
Deferred Concretization in Symbolic Execution via Fuzzing
Awanish Pandey

Computer Sc. and Engg.
IIT Kanpur, India

awpandey@cse.iitk.ac.in

Phani Raj Goutham
Kotcharlakota∗
IIT Kanpur, India

gouthamk@alphonso.tv

Subhajit Roy
Computer Sc. and Engg.

IIT Kanpur, India
subhajit@cse.iitk.ac.in

ABSTRACT

Concretization is an effective weapon in the armory of symbolic
execution engines. However, concretization can lead to loss in cov-
erage, path divergence, and generation of test-cases on which the
intended bugs are not reproduced. In this paper, we propose an
algorithm, Deferred Concretization, that uses a new category for
values within symbolic execution (referred to as the symcrete val-
ues) to pend concretization till they are actually needed. Our tool,
Colossus, built around these ideas, was able to gain an average
coverage improvement of 66.94% and reduce divergence by more
than 55% relative to the state-of-the-art symbolic execution engine,
KLEE. Moreover, we found that KLEE loses about 38.60% of the
states in the symbolic execution tree that Colossus is able to re-
cover, showing that Colossus is capable of covering a much larger
coverage space.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Formal software verification; Dynamic analysis.

KEYWORDS

Symbolic Execution, Software Testing, Fuzzing
ACM Reference Format:

Awanish Pandey, Phani Raj Goutham Kotcharlakota, and Subhajit Roy. 2019.
Deferred Concretization in Symbolic Execution via Fuzzing. In Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA ’19), July 15–19, 2019, Beijing, China. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3293882.3330554

1 INTRODUCTION

Accurate modeling of real-world constructs like external libraries,
floating-point operations, system calls, vector instructions, and non-
linear arithmetic is perhaps the biggest challenge for symbolic exe-
cution. Symbolic execution engines circumvent these challenges via
concretizations: they natively execute the problematic instructions,
and then, pull the result of the operation (as concrete values) back
into symbolic execution, thereby allowing the analysis to continue.
Symbolic execution enabled with concretizations (often referred to
∗Now at Alphonso Labs Private Limited, India

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’19, July 15–19, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6224-5/19/07. . . $15.00
https://doi.org/10.1145/3293882.3330554

as Dynamic Symbolic Execution) has been applied to wide-spread
applications from program repair [22, 23], debugging [3, 10], bug
synthesis [27], regression testing [20] and failure clustering [24].

Though effective at handling real-world code, concretization
introduces some problems:
• Loss in Coverage: some program paths are omitted from
the analysis, leading to missed bugs and loss in coverage;
• False Positives: the execution can be led into infeasible
program paths, potentially raising false alarms;
• Reproducibility: generation of incorrect failing tests, i.e, a
failure cannot be replayed on the generated test-case.

In this paper, we discuss how each of the above guarantees gets
broken due to concretizations and, then, detail our solution,Deferred
Concretization. Our algorithm introduces a new category of (sym-
bolic) values, symcretes, to handle concretized values (like return
values from external library calls). A symcrete value masquerades as
a symbolic value for almost all purposes but also “hides" a concrete
value consistent with the respective execution path (resulting from
concretizations). As the symcrete values are retained in symbolic
constraints, it prevents any loss of information that could have led
to loss in coverage, false-positive, or irreproducibility.

As the witnesses in the symcrete values feed from program con-
structs that cannot be modeled symbolically (like external library
calls), we design a fuzz-based constraint solver to handle constraints
on symcrete values. Our fuzz-based solver translates satisfiability
queries on logical constraints to reachability queries on programs
and, then, uses an off-the-shelf fuzzer on the generated program.
If the execution along any path is prohibited by the current set of
concrete values, we use the fuzz-based solver to search for new
concrete values that can draw the symbolic execution engine along
the required path; this allows us to recover from loss in coverage
due to concretization. The breakthrough improvements in fuzzing
in the last couple of years (which, we believe, will continue) makes
this an interesting approach for the formal methods community.

Our tool, Colossus, improves the coverage significantly for
many programs: for instance, it increases the coverage in cut from
amere 5.37% to 71.81% (an improvement of over 1237%); many other
programs like date,mkfifo,split,tr show an increase in cover-
age over 27% (i.e. an improvement by over 115%) over KLEE[6]. We
conducted a deeper analysis on state coverage: we found that Colos-
sus is able to cover about 38.60% (on an average) more states than
KLEE (that are otherwise lost to concretizations). Finally, in our
experiments, Colossus improves (reduces) the rate of divergence
by over 55% relative to KLEE.

The contributions of this work are as follows:
• We articulate the core problems that lead to loss in coverage,
path divergence and irreproducibility in symbolic execution.

228

https://doi.org/10.1145/3293882.3330554
https://doi.org/10.1145/3293882.3330554

ISSTA ’19, July 15–19, 2019, Beijing, China Awanish Pandey, Phani Raj Goutham Kotcharlakota, and Subhajit Roy

• We propose Deferred Concretization to solve the above prob-
lems: our algorithm introduces a new category of (symbolic)
values in the symbolic execution, symcrete, to drive demand-
driven concretizations;
• We design a fuzz-based constraint solver that employs an
off-the-shelf fuzzer to solve constraints on symcrete values;
• We build our ideas into a tool, Colossus; our experiments
demonstrate that our ideas improve upon a state-of-the-art
symbolic execution engine, KLEE, in all three dimensions—
coverage, divergence and reproducibility of tests.

2 OVERVIEW

2.1 Preliminaries

The path conditionψp of a program path p is a logical formula that
captures the set of inputs that exercise the pathp. A pathp is feasible
if its path conditionψp is satisfiable; otherwise p is infeasible.

An execution state, S, is maintained as a tuple (l ,pc,Ω): the
location l , the path condition pc and the variable map Ω. The vari-
able map, Ω : v 7→ {α ,c}, maps each program variable v ∈ V
to a symbolic value α (notated using greek letters) or a concrete
value c (notated using latin characters a–e). We use strings or latin
characters u–z for variable names.

2.2 Symbolic Execution (SE)

Symbolic execution (SE) has evolved over the last three decades
with multiple algorithms; today, most SE engines belong to the
following two primary styles [8]):
• Concolic Testing: Concolic execution, employed in suc-
cessful projects like CREST [5] and DART [18], commence
with random inputs (say I⃗0); once the execution terminates,
the engine uses the generated path condition (pc0) of the
current path to construct a new path condition pc1 (say by
negating the last predicate [18]); solving pc1 provides inputs
(I⃗1) that would explore a new path. The program is again
executed with I1, repeating the above process.
• Execution-Generated Testing (EGT): The EGT approach,
employed by tools like EXE [7], SPF [25] and KLEE [6], fork
a symbolic execution at each conditional branch (where both
directions are feasible) to maintain multiple partial paths,
orchestrating their executions simultaneously.

We describe our algorithm on EGT-style symbolic execution; in
particular, our prototype is built on the state-of-the-art EGT-style
symbolic execution engine, KLEE.

Algorithm 1 shows the Execution-Generated Testing (EGT) sym-
bolic execution algorithm; please ignore the parts shaded in

color (these refer to our modifications to the base algorithm

that we discuss later). The algorithm works on a simplified inter-
mediate representation where conditional and looping constructs
have been compiled down to conditional control transfers (if
(cond) goto l). Also, assert statements are compiled down
to a reachability check: assert(e) =⇒ if (e) then fail .

