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Abstract—Existing directed grey-box fuzzers are effective com-
pared with coverage-based fuzzers. However, they fail to achieve
a balance between effectiveness and efficiency, and it is difficult
to cover complex paths due to random mutation. To mitigate the
issue, we propose a novel approach, sequence directed hybrid
fuzzing (SDHF), which leverages a sequence-directed strategy
and concolic execution technique to enhance the effectiveness of
fuzzing. Given a set of target statement sequences of a program,
SDHF aims to generate inputs that can reach the statements
in each sequence in order and trigger potential bugs in the
program. We implement the proposed approach in a tool called
Berry and evaluate its capability on crash reproduction, true
positive verification, and vulnerability detection. Experimental
results demonstrate that Berry outperforms four state-of-the-art
fuzzers, including directed fuzzers BugRedux, AFLGo and Lolly,
and undirected hybrid fuzzer QSYM. Moreover, Berry found 7
new vulnerabilities in real-world programs such as UPX and
GNU Libextractor, and 3 new CVEs were assigned.

Index Terms—sequence guidance, concolic execution, crash
reproduction, true positive verification, vulnerability detection

I. INTRODUCTION

Fuzzing is an effective technology to automatically discover
vulnerabilities in real-world software systems, by generat-
ing various inputs to execute a program and monitoring its
abnormal behaviors (e.g., stack or buffer overflow, invalid
read/write, assertion failures, or memory leaks) [1]. Fuzzers
are usually classified as white-box [2], [3], grey-box [4] and
black-box [5] according to their awareness of the internal
structure of the program.

In recent years, two kinds of fuzzing techniques are pro-
posed and demonstrated nice effectiveness: Hybrid fuzzing
[6]-[8] that combines grey-box and white-box fuzzing, and
Directed grey-box fuzzing that focuses on specific code regions
in a program.

Hybrid fuzzers, such as QSYM [8], are built on the obser-
vation that grey-box fuzzing and concolic execution (white-
box fuzzing) are complementary. With the help of concolic
execution, they can explore more branches and obtain better
path coverage. The current hybrid fuzzers feed all seeds
retained by the fuzzers to concolic execution for exploring all
missed paths. Concolic execution is then overwhelmed by the
massive number of missed paths, and might generate a helping
input for a specific path after a long time. However, there
exist several testing scenarios in which only particular program
states are concerned and required to be sufficiently tested.
In other words, not all seeds are equal, and not all missed
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paths are worthy of attention. Therefore, the fuzzer and the
concolic executor should be directed for exploring concerned
program states: The seeds fed to the concolic executor are
likely to guide the concolic execution to reach the targets and
the concolic execution should focus on the paths reachable to
the targets.

Directed grey-box fuzzing and fuzzers, e.g., AFLGo [9],
Hawkeye [10] and Lolly [11], pay more attention to the
statements of interest of a program without wasting resources
on unrelated program code, and thus are effective and/or
efficient than undirected fuzzers in several application cases,
e.g., vulnerability detection, crash reproduction. For instance,
AFLGo aims to generate test inputs which can reach a set
of independent target statements in a program. Taking into
account the dependencies between target statements, Lolly can
generate test inputs which target the statement sequences, and
thus discover the bugs resulted from the sequential execution
of multiple statements. However, due to their dependence on
random mutation to generate test inputs, grey-box fuzzers fail
to reach deep targets and find deep bugs along complex paths
[12]-[15]. Moreover, their strategies to schedule seed energy
are coarse-grained because they only consider the coverage of
statements in the target sequences while ignoring the context
of these target statements.

To solve the above problems, we propose a sequence
directed hybrid fuzzing (SDHF) technique. On one hand,
SDHF is sequence directed because it directs both the fuzzing
process and the concolic execution process with the enhanced
target statement sequences of a program. On the other hand,
SDHF is hybrid as it combines fuzzing process and concolic
execution process through seed synchronization. Given a set of
target statement sequences of a program, our approach aims to
generate inputs that can reach the statements in each sequence
in order and trigger bugs in the program. First, we enhance the
target sequence with statements which must be explored before
the target ones (necessary nodes for short). Next, in the fuzzing
process, we propose a new seed energy scheduling algorithm,
which assigns energy to a seed according to the similarity
between the seed’s execution trace and the enhanced target
sequence. Moreover, we introduce a priority mechanism to
manage the test cases (i.e., seeds) which are assigned different
similarities with the enhanced target sequences. Finally, in the
concolic execution process, we match the seed’s execution
trace with the enhanced target sequence and call the last
matched statement/node as the switch point. In other words,
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104 template <class T>

105 typename T::Shdr const xPackVmlinuxBase<T>::
getElfSections ()

106 {

112 for (p = shdri, j = ehdri.e_shnum; —j >=0; ++p)

113

114

if (Shdr::SHT_STRTAB == p—>sh_type

&& (p—>sh_size + p—>sh_offset) <= (unsigned
long) file_size

&& p—>sh_name < p—>sh_size

&& (10+ p—>sh_name) <= p—>sh_size

115
116
117
118
119

delete [] shstrtab;
shstrtab = new char[l+ p—>sh_size];

Fig. 1. A motivating example CVE-2019-14295

the concrete execution switches to symbolic execution after
the switch point, which can not only help to cover complex
paths but also generate more interested test cases which may
reach the target sequences.

