
DeepHunter: Hunting Deep Neural Network Defects via
Coverage-Guided Fuzzing

Xiaofei Xie1, Lei Ma2, Felix Juefei-Xu3, Hongxu Chen1, Minhui Xue1,
Bo Li4, Yang Liu1, Jianjun Zhao5, Jianxiong Yin6, and Simon See6

1 Nanyang Technological University
2 Harbin Institute of Technology
3 Carnegie Mellon University

4 University of Illinois at Urbana–Champaign
5 Kyushu University

6 NVIDIA AI Technology Center

Abstract. In company with the data explosion over the past decade, deep neu-
ral network (DNN) based software has experienced unprecedented leap and is
becoming the key driving force of many novel industrial applications, including
many safety-critical scenarios such as autonomous driving. Despite great suc-
cess achieved in various human intelligence tasks, similar to traditional software,
DNNs could also exhibit incorrect behaviors caused by hidden defects causing
severe accidents and losses. In this paper, we propose DeepHunter, an auto-
mated fuzz testing framework for hunting potential defects of general-purpose
DNNs. DeepHunter performs metamorphic mutation to generate new semanti-
cally preserved tests, and leverages multiple plugable coverage criteria as feed-
back to guide the test generation from different perspectives. To be scalable to-
wards practical-sized DNNs, DeepHunter maintains multiple tests in a batch, and
prioritizes the tests selection based on active feedback. The effectiveness of Dee-
pHunter is extensively investigated on 3 popular datasets (MNIST, CIFAR-10,
ImageNet) and 7 DNNs with diverse complexities, under large set of 6 coverage
criteria as feedback. The large-scale experiments demonstrate that DeepHunter
can (1) significantly boost the coverage with guidance; (2) generate useful tests
to detect erroneous behaviors and facilitate the DNN model quality evaluation;
(3) accurately capture potential defects during DNN quantization for platform
migration.

Keywords: Deep Neural Networks · Fuzzing · Software Quality Assurance ·
Coverage Criteria

1 Introduction

Recently great success has been achieved by artificial intelligence (AI) systems, such
as IBM’s Watson [1], Amazon Alexa [2], as well as DeepMind’s Atari [3] and Al-
phaGo [4]. We are now engaged in new AI development and deployment at an un-
precedented speed and scale. Deep learning (DL), or deep neural network (DNN) sys-
tems, is becoming the paramount ingredient of various kinds of AI-enabled applica-
tions, such as speech processing [5], medical diagnostics [6], image processing [7],

ar
X

iv
:1

80
9.

01
26

6v
3 

 [
cs

.S
E

] 
 1

6 
N

ov
 2

01
8



and robotics [8], across various implementation platforms such as TensorFlow [9],
Keras [10], PyTorch [11]. While DNNs are permeating all industry verticals, it has
brought to our attention that DNNs as software 2.0 [12] should be more extensively
tested or verified. DNNs definitely deserve more scrutiny than the current practice be-
fore they are deployed to safety- and mission-critical applications.

The quality assurance of DNN-based software is still immature, it has caused great
losses, such as a Google car accident [13] and an Uber car crash [14]. Systemic and
effective testing frameworks for reliably detecting defects and vulnerabilities in real-
world sized DNN-based software are in great demand.

In traditional software realm, coverage-guided fuzz (CGF) testing is a well-established
technique for defects and vulnerability detection. It helps detect thousands of bugs
and vulnerabilities issues in modern software, many of which have been existing for
decades [15–21]. CGF performs systematic random mutations on inputs and generates
test inputs to drive the software into diverse corner-case states. The major components
of the state-of-the-art CGFs often include mutation, feedback guidance, and fuzzing
strategy, among which the feedback guidance can provide valuable adjustment to the
fuzzing strategy and can significantly improve the efficiency of a fuzzing algorithm.