The function succ(l) provides the set of next location(s) after
the current location l. For simplicity we do not show the imple-
mentation of the call statements to local functions (i.e. functions
whose definitions are available); this interprocedural extension is

Algorithm 1 Symbolic Exploration
1: W ← {(l0, true, ∅) } ▷ initial worklist
2: whileW , ∅ do

3: (l, pc, Ω) ← pickNext (W)
4: S ← ∅
5: T ← ∅
6: switch instrAt (l) do ▷ execute instruction
7: case input (v) ▷ input instruction
8: S ← {(succ (l), pc, Ω[v → α]) }, fresh α
9: case v := e ▷ assignment instruction
10: S ← {(succ (l), pc, Ω[v → seval (Ω, e)]) }
11: case if (b) goto l ′ ▷ branch instruction
12: e ← seval (Ω, b)
13: if (isSat (pc ∧ e) ∧ isSat (pc ∧ ¬e)) then
14: S ← {(l ′, pc ∧ e, Ω), (succ (l), pc ∧ ¬e, Ω) }
15: else if (isSat (pc ∧ e) then
16: S ← {(l ′, pc ∧ e, Ω) }
17: (r es, ξ) ← Fuzz (pc ∧ ¬e)
18: if r es = Success then
19: T ← {(l ′, pc ∧ e, Ω[ξ]) }
20: end if

21: else ▷ isSat (pc ∧ ¬e)
22: S ← {(succ (l), pc ∧ ¬e, Ω) }
23: (r es, ξ) ← Fuzz (pc ∧ e)
24: if r es = Success then
25: T ← {(l ′, pc ∧ e, Ω[ξ]) }
26: end if

27: end if

28: case fail ▷ error
29: GenerateTest(l, pc, Ω, FAIL)
30: case v := extop (w1,w2, . . .) ▷ Concretization
31: a1, a2, · · · ← GetConcretes(pc, Ω,w1,w2, . . .)
32: c ← NativeExecute(pc, Ω, extop, a1, a2, . . .)
33: S ← {(succ (l), pc, Ω[v → c]) }
34: Let Ω[w1] = α1, Ω[w2] = a2, . . .
35: ▷ w1 was symbolic, w2 was concrete...
36: Ω′ ← Ω[v → ⟨γ , c⟩,w1 → ⟨α1, a1⟩,w2 → a2, . . .]
37: ▷ γ fresh
38: Φ ≡ (⟨γ , c⟩ = extop (⟨α1, a1⟩, . . .))
39: S ← {(succ (l), pc ∧ Φ, Ω′) }

40: case halt ▷ terminate path
41: GenerateTest(l, pc, Ω, PASS)
42: W ←W ∪ S ∪ T ▷ update worklist
43: end while

simple—copy actual parameters to formal parameters, invoke the
function, and copy return value back to the parent procedures.

Updates to the variable map Ω for the variable v to a new value,
say c , is shown via the notation Ω[v → c].

Though we call v:=extop() as the external operation instruc-
tion; any instructions for which symbolic reasoning is not available
is denoted by this instruction—external (binary-only) library calls,
system calls, vector instructions, expressions involving non-linear
arithmetic etc.

Algorithm 1 maintains a set of active execution states in a work-
listW ; execution commences from the initial state—program entry-
point l0, path condition as true and an empty variable map (line 1).

229

Deferred Concretization in Symbolic Execution via Fuzzing ISSTA ’19, July 15–19, 2019, Beijing, China

While the worklist is non-empty, it picks a state from the work-
list (using heuristics referred to as search criteria) and proceeds to
handle it depending on the instruction type (lines 7-40).

The inputs to the programs are marked via the symbolic(v)
instruction: on encountering this instruction, the algorithm binds
the input variable v to a fresh symbolic value α , and proceeds to the
next location by adding this new state to the worklist (lines 7-8).

For the assignments statement v:=e, the algorithm evaluates
the expression e on the current symbolic map Ω, and updates the
binding of the variable v accordingly (lines 9-10).

For conditional control transfer statements (Line 11), the engine
evaluates the branch condition into a symbolic expression e (line 12),
and then, uses a constraint (logic) solver to check if both ends of the
branch are feasible (line 13): if only one of the branches is feasible,
execution proceeds along that direction (line 15 and 21). However,
if both the directions are feasible (line 14), the engine forks off
the execution state—the path conditions for the child states are
constructed so as to include additional constraints specifying if the
branch condition was true (pc ∧ e), or false (pc ∧ ¬e).

The fail instruction (line 28) terminates the progress of the
current execution state, generating a failing test-case. The test-case
is synthesized by querying a constraint (logic) solver on the pc for
satisfiable assignments of the symbolic values. The halt statement
(line 40) generates a passing test-case and, then fetches another
state from the worklist, terminating the current state.

When the engine hits an external operation v:=extop() (line 30)
that could not be handled symbolically by the assignment statement
(v := e) , it performs concretization (line 31) via the Concrete()
function: it searches for concrete values ai for the arguments wi
that are consistent with the current path condition pc ; it uses these
concrete values to natively execute the external operation, collect-
ing a concrete return value c . Finally, it constructs the successor
state by binding the variable v to this value c in Ω. Please note that
the variable bindings for the parameters are not altered in Ω.

2.3 Example

Ourmotivating example (Listing 1) is inspired from the cut program
in coreutils-8.29. Let the string functions strcmp() and strchr()
be external operations. The program starts off by invoking the
getopt() function on the string arg. The getopt() function has
the following specification: when invoked with an input argument
arg (say “-b") and a colon-separated set of options optstring
(like "b:c"), it returns the character next to the hyphen in arg if
this character is in the list of characters specified in optstring;
otherwise, it returns -1. The getopt() function works as follows:

(1) It checks (line 3) if the parameter starts with a hyphen; if
not, it simply returns with an error value (-1);

(2) Next, it checks if the option is “--" (line 4-5); in this case, it
returns a value “?" (some programs use it as an indication to
read from stdin);

(3) Next, it checks if the argument is just “-" without a following
character (line 7); in this case it returns “-". Note that this
check is equivalent to checking if the second character in arg
is “\0" or not, as: (i) the if-statement at line 3 ensures that
arg[0] is ’-’; (ii) the second character arg[1] is ‘\0’. The
above two conditions imply that (strcmp(arg, "-")==0);

1 i n t g e t op t (char ∗ arg , c on s t char ∗ o p t s t r i n g) {
2 ✓✓✓ i n t ch = −1;
3 ✓✓✓ i f (a rg [0] == '− ') {
4 ✓✓✓ r = s t rcmp (arg , "−− ") ;
5 ✓✓✓ i f (r == 0)
6 ✗✓✓ ch = ' ? ' ;
7 ✓✓✓ i f (s t rcmp (arg , "− ") == 0) {
8 ✗✓✓ ch = '− ' ;
9 ✗✓✓ r e t u r n ch ;
10 }
11 ✓✓✓ i f (a rg [1]== ' \ 0 ') / / s a n i t y check
12 ✓✓✗ a s s e r t (0) ;
13 ✓✓✓ char ∗ e = s t r c h r (o p t s t r i n g , a rg [1]) ;
14 ✓✓✓ i f (e != NULL)
15 ✗✓✓ ch = e [0] ;
16 }
17 ✓✓✓ r e t u r n ch ;
18 }
19

20 i n t main () {
21 ✓✓✓ symbo l i c (a rg) ;
22 ✓✓✓ op t c = g e t op t (arg , " b : c ") ;
23 ✓✓✓ i f (op t c != −1) {
24 sw i t ch (op t c) {
25 ✗✓✓ c a s e ' b ' : . . .
26 ✗✓✓ c a s e ' c ' : . . .
27 ✗✓✓ c a s e '− ' : . . .
28 ✓✓✓ c a s e d e f a u l t : . . .
29 }
30 / / Ye t ano the r s a n i t y check
31 ✓✓✓ i f (op t c != ' b ' && optc != ' c ' && optc != '− ')
32 ✗✓✗ a s s e r t (0) ;
33 }
34 }

Listing 1: Motivating example

(4) Then, it performs a sanity-check on condition (ii) above: test
if the second character is ‘\0’;

(5) Finally, it checks if the given option (the second character of
arg) is in the set of options and returns it; else it returns -1.

