
PeriScope: An Effective Probing and Fuzzing
Framework for the Hardware-OS Boundary

Dokyung Song∗, Felicitas Hetzelt†, Dipanjan Das‡, Chad Spensky‡, Yeoul Na∗, Stijn Volckaert∗§,
Giovanni Vigna‡, Christopher Kruegel‡, Jean-Pierre Seifert†, Michael Franz∗

∗Department of Computer Science, University of California, Irvine
†Security in Telecommunications, Technische Universität Berlin

‡Department of Computer Science, University of California, Santa Barbara
§Department of Computer Science, KU Leuven

Abstract—The OS kernel is an attractive target for remote
attackers. If compromised, the kernel gives adversaries full system
access, including the ability to install rootkits, extract sensitive
information, and perform other malicious actions, all while
evading detection. Most of the kernel’s attack surface is situated
along the system call boundary. Ongoing kernel protection efforts
have focused primarily on securing this boundary; several capable
analysis and fuzzing frameworks have been developed for this
purpose.

However, there are additional paths to kernel compromise
that do not involve system calls, as demonstrated by several
recent exploits. For example, by compromising the firmware of
a peripheral device such as a Wi-Fi chipset and subsequently
sending malicious inputs from the Wi-Fi chipset to the Wi-Fi
driver, adversaries have been able to gain control over the kernel
without invoking a single system call. Unfortunately, there are
currently no practical probing and fuzzing frameworks that can
help developers find and fix such vulnerabilities occurring along
the hardware-OS boundary.

We present PERISCOPE, a Linux kernel based probing
framework that enables fine-grained analysis of device-driver
interactions. PERISCOPE hooks into the kernel’s page fault
handling mechanism to either passively monitor and log traffic
between device drivers and their corresponding hardware, or
mutate the data stream on-the-fly using a fuzzing component,
PERIFUZZ, thus mimicking an active adversarial attack. PER-
IFUZZ accurately models the capabilities of an attacker on
peripheral devices, to expose different classes of bugs including,
but not limited to, memory corruption bugs and double-fetch
bugs. To demonstrate the risk that peripheral devices pose, as
well as the value of our framework, we have evaluated PERIFUZZ
on the Wi-Fi drivers of two popular chipset vendors, where we
discovered 15 unique vulnerabilities, 9 of which were previously
unknown.

I. INTRODUCTION

Modern electronics often include subsystems manufactured
by a variety of different vendors. For example, in a modern
cellphone, besides the main application processor running a
smartphone operating system such as Android, one might find

a number of peripheral devices such as a touchscreen display,
camera modules, and chipsets supporting various networking
protocols (cellular, Wi-Fi, Bluetooth, NFC, etc.). Peripheral
devices by different manufacturers have different inner work-
ings, which are often proprietary. Device drivers bridge the
gap between stable and well-documented operating system
interfaces on one side and peripheral devices on the other,
and make the devices available to the rest of the system.

Device drivers are privileged kernel components that exe-
cute along two different trust boundaries of the system. One
of these boundaries is the system call interface, which exposes
kernel-space drivers to user-space adversaries. The hardware-
OS interface should also be considered a trust boundary,
however, since it exposes drivers to potentially compromised
peripheral hardware. These peripherals should not be trusted,
because they may provide a remote attack vector (e.g., network
devices may receive malicious packets over the air), and
they typically lack basic defense mechanisms. Consequently,
peripheral devices have frequently fallen victim to remote ex-
ploitation [16], [21], [23], [28], [36], [77]. Thus, a device driver
must robustly enforce the hardware-OS boundary, but pro-
gramming errors do occur. Several recently published attacks
demonstrated that peripheral compromise can be turned into
full system compromise (i.e., remote kernel code execution) by
coaxing a compromised device into generating specific outputs,
which in turn trigger a vulnerability when processed as an input
in a device driver [22], [24].

The trust boundary that separates peripheral subsystems
from kernel drivers is therefore of great interest to security
researchers. In this paper, we present PERISCOPE, which to
our knowledge is the first generic framework that facilitates
the exploration of this boundary. PERISCOPE focuses on
two popular device-driver interaction mechanisms: memory-
mapped I/O (MMIO) and direct memory access (DMA). The
key idea is to monitor MMIO or DMA mappings set up by
the driver, and then dynamically trap the driver’s accesses
to such memory regions. PERISCOPE allows developers to
register hooks that it calls upon each trapped access, thereby
enabling them to conduct a fine-grained analysis of device-
driver interactions. For example, one can implement hooks that
record and/or mutate device-driver interactions in support of
reverse engineering, record-and-replay, fuzzing, etc.

To demonstrate the risk that peripheral devices pose, as
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well as to showcase versatility of the PERISCOPE framework,
we created PERIFUZZ, a driver fuzzer that simulates attacks
originating in untrusted, compromised peripherals. PERIFUZZ
traps the driver’s read accesses to MMIO and DMA map-
pings, and fuzzes the values being read by the driver. With
a compromised device, these values should be considered to
be under an attacker’s control; the attacker can freely modify
these values at any time, even in between the driver’s reads. If
the driver reads the same memory location multiple times (i.e.,
overlapping fetches [79]) while the data can still be modified
by the device, double-fetch bugs may be present [45], [68].
PERIFUZZ accurately models this adversarial capability by
fuzzing not only the values being read from different memory
locations, but also ones being read from the same location
multiple times. PERIFUZZ also tracks and logs all overlapping
fetches and warns about ones that occurred before a driver
crash to help identify potential double-fetch bugs.

Existing work on analyzing device-driver interactions typ-
ically runs the entire system including device drivers in a
controlled environment [32], [44], [47], [49], [54], [60], [62],
[66], such as QEMU [20] or S2E [33]. Enabling analysis in
such an environment often requires developer efforts tailored
to specific drivers or devices, e.g., implementing a virtual
device or annotating driver code to keep symbolic execution
tractable. In contrast, PERISCOPE uses a page fault based in-
kernel monitoring mechanism, which works with all devices
and drivers in their existing testing environment. As long as
the kernel gets recompiled with our framework, PERISCOPE
and PERIFUZZ can analyze device-driver interactions with
relative ease, regardless of whether the underlying device is
virtual or physical, and regardless of the type of the device.
Extending our framework is also straightforward; for example,
PERIFUZZ accepts any user-space fuzzer, e.g., AFL, as a plug-
in, which significantly reduces the engineering effort required
to implement proven fuzzing strategies [25], [26], [30], [31],
[37].

We validated our system by running experiments on the
software stacks shipping with the Google Pixel 2 and the
Samsung Galaxy S6, two popular smartphones on the market at
the time of development. To simulate remote attacks that would
occur over the air in a real-world scenario, we focused on the
Wi-Fi drivers of these phones in evaluating our framework.
The Google Pixel 2 and Samsung Galaxy S6 are equipped
with Qualcomm and Broadcom chipsets, respectively. These
two are arguably the most popular Wi-Fi chipset manufacturers
at the time of our experiments. In our experiments, our system
identified 15 unique vulnerabilities in two device drivers, out
of which 9 vulnerabilities were previously unknown, and 8
new CVEs were assigned. We have reported the discovered
vulnerabilities to the respective vendors and are working with
them on fixing these vulnerabilities. We hope that our tool
will aid developers in hardening the hardware-OS boundary,
leading to better software security.

In summary, this paper makes the following contributions:

• A probing framework: We introduce PERISCOPE,
a generic probing framework that can inspect the
interactions between a driver and its corresponding
device. PERISCOPE provides the means to analyze the
hardware-OS boundary, and to build more specialized
analysis tools.
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Fig. 1. Hardware-OS interaction mechanisms

• A fuzzing framework: We extended PERISCOPE
to build PERIFUZZ, a vulnerability discovery tool
tailored to detect driver vulnerabilities occurring along
the hardware-OS boundary. The tool demonstrates the
power of the PERISCOPE framework, and it system-
atizes the exploration of the hardware-OS boundary.

• An overlapping fetch fuzzer: PERIFUZZ fuzzes over-
lapping fetches in addition to non-overlapping fetches,
and warns about overlapping fetches that occurred
before a driver crash. A warning observed before a
driver crash may indicate the presence of double-fetch
bugs.

