
Life after Speech Recognition:
Fuzzing Semantic Misinterpretation for Voice

Assistant Applications

Yangyong Zhang, Lei Xu, Abner Mendoza, Guangliang Yang, Phakpoom Chinprutthiwong, Guofei Gu
SUCCESS Lab, Dept. of Computer Science & Engineering

Texas A&M University
{yangyong, xray2012, abmendoza, ygl, cpx0rpc}@tamu.edu, guofei@cse.tamu.edu

Abstract—Popular Voice Assistant (VA) services such
as Amazon Alexa and Google Assistant are now rapidly
appifying their platforms to allow more flexible and
diverse voice-controlled service experience. However, the
ubiquitous deployment of VA devices and the increasing
number of third-party applications have raised security
and privacy concerns. While previous works such as
hidden voice attacks mostly examine the problems of
VA services’ default Automatic Speech Recognition (ASR)
component, our work analyzes and evaluates the security
of the succeeding component after ASR, i.e., Natural
Language Understanding (NLU), which performs semantic
interpretation (i.e., text-to-intent) after ASR’s acoustic-
to-text processing. In particular, we focus on NLU’s
Intent Classifier which is used in customizing machine
understanding for third-party VA Applications (or vApps).
We find that the semantic inconsistency caused by the
improper semantic interpretation of an Intent Classifier
can create the opportunity of breaching the integrity of
vApp processing when attackers delicately leverage some
common spoken errors.

In this paper, we design the first linguistic-model-
guided fuzzing tool, named LipFuzzer, to assess the
security of Intent Classifier and systematically discover
potential misinterpretation-prone spoken errors based on
vApps’ voice command templates. To guide the fuzzing,
we construct adversarial linguistic models with the help of
Statistical Relational Learning (SRL) and emerging Natu-
ral Language Processing (NLP) techniques. In evaluation,
we have successfully verified the effectiveness and accuracy
of LipFuzzer. We also use LipFuzzer to evaluate both
Amazon Alexa and Google Assistant vApp platforms. We
have identified that a large portion of real-world vApps
are vulnerable based on our fuzzing result.

I. INTRODUCTION

The Voice User Interface (VUI) is becoming a
ubiquitous human-computer interaction mechanism to
enhance services that have limited or undesired physical
interaction capabilities. VUI-based systems, such as
Voice Assistants (VA), allow users to directly use voice
inputs to control computational devices (e.g., tablets,
smart phones, or IoT devices) in different situations.
With the fast growth of VUI-based technologies, a large
number of applications designed for Voice Assistant
(VA) services (e.g., Amazon Alexa Skills and Google
Assistant Actions) are now available. Amazon Alexa
currently has more than 30,000 applications, or vApps1.

Several attacks have been reported to affect the in-
tegrity of existing Automatic Speech Recognition (ASR)
component in vApp processing. For example, acoustic-
based attacks [19], [36], [33], [35], [23] leverage sounds
that are unrecognizable or inaudible by the human. More
recently, Kumar et al. [28] presented an empirical study
of vApp squatting attacks based on speech misinterpre-
tation (for example, an Alexa Skill named “Test Your
Luck” could be routed to a maliciously uploaded skill
with a confusing name of “Test Your Lock”). This attack
works, with proof-of-concept, in a remote manner that
could potentially be more powerful than acoustic-based
attacks.

Despite recent evidence [28] of launching potential
vApp squatting attacks, little effort has been made to un-
cover the root cause of speech misinterpretation in vApp
processing. In this paper, we devise a first representative
Voice Assistant (VA) Architecture, as shown in Figure 1,
from which we study the core components involved in
proper speech interpretation. After closely scrutinizing
the VA architecture, we found that both the Automatic
Speech Recognition (ASR) and the Natural Language
Understanding (NLU) components play a central role in

1vApp is the generalized name used in this paper for Amazon Alexa
Skills, Google Assistant Actions.

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23525
www.ndss-symposium.org

proper speech recognition and interpretation. Previous
works have only studied the ASR text interpretation
component. In the NLU, an Intent Classifier uses voice
command templates (or templates) to match intents
(similar to Intent Message in Android) with textual data
obtained after ASR’s text interpretation. Then, intents
are used to reach vApps with specific functionality.
From the vApp security perspective, the Intent Classifier
plays a more important role when interpreting users’
voice commands. The reason is that the Intent Classifier
is the last step of the interpretation process. It has
the capability of not only determining users’ semantic
intents, but also fixing the ASR’s potential transcription
errors. Second, while ASR is a default built-in service
component, the construction of the Intent Classifier’s
semantic classification is contributed by both vApp
developers and service providers. Particularly, third-
party developers can upload voice command templates
to modify the unified intent classification tree used by
all users (more details are illustrated in Section II).
As a result, it creates the opportunity for misbehaving
developers to maliciously modify the intent matching
process of the NLU.

However, it is challenging to systematically study
how NLU’s Intent Classifier is penetrated to incur
semantic inconsistency between users’ intents and VA’s
machine understanding. First, mainstream VA plat-
forms, such as Amazon Alexa, Google Assistant, and
almost all vApps are in closed development. Thus,
it is difficult to conduct a white box analysis. Also,
due to the strong privacy enforcement, it is impossible
to get real users’ speech input and the corresponding
vApp response output. Thus, conducting large-scale,
real-world data-driven analysis is also very challenging.

Our Approach. In this work, we assess speech mis-
interpretation through the black-box mutation fuzzing
of voice command templates, which are used as inputs
of Intent Classifier for matching intents. Our goal is
to systematically evaluate how Intent Classifier behaves
when inputting different forms of voice commands.
However, it is not straight-forward to design such a
fuzzing scheme. First, the computability of vApp I/O
is very limited as both input and output of vApps are
in the speech form, i.e., you can only speak with a VA
device or listen to the audio response2. Thus, we have
to determine mutation fields that we can work on in the
context of vApp processing. Moreover, it is important
to eliminate the effect of ASR’s text interpretation so
that error propagation is minimized. Second, in [28],
the authors suggest that vApp squatting attacks are
caused by pronunciation-based interpretation errors of
ASR. However, in reality, ambiguous natural languages
incur many more different forms of confusing voice

2With a VUI setting, no other user interfaces such graphic user
interface (or GUI) are being used.

Automatic
Speech

Recognition
(ASR)

Third
Party

Gadgets

vApp
Instances

Audio

Input

Textual

Data

Response
Engine

Audio

Output Textual

Response

Intents

Natural
Language

Understanding
(NLU)

Intent
Classifier

Speech Processing

Fig. 1: VUI-based VA Architecture.

commands. For example, a user could be simply using
regional vocabulary (i.e. words or expressions that are
used in a dialect area but not commonly recognizable
in other areas) rather than pronunciation issue alone.
Moreover, it is unpredictable when and how a user
would speak differently. All of these factors make the
voice command fuzzing difficult because of the large
searching space.

To overcome the aforementioned design challenges,
we propose a novel linguistic-model-guided fuzzing
tool, called LipFuzzer. Our tool generates potential
voice commands that are likely to incur a seman-
tic inconsistency such that a user reaches an unin-
tended vApp/functionality (i.e. users think they use
voice commands correctly but yield unwanted results).
For convenience, we name any voice commands that
can lead to such inconsistency as LAPSUS.3 LipFuzzer
addresses the two aforementioned challenges in two
components. First, to decide mutation fields, we realize
that the state-of-the-art Natural Language Processing
(NLP) techniques can be used to extract computational
linguistic data. Thus, we design LipFuzzer’s basic tem-
plate fuzzing by first mutating NLP pre-processed voice
command templates. Then, we input mutated voice
commands to VA devices by using machine speech
synthesis to eliminate the human factor of producing
ASR-related misinterpretation. Second, to reduce the
search space of the basic fuzzing, in the linguistic mod-
eling component, we train adversarial linguistic models
named LAPSUS Models by adopting Bayesian Networks
(BNs). BNs are constructed statistically with linguistic
knowledge related to LAPSUS. The template fuzzing is
then guided with linguistic model query results. As a
result, LipFuzzer is able to perform effective mutation-
based fuzzing on seed template inputs (gathered from
existing vApp user guidance available online).