Let us see how Algorithm 1 (without the highlighted lines) operates
on this example; the second column in Table 1 shows the path
conditions:

(1) Our SE engine commences execution by binding fresh sym-
bolic variables α0α1α2α3 to arg, say with an user specified
bound of 4 for size of arg (Algo 1, line 8);

(2) It, then, calls the function getopt(), mapping the actual pa-
rameters to the formal parameters and jumping into getopt()
(not shown in Algorithm 1);

(3) At line 3 of Listing 1, it forks the execution (Algo 1, line 14),
for the cases where arg[0] is equal to ‘-’ or not. This can
be seen in the symbolic execution tree (Figure 2): the root
node denoting the state S1 at line 3 forks off to states S2 and
S3, transferring control to lines 4-5 and 17 (respectively) on
conditions α0 , 45 and its negation (Note: 45 is the ASCII
code for ’-’);

(4) With state S2, it encounters the external call strcmp() at
line 5, thereby, applying concretization (Algo 1, line 31):

230

ISSTA ’19, July 15–19, 2019, Beijing, China Awanish Pandey, Phani Raj Goutham Kotcharlakota, and Subhajit Roy

• solving the symbolic constraint on the path condition, it
finds a feasible concrete value for arg, say “-q\0\0", which
is consistent with the path condition α0 = 45;
• it natively executes strcmp() on this value, thereby eval-
uating r = 5 (say);
• it continues symbolic execution with a concrete value of
r but discards the concretized values of the argument,
continuing with the symbolic value for arg.

(5) As there is only one feasible path in this case (the false
path), a fork is not required at line 5 of Listing 1;

(6) The check at line 7 also fails, and is handled similarly;
(7) Line 11 branches on the symbolic variable arg[1]: as the

symbolic argument for the parameter arg was retained, the
SE engine finds that both outcomes are feasible at this branch,
thereby failing at line 12. This is a false positive!
At this point, the engine also generates a test case for this
failure by solving the current path condition α0 = 45∧α1 = 0
to produce inputs “-\0\0\0". Note that running the program
with this input takes the program to a different path that
does not cause the intended failure—a frustrating situation
for the user! This is referred to as path divergence [18]. In
this case, the target path was infeasible, but path divergence
is possible even when the target path was feasible.

(8) At line 13, it concretizes argv[1] (as per its pc,α0 = 45 ∧ α1 , 0),
say getting “-q\0\0"; running strchr() on it produces NULL.

(9) Finally, failing the test at line 14, the function returns -1 to
the parent procedure.

The loss in coverage is not just contained in this function, but
has a compounding effect—the SE engine is not able to cover any
of the branches of the switch statement in the parent procedure
due to the coverage lost to concretization in getopt().

2.4 Discussion

We found three limitations of the baseline algorithm (above):
• Loss in coverage: Certain paths of the program were not
covered, potentially leading to loss in coverage and missed
bugs. For example, line 8 of Listing 1 was not reached.
• False-positive: The algorithm traverses infeasible program
paths due to incomplete modeling of the path condition,
potentially leading to false positives and path divergence. For
example, line 12 of Listing 1 raises an alarm though the path
was infeasible.
• Failure to reproduce executions: This is another side-
effect of incomplete modeling of the path condition caused
by path divergence.

Concretization is an underapproximation that attempts to main-
tain accuracy by trading off coverage; the alternative is an overap-
proximation (via fresh symbolic variables for the returned values
from external operations) that trades off accuracy for coverage.

Overall, we have the following options for handling an external
operation of the form ret = extop (arд1,arд2, ...):
• ovarapprox ret , overapprox arguments: ensures coverage,
but can cause path explosion due to opening up of an enor-
mous number of infeasible paths; KLEE has the
-make-concrete-symbolic setting to enable this, and it pro-
vides a (hacky) way of taming the path explosion problem

Table 1: PC at different program points for the Listing 1

Line PC

Concrete Symbolic Colossus

b1 α0 = 45 α0 = 45 α0 = 45
b2 α0 , 45 α0 , 45 α0 , 45
b3 ✗ β0 = 0 ⟨β0,0⟩ = 0
b4 113 , 0 β0 , 0 ⟨β0,113⟩ , 0
b5 ✗ β1 = 0 ⟨β1,0⟩ = 0 ∧ ⟨α1,0⟩ = 0
b6 67 , 0 β1 , 0 ∧ α1 = 0 ⟨β1,67⟩ , 0 ∧ ⟨α1,67⟩ , 0
b7 α1 = 0 α1 = 0 ✗

b8 α1 , 0 α1 , 0 ⟨α1,67⟩ , 0
b9 ✗ β2 , 0 ⟨α1,98⟩ , 0 ∧ ⟨β2,98⟩ , 0
b10 0 = 0 β2 = 0 ⟨α1,100⟩ , 0 ∧ ⟨β2,0⟩ = 0
b11 ✗ β3 , −1 ⟨β2 , 98⟩ , 1

b12 ✗
β3 , 98∧β3 , 99∧
β3 , 45 ∧ β3 , 63 ✗

by taking a user-provided probability of how many of the
argument instances to turn symbolic;
• overapprox ret , underapprox arguments: this is not an in-
teresting option—why concretize the arguments when the
result is not concretized;
• underapprox ret , overapprox arguments: this is the default
setting for KLEE; it causes loss in coverage, divergence and
can lead to irreproducible executions, but has been found to
generally work well in practice in terms of gaining coverage;
• underapprox ret , underapprox arguments: ensures that there
is no divergence, but it can prune large parts of the SE tree,
leading to loss in coverage.

We ran Listing 1 on KLEE and measured the coverage for the
tests generated corresponding to paths that KLEE could execute to
completion. The string functions, strcmp() and strchr(), were
treated as external calls. The first row in green shows the lines
covered by KLEE: as can be seen, it fails to cover many of the
lines (loss in coverage) and also flags a false positive at line 12
(divergence). The second row in blue corresponds to the case where
we turn the return value from the external operation as symbolic;
in this case, it is able to cover almost all lines; however, for long
programs, it can get stuck into exploring infeasible paths. At the
same time, it flags two false positives at line 12 and line 32. The last
column shows the response from our tool, Colossus: it covers all
the feasible lines and does not flag any false positives.

Figure 2 shows the (partial) symbolic execution tree for the
program: the dotted nodes refer to infeasible paths. Each node
refers a state (only states at the forks are shown). The colored dots
show if an algorithm is able to visit a given node: green is for
the baseline algorithm, blue is for the case when the returned
values are marked as symbolic and red is our proposed algorithm.
In terms of state coverage, only our algorithm is able to cover all
feasible states and avoid all the infeasible ones.

3 DEFERRED CONCRETIZATION

Consider Listing 2: why do we lose coverage at the external call
x = extop(y, z) , even with concretization? Because, we would
have generated only one concrete value for x at L1, while we need
two values to cover both the arms of the branch at L2! Moreover,

231

Deferred Concretization in Symbolic Execution via Fuzzing ISSTA ’19, July 15–19, 2019, Beijing, China

L0 : y = ex top2 (w) ;
L1 : x = ex top (y , z) ;
L2 : i f (x > 4 2)
L3 : . . .

e l s e
L4 : . . .
. . .
L5 : i f (x > 8 4)
L6 : . . .

e l s e
L7 : . . .

Listing 2: Requirement

of symcret

1 i n t main () {
2 char arg [3] ;
3 char ∗ x11 , x10 , x12 ;
4 r ead (arg) ;
5 x10 = (45== arg [0]) ;
6 i f (x10) {
7 x11 = "−− " ;
8 x12= strcmp (arg , x1) ;
9 i f (! x12) a s s e r t (0) ;
10 }
11 }

Listing 3: Snippet generated

for Node S5

as x now binds to a concrete value, even at all subsequent branches
that involve the variable x, the symbolic execution will be able to
follow only one of the branch outcomes. Hence, we end up losing
the entire symbolic execution tree corresponding to the other arm
of the branch at L1.