However, due to the fundamental difference between traditional and DNN based
software, traditional fuzzing elements could not be directly applied to DNN fuzzing. For
example, the mutations and the feedback are all different in many ways. For traditional
software, the mutation is usually rather random and frequently generates invalid (or
meaningless) seeds that will be rejected by the sanity check in the program quite early.
As a result, general-purpose fuzzers usually can only find shallow bugs, such as parsing
errors and improper input validations. On the other hand, the input of DNN software
typically requires special formats, and inputs that violate the format specifications will
be rejected even before the learning procedure starts. Therefore, it is considered more
cost-effective to customize a DNN-aware mutation strategy based on some intermediate
representations rather than the raw data.

Another challenge in DNN software is that the goal is no longer detecting the vul-
nerabilities or crashes in software; rather, we now shift our focus to the functionality of
DNN results. This is more like a differential testing scenario where we need to addition-
ally distinguish anomaly results from acceptable differences. Furthermore, the study on
DNN based software testing is still at its early stage, and whether existing techniques, in
particular, coverage criteria [22–24], can provide meaningful guidance to DNN fuzzing
still lacks extensive and in-depth investigation.

In this work, we are poised to answer these questions and highlight the following
contributions:

– We propose a general-purpose coverage guided fuzzing framework DeepHunter to
systematically test DNN based software, which is among the earliest studies to per-
form feedback-guided testing for DNNs. The design of DeepHunter takes into con-
sideration the unique characteristics of testing DNNs and the scalability towards
practical-sized DNNs. (1) In particular, the test execution could be easily paralleled.
We propose a batch-based strategy and leverage it to maintain high throughput in
obtaining fuzzing results. (2) To enable large-scale automated generation of new test
inputs within valid domain, we propose a metamorphic mutation based test genera-

2



tion technique, which preserves the input semantics before and after mutation. (3) We
propose to guide the test generation with plugable feedback analysis components, in-
cluding a set of 6 testing criteria of different granularity, to further guide the fuzzing
procedures.

– We have performed a large-scale empirical study to evaluate the usefulness of Deep-
Hunter in systematically generating tests for coverage enhancement, guided by the 6
recently-proposed coverage criteria.

– We further investigate how each of the very recently-proposed testing coverage cri-
teria helps to guide the fuzzing for, (1) DNN model quality evaluation, (2) error-
behavior detection, and (3) defect introduction of quantization for platform migra-
tion.

Overall, we find that DeepHunter can effectively generate useful tests in general, in
terms of (1) improving target coverage, (2) evaluating DNN model quality; (3) detecting
erroneous behaviours, as well as (4) capturing the sensitive cases where quantized DNN
version fails. To the best of our knowledge, this work is by far among the largest scaled
empirical evaluations for DNN testing, using 3 datasets (including ImageNet), 7 DNN
models (with large ones like VGG-16, ResNet-50), and a set of 6 coverage criteria as
CGF guidance. We will make DeepHunter publicly available as an open framework to
facilitate further comparative studies on DNN testing.

ML Experts

Development Deployment

Network 

Architecture

Solver

Tuning

Backend

Paralleled
Training

Validation

CPU vs. GPU

Distributed
Training

Data

Supervision

Hyperparameter

. . .

Quantized
Weights

. . .

Binary

Network

Hybrid
Precision

Low Precision

Network

Model
Compression

Quantization Self-Driving

Vehicles

Video

Surveillance

Smartphone

Apps

Robotics

Wearables

Medical

Devices

...

DNN Training

Ternary 

Network

Trained 

DNN

Platform Migration

Fig. 1: The development and deployment process for general DNN based software. Our proposed
DeepHunter is dedicated to assessing the DNN software quality and hunting the defects therein.

3



2 Preliminaries

2.1 DNN Software Development and Deployment

Over the past several decades, software development methodology [25, 26] has been
well-established for traditional software, with many experiences and practices widely
applied in software industry. A common software life cycle often consists of several
key stages such as requirement analysis, design, implementation, testing, deployment,
and maintenance. These development methodology and principles also generally apply
to DNN based software. However, different from traditional software, deep learning
defines a new data-driven programming paradigm, and keeps its artifact in form of
an encoded deep neural network structure and neuron connection weight matrix. Such
unique features bring some new challenges for quality assurance of DNN based soft-
ware, especially in DNN development and deployment phases [27].