In our evaluation, we first showcase that Intent Clas-
sifier is indeed the root cause of the misinterpretation.
Then, we show that LipFuzzer can systematically pin-
point semantic inconsistencies with the help of linguistic
models generated from existing linguistic knowledge.

Furthermore, we scan Alexa Skill Store and Google
Assistant Store to assess the security problem we found.

3We use LAPSUS for its Latin meaning “slip”.

2

Our result shows that 26,790 (out of 32,892) Amazon
Alexa Skills and 2,295 (out of 2,328) Google Assistant
Actions are potentially vulnerable. A further sampling-
based verification shows that around 71% of these Ama-
zon Alexa vApps and 29% of these Google Assistant
vApps are actually vulnerable. We provide detailed
results and analysis in Section VI-C.

Contributions. The main contributions of this paper
are highlighted as follows:

(i) We analyze the problem of the semantic inconsis-
tency of speech interpretation in vApp, and uncover that
this problem is deeply-rooted in NLU’s Intent classifier.

(ii) We model existing voice command errors to
enable systematic analysis. More specifically, with SRL
and NLP techniques, our modeling process is able to
convert linguistic knowledge into computational statis-
tical relational models.

(iii) We design an automated linguistic-model-
guided mutation fuzzing scheme, named LipFuzzer, to
assess Intent Classifier at a large scale. We will publish
the source code and associated linguistic models to help
fortify the security of vApp processing. We are also
communicating with those affected vApp developers
and platforms to assist in understanding and fixing the
security vulnerabilities/problems.

II. BACKGROUND

In this section, we first introduce Intent Classifier
in NLU. Next, we briefly discuss linguistic-related
LAPSUS. Then, we show a motivating example of how
a voice squatting attack affects the Intent Classifier.
Lastly, a threat model is presented.

A. Natural Language Understating (NLU) of vApp

As shown in Figure 1, after acoustic inputs (i.e.,
voice commands received by VA devices) are tran-
scribed into textual data, a typical VUI-based VA plat-
form processes the textual data to understand user’s
intents with NLU [7] [11]. As a result, intents are
generated for later vApp processing.

Intent Classifier. To produce accurate intents, NLU
performs a two-step procedure: NLP transformation and
Intent Classification. The NLP part follows standard
procedures such as Tokenization (word segmentation),
Coreference Resolution (COREF), and Named Entity
Recognition (NER) [14]. This gathers the syntax in-
formation of given textual data. Next, to understand the
semantic meaning, NLU further matches the syntax data
with a pre-built intent classification tree. In the tree,
the branch with the highest confidence will be selected
to produce intents. Note that there may exist vApp-
irrelevant built-in branches for matching VA’s default
services, such as for alarm and default music.

A classification tree is the result of aggregating a
VA system’s built-in services’ voice commands (e.g.
voice search and time query) and developer-defined
voice command templates created through Interaction
Model [2]. In this paper, our focus is to analyze how
malicious third-party developers can affect an Intent
Classifier. Thus, using high-level examples4, we intro-
duce how developers contribute to building the intent
classification tree in two parts: developer-defined built-
in intent generation, and custom intent definition. First,
to generate built-in intents for a vApp, a developer needs
to define the installation and invocation names.

1 #1.Developer-defined
2 "vApp Installation Name":
3 "The True Bank Skill",
4 "vApp Invocation Name":
5 "True Bank",
6 #2.Auto Generated Intents
7 "SYSTEM.InstallIntent":
8 {"Alexa, enable The True Bank Skill.",
9 "Alexa, install The True Bank Skill."},

10 "SYSTEM.LaunchIntent":
11 {"Alexa, open True Bank.",
12 "Alexa, ask True Bank to"}

Listing 1: Example Template with Built-in Intent.

As shown in Listing 1, an example vApp template
(defined through programming an Interaction Model)
is defined with an installation name at Line 2-3, and
the invocation name is defined at Line 4-5. The VA
system will then automatically generate the voice com-
mand templates (from Line 6 to 12) accordingly for
updating the classification tree. For instance, Amazon
Alexa typically follows a format like “Alexa, install
Installation Name” for installing a vApp. Other
built-in intents, such as SYSTEM.CancelIntent,
SYSTEM.HelpIntent, are tied to default words (e.g.
“stop”, “cancel”) with no requirement for developer
involvement.

1 #3 Custom Intents
2 "CUSTOM.BalanceQueryIntent":
3 {"Tell me my balance",
4 "Alexa, ask True Bank about my account balance.",
5 "What is my balance?"},
6 "CUSTOM.TransferIntent":
7 {"Alexa, ask True Bank to transfer money to Alice.",
8 "I want to send money to someone."}

Listing 2: Example Template with Custom Intent.

Then, as shown in Listing 2, a developer can also de-
fine customized intents with associated voice command
templates. For example, a developer can define a custom
intent CUSTOM.BalanceQueryIntent (at Line 2)
with corresponding voice command templates (at Line
3-5).

4Although low-level implementations of the classification process
can be different, based on our study, both Amazon Alexa and Google
Assistant’s high-level architectures are almost the same.

3

install

Root

bankthe true

skill

SYSTEM.InstallIntent CUSTOM.BalanceQueryIntent

tell

my

balance me

Fig. 2: Intent Classification Tree Example

In Figure 2, we show a simplified classification tree
based on the dependency relationship of NLP-processed
voice commands. The left nodes are generated from
a built-in installation voice command, i.e., “install the
True Bank Skill”, defined at Line 7-9 in Listing 1. The
right nodes are generated from a custom voice command
listed in Listing 2. With more vApp Interaction Models
aggregated into the tree, additional nodes will be added.
Any voice command input in a VA platform will be
processed with this tree.

Slot Values. A slot is the value associated with
an intent. Slots can be associated with intents by
using tags. For example, with the “transfer money”
voice command mentioned above, a developer can
define a voice command with a slot type. For ex-
ample, “Alexa, ask True Bank to transfer Money to
Alice.” (at Line 6-8 in Listing 2). “Alice” can be
defined as Contacts slot value that is associated with
CUSTOM.TransferIntent. This Contacts uses
default slot type SYSTEM.US_FIRST_NAME which
will force the NLU to automatically match common
people names used in the US, and hook the name
value with intents. Slot values are usually important
in processing voice commands as they contain the
key data for deciding the next step. For example, in
SYSTEM.InstallationIntent, a unique ID re-
lated to the installation name is associated with the slot
value to decide which vApp to install.

Fuzzy Matching. Another important feature enabled
in NLU is the fuzzy matching of users’ intent. It can
tolerate minor LAPSUS. For example, a voice intent for
launching “True Bank” can be interpreted correctly with
the voice command “open True Banks” or “opening
True Bank”. We note that Google Assistant always
applies fuzzy matching, but Amazon Alexa only enables
this feature after a vApp is installed. Hence, in Amazon
Alexa, a vApp Installation Name has to be spoken
exactly with minimum tolerance for any LAPSUS.

B. Speech Errors and LAPSUS

People misspeak words, and this has long been
studied as speech errors in the psycholinguistic
field [30] [22]. One study shows that most people make
somewhere between 7 and 22 verbal slips everyday [13].
Usually, misspeaking is considered to occur more often
for children, non-native speakers, and people who are
nervous, tired, anxious, or intoxicated. Speech errors
are classified into three categories: mispronunciation,
vocabulary errors, and grammatical [31] errors. For
example, in English, one could misuse the “-ed” form,
and this falls into grammatical errors.

In this paper, we motivate LAPSUS from daily
speech errors that may cause machines’ misunderstand-
ing problems. However, we consider that LAPSUS is
not limited to speech errors. Other types of linguistic
issues can also cause LAPSUS, such as combined words,
regional vocabulary, and other malformed speech.

install

Root

bankthe true

skill

truth

SYSTEM.InstallIntent

Victim vApp

The True Bank Skill

Malicious vApp:

The Truth Bank Skill

Fig. 3: Example vApp Squatting

C. Motivating Example

To better understand how Intent Classifier relates to
the speech misinterpretation, we show an example of
vApp squatting attacks using the vApp illustrated in
Listing 1 and Listing 2. In this example, a maliciously
uploaded vApp aims to hijack the victim vApp when
users try to install the victim vApp. The correct form
of installation voice command should be “Alexa, in-
stall The True Bank Skill”. An adversary intentionally
crafted his/her vApp with a confusing name of “The
Truth Bank Skill”. As a result, as shown in Figure 3,
a new leaf node of “truth” is injected into the intent
classification tree. Thus, if a user accidentally speaks
”Alexa, install The Truth Bank Skill”, the malicious
vApp will be installed and executed (with few or no
indication of which vApp is running). Similarly, as
mentioned above, any LAPSUS can take place in any
words/expressions when users are speaking to a VA.