Why not create two such values? Or, four? It is not possible to
answer these questions at the location where the external call is
invoked as we do not yet have access to the following information:

• What should be the constraints on the concrete val-

ues? At the location where the external call is invoked, the
required constraints on x depends on the branch conditions—
that are yet to be visited! For example, in Listing 2, though
concretization due to the external call happens at L1, it is
only at line L2 that one gets to know that x needs concrete
values in the ranges (−∞,42] and [43,∞) to cover both L3
and L4.
• How many concrete values to generate? Again, while
the external call is executed at L1, one only discovers later
that two concrete values are needed to cover both outcomes
of the branch L2, and subsequently, two additional concrete
values for each of the executions through branch L5—that is,
a total of four concrete values for complete path coverage
of the program. This information is not available at L1.

Also, the concretized values of y and z that drive the native
execution of extop() in search for a concrete value of zmust form
a consistent tuple with x under extop(): hence, whenever another
concretization attempt is needed in search for a different value
of x, we must appropriately update the values of y and z as well.
Further, in this case, the value of variable y is fetched from another
external call extop2(); any change in y should transitively lead to
an update of w. In summary, any concretization attempt must be
applied together on this set of variables {w ,y,x ,z} corresponding
to a consistent concretization set.

The above problems occur only in EGT-style symbolic execution
engines as they have to maintain active states corresponding to
multiple (partial) executions.

The problem is not just about the return value but also the values
of the arguments: the arguments and the return values together
form a consistent tuple bound by the semantics of the external oper-
ation; for example, for z=sum(x,y), (z=5,x=2,y=3) is a consistent
tuple but (z=4,x=2,y=3) is not! Hence, one needs to consider
over/under approximation choices for the arguments as well.

Definition 3.1. We say (r ,c1,c2, . . . ,cn) is a consistent tuple
under f if executing f (c1,c2, . . . ,cn) returns r .

Definition 3.2. We say that set of symcrete variable mappings
ξ = {x1 7→ ⟨α1,c1⟩,x2 7→ ⟨α2,c2⟩, . . . ,xn 7→ ⟨αn ,cn⟩} is a consis-
tent concretization set under an execution ∆ (or path condition
pc) if {x1, . . . ,xn } is the set of all the variables corresponding
to the arguments and return values of external operations and
c1, . . . ,cn are their corresponding concrete values along the exe-
cution ∆ (or pc). It can be obtained by taking a closure over the
consistent tuples under all external operations on the execution
∆ (or pc).

3.1 The Notion of symcrete Values
We handle the above problems by introducing a new category of
values, symcrete values. A symcrete (symbolic-concrete) value is
essentially a symbolic value for which we also maintain (or "hide")
a concrete witness. Symcrete values are notated as a tuple ⟨α ,c⟩
over a symbolic value α and a concrete value (witness) c . The
variable map, Ω, maps each program variable v ∈ V to a symbolic,
concrete or symcrete value. Such a symcrete variable map (and
the corresponding symcrete state) is valid only if it constitutes a
consistent concretization set.

3.2 The Deferred Concretization Algorithm

The Deferred Concretization algorithm uses two solvers:
• Logic Solver: This is an SMT solver that is used by the
baseline symbolic execution engine (like STP [15]); we show
calls to this solver via isSat().
• Fuzz Solver: Handling symcrete values requires us to ex-
tend reasoning over executable interpretations of external
operations for which logical interpretations are not available.
Hence, we design a fuzz-based constraint solver (or simply
fuzz solver), to solve such constraints.
Given a path condition, pc , the fuzz solver routine, Fuzz(),
searches for concrete values ci such that the variable map
xi 7→ ⟨αi ,ci ⟩ forms a consistent concretization set under the
abstract execution represented by pc; note that the pc con-
straints also contain the executable interpretations of the
external calls. ∀⟨αi ,∗⟩∈pc ∃ci . pc[⟨αi ,∗⟩ → ci]

The modifications to the baseline algorithm to implement De-
ferred Concretization is highlighted in Algorithm 1. Our algorithm
uses a new set, T , to accumulate the states added due to fuzzing
(line 19, 25). The statements that need to be handled differently are
conditional branching and external operations.

3.2.1 External operation. For v := extop (w1, . . .), instead of bind-
ing v to the result obtained by invoking extop () (say c), we bind v
to a symcrete value ⟨γ ,c⟩. This achieves two goals:
• we overapproximate the return from the external operation
via a fresh symbolic variable γ (regaining coverage);
• we retain the concrete return value from the operation as a
witness from a native execution, “hiding" it in the symcrete
value (to maintain the same path).

Further, we also upgrade (any) symbolic arguments of extop () to
symcrete, thereby recording the concrete parameter values used to

232

ISSTA ’19, July 15–19, 2019, Beijing, China Awanish Pandey, Phani Raj Goutham Kotcharlakota, and Subhajit Roy

0 ≥ −10 ∧ 0 = 3 ∗ 0 ∧ 0 ≥ 0 ∧ 3 = 3 + 0 ∧ 27 = 216
(Unsatis f iable!)
⇑ Logic Solver

⟨α1,0⟩ ≥ −10 ∧ ⟨α2,0⟩ = 3 ∗ ⟨α1,0⟩ ∧ ⟨α3,0⟩ = ceil (⟨α2,0⟩) ∧ ⟨α3,0⟩ ≥ 0 ∧
⟨α4,3⟩ = 3 + ⟨α3,0⟩ ∧ ⟨α5,27⟩ = pow (⟨α4,3⟩,3) ∧ ⟨α5,27⟩ = 216

⇓ Fuzz Solver
α1 ≥ −10 ∧ α2 = 3 ∗ α1 ∧ α3 = ceil (α2) ∧ α3 ≥ 0 ∧

α4 = 3 + α3 ∧ α5 = pow (α4,3) ∧ α5 = 216
(Solution : α1 = 1,α2 = 3,α3 = 3,α4 = 6,α5 = 216)
Figure 1: Handling of pc by solvers

fire the external operation; all concrete arguments remain unaltered
(line 34-38). This is required to maintain that the variable map
always corresponds to a consistent concretization set, and hence, the
respective state remains valid.

The consistent tuple corresponding to the return value ⟨γ ,c⟩ and
the parameter values ⟨α1,a1⟩, . . . is recorded in the path condition
via the constraint Φ. It stays within the path condition as an unin-
terpreted function (the "executable" interpretations of each external
call is available only to the fuzz solver).

3.2.2 Conditional Branching. For conditional branches, the engine
uses sevel() to symbolically evaluate the branch condition; it, then,
uses the logic solver to check the feasibility of the path condition
for both the true (pc ∧ e) and false (pc ∧ ¬e) outcomes of the
branch condition e . The isSat() function transforms the pc in the
following way before submitting it to the logic solver :

(1) All symcrete values ⟨αi ,ci ⟩ are replaced by their concrete
values ci : this ensures that the formula is evaluated on a
consistent concretization set on this path;

(2) All terms that contain external operations (appearing as
uninterpreted functions) are dropped from the formula as
no interpretation of these functions is available to the logic
solver.

The logic solver is, thus, fed an underapproximation of the path
condition (to prevent divergence). If the logic solver fails to satisfy
for any of the branch outcomes, we use the fuzz solver to test the
feasibility of the path condition. For example, if isSat() fails for
the false side (line 17), we run the fuzz solver on (pc ∧¬e) to find a
chain of new witnesses, i.e. a consistent concretization set ξ for this
path. If Fuzz() is successful in finding such a set of witnesses ξ ,
the symcrete values in the current variable map is updated to hold
these new witnesses; else the path is considered infeasible.

Figure 1 shows how the logic solver and fuzz solver view a pc;
also, in this case though the logic solver finds the pc unsatisfiable,
the fuzz solver could find a solution.