Figure 1 gives an overview of the state-of-the-practice DNN software development
and deployment. The development phase transforms knowledge of the machine learning
experts, the prepared data, and the associated supervision signals into a deep neural
network for particular tasks at hand. The training of a DNN involves many tuning knobs,
such as the choices of network architecture, backend training framework, solver, and
hyper-parameters. Also, one may need to consider the communication overhead, the
model parallelization, the data parallelization, the CPU and GPU hybrid training, etc.

Once an applicable DNN model is ready, it will oftentimes go through either quan-
tization, or platform migration, or both, before being deployed to end-user applications,
such as self-driving cars, video surveillance, smartphones, and wearable devices. This is
because the training phase requires a vast amount of computation and energy resources.
As the model size and the complexity of the tasks grow, more data are needed to train
the network till reaching optimality, which could spend days, if not weeks, in training
on high-performance GPU clusters. On the other hand, delete the deployment of the
DNN models is usually into a resource constrained environment with limited computa-
tion, storage, and power. Therefore, when migrating from one platform to another, e.g.,
GPU-cluster trained DNNs to be deployed onto embedded systems or mobile devices,
the DNNs usually need to go through a “slimming” process via quantization.

Quantization of DNNs has been widely studied and is considered as one of the most
effective approaches to meet the extreme memory and computation requirements that
DNNs demand. Studies have shown that to maintain similar level of accuracy and DNN
performance, full precision 32-bit floating point weights may not be necessary [28–39].
One can quantize the weights to much lower bits (e.g., from 32-bit floating to 16-bit or
to mixed 32 and 16 precision) in order to greatly reduce the model footprint and energy
consumption, which has been commonly adopted for industrial level DNN software
deployment [40].

However, as depicted in Figure 1, defects might be introduced in both the devel-
opment and deployment phases. For example, data collection, training program imple-
mentation, training execution, etc., could all introduce potential defects at the DNN
development stage. Similarly, quantization and platform migration can also introduce
defects either due to quantization operator or compatibility issues.

4



Together, they are among the prime suspects for causing unexpected behaviors and
vulnerabilities in DNN software products. The current de facto practice mainly relies on
test accuracy to assess the quality of DNNs. However, this is still insufficient especially
when the quality of test data is low. A low quality test only partially measures the
DNN quality, and is unsuitable to provide insights to defects and vulnerabilities DNN
software, causing some fatal defects missed without giving any feedback to the DNN
developers.

2.2 Coverage-based Grey-box Fuzzing

Fuzzing has gained its popularity in academia and industry due to its scalability and
effectivenss in generating useful tests for defect detection. Based on awareness of the
target program structure, fuzzers can be classified as black-box [41], white-box [42]
or grey-box [15]. One of the most successful techniques is coverage-based grey-box
fuzzing (CGF), which strikes a balance between effectiveness and efficiency by us-
ing code coverage as feedback. Many state-of-the-art CGFs, such as AFL [15], lib-
Fuzzer [16] and VUzzer [19], have been widely used and proven to be effective.

Given a target program, CGF uses a lightweight instrumentation to collect the cover-
age information during fuzzing. A typical CGF usually performs the following loop [43]:
(1) selecting seeds from the seed pool; (2) mutating the seed a certain number of times
to generate new tests with mutation strategies such as bitwise/bytewise flips, block re-
placement, and crossover on two seed files; (3) running the target program against the
newly generated inputs, and recording the executed traces; (4) reporting fault seeds if
crashes are detected, and saving those interesting seeds that cover new traces into the
seed pool. Such iteration continues until given computation resource exhausts. The two
key components in CGF are mutation and coverage feedback that largely determine the
efficiency of fuzzing.

Despite the huge differences between traditional programs and DNNs, the success
of CGF on the former still gains insight into the fuzzing on the latter. For example, the
target traditional program mirrors the DNN, the seed of fuzzer mirrors the input of the
DNN, and the coverage feedback could be some coverage of DNN. Considering the
unique characteristics of the DNN, it is still challenging to develop effective mutation
strategies and coverage criteria in terms of DNN fuzzing. This paper aims to fill this gap
by designing effective CGF framework towards providing a quality assurance gadget
during the DNN development and deployment process.