4

Thus, it is crucial to evaluate the current Intent Classifier
design, which is closely related to the recently proposed
vApp squatting attack [28].

D. Threat Model

We assume that an adversary does not need to
access any internal implementations/configurations of
vApp including ASR, NLU components. We consider
the vApp-enabled devices are safe. Moreover, we argue
that a third-party vApp can be malicious in the vApp
store.

Attack consequences. We summarize a list of ex-
ample consequences of interacting with malicous vApps
as follows:

Denial of Service: This would occur if a device-
controlling vApp is hijacked. For example, when a user
says “Alexa, close the garage door” to a mismatched
malicious vApp instead of a legitimate one, the garage
door may be left open.

Privacy Leakage: vApps intimately connect users’
daily life to a more exposed digital world. By interacting
with improper vApps, private data could be handled
unexpectedly. For example, as reported in 2018, a
Portland family’s Alexa device accidentally captured a
private conversation, and then sent the audio recording
to someone whose number was stored in the family’s
contact list [4].

Phishing: Third-party vApps’ back-end processing
is fully controlled by the developers. To the best of
our knowledge, no proper monitoring (e.g. runtime
verification of third-party back-end processing) is de-
ployed. Audio can thus be manipulated by an attacker
at runtime, substituting a benign audio file with a “mali-
cious” audio file. For example, if an audio file, “Hello,
Welcome”, is played when a vApp is opened, it can
be substituted, requiring no permission or notification,
with “Sorry, a critical problem occurred in your Amazon
Pay, please answer with your account username and
password to know more.”

Other Consequences: It is clear that current
template-based intent classification is not able to en-
force accurate control of intended functionalities. As
a result, voice-controllable services are currently lim-
ited to mostly non-critical applications. However, as
VUI-based systems are quickly evolving to enable
richer functionalities, e.g., Amazon Alexa’s recently
announced third-party in-vApp purchasing [3], more
destructive and never-before-seen consequences could
be expected in the future.

III. FUZZING SPEECH MISINTERPRETATION

In this section, we first present detailed challenges
of fuzzing speech misinterpretation. Then, we briefly

illustrate our LipFuzzer design which addresses the
challenges accordingly.

A. Fuzzing Challenges

As mentioned in Section I, we aim to design a
mutation-based scheme to fuzz the problematic Intent
Classifier. However, it is challenging because of VA’s
unique features:

(i) Mutation Field: Deciding the mutation field is
not straight-forward since natural languages (e.g. voice
commands) are complicated in terms of the linguistic
structure. A voice command can be segmented into
different levels of linguistic units: from low-level pho-
netic features to high-level phrases consisting of a few
words. Therefore, we need to first decide what are the
most LAPSUS-relevant linguistic units. Additionally, we
need to select the proper tool to extract computational
linguistic data for mutation.

(ii) Space Explosion: A naive fuzzing solution is
to use random fuzzing to generate LAPSUS, e.g., at the
character level, we may mutate each character of a voice
command. However, such random fuzzing is impractical
as it would trigger a large number of resulting voice
command variations. For example, for character-based
mutation, a simple voice “open the truck” has 12 char-
acters and each character of a word can have at least 25
possible ways of mutation (e.g. “a” to “b”). Moreover,
a voice command can also be mutated with phonemes,
words, etc., which makes the potential fuzzing space
infinitely large. As a result, we need to find a strategy
to reduce the search space of finding effective LAPSUS.

B. Our solution: LipFuzzer

To solve the fuzzing challenges, we design Lip-
Fuzzer shown in Figure 4.

Linguistic Modeling. To overcome the difficulty of
locating mutation fields, we convert vague voice com-
mands (textual data) into computational fine-grained
linguistic data using NLP. Specifically, the textual data
are processed into a three-level linguistic structure
that is commonly used in studying linguistic speech
errors [21]: pronunciation, vocabulary, and grammar.
Thus, we design the Linguistic Modeling component of
LipFuzzer. As the input of linguistic modeling, we col-
lect relevant linguistic knowledge from both academic
materials and English teaching websites. Second, our
tool abstracts logic representation (i.e., predicate logic)
of these pieces of knowledge by manual parsing, or
automatic logic generation (if examples are provided).
Third, we construct linguistic models, namely LAPSUS
Models, by formulating Bayesian Networks (BNs) from
predicate logic entities we collected. Lastly, we train
BNs with statistical weights which measure how likely

5

Lapsus Model
Mutation

Engine

NLP Pre-processing

Seed

Voice

Command

BN

Formulation

Weight

Training

Logic

Abstraction

Lapsus

Voice

Commands
Verification

Linguistic Modeling Template Fuzzing

Linguistic

Knowledge

①

② ③

④

⑤ ⑥

Fig. 4: LipFuzzer Architecture

it is that a state transition (i.e., mutating a field to
result in another state) would take place. Our LAPSUS
Models can be used to answer both how a LAPSUS
will be generated, based on seed voice commands (i.e.,
collected templates used for matching vApp intents),
as well as the weights of these mutations. Lastly, The
LAPSUS Models are loaded with Template Fuzzing to
guide the Mutation Engine for generating LAPSUS voice
commands.

Template Fuzzing. To address the space explosion
problem when fuzzing voice commands, we leverage
LAPSUS-related linguistic knowledge to reduce the
search space to find effective LAPSUS. Thus, we design
our template fuzzing component which takes the input
of seed voice commands and generates LAPSUS voice
commands. Three basic modules are shown in Figure 4:
NLP Pre-processing, Mutation Engine, and Verification.
First, the NLP Pre-processing module extracts linguistic
information for mutating. Second, the Mutation Engine
mutates the fields such as phonemes, words, or grammar
entities based on LAPSUS Models. Third, the Verifi-
cation module synthesizes speech voice command to
verify whether a LAPSUS is effective.

IV. LINGUISTIC-MODEL-GUIDED FUZZING

In this section, we detail LipFuzzer’s design. First,
we define the input and output of LipFuzzer. Second,
we present the linguistic modeling component for pro-
ducing LAPSUS Models. Lastly, we illustrate Template
Fuzzing which is guided with LAPSUS Models.

A. Fuzzing Input & Output

Linguistic Knowledge. The input of linguistic mod-
eling is linguistic knowledge data shown in 1© of Fig-
ure 4. We choose LAPSUS-related linguistic knowledge
from multiple sources [12] [26] [1] [20] [24]. They are
part of many linguistic concepts (examples shown in
Table I) related to LAPSUS. With various descriptions
and discrete features, we have to manually select them.

As a result, we have a total of 498 pieces of knowledge
collected (which are expected to expand over time),
including 53, 264, 181 for sound-level, word-level,
and grammar-level, respectively. In addition, 223 of
them come with examples (e.g., target and LAPSUS in
Table I).

LAPSUS Models. The output of the linguistic mod-
eling component is shown in 3©. Multiple linguistic
models are generated after the mathematical modeling.
In this work, we use graph-based data structures to
represent linguistic knowledge statistically. Moreover,
a LAPSUS can be queried with proper query inputs (we
show details in Section IV-C).

Seed Input. The input of Template Fuzzing is seed
voice command templates (or seed templates) shown
in 4©. We collect seed templates from Alexa Skill
Store through web crawling. These seed templates are
example voice commands posted by vApp developers.
Although only a few developers would display all voice
commands in the store, most of these example voice
commands are essential ones. Thus, we believe these
voice commands are enough to demonstrate the design
flaw in Intent Classifier.

Fuzzing Output. In 6©, LipFuzzer generates mod-
ified voice commands based on seed inputs. A modi-
fication is done through a linguistic knowledge guided
mutation.