We implement the SDHF approach in a tool called Berry.
Experiments show that, Berry is 1.28X faster by average than
the hybrid fuzzer QSYM on vulnerability reproduction with
LAVA-M dataset [16]. With the call stacks of crashes as
targets, Berry can detect several deep bugs in LAVA-M pro-
grams while two directed grey-box/white-box fuzzers, AFLGo
and BugRedux, cannot. Furthermore, Berry is 1.12X~7.24X
faster than Lolly when applied in true positive verification in
Libming software [17]. In terms of the vulnerability detection,
Berry found 7 new vulnerabilities in the latest versions of
GNU Libextractor [18] and UPX [19], and 3 CVEs were
assigned.

The main contributions of this paper are as follows:

e A sequence directed hybrid fuzzing (SDHF) technique
which combines directed grey-box fuzzing and concolic
execution, and guides them with user-specified statement
sequences.

« A novel energy scheduling algorithm based on sequence
similarity and a seed priority mechanism, in order to
improve the guidance of the fuzzing process.

« A customized concolic execution method in which the ex-
ecution of the program under test switches from concrete
execution to symbolic execution when meeting a switch
point, which can not only help to cover complex paths
but also generate more interested test cases to reach the
target sequences.

e A tool called Berry which implements the above tech-
niques, and an evaluation which shows Berry’s better ef-
fectiveness and efficiency than four state-of-the-art tools,
i.e., QSYM, BugRedux, AFLGo and Lolly.

II. MOTIVATION
As an example, we use the CVE-2019-14295 detected by
Berry to discuss the limitations of directed grey-box fuzzing

(DGF) and introduce the sequence directed hybrid fuzzing
(SDHF) approach.

CVE-2019-14295 is an integer overflow in the getElfSec-
tions function in p_vmlinx.cpp in UPX! v3.95 [19], as shown
in Fig.1. As there is an integer overflow in line 114, remote
attackers can cause a denial of service (crash) via a skewed
offset (i.e., p = sh_of fset) larger than the size of the PE
section (i.e., file_size) in a UPX packed executable, which
triggers the allocation of excessive memory in line 119.

Taking line 119 as the target statement as it contains a mem-
ory operation, i.e., new function, we use two directed fuzzers,
AFLGo [9] and Lolly [11], to analyze the target program.
Unfortunately, after their running for 20 hours respectively,
both AFLGo and Lolly didn’t find the vulnerability.

AFLGo and Lolly could not detect this vulnerability for two
reasons. First, their guiding strategies are not effective enough.
Suppose that three seeds s;, sz and s3 do not cover the target
statement, s, covers line 112, and s3 covers lines 112~113.
In Lolly, the target coverage of the three seeds is considered
to be zero, although lines 112~113 are necessary statements
before reaching line 119. Intuitively, compared with s; and
S2, s3 has a greater chance of reaching the target statement.
As for AFLGo, if it detects two seeds that can reach the
target statement, the seed with shorter trace will be favored
[10]. Given two seeds s4 and ss, if s4 performs a loop once,
covering lines 112~114, s5 performs a loop twice, covering
lines 112~113 and lines 112~114, then AFLGo will prefer
s4. In fact, both seeds have an equal opportunity to generate
seeds that reach the target statement. Second, AFLGo and
Lolly have difficulty passing complex path conditions (such
as magic bytes) because they rely on random mutations to
generate test cases. In fact, even if the seed is close to the
targets, the new seed produced through random mutation is
not necessarily close to the targets.

To improve the guiding strategies of directed greybox
fuzzers, we propose and implement in Berry 1) A novel
energy scheduling algorithm which adjusts on demand a seed’s
energy according to its similarity corresponding to the target
sequences. 2) A seed priority queue into which those seeds
close to the targets are put. Berry first selects the seeds in
the high priority queue, and then the ones in the low priority
queue. Usually, fuzzers try to generate illegal test inputs to
trigger the crashes in a program. In the sample program, it is
very common to modify the data in the header of the ELF file.
However, most of the constructed illegal seeds can reach line
114 but difficult to pass the condition. Different from Lolly,
Berry not only considers the target statement (line 119), but
also considers some of the statements necessary for a path to
reach the targets (lines 112~116 in this case). Thus, Berry
believes that the seed covering lines 112~114 but failing to
pass the condition in line 114 is of high quality and will give
the seed more energy in the following mutation compared with
the seeds covering no necessary statement.

What’s else, Berry measures a seed based on the max
matched prefix between seed execution trace and the enhanced

'UPX is a portable, scalable and high-performance executable packager for
a variety of different executable formats.
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target sequence (lines 112~115, 119 in this example). The
max matched prefix between ss, s4 and the enhanced target
sequence are the same: Lines 112~114. Therefore, contrary to
AFLGo, Berry does not bias to shorter traces. Besides, seeds
of high-quality are placed in high-priority seed queues and be
processed by the fuzzer first.

To mitigate the limitations caused by random mutation,
Berry leverages concolic execution to generate seeds that can
pass complex path conditions and thus have more chances to
reach the targets. Therefore, the above seeds covering lines
112~114 are more likely to be selected by the concolic
executor, where the execution will follow the trace as the
original seeds until line 114 and take its true branch. Then
the concolic executor will collect the condition of the true
branch in line 114 and seek a solution with the constraint
solver. As the concolic executor considers the boundary values
and checks the integer overflow when processing an add
instruction, then it generates a test case triggering an integer
overflow.

III. DESIGN

An overview of SDHF is shown in Fig. 2. SDHF includes
static analysis and dynamic analysis. In the static analysis
phase, given the target sequence and the source code of the
program under test (PUT), SDHF first maps the statements
in the target sequence to basic blocks®> and calculates the
enhanced target sequence (ETS) based on dominate tree
analysis. The ETS is the combination of the target sequence
and the necessary nodes which are basic blocks required to
reach the target sequence for all paths. Then, the instrumentor
instruments the PUT to facilitate collecting information at
runtime, such as branch coverage and the target execution trace
(TET) which contains basic blocks in the ETS executed by a
seed during a run, and produces an instrumented binary.