3 METHODOLOGY

In this section, we elaborate proposed coverage guided fuzzing for DNNs. We take an
overview of DeepHunter and then describe each of the key components in details.

3.1 Overview of DeepHunter

Fig. 2 depicts the overview of DeepHunter, and Algorithm 1 specifies the details. At
a high level, DeepHunter consists of three major components: Metamorphic Mutation,

5



Preprocessing

Batch Maintenance

Batch

Selection

Initial Seeds
Batch

Prioritization

Seed

Sampling

Power

Scheduling

Oracle
Coverage

Analysis
Failed

Tests

Batch

Pool

Mutation

Sanity Checking

Metamorphic Mutation

DNN Feedback

Fig. 2: The workflow of DeepHunter, which leverages metamorphic mutation to generate tests
with coverage feedback as guidance.

DNN Feedback, and Batch Pool Maintenance. We define an atomic input of the DNN
(e.g., an image) as a seed and a set of seeds (e.g., multiple images) as a batch. As
DNNs can quickly predict multiple seeds (i.e., a batch) at once, we maintain a batch
pool instead of a seed pool to improve the fuzzing effectiveness. During fuzzing, Dee-
pHunter first selects a batch and generates a large number of mutated seeds, then the
DNN predicts all mutated seeds at once. At last, DeepHunter maintains the pool based
on the coverage information. The workflow of DeepHunter is detailed below (see Al-
gorithm 1).

The inputs of DeepHunter are the initial seeds and the target DNN model under
test. Before the fuzzing loop, initial seeds are constructed as batches, which are added
into the batch pool (Line 2). During fuzzing process, the fuzzer selects one batch from
the priority batch pool (Line 3). From the batch, the fuzzer samples some seeds to be
mutated (Line 4). The fuzzer applies a power scheduling against the sampled seeds to
determine the mutation chances for each seed (c.f . Section 3.3). For each sampled seed,
the fuzzer will mutate it for the assigned times (Line 8), and sanitize each mutated seed
(c.f . Section 3.2) since random mutation may generate some meaningless seeds (e.g.,
images imperceptible to the human eye). For each valid mutant of the original seeds,
the test oracle will verify whether this is a failed test. After mutating all sampled seeds,
the survived mutants are constructed as a batch. DNNs will predict all the seeds and
collect the coverage information of the batch (Line 14). If the batch gains the coverage,
it will be added into the batch pool. Batch prioritization will prioritize the batches that
have been seldomly fuzzed (Lines 16-17, c.f . Section 3.4 and Section 3.5).

3.2 Transformation and Mutation

Traditional fuzzers such as AFL mutate the input with bitwise / bytewise flips, block
replacement, crossover between input files, etc. However, these strategies usually gen-
erate too many inputs that are meaningless in DNN fuzzing. For example, images or
voices that are imperceptible to human senses should be discarded from the mutation.
Hence, one challenge is how to balance between increasing the changeability of muta-
tion and generating meaningful inputs. If the mutation change is very small, the newly
generated input may be almost unchanged; despite the fact that it may be meaningful,
the fuzzer has lower chances of finding failed tests. On the other hand, if the mutation
change is very large, more failed tests may be identified; however, the failed tests are
more likely to be meaningless.