B. Linguistic Modeling

We build LAPSUS Models based on existing LAP-
SUS knowledge. As shown in 2© of Figure 4, LAPSUS
Models are generated with three modules: Logic Ab-
straction, BN Formulation, and Weight Training.

Logic Abstraction. As the first step of linguistic
modeling, we use predicate logic to represent collected
LAPSUS knowledge. The reason is that predicate logic
is widely used in traditional linguistic studies with
extensible representation. It is capable of using quan-
tified variables over non-logic LAPSUS, which then

6

TABLE I: Example LAPSUS with Logic Abstraction

Lapsus Description Examples Example Logic Abstraction

Blends† Two intended items fuse together
when being considered.

Target: person/people
LAPSUS: perple

∀ x,y,phoneme(END,"S-N",x),
phoneme(END,"P-L",y) →
phoneme_exch("S-N","P-L",-)

Morpheme
-Exchange

* Morphemes changes places. Target: He packed two trunks.
LAPSUS: He packs two trunked.

∀ x,y,suffix("ed",x),
suffix("s",y) →
suffix_exch("ed","s",-)

Regional
Vocabulary

‡ Everyday words and expressions
used in different dialect areas

Target: Entree
Lapsus: Hotdish (esp. Minnesota)

∀ x,word("entree",x),→
word_exch("entree","hotdish",-)

Category
Approximation

‡ Word substitution due to
the lack of vocabulary knowledge.

Target: Show my yard camera.
Lapsus: Turn on my yard camera.

∀ x,word("show",x),
→ word_exch("show","turn on",-)

Portmanteaux‡ Combined words that
are used.

Target: Eat the (late) brekfast
Lapsus: Eat the brunch

∀ x,word("late breakfast",x),
→ word_exch("late breakfast",
"brunch",-)

†: Pronunciation, ‡: Vocabulary, *: Grammar.

allows succeeding modeling and computation of LAP-
SUS knowledge. As our fuzzing scheme works with
pronunciation, vocabulary, and grammar level of lin-
guistic units, our predicate logic representations are also
defined with these three types.

However, as linguistic knowledge is typically de-
fined in a discrete manner, many are vague and difficult
to translate. Thus, we transform collected linguistic
knowledge into predicate logic representation in two
ways: manual abstraction and automated example-based
abstraction. A manual abstraction process works for
linguistic concepts that lack proper examples. We used
a structured approach for manual abstraction that aligns
well with our automated abstraction. For example, in
Table I, an example logic abstraction of blends indicates
that: for any two words, x and y, if x ends with phoneme
combination “S-N” (e.g., “son”) and y ends with “P-L”
(e.g., “ple”), then these two phoneme combinations may
be fused with each other.

For an automated logic abstraction, a differential
analysis is performed to extract the difference of a
pair of textual data to generate logic function used to
describe the difference. For example, we show the target
and LAPSUS form of linguistic knowledge in Table I
which can be used to perform a differential analysis.
In Morpheme Exchange [16], the correlation results of
examples will be the suffixes of “pack” and “trunk”
which are at the grammar level.

Bayesian Network (BN) Formulation. Bhme et al.
[17] showed that state transition graphs such as Markov
Chain can be used in modeling fuzzing processes. We
use BNs [27] to model LAPSUS statistically because
BNs are widely utilized in Statistical Relational Learn-
ing (SRL), which solves many AI problems including
Natural Language Understanding [25] [32].

In our model, we define BN as a joint probability

suffix(“ed”, -)

suffix(“s”, -)

suffix_exch(“ed”,

“s”, -)

∀x, y, suffix(“ed”, x),

suffix(“s”, y) ⟹
suffix(“ed”, “s”, -) Prexch

Fig. 5: BN Formulation Example

distribution over a finite set of states

BN : G = (E, V), P (1)

Our proposed BN data structure has two compo-
nents: a directed acyclic graph G = (E, V) with
each vertex representing a state of a possible form of
linguistic expressions; P , a set of probability variable
Pe which is indexed by E . Each state is defined as
a logic clause such as functions or variables (example
functions shown in Table II). The transition probabilities
pi,j define the processing from state vi to state vj . The
density of the stationary distribution formally describes
the likelihood that a certain LAPSUS event is exercised
by the fuzzer (for example, a state with no prefix to the
state with the prefix “mal-”). In fact, any pi,j in our
model is the quantified result of a transition state (i.e.,
by counting how many times the specific LAPSUS is
observed). For example, we count how many times a
suffix_exch("ed","s",-) occurs and calculate
a corresponding probability.

We show how to build BNs with the example in Fig-
ure 5. Initially, three nodes are created: the starting state
of a word with a suffix “ed”, the transition state showing
a suffix exchange, and an ending state indicating the
word with suffix “s” as the result of the exchange. The
transition state, however, will not be directly aggregated
into a BN. Instead, it will be calculated and shown as the

7

suffix(“ing”,-)

suffix(None,-)

suffix(“-s”,-)

tense(VBD,-)

0.32

0.410.22

suffix(“-ed”,-)

0.08

Fig. 6: BN Example with Weight Trained

probability weight from the starting node to the ending
node. With multiple paired nodes input to formulate a
BN, a multi-hop BN graph will be constructed. We show
an example grammar-level BN in Figure 6. (Note that
transition states are not shown.) In this study, we have
three different levels of LAPSUS Models based on the
above formulation process.

TABLE II: Logic Functions in BN Modeling

Function Examples

Pronunciation
phoneme(Op,Var phoneme(END,"S"
,Cons) "time"),

e.g.’T-AY-M-S’ (”times”)
Vocabulary

word(Op,Pos,Var word(AFTER,-
Cons) ,"please","enable"),

e.g.”enable please”
Grammar

suffix(Var, Cons) suffix("-s","wait"),
e.g. ”waits”

prefix(Var, Cons) prefix("mal-",
"function"),
e.g. ”malfunction”

tense(Var, Cons) tense(VBD, eat),
e.g.”ate”

Weight Training. After we have the initial BN
(i.e., a graph with all edge weights set as 1) ready,
we further train the weight (i.e., the probabilities of
successful transition states) through a user study with
audio recording. In this user study, we find sentences
or short expressions which contains the states in the
models. Then, we ask users in the study to repeat these
sentences or expressions (detailed setting is shown in
Section V-B). Next, we calculate how many times these
transitions are observed. Then the probabilities of the
transitions are calculated accordingly.

Further Refinement. Using only initially trained
models is not scalable and accurate. Thus, we refine
the model based on two rules. First, while fuzzing
is in process, when there are any unformulated states
observed, we add these states to the BN. Second, when

a state transition is observed, the observed edge’s weight
will have a hit added. Meanwhile, any other egress
edges from the starting state will be counted with a
miss.

C. Template Fuzzing

Once LAPSUS Models are prepared, as shown in
5© of Figure 4, we then conduct automated template

fuzzing based on seed templates. The Template Fuzzing
component takes inputs of seed templates in the form
of natural language. Then, seed templates are pre-
processed using NLP tools. Next, the mutation engine
performs guided fuzzing by querying LAPSUS Models.
Thereafter, our tool verifies if the derived LAPSUS is
effective by testing them with VA platforms.

NLP Pre-processing. Natural language such as
voice commands do not have enough information for
fuzzing tasks mentioned earlier. We leverage NLP tech-
niques to retrieve computational linguistic information
to build LAPSUS Models.

Pronunciation-level Information. We choose
phonemes [18] as sound-level linguistic information
since it is the basic sound unit. We extract phonemes
from each word by leveraging CMU Pronouncing
Dictionary in the NLTK package [29].

Vocabulary-level and Grammar-level Information.
For vocabulary linguistic information, we leverage basic
string metric (e.g., Word Match, Word Count). In order
to tackle the ambiguity of the natural language, we also
use grammar-level linguistic information, i.e., PoS Tag-
ging, Stemming and Lemmatization [10]. In particular,
PoS Tagging processes grammar information by tagging
tenses and other word contexts. The stemming and the
lemmatization are similar regarding functionality. The
goal of both stemming and lemmatization is to reduce
inflectional forms and sometimes derivationally related
forms of a word to a common base form [10].