In the dynamic analysis phase, the Fuzzer and Concolic
executor communicate with each other by test case synchro-
nization. The fuzzer takes as inputs the instrumented binary
and the ETS, while the concolic executor executes the PUT.
Moreover, we construct three seed queues with different levels,

e., L1, L2 and L3 with high, normal and low priority
respectively. The fuzzer puts the generated seeds into three
queues and schedules them in the order of L1, L2 and L3
according to the similarities between the seeds and ETS as
well as the coverage information. The concolic executor takes
as inputs the seeds from the L1 queue and sends the newly
generated seeds back to L2 queue. Finally, the seeds which
cause the PUT crash are preserved in the Crashes set.

A. Static Analysis

1) Enhanced Target Sequence: To support a fine-grained
strategy to schedule seeds, Berry considers the coverage of
nodes in the target sequences as well as their execution
context, e.g., necessary nodes. Therefore, Berry enhances the
target sequences with necessary nodes which are basic blocks

2During compilation, the statements in target sequence are mapped to basic
blocks (or nodes) based on the debugging information of LLVM IR [20]

Algorithm 1: Construct dom tree and calculate NNs
Data: Target Sequence: T'S, Control Flow Graph:
CrG
Result: Necessary Nodes: NNs
1 NNs = ¢;
2 Dom(ng) = {no};
3 foreach n € N — {ng} do

4 Dom(n) = N;

5 while changes in any Dom(n) do

6 foreach n € N — {ng} do

7 foreach p € pred(n) do

8 Dom(n) = Dom(n) N Dom(p) ;
9 Dom(n) = Dom(n) U {n} ;
10 end

11 end
12 end
13 foreach BB € T'S do

14 NNs=NNsUDom(BB) ;
15 end
16 end

required to reach the nodes in the target sequences for all paths.
Algorithm 1 shows how to get the necessary nodes based on
the Dominate Tree [21].

In a control flow graph, if every path reaching node n must
pass through node d, we call the node d dominates the node
n, denoted as d dom n. By definition, each node dominates
itself. A tree is called a dominate tree if each node in the tree
only dominates itself and its descendants.

Algorithm 1 shows how to acquire the necessary nodes cor-
responding to a target sequence by constructing the dominant
tree of the PUT. The inputs are the target sequence(TS) and
the control flow graph (CFG) of the PUT. n0 is the entry node
and N is the set of all basic blocks. The dominator of the entry
node is itself (line 2). The dominator set of non-entry node n
is the intersection of the dominator set of all precursor nodes
of n. First, the dominator of non-entry node n is assigned [NV
(line 4). Then the nodes that do not belong to the dominator of
node n are iteratively removed (lines 5-9). Finally, we extract
the union set of the dominators of each node in the target
sequence (lines 13-14) to obtain the necessary nodes.

The necessary nodes and the target sequence are combined
to form the enhanced target sequence (ETS).

We give an example in Fig. 3. The left part is a CFG of
the program, whose yellow nodes, i.e., “c,g”, represent the
target sequence. The dominant tree constructed by algorithm
1 is shown in the upper right in the figure, where b dom c,

a dom g, and a dom b. So, the blue nodes, “a, b”, are the
necessary nodes. Finally, ETS, “abcg”, is composed of the
necessary nodes, “a,b” and target sequence, “c,g”.

2) Static Instrumentation: In addition to instrument each
basic blocks to get the branch coverage information like AFL,
SDHF also instruments the basic blocks in the ETS to get
the target execution trace (TET) of a seed during a run. The
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coverage information and the similarity between TET and ETS
is used to decide the priority of a seed, as discussed in section
1I-B.

Specifically, SDHF uses a shared memory to record the IDs
of the basic blocks in ETS following the order in which they
are executed during a seed’s run. So, we can obtain the seed’s
coverage information and TET.

Taking Fig. 4 as an example, the execution trace of a test
input is “aegabdfg” and the ETS is “abcg”. Then the TET of
the test input is “agabg”.

B. Dynamic Analysis

The dynamic analysis phase is mainly the interaction be-
tween the Fuzzer and the Concolic Executor, as shown in Fig.
2. They share three seed queues with different priorities and
add new seeds to them. The fuzzer takes the seeds from the
seed queues and sends back a newly generated seed to one of
the queues according to the similarity between the TET and
ETS as well as its branch coverage information. By contrast,
the concolic executor executes the PUT with the guide of
the seeds from L1 queue (with high priority) and puts newly
generated seeds into L2 queue (with normal priority).

1) Fuzzing Process: The workflow of the fuzzing process
is shown in Algorithm 2. S is a seed queue, which initially
contains a few test inputs from the test suite of the PUT or
built manually. The fuzzer selects a seed (line 2) from the
seed queue S every time and assigns an energy to the seed
(line 3). The seed’s energy denotes its mutation time (line 4).
Then, the fuzzer mutates the seed and executes P with the
newly generated seed s’ (line 5). If s’ triggers a crash in the
program, the seed is put in the crash seeds set Sz (lines 6-7).
For each newly generated seed, its branch coverage and TET
are recorded during the execution of the instrumented binary.
So, for a seed s’ that does not crash P, the fuzzer calculates
the similarity between the seed’s TET and the ETS (line 9)
and gets the coverage information of the seed (line 10). Then,
the fuzzer puts the seed into one of the three queues based on
the similarity and coverage information.