6



Algorithm 1: DeepHunter
input : I: Initial Seeds, DNN , Target Neural Network
output: F : Failed Tests
const : K: Total number of mutation for a batch

1 F ← ∅;
2 T ← Preprocess(I);
3 while B ← SelectNext(T ) do
4 S ← Sample(B);
5 PS ← PowerSchedule(S,K);
6 B′ ← ∅;
7 for I ∈ S do
8 for i from 1 to PS(I) do
9 I′ ←Mutate(I, B);

10 if isFailedTest(I′) then
11 F ← F

⋃
{I′};

12 else if isChanged(I, I′) then
13 B′ ← B′

⋃
{I′};

14 cov ← Predict(DNN,B′);
15 if CoverageGain(cov) then
16 T ← T

⋃
{B′};

17 BatchPrioritize(T );

In this work, we mainly focus on image inputs. To solve the aforementioned chal-
lenge, we develop a metamorphic mutation strategy. The basic objective is that given an
image i, the mutator generates another new image i′ such that the semantics of i and i′

are the same from the perspective of people.
Image Transformation. To increase the changeability of mutation, we select eight im-
age transformations which are classified into two categories:

– Pixel Value transformation P: change image contrast, image brightness, image blur
and image noise.

– Affine transformation G: image translation, image scaling, image shearing and image
rotation.

Intuitively, Pixel Value transformation changes the pixel values of the image while
Affine transformation moves the pixels of the image. The transformations have been
proved to be effective and useful in [23].

Definition 1. An image I ′ is one-time mutated from I if I ′ is generated after a trans-
formation t on I (denoted as I t−−→ I ′), where t ∈ P

⋃
G. An image I ′ is se-

quentially mutated from I if I ′ is generated after a sequence of one-time mutations
(I t0−−→ I1, I1

t1−−→ I2, . . . , In
tn−−→ I ′) (denoted as I t0,t1,...,tn−−−−−−−→ I ′).

Metamorphic Mutation. By setting proper parameters for different transformations,
it is assumed that the image after one-time mutation has the same semantics with the

7



Algorithm 2: Mutate
input : I: Seed
output: I′0: New Seed
const : TRY NUM : The maximum number of trials

1 (I0, I′0, state)← info(I);
2 for i from 1 to TRY NUM do
3 if state == 0 then
4 t← randomPick(G

⋃
P);

5 else
6 t← randomPick(P);
7 p← pickRandomParam(t);
8 I′ ← t(I, p);
9 if isSatisfied

(
f(I′0, I′)

)
then

10 if t ∈ G then
11 state← 1;
12 I′0 ← t(I0, p);
13 info(I′)← (I0, I′0, state);
14 return I′;

15 return I;

original image. However, during fuzzing, one image can be sequentially mutated from
the original image, it is challenging to generate meaningful images after a sequence of
mutations. To boost the mutation effectiveness, we propose the metamorphic mutation.

In order to ensure the meaningfulness of the mutated image as much as possible,
we adopt a conservative strategy that makes Affine Transformation to be selected only
once because multiple affine transformations are more likely to generate meaningless
images. We assume that an affine transformation will not affect the semantics under the
selected parameters. Pixel Value Transformation can be selected multiple times and we
use L0 and L∞ to limit the pixel-level change. Suppose an image I is mutated to I ′ by a
pixel value transformation, then I ′ is meaningful in terms of I if f(I, I ′) (Equation 1)
is satisfied.

f(I, I ′) =
{
L∞ ≤ 255, if L0 < α× size(I)
L∞ < β × 255, otherwise

(1)

where 0 < α, β < 1, L0 represents the maximum number of the changed pixels, L∞
represents the maximum value of the pixel changes, size(I) is the number of pixels in
image 0 < I.

Intuitively, if the number of changed pixels is very small (< α×size(I)), we assume
it does not change the semantics and L∞ can be any value. If the number of changed
pixels exceeds the boundary, we limit the maximum changed value (< β × 255).

8



Definition 2. Given a mutated image I, the original image (denoted as I0) of I is the
image in the initial seeds and I is one-time mutated or sequence mutated from I0, i.e.,
I0

t0,...,tn−−−−−→ I, where n ≥ 0. The reference image (denoted as I ′0) is defined as:

I ′0 =

{
Ij , ∃ 0 ≤ j ≤ n. tj ∈ G ∧ I0

t0,...,tj−−−−−→ Ij
I0, otherwise

Algorithm 2 shows the details of the mutation, which takes an original image I as
the input and the mutated image I ′ as the output. We first obtain the tuple (I0, I ′0, state)
(Line 1) which is recorded in the batch. state is the current mutation state 0 or 1,
which represents whether an Affine Transformation is used. DeepHunter tries to mutate
a meaningful image I ′ with a maximum number of trials TRY NUM (Line 2-14). It
randomly picks a transformation t. If the current mutation state is 0, it can select from
both Affine Transformation and Pixel Value Transformation (Line 4). If the mutation
state is 1, it can only use a pixel value transformation (Line 6). For the transformation
t, it picks a parameter randomly (Line 7) and performs the transformation (Line 8).