• Discovered vulnerabilities: As part of our evaluation,
we discovered previously known and unknown vulner-
abilities in the Wi-Fi drivers of two of the most promi-
nent vendors in the market. We responsibly disclosed
relevant details to the corresponding vendors.

• An open-source tool: We open-sourced our tool1, in
order to facilitate further research exploration of the
hardware-OS boundary.

II. BACKGROUND

In this section, we provide the technical background nec-
essary to understand how peripheral devices interact with the
OS. We also discuss isolation mechanisms that allow the OS to
protect itself against misbehaving peripherals, as well as tools
to analyze hardware-OS interactions.

A. Hardware-OS Interaction

Figure 1 illustrates the various ways in which devices can
interact with the OS and the device driver. Although we assume
that the device driver runs on a Linux system with an ARMv8-
A/AArch64 CPU, the following discussion generally applies to
other platforms as well.

1https://github.com/securesystemslab/periscope
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1) Interrupts: A device can send a signal to the CPU by
raising an interrupt request on one of the CPU’s interrupt
lines. Upon receiving an interrupt request, ARMv8-A CPUs
first mask the interrupt line so that another interrupt request
cannot be raised on the same line while the first request is
being handled. Then, the CPU transfers control to the interrupt
handler registered by the OS for that interrupt line. Interrupt
handlers can be configured at any time, though the OS typically
configures them at boot time.

Processing Interrupts: To maximize the responsive-
ness and concurrency of the system, the OS attempts to defer
interrupt processing so that the interrupt handler can return
control to the CPU as soon as possible. Typically, interrupt
handlers only process interrupts in full if they were caused
by time-sensitive events or by events that require immediate
attention. All other events are processed at a later time, outside
of the interrupt context. This mechanism is referred to as top-
half and bottom-half interrupt processing in Linux lingo.

In Linux, after performing minimal amount of work in the
hardware interrupt context (hardirq), the device driver sched-
ules the work to be run in either software interrupt context
(softirq), kernel worker threads, or the device driver’s own
kernel threads, based on its priority. For higher priority work,
a device driver can register its own tasklet, a deferred action
to be executed under the software interrupt context, which
also ensures serialized execution. Lower priority work can
further be deferred either to kernel worker threads (using the
workqueue API) or to the device driver’s own kernel threads.

2) Memory-Mapped I/O: Analogous to peripherals using
interrupts to signal the OS and the device driver, the CPU uses
memory-mapped I/O (MMIO) to signal peripherals. MMIO
maps a range of kernel-space virtual addresses to the hardware
registers of peripheral devices. This allows the CPU to use
normal memory access instructions (as opposed to special
I/O instructions) to communicate with the peripheral device.
The CPU observes such memory accesses and redirects them
to the corresponding hardware. In Linux, device drivers call
ioremap to establish an MMIO mapping, and iounmap to
remove it.

3) Direct Memory Access: Direct memory access (DMA)
allows peripheral devices to access physical memory directly.
Typically, the device transfers data using DMA, and then
signals the CPU using an interrupt. There are two kinds of
DMA buffers: coherent and streaming.

Coherent DMA buffers (also known as consistent DMA
buffers) are usually allocated and mapped only once at the time
of driver initialization. Writes to coherent DMA buffers are
usually uncached, so that values written by either the peripheral
processor or the CPU are immediately visible to the other side.

Streaming DMA buffers are backed by the CPU’s cache,
and have an explicit owner. They can either be owned by the
CPU itself, or by one of the peripheral processors. Certain
kernel-space memory buffers can be “mapped” as streaming
DMA buffers. However, once a streaming DMA buffer is
mapped, the peripheral devices automatically acquires own-
ership over it, and the kernel can no longer write to the buffer.
Unmapping a streaming DMA buffer revokes its ownership
from the peripheral device, and allows the CPU to access the

buffer’s contents. Streaming DMA buffers are typically short-
lived, and are often used for a single data transfer operation.

B. Input/Output Memory Management Unit

Since DMA allows peripherals to access physical memory
directly, its use can be detrimental to the overall stability of
the system if a peripheral device misbehaves. Modern systems
therefore deploy an input output memory management unit
(IOMMU) (also known as system memory management unit,
or SMMU, on the ARMv8-A/AArch64 architecture) to limit
which regions of the physical memory each device can access.
Similar to the CPU’s memory management unit (MMU), the
IOMMU translates device-visible virtual addresses (i.e., I/O
addresses) to physical addresses. The IOMMU uses translation
tables, which are configured by the OS prior to initiating a
DMA transfer. Device-initiated accesses that fall outside of
the translation table range will trigger faults that are visible to
the OS.

C. Analyzing Hardware-OS Interaction

Vulnerabilities in device drivers can lead to a compromise
of the entire system, since many of these drivers run in kernel
space. To detect these vulnerabilities, driver developers can
resort to dynamic analysis tools that monitor the driver’s
behavior and report potentially harmful actions. Doing this
ideally requires insight into the communication between the
driver and the device, as this communication can provide the
context necessary to find the underlying cause of a vulnera-
bility. Analyzing device-driver communication requires (i) an
instance of the device, whether physical or virtual, and (ii)
a monitoring mechanism to observe and/or influence device-
driver communication. Existing approaches can therefore be
classified based on where and how they observe (and possibly
influence) device-driver interactions.

Device Adaptation: To exercise direct control over the
data sent from the hardware to the driver, an analyst can adapt
the firmware of real devices to include such capabilities. This
can be done by reverse engineering the firmware and reflashing
a modified one [64], or by using custom hardware that supports
reprogramming of devices [1]. However, these frameworks are
typically tailored to specific devices, and given the hetero-
geneity of peripheral devices, their applicability is limited.
For example, Nexmon only works for some Broadcom Wi-Fi
devices [64], and Facedancer11, a custom Universal Serial Bus
(USB) device, can only analyze USB device drivers [1].

Virtual Machine Monitor: A driver can be tested in
conjunction with virtual devices running in a virtual envi-
ronment such as QEMU [20]. The virtual machine monitor
observes the behavior of its guest machines and can easily
support instrumentation of the hardware-OS interface. Previous
work uses existing implementations of virtual devices for
testing the corresponding drivers [44], [66]. For many devices,
however, an implementation of a virtual device does not exist.
In this case, developers must manually implement a virtual
version of their devices to interact with the device driver they
wish to analyze [47]. Several frameworks alleviate the need
for virtual devices by relaying I/O to real devices [71], [80],
but these frameworks generally require a non-trivial porting
effort for each driver and device, and/or do not support DMA.
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Symbolic Execution: S2E augments QEMU with se-
lective symbolic execution [33]. Several tools leverage S2E to
analyze the interactions between OS kernel and hardware by
selectively converting hardware-provided values into symbolic
values [32], [49], [60], [62]. However, symbolic execution
in general is prohibitively slow due to the path explosion
and constraint solving problem. Moreover, symbolic execution
itself does not reveal vulnerabilities, but rather generates a
set of constraints that must be analyzed by separate checkers.
Writing such a checker is not trivial. Most of the checkers
supported by SymDrive, for example, target stateless bugs
such as kernel API misuses, but ignore memory corruption
bugs [62].

III. PERISCOPE DESIGN

We designed PERISCOPE as a dynamic analysis framework
that can be used to examine bi-directional communication
between devices and their drivers over MMIO and DMA.
Contrary to earlier work on analyzing device-driver commu-
nication on the device side, we analyze this communication
on the driver side, by intercepting the driver’s accesses to
communication channels. PERISCOPE does this by hooking
into the kernel’s page fault handling mechanism. This design
choice makes our framework driver-agnostic; PERISCOPE can
analyze drivers with relative ease, regardless of whether the
underlying device is virtual or real, and regardless of the type
of the peripheral device.

At a high level, PERISCOPE works as follows. First,
PERISCOPE automatically detects when the target device driver
creates a MMIO or DMA memory mapping, and registers it.
Then, the analyst selects the registered mappings that he/she
wishes to monitor. PERISCOPE marks the pages backing these
monitored mappings as not present in the kernel page tables.
Any CPU access to those marked pages therefore triggers a
page fault, even though the data on these pages is present in
physical memory.