Mutation Engine. After NLP pre-processing, seed
templates are now in the form of three-level linguistic
structure. We query each LAPSUS Model accordingly
using these data. Each query is a path exploration
process which returns all reachable states after a starting
state. However, there are still problems that need to be
solved for feasible fuzzing without path explosion.

How to guide the fuzzing? In our design, two strate-
gies can be used in guiding template fuzzing so that we
can avoid the large search space. First, we can guide
the fuzzing process based on the weight of each query
result. Another method is to guide the fuzzing based on
the distance, which refers to the number of hops a path
contains. We test both strategies as well as a randomized
approach in our evaluation.

8

Algorithm 1: LAPSUS Model Query Algorithm
output: Vresult

input : BN: G = (E, V), P
query: starting state S, cutoff C;

initialization:
prv ← 0;
V isited← {};
vcurrent ← S;
if S not in V then

Output: None;
end
while Size(V isited) < Size(V) do

vcurrent ← next state v ∈ V & v /∈ V istied;
calculate prcurrent based on P indexed by E;
if pri > C then

vcurrent → V isited;
else

truncate succeeding states of vcurrent
from V ;

end
end
Output : Vresult ← V ;

Here we show a weight-based model query algo-
rithm in Algorithm 1. First, as defined by BN, a query
input consists of both a starting state and a cutoff
value. Second, we check if the linguistic data exists
in the model. If there is no corresponding state, we
return a None message to indicate that no LAPSUS
will be be generated. Third, the algorithm traverses the
graph, vertex by vertex (both depth-first or breadth-first
works). If a visited vertex has a resulting weight (e.g.,
a probability value pr) that does not satisfy the cutoff
value, we truncate all the succeeding states as they will
never be reached. Fourth, we remember all the states
we visited until there are no more state left. Lastly, we
return the remaining V as a set of all possible states
that have a probability weight within the cutoff value.
For a hop-based query, we simply substitute pr to the
hop values.

How to decide a model query input? We decide
query input based on BN state definition. Both pro-
nunciation and grammar levels are queried for each
word. For the vocabulary level, we process different
combination of adjacent words based on the word count.
In other words, we only process word combinations
that exist in the models. As shown in Algorithm 1, a
query consists of three parts: the BNs (i.e., the LAPSUS
Models), the starting state for the input words, and the
cutoff value.

Verification. We verify if a LAPSUS is effective
by testing the synthesis audio with Alexa. To do that,
we first synthesize speech from generated LAPSUS

voice commands. Then we monitor the response of
the VA. For installation-related voice commands, we
check if the correct vApp is installed. For invocation
voice commands, we first install the testing vApp (if
needed), and then we test the LAPSUS. We define that a
LAPSUS is verified to be effective when it is incorrectly
interpreted by the VA system. For example, if the vApp
is not installed after an installation-related LAPSUS is
played to VA devices, then this LAPSUS is effective.

V. IMPLEMENTATION

A. LipFuzzer

We implement a prototype LipFuzzer using Python.
BNs are constructed with two components: DAG graphs
with weights (a unique ID is assigned to each vertex/n-
ode) and corresponding logic functions to these nodes.
A model query specifies the starting point of a path
search, then unrepeated paths are returned as query
results. All the query results from different models
are aggregated to remove repeated results. Then the
results can be sent to the verification step where voice
commands are converted to the corresponding audio
format.

Speech Synthesis. In order to work with real VA
platforms, We generate voice command records to ver-
ify the effectiveness of fuzzing results. For machine-
generated voice commands, we use two types of speech
synthesis methods to generate LAPSUS. The first speech
synthesis method (for Phoneme-level) is phoneme-to-
speech that is used for phoneme based fuzzing results.
In the NLP preprocessing, ARPABET phonetic code
representation [8] is used (with CMU Dict). However,
this code is not found in use for speech synthesis.
We still need to translate it into IPA (International
Phonetic Alphabet) phonetic representation for speech
output with tools such as ESpeak [15]. We use each
vApp platforms’ native speech synthesis tools: Amazon
Polly [6] and Google Cloud TTS [9]. The second
speech synthesis method is for vocabulary and grammar
levels. We direct input fuzzing results generated with
LipFuzzer to the above mentioned services and perform
a Text-to-Speech conversion.

B. User Study

We are interested in templates used in real vApps,
thus our evaluation should have real-world vApp de-
velopers and users involved. However, it is difficult to
directly acquire private data from VA providers such
as Amazon Alexa, Google Assistant. Thus, we need to
recruit volunteers to study how developers define voice
commands templates and how actual VA users interact
with VA devices. We use Amazon Mechanical Turk
(MTurk) crowdsourcing platform [5] for collecting data
related to both using and developing vApps.

9

TABLE III: LAPSUS Examples Collected from Real Users

Correct Form LAPSUS LAPSUS
Type

Installation Name ”Airport Security Line ”Airport Security Wait for Line” Grammar
Wait Times” ”Airport Security Line Waiting Time” Grammar

”Airport Line Wait Times” Vocabulary
”Thirty Two Money Tip ”Thirty Two Money Tip with Nick Truth” Pronunciation
with Nick True” ”Thirty Two Money Tip with Nick Drew” Pronunciation

”Thirty Two Money Trip with Nick Truth” Pronunciation
”Elon - Tesla Car” ”Elon Tesla Car” Pronunciation

Invocation
Voice Command ”Alexa, ask Elon to turn on the climate

control”
”Alexa, ask Elon Musk to turn on the climate control” Vocabulary

”Alexa, ask massage manager begin session
for number five”

”Alexa, ask massage messenger begin session for number
five”

Pronunciation

Remarks: 1) The red, bold mark indicates the words where errors exist. 2) The dash symbol “-” in “Elon -Tesla Car” is treated as an unnaturally long pause
between “Elon” and “Tesla” when matching the voice commands.

In using MTurk, we create survey assignments to
emulate different scenarios in a vApp lifecycle. We
have two groups of users: vApp developer group and
vApp user group. For a vApp developer, we collect
how many LAPSUS a normal developer can consider
when developing a vApp. We emulate the process of
vApp development to let a normal developer (with some
background in computer science) create a template in
our survey. There are 60 MTurk workers involved in
our developer-group user study.

For a vApp user, we collect three types of data. First,
we collect training data for initializing LAPSUS Models.
Second, we record voice commands to see what users
would say to install Alexa vApps using Skill Names.
Third, we ask users to repeat full voice command usages
(to emulate the real vApp usage they cannot access
the shown/played example commands while speaking).
For a solely speech-hearing setting as mentioned earlier,
participants are asked to remember Skill Names or voice
commands shown (or audio sound) to them and repeat
these Skill Names and voice commands with real Alexa
vApps. Their voices are recorded and verified with
the actual Alexa device. In total we have 150 MTurk
workers involved in our user-group user study.

Disclaimer. We conduct the user study under the permis-
sion of the University Institutional Review Board (IRB).
Also for ethical reasons, we do not include any harmful
code in the uploaded testing vApps when demonstrating
our work.

VI. EVALUATION

Prior work already mentioned that pronunciation er-
rors (we regard this as a type of LAPSUS) exist in using
vApps, and could be used to launch vApp squatting at-
tacks [28]. In previous sections, we illustrated that vApp
squatting attack is mainly caused by the vulnerable
Intent Classifier. In this section, we empirically verify

whether this is the case, and whether our LipFuzzer
can systematically discover those vulnerable templates.
More specifically, our evaluation has three goals:

(i) We empirically verify that the problematic Intent
Classifier can lead to speech misinterpretation related to
LAPSUS.

(ii) We show LipFuzzer’s performance in terms of
the LAPSUS Models’ accuracy and effectiveness.

(iii) We use LipFuzzer to reveal that problematic
templates widely exist in both Amazon Alexa and
Google Assistant platforms.

A. Intent Classifier Evaluation

First of all, we want to verify that the vulnerable
Intent Classifier, rather than ASR, should be mainly
blamed for incurring semantic misinterpretation. We
first leverage user-group data from the user study to
locate LAPSUS. Then, with these LAPSUS voice com-
mands, we input synthesized audios (so that ASR pro-
cessing is guaranteed to be correct) to the Amazon Echo
device to check if the semantic inconsistency still exists.

