA misinterprets the key

usages and does not detect certain blacklisted ones. In this

situation, the CA might copy the malformed extension to the

issued certificate. Subsequently, when the issued certificate is

parsed by a client using LibreSSL, it will be parsed with a

valid keyUsage extension and thus the attacker can use the

certificate for purposes that were not intended by the CA.
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