In the following, we present the similarity calculation,
energy assignment scheduling and seed priority mechanism
in detail.

a) Similarity Calculation: We use an approach based
on Max Matched Prefix (MMP) to calculate the similarity
between execution traces of seeds and the enhanced target
sequence (ETS). As the static analysis phase has instrumented
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Algorithm 2: Directed Grey-box Fuzzing
Data: Instrumented PUT P, Seed queue .S, Enhanced
target sequence ET'S
Result: Crash seeds Sx

1 do

2 s = chooseNext(S) ;

3 p = assignEnergy(s) ;

4 for ; < 0 to p do

5 s’ = mutate(s);

6 if s’ crashes P then

7 ‘ add s’ to Sz ;

8 else

9 sim = Similarity(s’, ETS);
10 cov = IsNewCouv(s');
11 if sim > d A cov then
12 | add s’ to L1;

13 else

14 if sim > d V cov then
15 | add s’ to L2;
16 else

17 | add s to L3;
18 end

19 end

20 end

21 end

22 until timeout or abort,

the basic blocks in the ETS, we can get a TET corresponding
to an ETS during execution and calculate MMP between the
TET and the ETS.

We transform the matching problem of basic block sequence
into the matching problem of strings, where the basic block ID
is regarded as the character in the string. To calculate the MMP
between sequences, we introduce the KMP algorithm [22],
which is commonly used in string matching. The algorithm
makes use of heuristic methods and shifts the characters as
much as possible in the matching process, so as to improve
the matching efficiency.

After obtaining the MMP, we calculate the similarity be-
tween seed S and ETS.

Similarity(S, ETS) = len(MMP)/1en(ETS) (1

For seed S and an ETS, if Similarity(S, ETS) > d, where
d is a threshold, the seed is likely to be sent to L1 queue and
then be the input of concolic executor for generating seeds
with higher similarity. In the implementation, we set d as
the average similarity of the previous seeds. What’s else, we
record MMP and a switch point for a seed corresponding to a
ETS, which is the last matched node between TET and ETS
and is also the last node in MMP. The MMP and SP is used in
concolic execution to control the execution mode. (Description
of concolic executor is in SectionIII-B2).

In the example of Fig. 4, the MMP of ETS “abcg” and
TET “agabg” can be obtained by KMP algorithm, which is

“ab”, and is identified in yellow in the figure. According to
the similarity calculation method above, we can get that the
similarity between the seed s and ETS:

Similarity(s, ETS) = 2/4

If the similarity of seed s is greater than threshold d, the seed
with a MMP of “ab” corresponding to ETS “abcg” is likely
to be put into seed queue with high priority.

Since multiple target sequences may be given, we obtained
a weighted average of the similarity between the seed and the
ETSs to obtain the global similarity (GS) between the seed
and the ETSs.

GS(s,ETSs) =

D

ETSEETSs

Similarity(s,ETS)/lETSl 2)

b) Seed Energy Scheduling: Seed energy scheduling
refers to the number of times that a seed is mutated by a
fuzzer. In this paper, the seed with a higher similarity has a
higher energy.

AFLGo and Lolly use simulated annealing based energy
scheduling schemes in grey-box testing. It regards grey-box
ambiguity as a Markov chain, and optimizes the process of
fuzzing by simulated annealing algorithm (SA). Unlike the
traditional random walk scheduling, which always accepts the
best solution and leads to local optimum, simulated annealing
accepts the solution which is not as good as the current one
with a certain probability, so it is possible to jump out of the
local optimum to achieve the global optimum. This probability
decreases with the decrease of temperature. The algorithm can
find the approximate optimal solution of the corresponding
problem in polynomial time.

Berry also draws on the idea of the existing directed grey-
box fuzzing techniques and applies simulated annealing to the
seed energy scheduling scheme to achieve global optimization.
For sequence matching-based directed testing, the optimal
solution means that the test input can obtain the maximum
similarity. In our method, the initial value of temperature T is
To = 1, which is cooled exponentially.

T =Ty x o 3)

In the above formula, «v is a constant, which satisfies 0.8 <
a <0.99, k is a temperature cycle. The threshold of temper-
ature T}, is set to 0.05. If the temperature is lower than Ty,
the fuzzer will not accept worse solutions. In particular, when
T} > 0.05, the power scheduling is in the exploratory stage,
and the fuzzer generates many new inputs by random mutation
of the existing seeds. Otherwise, it enters the exploitation
stage, where the fuzzer selects seeds with a higher similarity
to mutate. In the exploitation stage, the simulated annealing
process is similar to the traditional gradient descent algorithm.

Since the common limitation of fuzzing is time budget, we
use time ¢ as a factor to adjust the temperature cycle k:

bk, = tt, “4)
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Among them, k, is the temperature cycle and t, is the
time when the temperature drops to 7. So we can get the
relationship between time ¢ and temperature 7" by k:

Ty, = 0.05 = al= 5)

log(0.05)
log ()

T =ak =ai” =207 % 6)

Similar to AFLGo’s simulated annealing based energy
scheduling, given the global similarity GS, we define the
capability for matching of the seed (CapMatch,CM) as:

CM=GSx(1-T)+05xT 7)

At the beginning of fuzzing, the initial value of temperature 7'
is 1, that is to say, the matching ability of seeds is independent
of the similarity. As time goes on, the temperature 7" decreases
and the similarity becomes more and more important.