3.3 Fuzz-based Constraint Solver (Fuzz solver)
As logic solvers cannot handle external functions for which no
logical interpretations are available (only executable interpretations
are available via native calls), we build a fuzz-based constraint solver
(or simply fuzz solver) to solve these path constraints. Our fuzz
solver transforms a satisfiability query on a logical formula (queries
on path conditions) to a reachability query in a program. It then
uses an off-the-shelf fuzzer (AFL [2]) to solve the reachability query.

Figure 3 shows the design of our fuzz solver : a query from the
SE engine is first filtered through a unsat predictor that attempts
to answer the query from past history (discussed below). When
the predictor guesses the query to be satisfiable, the query passes
on to the constraint compiler. The constraint compiler translates
the formula (query) into a C program such that satisfiability on
the constraints is answered by a reachability check (simulated by
an assertion failure). The generated program is linked with the
external library and passed on to a state-of-the-art graybox fuzzer
(AFL [2]) to search for the assertion failure. If a failure is found
(within a timeout), the fuzz solver declares the formula satisfiable,
returning the failing test case as the model; otherwise, the formula
is declared unsatisfiable. For example, for the following query:
∃c,α0,α1,α2,α3α0 = 45 ∧ c = strcmp (α0α1α2α3,“ − −") ∧ c = 0,
the constraint compiler generates a C code snippet as shown in
Listing 3. The fuzzer (AFL) finds a failing test case [c = 0,α0 =
45,α1 = 45,α2 = 0,α3 = 0], which is returned as a model.
We use some of our domain knowledge to guide the fuzzers, like:
• (spatial locality) both directions of a branch solve similar con-
straints: the (concrete) values on the concretized variables
from one arm of a branch is passed on as seed values on the
other arm to initiate the search on the fuzz solver ;
• (temporal locality) many branch locations have similar out-
comes across multiple queries: we exploit this knowledge to
build our unsat-predictor that uses the history of fuzz solver
outcomes for the current branch to guess the new outcome
(sat/unsat). Our unsat predictor is designed similar to a 2-bit
branch predictor: it uses a finite-state automata (Figure 4)
for each program location. The current outcome is decided
by the current state of the predictor; on satisfiable outcomes,
the result is validated on the fuzzer, and the fuzzer output is
used to update the state machine.
• there are a large number of potential paths to be explored: we
run the fuzz solver on a tight timeout and use the above
unsat predictor to return unsat quickly. These heuristics
reduce the fuzz solver times at the cost of missing some
paths (introducing loss in coverage); however, we do not
lose accuracy as all sat outcomes from the predictor are
validated by fuzzing.
• most branches may not require decision on concretized (sym-
crete) values: We found that only a few queries require rea-
soning on values from external calls, and even when it is re-
quired, often the current consistent concretized set is enough
to answer the query. Hence, we use the logic solver first, and
fall-back to the fuzz solver only when it fails.

3.4 Example

Let us run our algorithm on Listing 1 (the path conditions are
provided in Table 1). The execution of the program on our algorithm
is the same till the external function is hit at line 5. At this point,
the engine calls the logic solver to get a consistent value for arg, say
“-q\0\0". Then, it invokes the external call strcmp() on this value,
returning a non-zero value, say 67. Accordingly, in the variable
mapping Ω, it creates symcrete values for the return and as well as
the parameters, and creates the following bindings:

233

Deferred Concretization in Symbolic Execution via Fuzzing ISSTA ’19, July 15–19, 2019, Beijing, China

Figure 2: SE tree (incom-

plete) for Listing 1

Figure 3: Colossus

Figure 4: States in fuzz predictor
Figure 5: Statesmissed

[arg[0]→ ⟨α0,45⟩, arg[1]→ ⟨α1,113⟩, arg[2]→ ⟨α2,0⟩,
arg[3]→ ⟨α3,0⟩,r→ ⟨β0,67⟩] (46, 113 are ASCII codes of ‘-’, ‘q‘).

In the next line (Line 5), when the engine hits the branching
on r, it calls the logic solver (with the symcrete values replaced by
their respective witnesses), checking for feasibility [Algo 1, line 15];
for the true outcome, it appends the new branch condition to the
existing pc to form the updated pc (⟨α0,45⟩ = 45 ∧ ⟨β0,67⟩=0). This
pc is sent to the logic solver (symcrete values substituted with their
witnesses), thereby creating the constraint (45 = 45 ∧ 67 = 0).
This turns out to be false (indicating that the false path must be
feasible) [Algo 1, line 21], thereby adding (⟨α0,45⟩ = 45∧ ⟨β0,67⟩ ,
0, Ω) as a new active state.

Now, it employs deferred concretization for the true outcome via
a call to the fuzz solver to solve the following constraint:
∃c,α0,α1,α2,α3α0 = 45 ∧ c = strcmp (α0α1α2α3, " − −") ∧ c = 0.

In this case, it should find a possible assignment [c = 0,α0 =
45,α1 = 45,α2 = 0,α3 = 0] that satisfies this constraint. So, it
creates a new state by binding the respective variables to symcrete
values with the corresponding constants, creating a state (6, pc ′,
[(r = ⟨β0,0⟩), (arд[0] = ⟨α0,45⟩), (arд[1] = ⟨α1,45⟩), (arд[2] =
⟨α2,0⟩), (arд[3] = ⟨α3,0⟩))
Our algorithm will also not raise an false alarm at line 12 (we omit
the detailed analysis for want of space).

4 IMPLEMENTATION AND EVALUATION

Colossus is built on KLEE version 1.3.0 running with STP 2.1.2.
Colossus can operate in two modes: coverage and divergence. The
divergence mode is described in Algorithm 1. In the coverage mode,
the returned values from external operations are made symcrete,
but the argument bindings remain unaltered in the variable map (i.e.
symbolic variables are not changed to symcrete). The coveragemode

avoids calling the fuzz solver on branches involving arguments to
external calls; hence, thismodemay exhibit false positives. Symbolic
execution engines are used both as bug finding and test-generation
tools: the coverage mode is advisable for bug finding applications
where one would like to gain coverage quickly; the divergencemode
is useful for generating test-suites with low divergence.

We evaluate Colossus on 40 programs from GNU Coreutils-8.29.
The experiments were performed on a 3.4 GHz 12 core machine
with 32 GB RAM. Each program was run with a 2 hour timeout
both for KLEE and Colossus. The fuzz solver was invoked with a
6s timeout.

We compiled the benchmarks with uclibc support while holding
back the definitions of the string functions. Coverage was computed
using gcov for the paths on which the tools could complete their
execution. We trigger deferred concretization only for the C string
library functions for the following reasons:
• To clearly define the set of functions on which deferred con-
cretization was enabled, facilitating future comparisons;
• String functions often produce interesting challenges, like
modification of the heap;
• The string library is extensively used in Coreutils.

Note that enabling Colossus for more external functions can
only improve our coverage numbers as more paths will be enabled.

We also handle impure functions, like ones that modify the heap
(eg. strcat, strcpy, stpncpy, strchr, strncat, strncpy,
strpbrk, strrchr, strstr): a wrapper function captures the
reachable-heap, passes it as an additional argument to the fuzzer,
and patches the changed heap (argument) back (similar to closure-
conversion in functional-programs). However, functions (eg. system
calls) that may modify the operating system state (eg. signal masks)
are beyond our current implementation.
Our experiments were designed to answer the following:

RQ1 Does Colossus derive better coverage than KLEE?
RQ2 Is making the return values symbolic a good solution?
RQ3 What percentage of the symbolic execution tree does KLEE

miss due to concretization that Colossus could recover?
RQ4 Were the optimizations on the fuzz solver helpful?
RQ5 Is Colossus able to reduce divergence?
RQ6 What is the tradeoff between improved coverage and reduced

divergence?
RQ7 How does the rate of increase in coverage with time for

Colossus compare with KLEE?