When a kernel page fault occurs, PERISCOPE first marks
the faulting page as present in the page table ( 1 in Figure 2).
Then, it determines if the faulting address is part of any
of the monitored regions ( 2 ). If it is not, PERISCOPE re-
executes the faulting instruction ( 5 ), which will now execute
without problems. Afterwards, PERISCOPE marks the page as
not present again ( 7 ), and resumes the normal execution of
the faulting code.

If the faulting address does belong to a monitored region,
PERISCOPE invokes a pre-instruction hook function registered
by the user of the framework, passing information about
the faulting instruction ( 4 ). Then, PERISCOPE re-executes
the faulting instruction ( 5 ). Finally, PERISCOPE invokes the
post-instruction hook registered by the driver ( 6 ), marks the
faulting page as not present again ( 7 ), and resumes the
execution of the faulting code.

A. Memory Access Monitoring

Tracking Allocations: PERISCOPE hooks the kernel
APIs used to allocate and deallocate DMA and MMIO
regions2. We use these hooks to maintain a list of all

2Establishing DMA and MMIO mappings is a highly platform-dependent
process, so device drivers are obliged to use the official kernel APIs to do so.
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Fig. 2. PERISCOPE fault handling

DMA/MMIO allocation contexts and their active mappings.
PERISCOPE assigns an identifier to every context in which a
mapping is allocated, and presents the list of all allocation
contexts as well as their active mappings to privileged user-
space programs through the debugfs file system.

Enabling Monitoring: PERISCOPE exposes a privi-
leged user-space API that enables monitoring of DMA/MMIO
regions on a per-allocation-context basis. Once monitoring
is enabled for a specific allocation context, PERISCOPE will
ensure that accesses to all current and future regions allocated
in that context trigger page faults.

Clearing Page Presence: PERISCOPE marks all pages
containing monitored regions as not present in the kernel’s
page tables to force accesses to such pages to trigger page
faults. One complication that can arise here is that modern
architectures, including x86-64 and AArch64, can support
multiple page sizes within the same page table. On AArch64
platforms, a single page table entry can serve physical memory
regions of 4KB, 16KB, or 64KB, for example. If a single
(large) page table entry serves both a monitored and a non-
monitored region, then we split that entry prior to marking the
region as not present. We do this to avoid unnecessary page
faults for non-monitored regions. Note that, even after split-
ting page table entries, PERISCOPE cannot rule out spurious
page faults completely, as some devices support DMA/MMIO
regions that are smaller than the smallest page size supported
by the CPU.

Trapping Page Faults: PERISCOPE hooks the kernel’s
default kernel page fault handler to monitor page faults.
Inside the hook function, we first check if the fault originated
from a page that contains one of the monitored regions. If
the fault originated from some other page, we immediately
return from the hook function with an error code and defer
the fault handling to the default page fault handler. If the
fault did originate from a page containing a registered buffer,
PERISCOPE marks that page as present ( 1 ), and then checks
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if the faulting address falls within a monitored region ( 2 ). If
the faulting address is outside a monitored region, we simply
single-step the faulting instruction ( 5 ), mark the faulting page
as not present again ( 7 ), and resume normal execution of
the faulting code. If the faulting address does fall within
a monitored region, however, we proceed to the instruction
decoding step ( 3 ).

Instruction Decoding: In order to accurately monitor
and (potentially) manipulate the communication between the
hardware/firmware and the device driver, we need to extract
the source register, the destination register and the access width
of the faulting instruction ( 3 in Figure 2). We implemented
a simple AArch64 instruction decoder, which provides this
information for all load and store instructions. PERISCOPE
carries this information along the rest of its fault handling
pipeline.

Pre-instruction Hook: After decoding the instruction,
PERISCOPE calls the pre-instruction hook that the user of
our framework can register ( 4 ). We pass the address of the
faulting instruction, the memory region type (MMIO or DMA
coherent/streaming), the instruction type (load or store), the
destination/source register, and the access register width to this
hook function. The pre-instruction hook function can return
two values: a default value and a skip-single-step value. If the
function returns the latter, PERISCOPE proceeds immediately
to step 6 . Otherwise, PERISCOPE proceeds to step 5 .

PERISCOPE provides a default pre-instruction hook which
logs all memory stores before the value in the source register
is stored to memory. We maintain this log in a kernel-space
circular buffer that can later be read from the file system using
tracefs.

Single-stepping: When execution returns from the pre-
instruction hook, and the hook function did not return the
skip-single-step value, we re-execute the faulting instruction,
which can now access the page without faulting. We use the
processor’s single-stepping support to ensure that only the
faulting instruction executes, but none of its successors do ( 5 ).

Post-instruction Hook: When PERISCOPE regains con-
trol after single-stepping, it first clears the page present flag
for the faulting page again so that future accesses to the
faulting page once again trigger a page fault. Then, it calls the
post-instruction handler, which, similarly to the pre-instruction
handler, has a default implementation that can be overridden
through our API ( 6 ). The default handler logs all memory
loads by examining and logging the value that is now stored
in the destination register.

IV. PERIFUZZ DESIGN

We built PERIFUZZ as a client module for PERISCOPE.
PERIFUZZ can generate and provide inputs for device drivers.
The goal of our fuzzer is to uncover vulnerabilities that could
potentially be exploited by a compromised peripheral device.

A. Threat Model

Peripheral Compromise: We assume that the attacker
can compromise a peripheral, which, in turn, can send arbitrary
data to its device driver. Compromising a peripheral device is
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feasible because such devices rarely deploy hardware protec-
tion mechanisms or software mitigations. As a result, silent
memory corruptions occur frequently [56], which significantly
lowers the bar to mount an attack. That peripherals can turn
malicious after being attacked was demonstrated by successful
remote compromises of several network devices such as eth-
ernet adapters [36], GSM baseband processors [28], [77], and
Wi-Fi processors [16], [21], [23].

IOMMU/SMMU Protection: For many years, a strict
hardware-OS security boundary existed in theory, but it was
not enforced in practice. Most device drivers trusted that the
peripheral was benign, and gave the device access to the
entire physical memory (provided that the device was DMA-
capable), thus opening the door to DMA-based attacks and
rootkits [17], [69]. This situation has changed for the better
with the now widespread deployment of IOMMU units (or
SMMU for AArch64). IOMMUs can prevent the device from
accessing physical memory regions that were not explicitly
mapped by the MMU, and they prevent peripherals from
accessing streaming DMA buffers while these are mapped
for CPU access. The latter restriction can be imposed by
invalidating IOMMU mappings, or by copying the contents
of a streaming DMA buffer to a temporary buffer (which the
peripheral cannot access) before the CPU uses them [52], [53].
We assume that such an IOMMU is in place, and that is being
used correctly.

Summary: In our model, the attacker can (i) com-
promise a peripheral such as a Wi-Fi chipset over the air
by abusing an existing bug in the peripheral’s firmware, (ii)
exercise control over the compromised peripheral to send
arbitrary data to the device driver, and, (iii) not access the
main physical memory, except for memory regions used for
communicating with the device driver.

B. Design Overview

PERIFUZZ is composed of a number of components, as
illustrated in Figure 3. Our design is fully modular, so each
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component can be swapped out for an alternative implemen-
tation that exposes the same interface.

Fuzzer: We use a fuzzer that runs in user space.
This component is responsible for generating inputs for the
device driver and processing execution feedback. Our modular
design allows us to use any fuzzer capable of fuzzing user-
space programs. We currently use AFL as our fuzzer, as was
done in several previous works that focus on fuzzing kernel
subsystems [42], [57], [65].

Executor: The executor is a user-space-resident bridge
between the fuzzer (or any input provider) and the injector.
The executor takes an input file as an argument, and sends
the file content to the injector via a shared memory region
mapped into both the executor’s and the injector’s address
spaces. The executor then notifies the injector that the input
is ready for injection, and periodically checks if the provided
input has been consumed. PERIFUZZ launches an instance of
the executor for every input the fuzzer generates. The executor
is also used to reproduce a crash by providing the last input
observed before the crash.

Injector: The injector is a kernel-space module that
interfaces with our PERISCOPE framework. The injector reg-
isters a pre-instruction hook with PERISCOPE, which allows
the injector to monitor and manipulate all data the device driver
receives from the device. At every page fault, the injector
first checks if fuzzing is currently enabled, and if there is
a fuzzer/executor-provided input that has not been consumed
yet. If both conditions are met, the injector overwrites the
destination register with the input generated by the fuzzer.