Combining the strategy based on similarity with the seed
energy scheduling algorithm of existing fuzzer, AFL, berry
takes the seed’s CM as an influence factor to calculate the
seed energy:

Energy = Energy x 2.0(¢M=0:2)x10 (8)

Where Energy is the energy calculated by the origin fuzzer,
which both consider the information of seed coverage and
running time. Energy is obtained by considering both the
original energy and the seed’s capability for matching.

c) Seed Priority Queue Mechanism: Not all the seeds
have equal or similar priorities, ideally, the queue that stores
the seeds to be mutated should be a priority queue. To
prioritize the seeds which are close to the target sequence,
we set up seed queues of three ranks according to the priority.
The seeds in the level-1 priority queue will be picked firstly,
then the level-2 priority queue, and finally the level-3 priority
queue.

The attributes of the seeds in the three seed priority queues
are as follows:

o Level-1 seed queue: The newly generated seed should
satisfy all the following requirements: With the similarity
greater than the specific threshold, brings new coverage.

o Level-2 seed queue: The newly generated seed not be-
longing to Level-1 queue should satisfy at least one of
the following requirements: With a similarity greater than
the specific threshold, generated by the concolic executor
or brings new coverage.

o Level-3 seed queue: Other seeds.

2) Concolic Execution: Concolic execution is an aid to the
fuzzing process. It takes partially matched seeds as input,
hoping to generate seeds with a higher similarity. Because
the fuzzer generates seeds based on random mutation without
considering the context of the program, even if the seeds with
a high similarity are mutated, it is not sure that the newly
generated seeds are closer to the target sequences. Concolic
execution engine obtains the information of the seed execution
trace and generates test inputs executing specific paths by
constraint solving.

]
o]

Tal

Fig. 5. An example showing the workflow of concolic execution. The orange
edges represent the execution path of the original test input, b is the switch
point and abcg is the enhanced target sequence. The blue edges represent the
execution path of the newly generated seed after the switch point.

We use the concolic executor of QSYM [8] for concolic
execution, which is lighter than traditional symbolic execution
(31, [2].

Unlike QSYM’s goal of improving program coverage, Berry
leverages hybrid testing to improve similarities between exe-
cution traces of seeds and the ETS. Given some seeds for
concolic execution, Berry tries to generate seeds with higher
similarity. The new seed and the original seed follow the same
path to the last matched point of MMP, which is called a switch
point. After the switch point, the new seed takes a different
branch.

To improve the efficiency of generating seeds with high
similarities, we propose a concolic execution method guided
by specific test inputs, as shown in Algorithm3. The inputs
are original seed S from Level-1 seed queue, switch point
SP, and max matched prefix MM P. With S as input, the
program under test (line 1) is executed. If the current basic
block BB is in the M M P (line 3) and is the same as target
(line 5), it will be judged whether BB is SP (line 4). In the
case of SP, the concolic executor collects the constraints of
the reverse branch of the branch to be executed (lines 6) and
sends the constraints to the constraint solver for generating
new seeds (line 7). If BB isn’t SP, the concolic executor
assigns the target to the next basic block of the M M P (line
10). If the BB is in the M M P, but not the target, the target
is reassigned to the first basic block of the M M P (line 13).

In Fig. 4, the execution path of original seed S is “ae-
gabdfg”, represented by orange edges. Corresponding to
the ETS, “abcg”, represented by yellow nodes, the TET is
“agabg”, and the MMP is “ab”. Then, Berry passes the
seed to the concolic executor with ‘b’ as switch point. The
execution follows the original seed’s path until reaching “b”
and collects the constraint of branch b — ¢. The constraint
solver then generates a new seed S’. The execution path of S’
is “aegabcfg”. The TET is “agabcg” and the MMP is “abcg”.
As aresult, Similarity(S’, ETS) = 4/4, which is larger than
the similarity of the original seed.
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Algorithm 3: Concolic execution Guided by Test Input

Data: original seed .S, switch point S P, max matched
prefix M M P
Result: seed set NewSeeds
1 Trace = execute(S);
2 foreach BB € Trace do

3 if BB € MMP then
4 if BB == target then
5 if BB = SP then
6 Cons =
Trace.getNext(BB).getNeighbor();
7 NewSeeds = Solve(Cons);
8 returnNewSeeds;
9 else
10 | target = MM P.next();
11 end
12 else
13 | target = MMP.first();
14 end
15 end
16 end

With the seed from L1 seed queue as input, the execution
is under the guidance of the seed until reaching the switch
point. After reaching the switch point, the concolic executor
begins to explore other branches and collect path constraints.
The new seeds generated by the constraint solver will be sent
back to the L2 seed queue.

IV. IMPLEMENTATION

A. Static Phase

Dominator Tree Analysis: We wrote an LLVM pass [23] to
generate the dominating tree for every function of the program
under test, and then obtain the necessary nodes of the target
sequence by parsing the dominating tree.

Instrumentor: Based on the AFL’s instrumentation pass
[4], Berry’s instrumentor adds additional instructions into the
basic blocks in the enhanced target sequence. These instruc-
tions are in charge of writing the basic block ID to a shared
memory in order to record the target execution trace.

B. Dynamic Phase

Fuzzer: On top of AFL, we implemented an energy
scheduling algorithm, which relys on seeds’ similarities with
the target sequences, a simulated annealing algorithm, and a
seed priority mechanism with three-levels queues. The fuzzer
puts (selects) a seed into (from) a specific queue according to
its priority.

Concolic Executor: We extended the concolic executor of
QSYM [8] to provide the guidance ability by test inputs, in
order to generate test inputs with high sequence similarities.
It uses PIN [24] as the dynamic binary translator, and Z3 [25]
to solve the path constraints.

V. EVALUATION

In this section, we first conduct a comprehensive evaluation
on the effectiveness and the performance of Berry by com-
paring it with the state-of-the-art directed fuzzers, AFLGo,
BugRedux and Lolly and hybrid fuzzer, QSYM. Then we
evaluated Berry’s capability of detecting vulnerabilities in real-
world programs.