We use the coveragemode of Colossus for RQ1-4 and the divergence
mode for RQ5-7.

4.1 RQ1: Coverage

Figure 6 shows the comparison of Colossus against KLEE for
branch coverage. The red bars refer to unmodified KLEE with
default settings. Colossus (the blue bars) improves the coverage
significantly for many programs; for instance, it increases the cov-
erage in cut from a mere 5.37% to 71.81%; many other programs
like date,mkfifo, split, tr exhibit an increased coverage by over
27%—improvement by 115%. Overall, Colossus increases average
coverage by 15.54% (an improvement of 66.94%) over KLEE across
all the programs. In many of the functions where the coverage of

234

ISSTA ’19, July 15–19, 2019, Beijing, China Awanish Pandey, Phani Raj Goutham Kotcharlakota, and Subhajit Roy

 0

 20

 40

 60

 80

 100

basenam
e

cat
chgrp

chown

cksum
com

m
cpcsplit

cut
date

df echo
expand

fm
t
fold

head
id ls m

kdir

m
kfifo
m

knod

m
ktem

p

nl num
fm

t

odpinky
printf

sort
split

sum
tac

tail
tee

tr unam
e

unexpand

uniq
users

wcwho

KLEE Symbolic COLOSSUS

Figure 6: Branch coverage (y-axis) for KLEE, by making return value of missing function symbolic (Symbolic) and Colossus.

 0

 20

 40

 60

 80

 100

basenam
e

cat
chgrp

chown

cksum

com
m

cpcsplit

cut
date

df echo
expand

fm
t
fold

head
id ls m

kdir

m
kfifo
m

knod

m
ktem

p

nl num
fm

t

odpinky

printf

sort
split

sum
tac

tail
tee

tr unam
e

unexpand

uniq
users

wcwho

Figure 7: SE tree missed due to concretization (in percent)

KLEE is already high (like users) are programs that did not have
many string function calls.

Of 40 benchmarks, 12 complete within our 2-hours timeout:
average coverage increase of Colossus across these programs is
21% (improvement of 145%); here, the early termination of KLEE
shows its inability at exploring available feasible paths. On the rest
28 programs average coverage increases by 13%, showing that the
coverage heuristics of symbolic execution engine perform better as
Colossus gives them a larger set of paths to pick from.

We have run additional experiments on ffbench [14] and Video-
SIMDBench [30] to support our claim. We summarize the results
for each source of concretization:
• external calls and heap-mutation side-effects (66.94% im-
proved coverage in Coreutils [16]),
• non-linear and floating point computations (increases cover-
age in ffbench [14] from 76% to 90%)1,
• vector instructions (increases coverage inVideo-SIMDBench [30]
from 60.87 to 85.63%).

4.2 RQ2: Comparison with Symbolic Returns

In Figure 6, the green bars (Symbolic) refer to a modified ver-
sion of KLEE where return values from the external operations
are overapproximated by fresh symbolic variables. Over Symbolic,
Colossus increases coverage by as much as 67.97% for printf, with
an average increase of 24.11% (improvement of 115%) across all the
programs. Due to overapproximations, Symbolic yields better cov-
erage than KLEE in some cases (like cat,mkfifo), but wastes time
on infeasible paths in most of the other cases (like comm,printf),
1At high coverage levels, it is more challenging to gain incremental coverage

hence losing out. Colossus beats both these tools, showcasing its
ability of deferred concretization.

4.3 RQ3: SE Tree Missed by Concretization

We try to estimate the relative loss in state coverage for KLEE with
respect to Colossus, i.e. in the limit, how much of the complete
symbolic execution tree KLEE would miss due to concretizations
that Colossus can cover.

For example, say in Figure 5, the complete symbolic execution
tree covered by Colossus is A1 +A2 +A3 states, and KLEE misses
the subtree with A2 nodes, then the relative loss in state coverage
is A2

A1+A2+A3
. We measured it by marking all states that appeared

on a path that contained at least one branch that opens up via the
fuzz solver; these are the states that KLEE would never be able to
reach even in the limit. However, note that, within a time budget,
loss in state coverage does not directly translate to lower branch
coverage because KLEE would be busy exploring other paths in
lieu of the states it misses.

Figure 7 shows the percentage loss in state coverage of KLEE:
out of 40 programs, 14 have a relative loss in state coverage in
excess of 50%. The average relative loss in state coverage in KLEE is
38.60% across all the benchmarks. For the programs cksum, echo
and printf KLEE does not seem to miss much of the symbolic
execution tree that Colossus is able to cover. This is because these
functions did not have many calls to string functions that Colossus
could exploit. One can also see that for these programs, the coverage
of both the tools (Figure 6) is almost equivalent.

4.4 RQ4: Fuzz Solver Optimizations

Figure 8 demonstrates the importance of unsat prediction: coverage
increases by 12.07% on an average over all programs. Our design that
filters the queries through the (faster) logic solver before routing it
to the fuzz solver also works well: we found that only about 17% of
the queries need to be handled by the fuzz solver.

4.5 RQ5: Divergence

For this experiment, we selected programs where KLEE has a cover-
age of more than 60% in Figure 6. Figure 9(a) shows that, except for
cksum, Colossus was able to reduce divergence (#paths that diverge#total paths)
to less than 15% in all other cases. For cksum, we are still investigat-
ing the reason for high divergence; we speculate that the culprit

235

Deferred Concretization in Symbolic Execution via Fuzzing ISSTA ’19, July 15–19, 2019, Beijing, China

 0

 20

 40

 60

 80

 100

basenam
e

cat
chgrp

chown

cksum

com
m

cpcsplit

cut
date

df echo
expand

fm
t
fold

head
id ls m

kdir

m
kfifo
m

knod

m
ktem

p

nl num
fm

t

odpinky
printf

sort
split

sum
tac

tail
tee

tr unam
e

unexpand

uniq
users

wcwho

noPredictor Predictor

Figure 8: Effect of UnSAT predictor on Branch coverage

 0

 20

 40

 60

 80

 100

BASENAM
E

CKSUM

CO
M

M

EXPAND

FM
T

FO
LD

ECHO

PRINTF

SUM
UNAM

E

UNEXPAND

USERS

W
C

Klee COLOSSUS

(a) Divergence

 0

 20

 40

 60

 80

 100

BASENAM
E

CKSUM

CO
M

M

EXPAND

FM
T

FO
LD

ECHO

PRINTF

SUM
UNAM

E

UNEXPAND

USERS

W
C

KLEE COLOSSUS

(b) Coverage
Figure 9: Comparison for divergence-mode

for high divergence is some system calls (like fadvise()). Overall,
Colossus reduces the rate of divergence by more than 18% (im-
provement of over 55%) over KLEE. However, Figure 9(b) shows
that taming divergence is not free, and the tool tends to get sluggish
leading to some loss of coverage within a time budget.

4.6 RQ6: Divergence versus Coverage

Figure 10 shows the tradeoff between reduced divergence and im-
proved coverage: at every branch involving symcrete values that
are bound to arguments of external operations, we choose to in-
voke the fuzz solver probabilistically, sampling from a Bernoulli
distribution with bias 0.0, 0.25, 0.5, 0.75 and 1.0. The plots show the
effect of this bias on coverage and divergence: at higher bias values
(more fuzzing) we have much less divergence, but the tool moves
slower due to the high cost of the fuzz solver, thereby fetching less
coverage (within a time budget).

4.7 RQ7: Trend in Coverage

To study the performance in divergence mode, we select programs
where KLEE could attain at least 60% coverage (in Figure 6). We
only get 12 such programs (Figure 9), of which we randomly show
five in Figure 10 and Figure 11; other programs show similar trend.