Note that PERIFUZZ manipulates only the values device
drivers read from MMIO and DMA mappings, but not the
values they write. PERIFUZZ, in other words, models compro-
mised devices, but not compromised drivers.

C. Fuzzer Input Consumption

We treat each fuzzer-generated input as a serialized se-
quence of memory accesses. In other words, our injector
always consumes and injects the first non-consumed inputs
found in the input buffer shared between the executor and
injector. This fuzzer input consumption model allows for
overlapping fetch fuzzing as it automatically provides different
values for multiple accesses to the same offsets within a target
mapping (i.e., overlapping fetches [79]). Providing different
values for overlapping fetches enables us to find double-
fetch bugs, if triggering such bugs leads to visible side-effects
such as a driver crash. Our fuzzer also keeps track of the
values returned for overlapping fetches, and can output this
information when a driver crashes, thereby helping us to
narrow down the cause of the crash. In fact, the double-fetch
bugs we identified using PERIFUZZ would not have been found
without this information (see Section VI).

Since we assume that the attacker cannot access streaming
DMA buffers while they are mapped for CPU access (see
Section IV-A), we take extra care not to enable overlapping
fetch fuzzing for streaming DMA buffers. To this end, we
maintain a history of read accesses, and consult this history to
determine if a new access overlaps with any previous access.
If they overlap, we return the same values returned for the

Algorithm 1 Fuzzer Input Consumption at Each Driver Read
1: global variables . Initialized when switching fuzzer input
2: Input ← [...]
3: InputOffset ← 0
4: PrevReads ← {}
5: OverlappingFetches ← {}
6: end global variables
7: function FUZZDRIVERREAD(Address,Width, Type)
8: V alue ← Input[range(InputOffset,Width)]
9: for all Prev in PrevReads do

10: Overlap ← Prev.range ∩ range(Address,Width)
11: if Overlap is not empty then
12: if Type is DMA Streaming then
13: V alue[Overlap] ← Prev.value(Overlap)
14: else
15: OverlappingFetches ←

OverlappingFetches ∪ {(Overlap, V alue)}
16: end if
17: end if
18: end for
19: InputOffset ← InputOffset+Width
20: PrevReads← PrevReads∪{(Address,Width, V alue)}
21: return V alue
22: end function

previous access, and do not consume any bytes from the fuzzer
input. Algorithm 1 shows how we pick values to inject for each
driver read from an MMIO or DMA mapping.

An additional benefit of our fuzzer input consumption
model is that it helps to keep the input size small, because
we only have to generate fuzzer input bytes for read accesses
that actually happen and not for the entire fuzzed buffer, which
may contain bytes that are never read.

D. Register Value Injection

PERISCOPE provides the destination register and the access
width when it calls into PERIFUZZ’s pre-instruction hook
handler. The fuzzer input is consumed for that exact access
width, and then injected into the destination register. Our pre-
instruction hook function returns the skip-single-step value
to PERISCOPE (see Section III-A), as we have emulated the
faulting load instruction by writing a fuzzed value into its desti-
nation register. Our post-instruction hook function increments
the program counter, so the execution of the driver resumes
from the instruction that follows the fuzzed instruction.

E. Fuzzing Loop

Each iteration of the fuzzing loop consumes a single fuzzer-
generated input. We align each iteration of the fuzzing loop to
the software interrupt handler, i.e., do_softirq. We do not
insert hooks into the hardware interrupt handler, since work is
barely done in the hardware interrupt context. The two hooks
inserted before and after the software interrupt handler demar-
cate a single iteration of the fuzzing loop, in which PERIFUZZ
consecutively consumes bytes in a single fuzzer input. This
design decision allows us to remain device-agnostic, but device
driver developers could provide an alternative device-specific
definition of an iteration by inserting those two hooks in their
drivers. Several low priority tasks are often deferred to the
device driver’s own kernel threads, and the fuzzing loop can
be aligned to the task processing loop inside those threads.
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TABLE I. LOC MODIFIED IN THE LINUX KERNEL CODE AND THE
PERISCOPE FRAMEWORK ITSELF

Description LoC

Linux DMA and MMIO allocation/deallocation APIs 92

Linux kernel page fault and debug exception handlers 46

PERISCOPE framework 3843

F. Interfacing with AFL

We use AFL [81], a well-known coverage-guided fuzzer, as
PERIFUZZ’s fuzzing front-end. This is in line with previous
work on fuzzing various kernel subsystems [42], [57], [65].
To fully leverage AFL’s coverage-guidance, we added kernel
coverage and seed generation support in PERIFUZZ.

Coverage-guidance: We modified and used KCOV to
provide coverage feedback while executing inputs [74]. Ex-
isting implementations of KCOV were developed for fuzzing
system calls and only collect coverage information for code
paths reachable from system calls. To enable device driver
fuzzing, we extended KCOV with support for collecting cov-
erage information for code paths reachable from interrupt
handlers. We also applied a patch to force KCOV to collect
edge coverage information rather than basic block coverage
information [29]. To collect coverage along the execution of
the device driver, it is first compiled with coverage instrumen-
tation. This instrumentation informs KCOV of hit basic blocks,
which KCOV records in terms of edge coverage. The executor
component retrieves the coverage feedback from kernel, once
the input has been consumed. Then the executor copies this
coverage information to a memory region shared with the
parent AFL fuzzer process, after which we signal KCOV to
clear the coverage buffer for the next fuzzing iteration.

Automated Seed Generation: Starting with valid test
cases rather than fully random inputs improves the fuzzing ef-
ficiency, as this lowers the number of input mutations required
to discover new paths. To collect an initial seed of valid test
cases, we use our PERISCOPE framework to log all accesses
to a user-selected set of buffers. We provide an access log
parser that automatically turns a sequence of accesses into a
seed file according to our fuzzing input consumption model
(see Section IV-C). That said, this step is optional; one could
start from any arbitrary seed, or craft test cases on their own.

V. IMPLEMENTATION

A. PERISCOPE

We based our implementation of PERISCOPE on Linux
kernel 4.4 for AArch64. Our framework is, for the most part,
a standalone component that can be ported to other versions
of the Linux kernel and even to vendor-modified custom
kernels with relative ease. The kernel changes required for
PERISCOPE are relatively small compared to the framework
implementation itself as shown in Table I.

Tracking Allocations: PERISCOPE hooks the
generic kernel APIs used to allocate/deallocate MMIO and
DMA regions to maintain a list of allocation contexts.
We insert these hooks into the dma_alloc_coherent
and dma_free_coherent functions to track coherent

TABLE II. PERIFUZZ IMPLEMENTATION LOC

Component LoC

Injector Kernel-space 441

KCOV (modification) Kernel-space 176

Executor User-space 338

Python manager and utility scripts Host 924

DMA mappings, into the dma_unmap_page function3 and
dma_map_page to track streaming DMA mappings, and into
ioremap and iounmap to track MMIO mappings.

PERISCOPE assigns a context identifier to every MMIO and
DMA allocation context. This context identifier is the XOR-
sum of all call site addresses that are on the call stack at
allocation time. We mask out the upper bits of all call site
addresses to ensure that context identifiers remain the same
across reboots on devices that enable kernel address space
layout randomization (KASLR).

Monitoring Interface: PERISCOPE provides a user-
space interface by exposing debugfs and tracefs file system
entries. Through this interface, a user can list all allocation
contexts and their active mappings, enable or disable monitor-
ing, and read the circular buffer where PERISCOPE logs all
accesses to the monitored mappings.

As streaming DMA buffer allocations can happen in inter-
rupt contexts, we use a non-blocking spinlock to protect access
to data structures such as the list of monitored mappings. When
accessing these data structures from an interruptible code path,
we additionally disable interrupts to prevent interrupt handlers
from deadlocking while trying to access the same structures.

B. PERIFUZZ

We built PERIFUZZ as a client for PERISCOPE. Table II
summarizes the code we added or changed for PERIFUZZ.