A. Experiment Setup

We executed all experiments on a virtual machine with an
Intel Core CPU i7-6500U, 8GB RAM and Ubuntu 16.04 (64
bit) as operating system. We evaluated Berry and other tools
with the same programs, initial input corpus, time budget,
computing resources, and target sites.

B. Crash Reproduction

Due to insufficient testing of software systems, there are
often undetected bugs or vulnerabilities after release and users
may encounter program crashes when using them. Many
software systems have built-in crash reporting mechanisms
that return crash reports to developers when a crash occurs.
Crash reports usually contain information such as call stacks,
but no input information that triggers crashes for protecting
the privacy of users. This requires developers to reproduce
crashes and fix bugs in software based on the reported call
stacks.

First, we evaluate Berry’s guiding capability by comparing
it with the hybrid fuzzer QSYM in terms of efficiency. Next
we evaluate Berry’s effectiveness on crash reproduction with
two state-of-the-art fuzzers, BugRedux and AFLGo.

1) Is SDHF Efficient Compared with Hybrid Fuzzing?: To
evaluate Berry’s efficiency, we measure and compare the av-
erage time of Berry and QSYM to reproduce crashes occurred
in LAVA-M programs [16]. We choose LAVA-M benchmark
which includes unig, base64, md5Ssum and who programs as
subjects because it contains many complex vulnerabilities in-
jected manually and several fuzzers are also evaluated against
1t.

For each program under test, we first ran QSYM on
the program and chose 2 crashes/vulnerabilities triggered by
QSYM randomly?. Then their call stacks and test inputs which
triggered the crashes were recorded. For each crash, we use
the method calls in its stack trace as target sites of Berry.

To reproduce these crashes, we ran Berry and QSYM on
the subject programs for 2 hours with the same test inputs,
respectively. We ran 20 times for each subject and used the
mean value of cost time.

The experimental results are shown in Table I. The first
column is the program and the fault ID. Time-to-Exposure
(TTE) measures the length of the fuzzing campaign until the
first test input is generated that exposes a given vulnerability.
And the second and third columns show the mean of TTE
values in all 20 experiments by QSYM and Berry respectively.
Factor measures the performance gain as the mean TTE of

3The time budget for fuzzing is set to 2 hours.
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TABLE I
COMPARISON OF QSYM AND BERRY ON LAVA-M

Subject TTE-QSYM (min) TTE-Berry (min) Factor
uniq.faultl 49.34 27.45 1.80
uniq.fault2 38.03 30.40 1.25
base64.faultl 18.23 15.34 1.19
base64.fault2 22.24 17.09 1.30
md5sum.fault] 9.83 8.02 1.23
md5sum.fault2 15.39 10.23 1.50
who.faultl 73.39 78.20 0.96
who.fault2 20.01 19.42 1.03
TABLE I
THE RESULT OF CRASH REPRODUCTION

Subjects BugRedux AFLGo Berry

sed.fault] X X X

sed.fault2 X V4 Vv

grep X v v

gzip.faultl X vV vV

gzip.fault2 X VA Vv

ncompress Vv V4 Vv

polymorph v v v

uniq.faultl X X Vv

uniq.fault2 X X 4

base64.faultl X v vV

base64.fault2 X V4 Vv

md5sum.faultl X X Vv

md5sum.fault2 X X Vv

who.faultl X X Vv

who.fault2 X X Vv

QSYM divided by the mean TTE of Berry. We can see that
Berry detected all target vulnerabilities faster than QSYM,
except who.faultl, and the average performance improvement
is 1.28. In other words, Berry can generate test inputs to trigger
a given vulnerability/crash faster than QSYM, a state-of-the-
art hybrid fuzzer.

2) Is SDHF Effective Compared with Directed Fuzzing?:
To evaluate SDHF’s effectiveness, we compare Berry with
two stat-of-the-art directed fuzzers, BugRedux and AFLGo
on crash reproduction. BugRedux is an open-source white-box
fuzzer, and AFLGo is an open-source grey-box fuzzer. Based
on the KLEE symbolic execution engine, BugRedux generates
test inputs that arrive at the target statement in sequence.
AFLGo generates test inputs reaching the targets by reducing
the distance between seeds and targets continuously.

In this experiment, the target vulnerabilities are shown in
the first column of Table II. The first 7 vulnerabilities are from
BugRedux and lay in simple paths in the programs. The others
are from section V-B1 and are relatively complex. The time
budget is set to 2 hours. We ran the three tools with the crash
call stacks as the targets.

Table II shows the experimental results. For vulnerabilities
from BugRedux, Berry and AFLGo reproduced 6 crashes,
while BugRedux only reproduced 2. As sed.fault]l needs two

TABLE III
PERFORMANCE COMPARISON.
AFLGo Berry
Instu. Run | Instru. Run
Average 32.02s  367.75s 5.19s  299.89s
Median 29.17s  331.29s 3.69s  284.90s
Maximum  73.00s  796.19s | 12.34s  621.59s

files as input to trigger the crash, Berry and AFLGo cannot
reproduce the crash for only mutating a single file at a time.
However, for complex bugs, BugRedux and AFLGo did not
perform well. For the 8 crashes from LAVA-M programs,
BugRedux reproduced no crash, AFLGo only reproduced 2
crashes, and Berry reproduced all crashes successfully.

In a word, Berry can detect vulnerabilities under complex
path conditions and is substantially more effective than Bu-
gRedux and AFLGo.