1) Experiment Setup: For the first 40 users in the
user study, we randomly select 30 Alexa vApps (from
the pool of top 20 Skills in each category) with example
voice commands provided for them to emulate the vApp
usage. As a result, we collected 521 audio records.
These audios are collected and played to the Alexa Echo
device in our lab.

2) What are the real LAPSUS? The goal of this
experiment is to confirm the existence of LAPSUS
in the real world. From the collected audio records,
we first remove unqualified audio samples: low-quality
recording (usually too much noise and not recognizable)
and incomplete voice commands. After that, we play
filtered audio (312/521) to the device and make sure
they will not interfere with each other (by ending a skill

10

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
u

tp
u

t
La

p
su

s
P

o
p

u
la

ti
o

n

(%
)

Ef
fe

ct
iv

e
La

p
su

s
R

at
e

(%
)

Probability(BN Weight) Cutoff

Effective Lapsus

Output Lapsus

(a) Probability Cutoff

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

O
u

tp
u

t
La

p
su

s
P

o
p

u
la

ti
o

n

(%
)

Ef
fe

ct
iv

e
La

p
su

s
R

at
e

(%
)

Distance (BN Hops) Cutoff

Effective Lapsus

Output Lapsus

(b) Distance Cutoff

0

10

20

30

40

50

60

70

80

90

100

5 10 20 40 100

Ef
fe

ct
iv

e
La

p
su

s
R

at
e

(%
)

Random Select Number

(c) Random Select

Fig. 7: LAPSUS Cutoff Selection Strategies

session after each play). As a result, 61.86% (193/312)
of them are processed with intended skills and func-
tionality. This means that 38.14% of the recorded voice
commands are LAPSUS. We showcase examples of these
LAPSUS in Table III. In this table, we can observe
all three types of LAPSUS in this initial experiment.
Note that for the installation stage voice commands,
we use standard installation commands, ”Alexa, enable
[SKILL INSTALLATION NAME].”

3) How much do templates contribute to vApp squat-
ting? We use the 119 identified LAPSUS and try our best
to remove the effect of ASR issues. Then, the remaining
LAPSUS will be confirmed to be caused by improper
semantic interpretation of the Intent Classifier.

We first manually transcribe those LAPSUS audios
into text. We still use MTurk with each audio tran-
scribed by 2 workers (the results are correlated). We
use 109 successfully transcribed results that are agreed
by 2 workers who work on the same LAPSUS audio.
Next, the transcribed texts are processed by speech
synthesis tools. We play them to the Amazon Echo
again to check if they can be processed with intended
skills and functionality.5 Our result shows that 77%
(84/109) still incur the semantic inconsistency, which
means LAPSUS still exists. We notice that most of
the remaining 25 ASR-induced LAPSUS are caused by
accent. In conclusion, we empirically verified that the
Intent Classifier contributes most in the problem of
semantic misinterpretation.

B. LipFuzzer Evaluation

We now evaluate LipFuzzer’s accuracy and effec-
tiveness. First, we present how different cutoff strategies
perform in generating LAPSUS. As a result, the prob-
ability cutoff strategy is selected because it conducts
the fuzzing more accurately. Second, we show that our
refinement can further improve the accuracy. Specifi-
cally, we showcase the fuzzing accuracy in terms of
the effective LAPSUS number (described in Section IV)

5We also verified the ASR audio-to-text transcription results (in
Alexa web portal Setting/History) with synthesis text input, and they
are the same.

over the total number of generated test cases (i.e., output
LAPSUS). Third, we present the fuzzing effectiveness
with average LAPSUS produced from a seed template
(i.e., a voice command).

1) Experiment Setup: We choose to test our tool
with the top 20 vApps in each category (based on page
ranking). Thus, we have a total of 460 templates with
1104 voice commands. For the LAPSUS Models (all
three levels: pronunciation, vocabulary, and grammar),
we chose both refined and initial models for experi-
menting. In refined models, collected LAPSUS results
from Section VI-A are used to improve LAPSUS Models
similar to the process of model building (shown in
Figure 5).

2) Cutoffs for Different Query Strategies: Using
cutoff is important in guiding linguistic-model-guided
fuzzing because there can be many ineffective fuzzing
results (i.e., LAPSUS which only have a low possibility
of being spoken by users). Thus, we examine how
different cutoffs will affect the effective LAPSUS rate.
Our goal is to find a cutoff criterion that is best for
producing useful LAPSUS. Note that, during the fuzzing,
we only get one mutation for each voice command.

We present evaluation (in Figure 7) for different
strategies: two strategies mentioned in Section IV-C and
a randomized approach. We sample the results with 0.1
probability. Figure 7(a) shows that probability cutoff can
be used to produce more LAPSUS with lower percentage
of ineffective LAPSUS. In other words, the probabilities
(BN weights for edges) can be used to guide the fuzzing
effectively. Also, both distance-based and random selec-
tion strategies, shown in Figure 7(b)&(c), are not able
to reduce the searching space successfully.

The Cutoff Value. In the rest of our evaluation,
we empirically choose a probability cutoff value of
0.483 to be a threshold for model query. That means
any query results within the cutoff can be used to
generate LAPSUS. We use this value for our prototype
demonstration. By applying this cutoff value, we cut
off 49.9% of generated LAPSUS population with the
effectiveness rate increased to 59.52%.

11

0

10

20

30

40

50

60

70

80

90

100

Before Refinement After Refinement Cutoff Applied

Ef
fe

ct
iv

e
La

p
su

s
R

at
e

(%
)

Fig. 8: Fuzzing Accuracy

1

10

Before Refinement After Refinement Cutoff Applied Developer-defined

A
ve

ra
ge

 L
ap

su
s

p
er

 V
o

ic
e

C
o

m
m

an
d

 (
A

LV
C

)

Fig. 9: Fuzzing Effectiveness

3) Accuracy: Then, in Figure 8, we show the rates of
effective LAPSUS with refinement and cutoff used. After
the refinement, the effective LAPSUS rate is increased
from 37.7% to 42.5%. Then, with a cutoff applied, the
rate is further increased to 59.52%. This indicates that
the refinement and the cutoff can indeed improve the
linguistic models’ accuracy.

4) Effectiveness: Next, we show that the LipFuzzer
can effectively locate problematic templates. We use
the metric of Average LAPSUS per Voice Command
(or ALVC) to evaluate the effectiveness of locating
LAPSUS. In Figure 9, we show that, the refined LAPSUS
Models provide more LAPSUS (i.e., from 10.5 to 15.92
ALVC) with 1,104 seed templates. Applying the cutoff,
will then reduce the ALVC to 9.57 because fewer states
in the models are involved.

Furthermore, we show that LipFuzzer can identify
the semantic inconsistency in the real world. We com-
pare templates defined by developers (from the user
study) and LAPSUS Model guided fuzzing results to
check if LAPSUS Model is effective in finding the
semantic inconsistency caused by the misinterpretation
in the Intent Classifier. Specifically, to find ALVC
data from mock vApp development, we gathered 60
MTurk workers who have basic engine ring background
(i.e., using MTurk’s filtering function). We show them
example voice commands, and let them think of what
possible variations a vApp user could speak (note that
we intentionally let these developers think of LAPSUS).
In total, we evaluated 300 voice commands with an
ALVC of only 2.12. Thus, we can empirically confirm
that our proposed linguistic-model-guided fuzzing ap-
proach is significantly better in finding more LAPSUS

than manual effort (which is less efficient and scalable).

5) Time Overhead: The current LipFuzzer imple-
mentation takes an average 11.4 seconds per seed tem-
plate fuzzing (excluding the verification). This large
time overhead is mainly caused by the slow local
NLP pre-processing (based on our implementation and
regular PC setting). More specifically, it is due to the
time-consuming dictionary-based searching. However,
the NLP pre-processing is only used for new seed
inputs. Thus, it is a one-time processing overhead.
We consider it reasonable for an offline fuzzing tool.
Moreover, it could be optimized with cloud outsourcing
and NLP pipeline optimization in the future.

C. vApp Store Evaluation

In this section, we further apply LipFuzzer to eval-
uate real-world vApp stores.