Kernel-User Interface: The injector registers a device
node that exposes device-specific mmap and ioctl system
calls to the user-space executor. The executor can therefore
create a shared memory mapping via mmap to the debugfs
file exported by the injector module. Through this interface, the
executor passes the fuzzer input to the injector running in the
kernel space. The ioctl handler of the injector module allows
the executor (i) to enable and disable fuzzing, and (ii) to poll
the consumption status of a fuzzer input it provided. Similarly,
KCOV provides the coverage feedback by exporting another
debugfs file such that the executor can read the feedback by
mmaping the exported debugfs file.

Persisting Fuzzer Files: Many fuzzers including AFL
store meta-information about fuzzing and input corpus in the
file system. However, these files might not persist if the kernel
crashes before the data is committed to the disk. To avoid
this, we ensure that all the fuzzer files are made persistent, by
modifying AFL to call fsync after all file writes. Persisting all
files allows us (i) to investigate crashes using the last crashing
input and (ii) to resume fuzzing with the existing corpus stored
in the file system.

3dma_unmap_page unmaps a streaming DMA mapping from the periph-
eral processor. Doing so transfers ownership of the mapping to the device
driver.
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Fig. 4. Continuous fuzzing with PERIFUZZ

TABLE III. TARGET SMARTPHONES

Google Pixel 2 Samsung Galaxy S6

Model Name walleye SM-G920F
Released October, 2017 April, 2015
SoC Snapdragon 835 Exynos 7420
Kernel Version 4.4 3.10
Wi-Fi Device Driver qcacld-3.0 bcmdhd4358

Wi-Fi IOMMU Protection Yes No

Fuzzing Manager: The fuzzing procedure is com-
pletely automated through Python scripts that run on a host
separate from the target device. The continuous fuzzing loop
is driven by a Python program, as illustrated in Figure 4. The
manager process runs in a loop in which it (i) polls the status
of the fuzzing process, (ii) starts/restarts fuzzing if required,
(iii) detects device reboots, (iv) downloads the kernel log and
the last input generated before the crash after a reboot, and (v)
examines the last kernel log to identify the issue that led to the
crash.4 The manager stores the reports and the last crashing
inputs for investigation and bug reporting.

VI. EVALUATION

We evaluated PERISCOPE and PERIFUZZ by monitoring
and fuzzing the communication between two popular Wi-Fi
chipsets and their device drivers used in several Android
smartphones.

A. Target Drivers

We chose Wi-Fi drivers as our evaluation target because
they present a large attack surface, as evidenced by a recent se-
ries of fully remote exploits [16], [23]. Smartphones frequently
connect to potentially untrusted Wi-Fi access points, and Wi-Fi
drivers and peripherals implement vendor-specific, complex
internal device-driver interaction protocols (e.g., for offloading
tasks) that rely heavily on DMA-based communication.

The Wi-Fi peripheral chipset market for smartphones is
dominated by two major vendors: Broadcom and Qualcomm.
We tested two popular Android-based smartphones that each
have a Wi-Fi chipset from one of these vendors, as shown
in Table III. We tested the Google Pixel 2, with Android
8.0.0 Oreo5 and Qualcomm’s qcacld-3.0 Wi-Fi driver. We

4We used Syzkaller’s report package to parse the kernel log.
5android-8.0.0_r0.28

TABLE IV. THE NUMBER OF MMIO AND DMA ALLOCATION
CONTEXTS THAT CREATE ATTACKER-ACCESSIBLE MAPPINGS

Driver MMIO DMA Coherent DMA Streaming
qcacld-3.0 1 9 5

bcmdhd4358 4 11 29

TABLE V. THE NUMBER OF BASIC BLOCKS EXECUTED UNDER WEB
BROWSING TRAFFIC PER KERNEL CONTROL PATH. A BASIC BLOCK COULD

RUN IN INTERRUPT CONTEXT (IRQ), KERNEL THREAD OR WORKER
CONTEXT (KERNEL THREAD), OR OTHERS (OTHERS). SOME BASIC

BLOCKS CAN BE REACHED IN SEVERAL CONTEXTS.

Driver IRQ Kernel
Thread Others Hit / Instrumented

qcacld-3.0 1633
(36.9%)

2902
(65.6%)

672
(15.2%) 4427/81637

bcmdhd4358 743
(68.9%)

284
(26.3%)

301
(27.9%) 1078/23404

also tested the Samsung Galaxy S6, on which we installed
LineageOS 14.1 and Broadcom’s bcmdhd4358 Wi-Fi driver.
LineageOS 14.1 is a popular custom Android distribution
that includes the exact same Broadcom driver as the official
Android version for the Galaxy S6.

Note that although the Samsung Galaxy S6 has an
IOMMU, it is not being used to protect the physical memory
from rogue Wi-Fi peripherals. Regardless, we did conduct our
experiments under the assumption that IOMMU protection is
in place. Newer versions of the Samsung Galaxy phones do
enable IOMMU protection for Wi-Fi peripherals.

B. Target Attack Surface

The code paths that are reachable from peripheral devices
vary depending on the internal state of the driver (e.g., is the
driver connected, not connected, scanning for networks, etc).
In our evaluation, we assume that the driver has reached a
steady state where it has established a stable connection with
a network. We consider only the code paths reachable in this
state as part of the attack surface. We analyzed this attack
surface by counting (i) the number of allocation contexts that
create attacker-accessible MMIO and DMA mappings and (ii)
the number of driver code paths that are executed while the
user is browsing the web.

Table IV summarizes the MMIO and DMA allocation
contexts in both device drivers, which create mappings that
can be accessed by the attacker while the user is browsing the
web. MMIO and DMA coherent mappings were established
during the driver initialization, and were still mapped to both
the device and the driver by the time the user browses the
web; DMA streaming mappings were destroyed after their use,
but regularly get recreated and mapped to the device while
browsing the web. Thus, an attacker on a compromised Wi-Fi
chipset can easily access these mappings, and write malicious
values in them to trigger and exploit vulnerabilities in the
driver.

We then analyzed the code paths that get exercised under
web browsing traffic, and classified these paths based on the
context in which they are executed: interrupt context, kernel
thread context, and other contexts (e.g., system call context).
Table V shows the results. Of all the basic blocks executed
under web browsing traffic, 36.9% and 68.9% run in interrupt
context for the qcacld-3.0 and bcmdhd4358 drivers,
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TABLE VI. ALLOCATION CONTEXTS SELECTED FOR FUZZING. DC
STANDS FOR DMA COHERENT, DS FOR DMA STREAMING, AND MM FOR

MEMORY-MAPPED I/O.

Driver Alloc.
Context

Alloc.
Type

Alloc.
Size Used For

qcacld-3.0

QC1 DC 8200 DMA buffer mgmt.
QC2 DC 4 DMA buffer mgmt.
QC3 DS 2112 FW-Driver message
QC4 DS 2112 FW-Driver message

bcmdhd4358

BC1 DC 8192 FW-Driver RX info
BC2 DC 16384 FW-Driver TX info
BC3 DC 1536 FW-Driver ctrl. info
BC4 MM 4194304 Ring ctrl. info

respectively. Some of the code that executes in interrupt
context may not be reachable from any system calls through
legal control-flow paths, and therefore may not be fuzzed by
system call fuzzers.

C. Target Mappings

We investigated how each of the active mappings are
used by their respective drivers, and enabled fuzzing for
DMA/MMIO regions that are accessed frequently, and that
are used for low-level communication between the driver and
the device firmware (e.g., for shared ring buffer management).
We used PERISCOPE to determine which regions the driver
accesses frequently, and we manually investigated the driver’s
code to determine the purpose of each region.

For qcacld-3.0, we enabled fuzzing for two allocation
contexts for DMA coherent buffers and two contexts for DMA
streaming buffers. For bcmdhd4358, we enabled fuzzing for
three allocation contexts for DMA coherent buffers and one
allocation context for an MMIO buffer. Table VI summarizes
the allocation contexts for which we enable fuzzing; all the
mappings allocated in those contexts are fuzzed.

D. Fuzzer Seed Generation

We used PERISCOPE’s default tracing facilities to generate
initial seed input files. For each selected allocation context,
we first recorded all allocations of, and all read accesses to
the memory mappings while generating web browsing traffic
for five minutes. We then parsed the allocation/access log to
generate unique seed input files. Finally, we used AFL’s corpus
minimization tool to minimize the input files. This tool replays
each input file to collect coverage information and uses that
information to exclude redundant files.