Figure 11 shows the trend for increase in coverage with time for
KLEE and Colossus. These plots attempt to estimate the coverage
space of the tools and also answer why some of the benchmarks
in Figure 9(b) fetch lower coverage. In some cases, though the cov-
erage may be inferior to KLEE at the 2 hr timeout stage (dotted
line), on running for another 2 hrs, we find that the coverage in-
creases quickly and generally reach a higher coverage than what
KLEE could achieve. In most cases, Colossus continues to gain
coverage long after KLEE saturates, clearly showing that Colossus
is traversing a much larger coverage space.

5 RELATEDWORK

For concolic execution, Godefroid [17] proposed to solve the prob-
lem of incomplete modeling of the path conditions in presence of
external operations using uninterpreted functions to represent ex-
ternal operations. They used tests from validity proofs of first-order

logic formulas rather than from satisfiability assignments. In the
absence of good validity proof generators, they pose their work
as a requirement specification for such saturation based solvers.
Mixed Concrete-Symbolic Solving [26] use similar ideas for forming
the path condition but solve “complicated" path condition by first
solving the “simpler" segments and then using iterative solving for
repeatedly concretizing to multiple values or making use of user
provided (@Partition) annotations to generate concretizations.

Dinges et al. [13] propose a solver for solving complex arithmetic
path conditions: they define a polytope using the linear constraints,
and then sample this polytope using a biased random-walk, guided
by a fitness function, to pick the “best" neighbors to visit in the next
step of the walk—in a search for a point that satisfies all the non-
linear constraints. Unlike our fuzz solver, their approach is limited
only to concretizations due to (non-linear) arithmetic operations.
Further, this technique does not cache the concrete values from pre-
vious invocations to the non-linear solver, and thus, often invoke
the expensive non-linear solver even when the previous witnesses
would have been enough to answer satisfiability. This weakness
stems from a weak coupling between the symbolic execution en-
gine and the non-linear solver; we achieve a stronger coupling via
the use of symcrete values. Finally, the use of off-the-shelf fuzzers
(in contrast to developing specialized solvers) allows Colossus to
exploit future innovations in fuzzing.

SE engines have seen multiple proposals for coverage heuristics
to gain faster coverage. Colossus solves a fundamental problem of
symbolic execution (loss of symbolic states due to concretization)
while a coverage heuristic only prioritizes exploration of available
paths. Deferred concretization benefits all (EGT-style) SE engines
(like Mayhem [9], EXE [7], & S2E [11]) across all heuristics.

Mechtaev et al. [21] specify and solve existential second-order
constraints in symbolic execution by posing it as a syntax-guided
synthesis [1] problem. Instead of resorting to concretization, the
external operations are posed as second-order variables allowing
for infeasibility proofs. Though an exciting proposal, it has certain
limitations: firstly, it resorts to full-blown synthesis during symbolic
execution, questioning scalability at the face of a large number of
external operations (not an uncommon scenario). Secondly, the

236

ISSTA ’19, July 15–19, 2019, Beijing, China Awanish Pandey, Phani Raj Goutham Kotcharlakota, and Subhajit Roy

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Coverage

Divergence

(a) UNAME

0 20 40 60 80 100
10

20

30

40

50

60

70

Coverage

Divergence

(b) COMM

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Coverage

Divergence

(c) WC

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Coverage

Divergence

(d) EXPAND

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Coverage

Divergence

(e) FMT

Figure 10: Divergence and Coverage tradeoffs (y-axis) with syncrete arguments fuzzed probabilistically with bias (x-axis)

0 2000 4000 6000 8000 10000 12000 14000 16000
20

30

40

50

60

70

80

KLEE

COLOSSUS

(a) UNAME

0 2000 4000 6000 8000 10000 12000 14000
0

10

20

30

40

50

60

70

KLEE

COLOSSUS

(b) COMM

0 2000 4000 6000 8000 10000 12000 14000
0

10

20

30

40

50

60

70

80

KLEE

COLOSSUS

(c) WC

0 2000 4000 6000 8000 10000 12000 14000
0

10

20

30

40

50

60

70

80

90

KLEE

COLOSSUS

(d) EXPAND

0 2000 4000 6000 8000 10000 12000 14000 16000
0

10

20

30

40

50

60

70

KLEE

COLOSSUS

(e) FMT

Figure 11: Trend in increase of coverage (y-axis) with time (x-axis, in seconds) of KLEE and Colossus-divergence

infeasibility proofs depend heavily on the user’s ability to provide a
well-crafted grammar for every second-order variable; a very small
grammar can cause loss in coverage and a large grammar will lead
to path divergence. Finally, the synthesized specification is still an
overapproximation, making the engine traverse multiple infeasible
paths and leading to false positives.

The advancement of fuzzing technology and the success of gray-
box fuzzing tools like AFL [2] has elicited a large number of research
proposals attempting to combine the benefits of symbolic execution
and fuzzing. Hybrid concolic testing [19] was perhaps the earliest
work in this direction: in this technique, the program undergoes ran-
dom testing till it stops making enough progress (in terms of hitting
new coverage goals); it, then, switches to symbolic execution. Once
a new uncovered goal is reached, random testing is switched back.
The proposal attempts to combine the "deep" coverage of random
testing (discover a large number of long program paths quickly)
with "wide" coverage of symbolic execution (capture a large variety
of program behaviors). Zhang et al. [31] improve upon the idea
using the popular graybox fuzzer, AFL, instead of random testing.
They use symbolic execution to discover interesting seed inputs
for the fuzzer, and the paths explored by the fuzzer that improved
coverage are fed back to the symbolic execution engine to explore
other, potentially difficult to enter, branches. Driller [29] uses the
angr [28] SE engine to perform testing of binaries. Driller again
attempts to use fuzzing as the main testing machinery and offloads
the job to the symbolic execution engine when it is tested with com-
plex reasoning to enter a branch. In contrast to all these work, we
attempt to improve symbolic execution by using fuzzing to explore
constraints that logic solvers cannot handle. The modern graybox
fuzzers are quite powerful and new innovations like AFL-fast [4]
are making them more competitive.

6 DISCUSSION

In contrast to concolic testers, EGT engines pose additional chal-
lenges as they maintain multiple executions simultaneously. In

addition to algorithmic challenges (§2.4), they also pose some engi-
neering challenges:
• EGT engines invoke the constraint solver much larger (po-
tentially an exponentially more) number of times. We apply
a number of optimizations (§3.3) to make our solver faster.
• The symbolic and concrete executions are not separated well
in EGT engines (in contrast to concolic testers); for instance,
EGT engines use a unified variable map for both symbolic
and concrete values; we solve this by using symcrete values
to maintain multiple avatars for concretized variables.

Our algorithm for fuzz-based constraint solving can be seen as
the dual of verification condition generation [12] wherein programs
are translated into logical constraints (handled via SMT solvers).
In Colossus, the fuzzer is the only obstacle to coverage and cause
of divergence; it implies that future improvements in fuzzing will
immediately improve Colossus. In other words, the deferred con-
cretization algorithm is optimal (in terms of attaining coverage).

Though symbolic execution is sound in the limit, it is generally
used as a testing tool to find bugs. The possibility of false positives
and diverging test-cases, on the other hand, hurts the usability
of such tools for practical applications—deferred concretization via
fuzzing is a step in the direction towards higher coverage, reduced
divergence and improved reproducibility. There do exist threats to
validity: as all the results were based on the KLEE infrastructure,
our results depend on the precision and correctness of this infras-
tructure. In particular, the statistics about path divergence needed
us to replay the executions back to check its correspondence with
an earlier run. In many cases, paths may diverge due to reasons
other than concretizations, like change in the environment leading
to system calls returning different values, use of random numbers
etc. Though we were careful, many of these scenarios were beyond
our control. Finally, in terms of choice of benchmarks, we were care-
ful to choose a large set of programs and evaluate multiple aspects
of the proposed idea; nevertheless more extensive experiments can
be conducted.