1) Experiment Setup: We evaluate LipFuzzer by
using templates crawled from the Amazon Alexa Store
and Google Assistant Store. For Amazon Alexa Store,
we acquired a seed template dataset of 98,261 voice
commands from 32,892 vApps. For Google Assistant
Store, we gathered 2,328 vApps with 9,044 voice com-
mands. Moreover, we apply the same LAPSUS Models
used in LipFuzzer evaluation.

2) Potentially vulnerable vApps: We define a poten-
tially vulnerable vApp as one that uses voice command
template(s) that have corresponding LAPSUS6 generated
by LipFuzzer. We note that they may not be actually
vulnerable because some LAPSUS may be ineffective
for a vApp (e.g., LAPSUS trigger nothing unintended).
As shown in Table IV, for Alexa vApps, LipFuzzer
generated 497,059 LAPSUS with 32,892 crawled vApps.
Among them, 26,790 vApps are potentially vulnerable
to hijacking attacks. Similarly, our tool finds that 2,295
Google Assistant vApps are potentially vulnerable.

3) Verified vulnerable vApps: We further evaluate
what percentage of potentially vulnerable vApps can be
actually vulnerable. It is worth noting that it takes a
very long time to verify all related LAPSUS (e.g., 30
seconds to 1 minute for just one LAPSUS verification
using a real vApp device). Thus, we use a sampling
approach in this work. To be specific, we randomly pick
1,000 Amazon Alexa vApps and 200 Google Action
vApps for real device verification. In the verification,
we choose installation- (or invocation-) related LAPSUS
from selected vApp’s fuzzing result.7 Then, we automat-

6We exclude those LAPSUS originated from key words or wake-up
words.

7Note that we do not use non-installation/invocation LAPSUS
because, without vApps’ internal context, responses are difficult to
judge whether successful or not. For example, it is not straightforward
to find the difference between the functionalities in the same vApp
using an automatic and scalabe way.

12

TABLE IV: vApp Store-wide Fuzzing Results

Store Name Crawled
vApp #

LipFuzzer-
generated
LAPSUS #

Potentially
vulnerable
vApp #

Verified vulnerable
vApp %
(Sampled)

Potentially vulnerable
vApps #
Zhang et al. [37]

Vulnerable
vApps #
Kumar et al. [28]

Amazon Alexa 32,892 497,059 26,790 71.5% 531 25
Google Assistant 2,328 11,390 2,295 29.5% 4 N/A

Remark: N/A means not applicable because Google Assistant was not evaluated in the work.

ically play voice commands and transcribe the response.
Next, we determine if a vApp is triggered based on
a few conservative heuristics, e.g., if Amazon Alexa
returns “I can’t find that skill”, then it is an effective
LAPSUS and thus the corresponding vApp is vulnerable.
As a result, a total of 715 (71.5%) Amazon Alexa
vApps and 59 (29.5%) Google Assistant are verified
to be vulnerable. We note that these percentages only
represent lower bounds for the actual vulnerable vApps,
because we only use very conservative heuristics in
the automatic verification. For example, our verification
will not report vulnerable when there is no response
(silence), because both vulnerable and not vulnerable
vApps can have no response, and without detailed
understanding of the context/function of the vApp, it
is hard to tell. We found that this occurred a lot in both
platforms, particularly in Google Assistant vApps.

4) Result Comparison: We also compare our fuzzing
results with existing [28] or concurrent work [37] and
show that LipFuzzer can find much more vApps that can
potentially lead to speech misinterpretation. Compared
with our automated and systematic approach, existing
works are limited. For example, in [28], the authors
manually found 25 vulnerable skills, and in [37], only
a small number of vApps were found to be potentially
vulnerable.

TABLE V: LAPSUS for Example vApps

Intended
Voice Command LAPSUS

Effective
LAPSUS?

”Paypal” ”Pay-ple” 3
(installation) ”Pay-ples” 3

”ask PayPal to
check my balance”

”ask PayPal to check my balances” 7
”ask PayPal to check my balancing” 7
”ask PayPal to check my balancing” 7
”ask PayPal to checks my balance” 7
”ask PayPal to checking my balance”7

”Skyrim Very
Special Edition”
(installation)

”Skyrim Very Special Edit” 3
”Skyrim Special Edition” 3
”Skyrim Very Specially Edition” 7
”Sky-ram Special Edition” m
”Sky-im Special Edition” m

3: Effective, 7: Ineffective, m: Maybe Effective

D. Case Study

1) Using LipFuzzer on real vApps: We demonstrate
how LipFuzzer works on two popular Amazon Alexa
vApps, shown in Figure 10. The results are presented
in Table V. First, we observe that Paypal uses a simple,

(a) Paypal Alexa vApp

(b) Skyrim Alexa vApp

Fig. 10: Example Alexa Skills

short name as its vApp installation name. As a result,
only two pronunciation-based LAPSUS are generated
and verified from LipFuzzer. Similarly, Paypal uses
straightforward voice commands after installed, and
LipFuzzer only reports simple LAPSUS which are al-
ready protected by the system’s default fuzzy matching.
The Skyrim game vApp, on the other hand, is shown to
be more vulnerable. Its name is long, and many effective
LAPSUS are generated using LipFuzzer. Note that the
m mark means that, when verifying the LAPSUS, the
VA responds with a guess rather than “not found”.

Security Implication: The aforementioned results
show that simple and unique names are more difficult
to be misspoken according to our linguistic models.
With the current template-based Intent Classifier design,
using simple and unique voice commands is the most
effective way of preventing vApp squatting attacks.
However, it is difficult to achieve given the increasingly
growing vApp population. LipFuzzer, in an adversarial
setting, provides an automatic and scalable way to find
these unsafe voice commands.

2) Attacking “True Bank”: To demonstrate the prac-
ticality of our linguistic-model-guided fuzzing, we show
a real attack case study. In Figure 11, we present an

13

1. #Installation_name:
The Truth Bank Skill

2. #Invocation_name: True Bank

⋮

1. #Installation_name:
The True Bank Skill

2. #Invocation_name: True Bank
3. Voice Command:

“Alexa, enable #Installation_name”

1. #Installation_name:
True Bank

2. #Invocation_name:
True Bank

⋮

LipFuzzer

Fig. 11: Attacking vApp with LAPSUS

example Interaction Model (i.e., a set of voice command
templates) of a victim Alexa vApp which we created.
To attack it, we use LipFuzzer-generated LAPSUS to
create 4 malicious vApps which were uploaded to the
Alexa Skill Store.

To evaluate whether users would actually speak
those LAPSUS, we conducted a simple user study. We
collected 30 users’ audio recordings from the user-
group by showing them example voice commands (from
victim vApp), and allowing them to speak to the VA.
Thereafter, we verified the recorded voice commands
with Amazon Alexa. As a result, a total number of 3
malicious vApps are invoked, which clearly demonstrate
the practicability of the attack. Note that, after this
evaluation, all experimental vApps have been removed
from the store.

VII. RELATED WORK

Attacking ASR through Acoustic Channels. For
audible voice command attacks, Diao et al. [23] pro-
posed to play prepared audio files using non-hidden
channels that are understandable by a human listener.
Tavish et al. [34] then presented Cocaine Noodles that
exploits the difference between synthetic and natural
sound to launch attacks that can be recognized by
a computer speech recognition system but not easily
understandable by humans. To achieve a better result,
a white box method [19] was used based on knowl-
edge of speech recognition procedures. With complete
knowledge of the algorithms used in the speech recog-
nition system, this improved attack guarantees that the
synthetic voice commands are not understandable by a
human. For the threat model, Audible Voice Command
Attacks require the attackers’ speakers to be placed at a
physical place near victims’ devices ([19] fails with dis-
tances over 3.5 meters). Recently, CommandSong [35]
was proposed to embed a set of commands into a song,
to spread to a large amount of audience.

More powerful attacks using inaudible voice com-
mands were proposed in [36] [33]. They leverage non-
linearity of microphone hardware used in almost all
modern electric devices. Humans are not able to rec-
ognize sound with frequency over 20 kHz, and micro-
phone’s upper bound of recordable range is 24 kHz. For

this threat model, Inaudible Voice Command Attacks
also require the attackers’ devices to be physically close
to the victims’ devices (in feet range).