E. Vulnerabilities Discovered

Table VII summarizes the vulnerabilities we discovered us-
ing our fuzzer. Each entry in the table is a unique vulnerability
at a distinct source code location.

Disclosure: We responsibly disclosed these vulnerabil-
ities to the respective vendors. During this process, we were
informed by Qualcomm that some of the bugs had recently
been reported by external researchers or internal auditors.
We marked these bugs as “Known”. All the remaining bugs
were previously unknown, and have been confirmed by the
respective vendors. We included CVE numbers assigned to
the bugs we reported. Also, we included the vendor-specific,

internal severity ratings for these bugs if communicated by the
respective vendors during the disclosure process.

Error Type and Impact: Vulnerabilities found by PER-
IFUZZ fall into four categories: buffer overflows, address leaks,
reachable assertions, and null-pointer dereferences. We mark
buffer overflows and address leaks as potentially exploitable,
and reachable assertions and null-pointer dereferences as vul-
nerabilities that can cause a denial-of-service (DoS) attack by
triggering device reboots.

Double-fetch Bugs: We did not attempt to find double-
fetch bugs in streaming DMA buffers, since we operated
under the assumption that an IOMMU preventing such bugs
is in place (see Section IV-A). That said, we did identify
several double-fetch bugs in code that accesses coherent DMA
buffers. These bugs can potentially be exploited, even when the
system deploys an IOMMU. We discuss these bugs in detail
in Section VI-G.

F. Case Study I: Design Bug in qcacld-3.0

One of the vulnerabilities we found in qcacld-3.0 is in
code that dereferences a firmware-provided pointer. PERIFUZZ
fuzzed the pointer value as it was read by the device driver.
The driver then dereferenced the fuzzed pointer and crashed
the kernel. An analysis of this vulnerability revealed that it is in
fact a design issue. The pointer was originally provided by the
driver to the device. Line 11 in Listing 1 turns a kernel virtual
address, which points to a kernel memory region allocated at
Line 4, into a 64-bit integer called cookie. The driver sends
this cookie value to the device, thereby effectively leaking a
kernel address.

1 A_STATUS ol_txrx_fw_stats_get(...)
2 {
3 ...
4 non_volatile_req =

qdf_mem_malloc(sizeof(*non_volatile_req));↪→

5 if (!non_volatile_req)
6 return A_NO_MEMORY;
7

8 ...
9

10 /* use the non-volatile request object's
address as the cookie */↪→

11 cookie =
ol_txrx_stats_ptr_to_u64(non_volatile_req);↪→

12

13 ...
14 }

Listing 1: Kernel address leak in qcacld-3.0

An attacker that controls the peripheral processor can infer
the kernel memory layout based on the cookie values passed
by the driver. This address leak can facilitate exploitation
of memory corruption vulnerabilities even if the kernel uses
randomization-based mitigations such as KASLR. This bug
can be fixed by passing a randomly generated cookie value
rather than a pointer to the device.

G. Case Study II: Double-fetch Bugs in bcmdhd4358

The bcmdhd4358 driver contains several double-fetch
bugs that allow an adversarial Wi-Fi chip to bypass an integrity
check in the driver. Listing 2 shows how the driver accesses
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TABLE VII. UNIQUE DEVICE DRIVER VULNERABILITIES FOUND BY PERIFUZZ

Alloc.
Context

Alloc.
Type Error Type Analysis Double-fetch Status (Severity) Impact

QC2 DC Buffer Overflow Unexpected RX queue index CVE-2018-11902 (High) Likely Exploitable
QC3 DS Null-pointer Deref. Unexpected message type Confirmed (Low)a DoS
QC3 DS Buffer Overflow Unexpected peer id Known Likely Exploitable
QC3 DS Buffer Overflow Unexpected number of flows Known Likely Exploitable
QC3 DS Address Leak/Buffer Ovf. Unexpected FW-provided pointer CVE-2018-11947 (Med)b Likely Exploitable
QC3 DS Buffer Overflow Unexpected TX descriptor id Known Likely Exploitable
QC4 DS Reachable Assertion Unexpected endpoint id Known (Med) DoS
QC4 DS Reachable Assertion Duplicate message Known (Med) DoS
QC4 DS Reachable Assertion Unexpected payload length Known (Med) DoS
BC1 DC Buffer Overflow Unexpected interface id 3 CVE-2018-14852, SVE-2018-11784 (Low) Likely Exploitable
BC2 DC Buffer Overflow Unexpected ring id in create rsp. 3 CVE-2018-14856, SVE-2018-11785 (Low) Likely Exploitable
BC2 DC Buffer Overflow Unexpected ring id in delete rsp. 3 CVE-2018-14854, SVE-2018-11785 (Low) Likely Exploitable
BC2 DC Buffer Overflow Unexpected ring id in flush rsp. 3 CVE-2018-14855, SVE-2018-11785 (Low) Likely Exploitable
BC2 DC Null-pointer Deref. Uninitialized flow ring state CVE-2018-14853, SVE-2018-11783 (Low) DoS
BC4 MM Buffer Overflow Unexpected flow ring pointer CVE-2018-14745, SVE-2018-12029 (Low) Likely Exploitable
aQualcomm confirmed the vulnerability but they do not assign CVEs for low-severity ones.
bCVE assigned for the address leak.

a coherent DMA buffer that holds meta-information about
network data. At Line 4 and Line 5, the driver verifies the
integrity of the data in the buffer by calculating and checking
an XOR checksum. The driver then repeatedly accesses this
coherent DMA buffer again. The problem here is that the
device, if compromised, could modify the data between the
point of the initial integrity check, and the subsequent accesses
by the driver.

1 static uint8 BCMFASTPATH
dhd_prot_d2h_sync_xorcsum(dhd_pub_t *dhd,
msgbuf_ring_t *ring, volatile cmn_msg_hdr_t
*msg, int msglen)

↪→

↪→

↪→

2 {
3 ...
4 prot_checksum = bcm_compute_xor32((volatile

uint32 *)msg, num_words);↪→

5 if (prot_checksum == 0U) { /* checksum is OK */
6 if (msg->epoch == ring_seqnum) {
7 ring->seqnum++; /* next expected sequence

number */↪→

8 goto dma_completed;
9 }

10 }
11 ...
12 }

Listing 2: Initial fetch and integrity check in bcmdhd4358

PERIFUZZ was able to trigger multiple vulnerabilities by
modifying the data read from this buffer after the integrity
check was completed. We show one buffer overflow vulnera-
bility in Listing 3, which was triggered by fuzzing the ifidx
value used at Line 4. The overlapping fetch that occurred
before this buffer overflow is a double-fetch bug, because the
overlapping fetch can invalidate a previously passed buffer
integrity check. Thus, in addition to safeguarding the array
access with a bounds check, the driver should copy the contents
of the coherent DMA buffers to a location that cannot be
accessed by the peripheral device, before checking the integrity
of the data in the buffer. Subsequent uses of device-provided
data should also read from the copy of the data, rather than
the DMA buffer itself.

1 void dhd_rx_frame(dhd_pub_t *dhdp, int ifidx,
void *pktbuf, int numpkt, uint8 chan)↪→

2 {
3 ...
4 ifp = dhd->iflist[ifidx];
5 if (ifp == NULL) {
6 DHD_ERROR(("%s: ifp is NULL. drop packet\n",
7 __FUNCTION__));
8 PKTFREE(dhdp->osh, pktbuf, FALSE);
9 continue;

10 }
11 ...
12 }

Listing 3: Buffer overflow in bcmdhd4358

H. Case Study III: New Bug in qcacld-3.0

Listing 4 shows a null-pointer deference bug we discovered
in the qcacld-3.0 driver. The pointer to the netbufs_ring
array dereferenced at Line 9 is null, unless the driver is config-
ured to explicitly allocate this array. The driver configuration
used by the Google Pixel 2 did not contain the entry necessary
to allocate the array. Although the driver never executes the
vulnerable code under normal conditions, we found that the
vulnerable line is reachable through legal control flow paths.