Moreover, for the BugRedux’s benchmark, where Berry
and AFLGo can reproduce the crashes, we further compare
the time cost by both tools to trigger the crashes. Table III
shows the Average, Median, and Maximum values of the
instrumentation time and running time used by both tools.
It can be seen that Berry’s instrument time is much less
than AFLGo because Berry has a more lightweight static
analysis than AFLGo. The running time of Berry is a little less
than AFLGo, which shows the advantage of Berry’s concolic
execution, although these vulnerabilities are shallow (i.e., in
simple paths) and easily found by random mutation.

C. True Positives Verification

In the process of software development, program testing
is of great importance. To detect bugs or vulnerabilities in
programs as early as possible, developers are likely to test
the software with static analysis tools. But it is known that
static analysis is quickly but usually has high false positive.
Directed fuzzers, e.g., AFLGo and Lolly, have been applied to
the automatic verification of vulnerabilities reported by static
analysis. Moreover, Lolly outperformed over AFLGo due to
its sequence coverage approach.

To justify Berry’s design decisions, i.e., fine-grained strategy
to schedule seed energy and conclic execution towards ETS,
we measured and compared the performance of Berry, Berry-
which represents Berry without the concolic executor, and
Lolly on true positive verification.

We used the same subject program, i.e., Libming* 0.4.8 [17]
as Lolly and the CVE vulnerabilities are listed in Table IV. In
addition, we ran Clang Analyzer [26] on the subject program
and used its analysis results as target sequences, i.e., the paths
which result in the potential bugs.

Specifically, for Berry- and Lolly, we ran a master and two
slaves with the parallelization mechanism as AFL. For Berry,
we ran a master and a slave of fuzzer as well as the concolic
executor in parallel. We repeated each CVE experiment 20

4Libming is a library written in C language for generating and reading
Macromedia Flash files.
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TABLE IV
THE CVE LIST USED IN VERIFICATION

CVE-ID Type of vulnerability

2019-9114 Out of bounds write

2019-9113 NULL pointer dereference
2019-12982  Heap buffer overflow

2019-12980  Integer overflow

2018-8963 Use after free

2018-7874 Invalid memory address dereference
2018-7876 Memory exhaustion

TABLE V
THE RESULTS ON TRUE POSITIVE VERIFICATION
CVE-ID Tool Runs  pTTE(m)  Factor
Berry 20 8.74 -
2019-9114 Berry- 20 1291 1.48
Lolly 20 21.38 2.45
Berry 20 9.74 -
2019-9113 Berry- 20 11.28 1.16
Lolly 20 12.20 1.25
Berry 19 14.40 -
2019-12982  Berry- 17 50.52 1.51
Lolly 12 104.23 7.24
Berry 10 181.52 -
2019-12980  Berry- 10 191.20 1.05
Lolly 9 202.84 1.12
Berry 20 29.24 -
2018-8963 Berry- 16 56.01 1.12
Lolly 17 56.72 1.94
Berry 20 12.51 -
2018-7874 Berry- 20 13.75 1.10
Lolly 20 15.92 1.43
Berry 20 17.54 -
2018-7876 Berry- 19 23.31 1.33
Lolly 19 25.20 1.59

times and used the average value. We set 5 hours as the time
budget for each experiment.

The experimental results are shown in Table V. The first
column is the CVE-ID, the second column lists the fuzzer
name, the third one shows the number of runs that successfully
trigger the vulnerability, and the forth column is the mean of
TTE values in all 20 experiments. In particular, if a tool fails to
trigger the target vulnerability in a run within the time limit,
its TTE is uniformly recorded as the time budget. The last
column measures the performance gain as the mean TTE of
Berry- divided by the mean TTE of Berry, and the mean TTE
of Lolly divided by the mean TTE of Berry. Values of Factor
greater than one mean that Berry performs better than Lolly
or Berry-.

As shown in Table V, Berry is 1.12 to 7.24 times faster than
Lolly in all cases. For easy-to-detect vulnerabilities, e.g., CVE
2019-12980, Berry’s performance improvement over Lolly is
not obvious. For complex vulnerabilities, Berry outperforms
Lolly significantly. For example, Berry is 7.24X faster than
Lolly on CVE-2019-12982. Moreover, the results show that
Berry is 1.05 to 1.51 times faster than Berry- as it introduces
concolic execution.

D. Vulnerabilities Exposure

To evaluate Berry’s vulnerability exposure ability on real
world programs, we chose two widely used software, i.e.,
GNU Libextractor and UPX, and tested their latest versions.
GNU Libextractor [18] is a library for extracting metadata
from files. UPX [19] is a high-performance packer for a lot
of executable formats.

We leveraged Clang static analyzer to generate the statement
sequences of potential vulnerabilities. With the above se-
quences, Berry tested each program for 10 hours and attempted
to expose potential vulnerabilities. As a result, Berry found
7 previously unreported vulnerabilities, which are shown in
Table VI. The table shows the subject software and version,
the vulnerability type, the buggy method and confirmation to
the vulnerabilities. All 7 vulnerabilities have been confirmed
by the developers of two software, and 3 vulnerabilities with
high threat scores were assigned with CVE-IDs, which we
discuss them in detail as bellows.

CVE-2019-15531 is a heap-buffer-overflow vulnerability
in function EXTRACTOR_dvi_extract_method of
dvi_extractor.c in Libextractor 1.9, which can result in
a crash. The developers recommend users to upgrade the
Libextractor packages in Debian LTS security advisories.

CVE-2019-14296 is a buffer overflow bug which lies in
function canUnpack of p_vmlinx.cpp in UPX 3.95. It allows
remote attackers to cause a denial of service or possibly have
unspecified other impacts via a crafted packed file.