Attacking ASR with Misinterpretation. Kumar et
al. [28] presented an empirical study of vApp squatting
attacks based on speech misinterpretation. Moreover,
as a concurrent work, [37] also showcases a similar
approach to exploit the way a skill is invoked, using
a malicious skill with similarly pronounced name or
paraphrased name to hijack the voice command meant
for a different skill. Different from them, our work
is the first to systematically explore the root-cause in
NLU and Intent Classifier, and create the first linguistic-
model-guided fuzzing tool to uncover significantly more
vulnerable vApps in existing VA platforms.

VIII. DISCUSSION

We acknowledge that BNs could be computationally
expensive and very data dependent. Different methods
such as Neural Networks and other machine learning
techniques may be applied in the future to improve
LAPSUS Models. However, in this work, we think that
BN is sufficient to demonstrate the effectiveness.

In this work, we only collect publicly accessible
voice commands for templates, and there are more
defined in templates but inaccessible. In the future, we
plan to collect a much larger dataset of LAPSUS in real-
world usage. With a more complete dataset, we could
produce LAPSUS more effectively.

Our future work will also improve the model with
more complicated logical representations so that we can
cover more LAPSUS. For example, we could use pred-
icate logic to represent hybrid LAPSUS across different
models. Improving the training and mutation process of
LipFuzzer is another direction of our future work.

IX. CONCLUSION

In this paper, we systematically study how Intent
Classifier affects the security of popular vApps. We first
find that the currently used vApp templates can incur
dangerous semantic inconsistencies. Then, we design
the first linguistic-guided fuzzing tool to systematically
discover the the speech misinterpretations that lead to
such inconsistencies. We plan to publish our source
code and dataset used in this work to help not only
vApp developers but also VA system designers to create
better templates with fewer speech misinterpretations.
This will also benefit the research community to work
on this important IoT security area.

ACKNOWLEDGMENT

This material is based upon work supported in part
by the National Science Foundation (NSF) under Grant

14

no. 1816497 and 1700544. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of NSF.

REFERENCES

[1] 30 common grammar mistakes to check for in your writing.
https://blog.hubspot.com/marketing/common-grammar-
mistakes-list.

[2] Alexa skill interaction model.
https://developer.amazon.com/docs/alexa-voice-
service/interaction-model.html.

[3] Amazon alexa in-skill purchasing.
https://developer.amazon.com/blogs/alexa/post/b8101123-
f1b9-494c-8bbb-53e3850a1123/in-skill-purchasing-offers-jeff-
bolton-s-voice-business-a-new-level-of-monetization.

[4] Amazon echo recorded and sent couple’s conversation all
without their knowledge. https://www.npr.org/sections/thetwo-
way/2018/05/25/614470096/amazon-echo-recorded-and-sent-
couples-conversation-all-without-their-knowledge.

[5] Amazon mechanical turk crowdsourcing platform.
https://www.mturk.com/.

[6] Amazon polly: Turn text into lifelike speech.
https://www.mturk.com/.

[7] Amazon prize: The socialbot challenge.
https://developer.amazon.com/alexaprize/2017-alexa-prize.

[8] Arpabet phonetic transcription codes.
https://en.wikipedia.org/wiki/ARPABET.

[9] Google cloud text-to-speech. https://cloud.google.com/text-to-
speech/.

[10] Introduction to information retrieval: Stemming
and lemmatization. https://nlp.stanford.edu/IR-
book/html/htmledition/stemming-and-lemmatization-1.html.

[11] Natural language understanding google ai.
https://ai.google/research/teams/nlu/.

[12] Oxford living dictionary - confusable words.
https://www.merriam-webster.com/dictionary/confusable.

[13] Slips of the tongue. https://www.psychologytoday.com/articles
/201203/slips-the-tongue.

[14] Stanford corenlp. https://stanfordnlp.github.io/CoreNLP/index.
html.

[15] Text-to-speech tools. https://help.ubuntu.com/community/Text
ToSpeech.

[16] Wikipedia speech error. https://en.wikipedia.org/wiki/Speech error.

[17] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury,
“Directed greybox fuzzing,” in Proc. of the 2017 ACM CCS,
2017.

[18] C. Boitet and M. Seligman, “The whiteboard architecture:
A way to integrate heterogeneous components of nlp sys-
tems,” in Proceedings of the 15th conference on Computational
linguistics-Volume 1, 1994.

[19] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields,
D. Wagner, and W. Zhou, “Hidden voice commands.” in
USENIX Security Symposium, 2016, pp. 513–530.

[20] G. S. Dell, “Representation of serial order in speech: Evidence
from the repeated phoneme effect in speech errors.” Journal of
Experimental Psychology: Learning, Memory, and Cognition,
vol. 10, no. 2, p. 222, 1984.

[21] G. S. Dell, C. Juliano, and A. Govindjee, “Structure and
content in language production: A theory of frame constraints in
phonological speech errors,” Cognitive Science, vol. 17, no. 2,
pp. 149–195, 1993.

[22] G. S. Dell, K. D. Reed, D. R. Adams, and A. S. Meyer, “Speech
errors, phonotactic constraints, and implicit learning: A study
of the role of experience in language production.” Journal of
Experimental Psychology: Learning, Memory, and Cognition,
vol. 26, no. 6, p. 1355, 2000.

[23] W. Diao, X. Liu, Z. Zhou, and K. Zhang, “Your voice assistant
is mine: How to abuse speakers to steal information and
control your phone,” in Proceedings of the 4th ACM Workshop
on Security and Privacy in Smartphones & Mobile Devices.
ACM, 2014, pp. 63–74.

[24] A. W. Ellis, “Errors in speech and short-term memory: The
effects of phonemic similarity and syllable position,” Journal
of Verbal Learning and Verbal Behavior, vol. 19, no. 5, pp.
624–634, 1980.

[25] L. Getoor and B. Taskar, Introduction to statistical relational
learning. MIT press Cambridge, 2007, vol. 1.

[26] J. H. Hulstijn and W. Hulstijn, “Grammatical errors as a
function of processing constraints and explicit knowledge,”
Language learning, vol. 34, no. 1, pp. 23–43, 1984.

[27] K. Kersting, L. De Raedt, and S. Kramer, “Interpreting bayesian
logic programs,” in Proceedings of the AAAI-2000 workshop
on learning statistical models from relational data, 2000, pp.
29–35.

[28] D. Kumar, R. Paccagnella, P. Murley, E. Hennenfent, J. Mason,
A. Bates, and M. Bailey, “Skill squatting attacks on amazon
alexa,” in 27th USENIX Security Symposium, 2018.

[29] E. Loper and S. Bird, “Nltk: The natural language toolkit,” in
Proc. of the ACL Workshop on Effective tools and methodolo-
gies for teaching natural language processing and computa-
tional linguistics, 2002.

[30] A. S. Meyer, “Investigation of phonological encoding through
speech error analyses: Achievements, limitations, and alterna-
tives,” Cognition, vol. 42, no. 1-3, pp. 181–211, 1992.

[31] R. Pfau, Grammar as processor: A Distributed Morphology
account of spontaneous speech errors. John Benjamins
Publishing, 2009, vol. 137.

[32] M. Richardson and P. Domingos, “Markov logic networks,”
Machine learning, vol. 62, no. 1-2, pp. 107–136, 2006.

[33] N. Roy, H. Hassanieh, and R. Roy Choudhury, “Backdoor:
Making microphones hear inaudible sounds,” in Proceedings of
the 15th Annual International Conference on Mobile Systems,
Applications, and Services. ACM, 2017, pp. 2–14.

[34] T. Vaidya, Y. Zhang, M. Sherr, and C. Shields, “Cocaine
noodles: exploiting the gap between human and machine speech
recognition,” WOOT, vol. 15, pp. 10–11, 2015.

[35] X. Yuan, Y. Chen, Y. Zhao, Y. Long, X. Liu, K. Chen, S. Zhang,
H. Huang, X. Wang, and C. A. Gunter, “Commandersong:
A systematic approach for practical adversarial voice recog-
nition,” in 27th USENIX Security Symposium, 2018.

[36] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu,
“Dolphinattack: Inaudible voice commands,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 103–117.

[37] N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, and F. Qian,
“Dangerous skills: Understanding and mitigating security risks
of voice-controlled third-party functions on virtual personal
assistant systems,” IEEE Security & Privacy, 2019.

15