1 static inline qdf_nbuf_t
htt_rx_netbuf_pop(htt_pdev_handle pdev)↪→

2 {
3 int idx;
4 qdf_nbuf_t msdu;
5

6 HTT_ASSERT1(htt_rx_ring_elems(pdev) != 0);
7

8 idx = pdev->rx_ring.sw_rd_idx.msdu_payld;
9 msdu = pdev->rx_ring.buf.netbufs_ring[idx];

10 ...
11 }

Listing 4: Null-pointer dereference in qcacld-3.0

It is difficult to detect this bug statically, as it requires a
whole-program analysis of the device driver to determine if the
netbufs_ring pointer is initialized whenever the vulnerable
line can execute. PERIFUZZ consistently triggered the bug,
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TABLE VIII. TIME CONSUMED BY PERISCOPE’S PAGE FAULT
HANDLER (MEASURED IN µ SECONDS)

Mean Minimum Maximum

Tracing Only 117.6 99.8 194.5

Tracing + Fuzzing 227.8 182.7 379.7

however. This vulnerability discovery therefore bolsters the
argument that fuzzing can complement manual auditing and
static analysis.

I. Performance Analysis

1) Page Fault: PERISCOPE incurs run-time overhead as it
triggers a page fault for every instruction that accesses the
monitored set of DMA/MMIO regions. We quantified this
overhead by measuring the number of clock cycles spent
inside PERISCOPE’s page fault handler. We read the AArch64
counter-timer virtual count register CNTVCT_EL0 when enter-
ing the handler and when exiting from the handler, and calcu-
lated the difference between the counter values, divided by the
counter-timer frequency counter CNTFRQ_EL0. To minimize
interference, we disabled hardware interrupts while executing
our page fault handler. We also disabled dynamic frequency
and voltage scaling.

We tested the page fault handler under two configurations.
In one configuration, PERISCOPE calls the default pre- and
post-instruction hooks that only trace and log memory ac-
cesses. In the other configuration, we registered PERIFUZZ’s
instruction hooks to enable DMA/MMIO fuzzing. Table VIII
shows the mean, minimum, and maximum values over samples
of 500 page fault handler invocations for each configuration.

Note that we deliberately trade performance for deter-
ministic, precise monitoring of device-driver interactions, by
trapping every single access to a set of monitored mappings. In
fact, this design allowed us to temporally distinguish accesses
to the same memory locations, which was essential to find the
double-fetch bugs. The drivers still function correctly, albeit
more slowly, when executed under our system, making it
possible to examine device-driver interactions dynamically and
enabling PERIFUZZ to fuzz it.

2) Fuzzing: PERIFUZZ builds on PERISCOPE and has ad-
ditional components that interact with each other, which incur
additional costs. The primary contributors to this additional
cost are: (i) waiting for the peripheral to signal the driver, (ii)
waiting for a software interrupt to be scheduled by the Linux
scheduling subsystem, (iii) interactions with the user-space
fuzzer, which involve at least two user-kernel mode switches
(i.e., one for delivering fuzzer inputs and the other for polling
and retrieving feedback), and (iv) other system activities.

Peak Throughput: We measured the overall fuzzing
throughput to quantify the overhead incorporating all interac-
tions between the PERIFUZZ components. We only report the
peak throughput in Table IX, since crashes and device driver
lockups heavily impact the average fuzzing throughput (see
Section VII-A). The inverse of the peak fuzzing throughput
is a conservative lower bound for the execution time required
to process a single fuzzer-generated input. Although we did
not optimize PERIFUZZ for throughput, we believe that these
numbers are still in a range that makes PERIFUZZ practical
for dynamic analysis.

TABLE IX. PEAK FUZZING THROUGHPUT FOR EACH FUZZED
ALLOCATION CONTEXT

Driver Alloc.
Context

Peak Throughput
(# of test inputs/sec)

qcacld-3.0

QC1 23.67

QC2 15.64

QC3 18.77

QC4 7.63

bcmdhd4358

BC1 9.90

BC2 14.28

BC3 10.49

BC4 15.92
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Fig. 5. Fuzzing overhead breakdown

Overhead Breakdown: To illustrate how the fuzzing
throughput can be optimized, we present a breakdown of the
fuzzing overhead. We divide each iteration of the fuzzing loop
into three phases: (i) waiting for fuzzer input to be made
available to our kernel module, (ii) waiting for the device
to raise an interrupt and for the driver to start processing it,
and (iii) fuzzing the data read from monitored I/O mappings
upon page faults. Once the driver has finished processing the
interrupt, the next iteration begins. We measured the execution
time of each phase in each iteration. To evaluate the impact of
page faults on the fuzzing performance, we also counted the
number of page faults triggered during each iteration.

We performed the experiment while fuzzing the buffer
having the highest peak throughput (QC1). Figure 5a shows
our measurements of per-phase execution time in a stacked
manner, over 100 consecutive iterations of the fuzzing loop.
60% of the total execution time is spent on waiting for the next
fuzzer input to be available. This delay is primarily caused by
a large number of missed page faults, as hinted by Figure 5b.
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The current implementation of PERIFUZZ can miss page faults,
when they are triggered while PERIFUZZ is preparing for the
next input. This delay can be reduced by disabling page faults
until the next input is ready. The delay caused by waiting
for relevant interrupts, which accounts for 24.2% of the total
execution time, can be reduced by forcing hardware to raise
relevant interrupts more frequently.

The actual fuzzing at each page fault still takes 15.8% of
the total execution time. One way to reduce this overhead is to
trigger page faults only at first access to a monitored mapping
within each iteration. At first access, the underlying page can
be overwritten with the fuzzer input and then made present, so
that subsequent accesses to the page within the same iteration
do not trigger extra page faults. This would come, however,
at the cost of precision, because it loses precise access tracing
capability, effectively disabling overlapping fetch fuzzing as
well as detection of potential double-fetch bugs.

VII. DISCUSSION

A. Limitations

We discuss problems that limit both the effectiveness and
efficiency of PERIFUZZ. These are well-known problems that
also affect other kernel fuzzers, such as system call fuzzers.

1) System Crashes: The OS typically terminates user-space
programs when they crash, and they can be restarted without
much delay. Crashing a user-space program therefore has little
impact on the throughput of fuzzing user-space programs.
Crashes in kernel space, by contrast, cause a system reboot,
which significantly lowers the throughput of any kernel fuzzer.
This is particularly problematic if the fuzzer repeatedly hits
shallow bugs, thereby choking the system without making
meaningful progress. We circumvented this problem by dis-
abling certain code paths that contain previously discovered
shallow bugs. This does, however, somewhat reduce the effec-
tiveness of our fuzzer as it cannot traverse the subpaths rooted
at these blacklisted bugs. Note that this problem also affects
other kernel fuzzers, e.g., DIFUZE and Syzkaller [35], [75].

2) Driver Internal States: Due to the significant latency
involved in system restarts, whole-system fuzzers typically
fuzz the system without restarting it between fuzzing iterations.
This can limit the effectiveness of such fuzzers, because the
internal states of the target system persist across iterations.
Changing internal states can also lead to instability in the
coverage-guidance, as the same input can exercise different
code paths depending on the system state. This means that
coverage-guidance may not be fully effective. Worse, when
changes to the persisting states accumulate, the device driver
may eventually lock itself up. For example, we encountered
a problem where, after feeding a certain number of invalid
inputs to a driver, the driver decided to disconnect from the
network, reaching an error state from which the driver could
not recover without a device reboot. Existing device driver
checkpointing and recovery mechanisms could be adapted
to alleviate the problem [46], [70], because they provide
mechanisms to roll drivers back to an earlier state. Such a roll
back takes significantly less time than a full system reboot.

B. Augmenting the Fuzzing Engine

Although we used mutational, feedback-guided fuzzing to
mutate the data stream on the device-driver interaction path,
our fuzzing framework can also benefit from other fuzzing
techniques. Like DIFUZE [35], static analysis can be intro-
duced to infer the type of an I/O buffer, which can save fuzzing
cycles by respecting the target type when mutating a value. The
dependencies between device-driver interaction messages can
also be inferred using static and trace analysis techniques [41],
[58], which can help fuzzing stateful device-driver interaction
protocols. Alternatively, developers can specify the format of
an I/O buffer and/or interaction protocol in a domain-specific
language [10], [75]. In addition to improving the mutation
of the data stream, we could use system call fuzzers such
as Syzkaller that generate different user-space programs [75].
These generated programs could actively send requests to the
driver and potentially to the device, which in turn can increase
reachable interrupt code paths. We believe that our modular
framework allows for easy integration of these techniques.