CVE-2019-14295, as described in Section II, is an integer
overflow in the getElfSections function of p_vmlinx.cpp in
UPX 3.95. It allows remote attackers to cause a denial of
service via a skewed offset larger than the size of the PE
section in a UPX packed executable.

VI. RELATED WORK

Hybrid fuzzing. In hybrid fuzzing, a concolic executor’s
role is to assist a fuzzer to get over narrow-ranged constraints
and go deeper in the program’s logic. Driller [6] adaptively
switches between concolic execution and fuzzing depending
on the increase rate in program coverage. DigFuzz [27]
employs the Monte Carlo model to estimate probabilities
and prioritize paths. TaintScope [28] deploys dynamic taint
analysis to identify the checksum checkpoints and then applies
symbolic execution to generate valid inputs. QSYM [8] inte-
grates the symbolic emulation with the native execution using
dynamic binary translation. It achieves better performance
and is scalable to real-world programs.Such hybrid fuzzers
is coverage based and can explore more branches and obtain
better path coverage than grey-box fuzzers. However, in testing
scenarios where only particular program states are concerned,
exploring all missed paths with the concolic executor is a
wast. Berry is a directed hybrid fuzzer, in which the fuzzer
and the concolic executor are directed for exploring concerned
program states: the seeds fed to the concolic executor are more
likely to generate seeds that reach the target, and the concolic
execution focuses on the paths that can reach the targets.
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TABLE VI
UNREPORTED VULNERABILITIES FOUND BY BERRY

Program Version  Vuln. type

Buggy method Reported

GNU Libextractor 1.9 Heap-Buffer-Overflow
Memory Leak

CVE-2019-15531
GNUnet Bug Tracker-0005847

canUnpack
print_symbol

Integer Overflow
Buffer Overflow
UPX

3.95 Heap-Buffer-Overflow

Heap-Buffer-Overflow

NULL pointer dereference

getElfSections CVE-2019-14295
canUnpack CVE-2019-14296
getElfSections Github Issue #291

Github Issue #292
Github Issue #293

acc_ua_get_be32
get32

Directed symbolic execution. To implement a directed
fuzzer, symbolic execution has always been the technique
of choice due to its systematic path exploration. Directed
symbolic execution casts the reachability problem as iterative
constraint satisfaction problems. The patch testing tool Katch
[29] uses the symbolic execution engine Klee [2] to reach a
changed statement. BugRedux [30] takes as input a sequence
of program statements and generates as output a test case that
exercises that sequence and crashes the program. However,
DSE is effective but spending considerable time with heavy-
weight program analysis and constraint solving. In contrast,
Berry uses symbolic execution as an aid to grey-box fuzzing,
which alleviates the inefficiency of symbolic execution.

Directed Grey-box Fuzzing. As the state-of-the-art directed
grey-box fuzzer, AFLGo [9] cast the reachability of target
sites as an optimization problem and adopts a meta-heuristic
to promote the test seeds with shorter distances. Hawkeye
[10] extended AFLGo by adding attributes such as an indirect
function call to alleviate the partiality of AFLGo’s distance
calculation. Lolly [11] is a directed grey-box fuzzer based
on sequence coverage. It is lightweight than AFLGo but the
seed scheduling mechanism is coarse-grained. Berry takes a
lightweight and fine-grained seed energy scheduling mecha-
nism, which trys to get a balance between effectiveness and
efficiency. The directed grey-box fuzzing above is based on
random mutation. As a result, they suffer from inefficient seed
generation. Berry combines grey-box fuzzing and concolic
execution with a customized schedule for directed test input
generation. Enfuzz [31] is a framework that can integrate
different fuzzers via its seed synchronization mechanism.
Integrating Berry and the existing directed grey-box fuzzers
with the seed synchronization mechanism of Enfuzz is one of
our future work.

VII. THREATS TO VALIDITY

The first concern is external validity and notably generality.
First, our results may not hold for subjects that we did
not test. Though we conducted the experiments on real-
world open-source projects, which included security-critical
vulnerabilities. In the future, we will enhance our evaluation
on a larger range of real-world software. Second, a comparison
with a directed greybox fuzzer other than AFLGo and Lolly
or a directed whitebox fuzzer other than bugredux might turn
out differently. However,AFLGo and Lolly are state-of-the-

art directed greybox fuzzers based in AFL. Bugredux is an
advanced directed whitebox fuzzer.

The second concern is internal validity. A common threat
to internal validity for fuzzer experiments is the selection of
initial seeds. However, our initial seeds for fuzzing come from
the regression test suites in projects under test, or the seed
corpus of common important file-formats provided by AFL.
Moreover, two fuzzers under comparing are always started
with the same seed corpus. Second, Berry may not faithfully
implement the technique presented above like implementations
of other techniques. However, as shown in the comparison with
QSYM, Berry is effectively directed.

VIII. CONCLUSION

We present a sequence directed hybrid fuzzing (SDHF)
approach, which leverages a sequence-directed strategy and
concolic execution technique to enhance the effectiveness
of fuzzing. Given a set of target statement sequences of a
program, SDHF aims to generate inputs that can reach the
statements in each sequence in order and trigger potential
bugs in the program. We implement the proposed approach
in a tool called Berry. Experimental results show that Berry is
more effective than three state-of-the-art directed fuzzers, i.e.,
BugRedux, AFLGo and Lolly, in both crash reproduction and
true positive verification. Moreover, Berry found 7 previously
unreported vulnerabilities in the latest versions of two real-
world programs, and 3 CVE were assigned.
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