237

Deferred Concretization in Symbolic Execution via Fuzzing ISSTA ’19, July 15–19, 2019, Beijing, China

REFERENCES

[1] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. 2013. Syntax-guided Synthesis. In Formal Methods
in Computer-Aided Design (FMCAD), 2013. IEEE, 1–8.

[2] American Fuzzy Lop (AFL) Fuzzer. (accessed 21-Jan-2018). http://lcamtuf.
coredump.cx/afl.

[3] Rohan Bavishi, Awanish Pandey, and Subhajit Roy. 2016. To Be Precise: Regres-
sion Aware Debugging. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2016). ACM, New York, NY, USA, 897–915. https://doi.org/10.1145/
2983990.2984014

[4] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based Greybox Fuzzing As Markov Chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 1032–1043. https://doi.org/10.1145/2976749.2978428

[5] J. Burnim and K. Sen. 2008. Heuristics for Scalable Dynamic Test Generation. In
Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE ’08). IEEE Computer Society, Washington, DC, USA,
443–446. https://doi.org/10.1109/ASE.2008.69

[6] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). USENIX Association, Berkeley, CA, USA, 209–224.

[7] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. 2008. EXE: Automatically Generating Inputs of Death. ACM Trans. Inf.
Syst. Secur. 12, 2, Article 10 (Dec. 2008), 38 pages. https://doi.org/10.1145/1455518.
1455522

[8] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM 56, 2 (Feb. 2013), 82–90. https://doi.org/10.
1145/2408776.2408795

[9] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing Mayhem on Binary Code. In Proceedings of the 2012 IEEE Symposium
on Security and Privacy (SP ’12). IEEE Computer Society, Washington, DC, USA,
380–394. https://doi.org/10.1109/SP.2012.31

[10] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodik. 2011. An-
gelic Debugging. In Proceedings of the 33rd International Conference on Soft-
ware Engineering (ICSE ’11). ACM, New York, NY, USA, 121–130. https:
//doi.org/10.1145/1985793.1985811

[11] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
Platform for In-vivo Multi-path Analysis of Software Systems. In Proceedings of
the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XVI). ACM, New York, NY, USA,
265–278. https://doi.org/10.1145/1950365.1950396

[12] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking
ANSI-C Programs. In Tools and Algorithms for the Construction and Analysis of
Systems, 10th International Conference, TACAS 2004, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona,
Spain, March 29 - April 2, 2004, Proceedings. 168–176. https://doi.org/10.1007/978-
3-540-24730-2_15

[13] Peter Dinges and Gul Agha. 2014. Solving complex Path Conditions through
Heuristic Search on Induced Polytopes. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 425–436.

[14] Floating Point Benchmarks. (accessed 18-Mar-2019). https://www.fourmilab.ch/
fbench.

[15] Vijay Ganesh and David L. Dill. 2007. A Decision Procedure for Bit-Vectors and
Arrays. In Computer Aided Verification, 19th International Conference, CAV 2007,
Berlin, Germany, July 3-7, 2007, Proceedings. 519–531. https://doi.org/10.1007/978-
3-540-73368-3_52

[16] GNU Coreutils Program. (accesed 15-Sep-2018). http://sir.unl.edu/portal/index.
php.

[17] Patrice Godefroid. 2011. Higher-order Test Generation. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’11). ACM, New York, NY, USA, 258–269. https://doi.org/10.1145/1993498.
1993529

[18] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05). ACM, New York,
NY, USA, 213–223. https://doi.org/10.1145/1065010.1065036

[19] Rupak Majumdar and Koushik Sen. 2007. Hybrid Concolic Testing. In Proceedings
of the 29th International Conference on Software Engineering (ICSE ’07). IEEE
Computer Society, Washington, DC, USA, 416–426. https://doi.org/10.1109/ICSE.
2007.41

[20] Paul Dan Marinescu and Cristian Cadar. 2013. KATCH: High-coverage Testing
of Software Patches. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2013). ACM, New York, NY, USA, 235–245.
https://doi.org/10.1145/2491411.2491438

[21] Sergey Mechtaev, Alberto Griggio, Alessandro Cimatti, and Abhik Roychoud-
hury. 2018. Symbolic Execution with Existential Second-Order Constraints. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM.

[22] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the
38th International Conference on Software Engineering (ICSE ’16). ACM, New York,
NY, USA, 691–701. https://doi.org/10.1145/2884781.2884807

[23] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: Program Repair via Semantic Analysis. In Proceedings of the
2013 International Conference on Software Engineering (ICSE ’13). IEEE Press, Pis-
cataway, NJ, USA, 772–781. http://dl.acm.org/citation.cfm?id=2486788.2486890

[24] Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, and Abhik Roychoudhury.
2017. Bucketing Failing Tests via Symbolic Analysis. In Proceedings of the 20th
International Conference on Fundamental Approaches to Software Engineering
- Volume 10202. Springer-Verlag New York, Inc., New York, NY, USA, 43–59.
https://doi.org/10.1007/978-3-662-54494-5-3

[25] Corina S. Păsăreanu and Neha Rungta. 2010. Symbolic PathFinder: Symbolic
Execution of Java Bytecode. In Proceedings of the IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE ’10). ACM, New York, NY, USA,
179–180. https://doi.org/10.1145/1858996.1859035

[26] Corina S. Păsăreanu, Neha Rungta, and Willem Visser. 2011. Symbolic Execution
with Mixed Concrete-symbolic Solving. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis (ISSTA ’11). ACM, New York, NY,
USA, 34–44. https://doi.org/10.1145/2001420.2001425

[27] Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt, and Yu Hu. 2018. Bug
Synthesis: Challenging Bug-finding Tools with Deep Faults. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 2018). ACM,
New York, NY, USA, 224–234. https://doi.org/10.1145/3236024.3236084

[28] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In IEEE Symposium on Security and Privacy.

[29] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.. In
NDSS, Vol. 16. 1–16.

[30] Video-SIMDBench. (accessed 18-Mar-2019). https://github.com/malvanos/Video-
SIMDBench.

[31] Li Zhang and Vrizlynn LL Thing. 2017. A hybrid symbolic execution assisted
fuzzing method. In Region 10 Conference, TENCON 2017-2017 IEEE. IEEE, 822–825.

238

http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
https://doi.org/10.1145/2983990.2984014
https://doi.org/10.1145/2983990.2984014
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1109/ASE.2008.69
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1145/1985793.1985811
https://doi.org/10.1145/1985793.1985811
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://www.fourmilab.ch/fbench
https://www.fourmilab.ch/fbench
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-540-73368-3_52
http://sir.unl.edu/portal/index.php
http://sir.unl.edu/portal/index.php
https://doi.org/10.1145/1993498.1993529
https://doi.org/10.1145/1993498.1993529
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1145/2491411.2491438
https://doi.org/10.1145/2884781.2884807
http://dl.acm.org/citation.cfm?id=2486788.2486890
https://doi.org/10.1007/978-3-662-54494-5-3
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1145/2001420.2001425
https://doi.org/10.1145/3236024.3236084
https://github.com/malvanos/Video-SIMDBench
https://github.com/malvanos/Video-SIMDBench

	Abstract
	1 Introduction
	2 Overview
	2.1 Preliminaries
	2.2 Symbolic Execution (SE)
	2.3 Example
	2.4 Discussion

	3 Deferred Concretization
	3.1 The Notion of symcrete Values
	3.2 The Deferred Concretization Algorithm
	3.3 Fuzz-based Constraint Solver (Fuzz solver)
	3.4 Example

	4 Implementation and Evaluation
	4.1 RQ1: Coverage
	4.2 RQ2: Comparison with Symbolic Returns
	4.3 RQ3: SE Tree Missed by Concretization
	4.4 RQ4: Fuzz Solver Optimizations
	4.5 RQ5: Divergence
	4.6 RQ6: Divergence versus Coverage
	4.7 RQ7: Trend in Coverage

	5 Related Work
	6 Discussion
	References