C. Combining with Dynamic Analysis

Our framework runs in a concrete execution environment;
thus, existing dynamic analysis tools can be used to uncover
silent bugs. For example, kernel sanitizers such as address
sanitizer and undefined behavior sanitizer can complement our
fuzzer [48], [63]. Memory safety bugs often silently corrupt
memory without crashing the kernel. Our fuzzer, by itself,
would not be able to reveal such bugs. When combined with
a sanitizer, however, these bugs would be detected. Other
dynamic analysis techniques such as dynamic taint tracking
can also be adapted to detect security-critical semantic bugs
such as passing security-sensitive values (e.g., kernel virtual
addresses) to untrusted peripherals.

VIII. RELATED WORK

A. Protection against Peripheral Attacks

An IOMMU isolates peripherals from the main processor
by limiting access to physical memory to regions configured
by the OS. Markuze et al. proposed mechanisms that can
achieve strong IOMMU protection at an affordable perfor-
mance cost [52], [53]. Several other work proposed mech-
anisms that can limit functionalities exposed to potentially
malicious devices [15], [72], [73]. Cinch encapsulates devices
as network endpoints [15], and USBFILTER hooks USB
APIs [73], to enable user-configurable, fine-grained access
control. However, neither IOMMU protection nor fine-grained
access control prevents exploitation of vulnerabilities found in
code paths that are still reachable from the device.

The effects of vulnerabilities on these valid code paths can
be mitigated by isolating device drivers from the kernel [27],
[34], [38], [50]. Android, for example, switched from the
kernel-space Bluetooth protocol stack [12] to a user-space
Bluetooth stack [13]. The OS kernel merely acts as a data path
by forwarding incoming packets to the user-space Bluetooth
daemon process. This approach can mitigate vulnerabilities in
the device driver because the driver cannot access kernel mem-
ory and cannot execute privileged instructions. The daemon
process still runs at a higher privilege level than standard user-
space processes, however, and therefore remains an attractive

12



target for adversaries looking to access sensitive data [11].
Additionally, this approach is currently not viable for certain
types of device drivers. High-bandwidth communication de-
vices such as Wi-Fi chips, for example, cannot afford the mode
and context switching overhead incurred by user-space drivers.

B. Kernel Fuzzing

Most kernel fuzzing tools focus on the system call bound-
ary [9], [14], [19], [35], [41], [43], [58], [59], [65], [75].
DIFUZE uses static analysis and performs type-aware fuzzing
of the IOCTL interface, which can expose a substantial
amount of driver functionality to user space [35]. Syzkaller,
a coverage-guided fuzzer, fuzzes a broader set of system
calls, based on system call description written in a domain-
specific language [75]. IMF infers value-dependence and
order-dependence between system call arguments by analyzing
system call traces [41]. kAFL uses Intel Processor Trace as a
feedback mechanism, to enable OS-independent fuzzing [65].
Digtool uses virtualization to capture and analyze the dynamic
behavior of kernel execution [59].

PERIFUZZ can be augmented with techniques that facilitate
type-aware fuzzing [35], [41], [58], [75], as discussed in
Section VII-B. Tools based on certain hardware features can
fuzz closed-source OSes [59], [65], but smartphones often do
not contain or expose the necessary hardware features to the
end user. For example, most smartphone OSes block access to
the bootloader and to hypervisor mode, thus preventing end
users from running code at the highest privilege level [61].
None of these fuzzers target DMA/MMIO-based interactions
between drivers and devices, nor do they cover code paths that
are not reachable from system calls (e.g., interrupt handlers).

C. Kernel Tracing

There are many general-purpose tools to monitor events in
the Linux kernel. Static kernel instrumentation mechanisms
such as Tracepoint allow the developer to insert so-called
probes [5]. Ftrace and Kprobe are dynamic mechanisms that
can be used to probe functions or individual instructions [6],
[7]. eBPF, the extended version of the Berkeley Packet Filter
mechanism, can attach itself to existing Kprobe and Tracepoint
probes for further processing [40]. LTTng, SystemTap, Ktap
and Dprobe are higher level primitives that build on the
aforementioned tools [2]–[4], [55].

These tools, however, are not well suited to monitoring
device-driver interactions, because they require developers to
identify and instrument each device-driver interaction. These
manual efforts can be alleviated by using page fault based
monitoring, which Mmiotrace uses to trace MMIO-based in-
teractions in x86 and x86-64 [8]. However, Mmiotrace does not
support the DMA interface, i.e., DMA coherent and streaming
buffers, and it lacks the ability to manipulate device-driver
interactions. In contrast, PERISCOPE can trace both MMIO and
DMA interfaces, and can be used to manipulate device-driver
interactions by plugging in PERIFUZZ, enabling adversarial
analysis of device drivers.

D. Kernel Static Analysis

Static analysis tools can detect various types of kernel and
driver vulnerabilities [18], [39], [51], [76], [79]. Dr. Checker

runs pointer and taint analyses specifically tailored to device
drivers, and feeds the analysis results to various vulnerability
detectors [51]. K-Miner uses an inter-procedural, context-
sensitive pointer analysis to find memory corruption vulner-
abilities reachable from system calls [39]. Symbolic execution
can complement these static analyses to work around precision
issues. Deadline [79], for example, uses static analysis to find
multi-reads in the kernel, and symbolically checks whether
each multi-read satisfies the constraints to be a double-fetch
bug. With the help of this symbolic checking, Deadline can
precisely discern double-fetch bugs from statically identified
multi-reads. Generally speaking, however, techniques based
on symbolic execution may not scale well due to the path
explosion problem.

Static analysis techniques have traditionally been applied
to the system call interface only. Although the core ideas can
apply to the hardware-OS interface too, statically identifying
the necessary entry points may not be as trivial as with
system calls, since accesses to an I/O mapping are difficult
to distinguish from other memory accesses, and interrupt
processing code can run in different, unrelated contexts (e.g.,
software interrupt context, kernel thread context, etc.).

E. Finding Double-fetch Bugs

Double-fetch bugs are a special case of time-of-check-to-
time-of-use (TOCTTOU) race conditions. They occur when
privileged code fetches a value from a memory location
multiple times, while less privileged code is able to change the
value between the fetches [45], [68]. Previous work explored
multiple reads of user-space memory from OS kernels or
from trusted execution environments [45], [59], [67], [76],
[79], and multiple reads of memory shared between different
hypervisor domains [78]. They either use static analysis (e.g.,
static code pattern matching [76] and symbolic execution [79]),
or dynamic analysis (e.g., memory access tracing followed by
pattern analysis [45], [59], [78] and cache behavior-guided
fuzzing [67]). PERIFUZZ is also a dynamic approach, but
targets a different attack surface: I/O memory mappings shared
between peripheral devices and kernel drivers.

PERIFUZZ and DECAF are currently the only two tools
that are sufficiently generic to support double-fetch fuzzing
without instrumentation or manual analysis of the target
code [67]. DECAF cannot fuzz double-fetches from MMIO
and DMA coherent mappings, however, because these map-
pings are typically uncached, and DECAF relies on cache side
channels to detect double-fetches.

IX. CONCLUSION

The interactions between peripherals and drivers can be
complex, and hence writing correct device driver software
is hard. Unfortunately, as has been recently demonstrated,
vulnerabilities in wireless communication peripherals and cor-
responding drivers can be exploited to achieve remote kernel
code execution without invoking a single system call. Nonethe-
less, no versatile framework has existed until now that analyzes
the interactions between peripherals and drivers.

This paper presents PERISCOPE, a generic probing frame-
work that addresses the specific analysis needs of the two pe-
ripheral interface mechanisms MMIO and DMA. Our fuzzing
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component PERIFUZZ builds upon this framework and can
help the end user find bugs in device drivers reachable from a
compromised device; uniquely, PERIFUZZ can expose double-
fetch bugs by fuzzing overlapping fetches, and by warning
about overlapping fetches that occurred before a driver crash.
Using these tools, we found 15 unique vulnerabilities in the
Wi-Fi drivers of two flagship Android smartphones, including
9 previously unknown ones.
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