Next, Algorithm 2 computes L0 and L∞ between the reference image I ′0 and the
new mutated image I ′ to check whether I ′ is meaningful (Line 9). Note that we com-
pare I ′ with reference image I ′0 instead of original image I0 because: (1) the pixels
between I ′0 and I ′ are corresponding, which is necessary to compute L0 and L∞ and
(2) we assume that I ′0 and I0 have the same semantics under our conservative param-
eters. Hence, if f(I ′0, I ′) (c.f . Equation 1) is satisfied, we can conclude that I ′ and
I0 also have the same semantics and the mutation is successful. If the selected t is an
Affine Transformation, it updates the mutation state of I ′ and I ′0 (Line 11-12). At last,
Algorithm 2 saves the current image I ′ (Line 13) and ends the mutation (Line 14). If
there is no successful mutation after TRY NUM mutations, it outputs the image I.

3.3 Power Scheduling

As described in Algorithm 2, DeepHunter mutates one image with a limited number of
tries. If f(I ′0, I ′) is satisfied, the mutation of I is successful. Actually, the possibility
of successful mutation depends on the difficulty that f(I ′0, I ′) is satisfied.

Given an image I and its reference image I ′0, we define its mutation potential as
β × 255 × size(I) − sum(abs(I − I ′0)). Intuitively, the mutation potential approxi-
mately represents the mutation space of an image I , i.e., the difficulty that f(I ′0, I ′) is
satisfied. β × 255× size(I) represents the maximum value that the image can change.
sum(abs(I − I ′0)) represents the value that the image has changed in terms of I ′0. For
example, suppose I ′ is sequentially mutated from I ′0 : (I ′0

t0−−→ I1, . . . , In
tn−−→ I ′), the

mutation potential of images in the front of the sequence (e.g., I1) is more likely to be
higher than those in the tail (e.g., I ′).

The power scheduling is a procedure for DeepHunter to decide mutation chances
for different seeds (i.e., images). To boost the efficiency of fuzzing, we expect to mutate
more images that have higher mutation potential.

9



Table 1: The plugable coverage criteria integrated in DeepHunter for test guidance. Besides the
first five criteria originally proposed in [22, 24], we also include an extra BKNC criterion that
plays as a counterpart of TKNC by measuring the ratio of top-k most hypoactived neurons.

Subject Cov. Criteria Description
Neuron Cov. (NC) The ratio of activated neurons
K-multisec. Neu. Cov. (KMNC) The ratio of covered k-multisections of neurons
Neuron Bound. Cov. (NBC) The ratio of covered boundary region of neurons
Strong Neuron Act. Cov. (SNAC) The ratio of covered hyperactive boundary region
Top-k Neu. Cov. (TKNC) The ratio of neurons in top-k hyperactived state
Bottom-k Neu. Cov. (BKNC) The ratio of neurons in top-k hypoactived

3.4 Plugable Coverage-Guided Fuzzing

A dumb fuzzer without any coverage guidance aimlessly mutates the seed, without
knowing whether the generated test input is preferable. Consequently, such a fuzzer may
frequently keep seeds that do not bring new desired information; even worse, mutation
on these seeds may bury other “interesting” seeds in the fuzzing queue, significantly
decreasing the fuzzing effectiveness. Therefore, modern fuzzers for traditional software
often embrace some feedback such as code coverage.

In this paper, DeepHunter selects six different criteria [22,44] (Table 1) as different
feedback to determine whether the newly generated batch should be kept for further
mutation. The criteria have been proven to be useful to capture the internal DNN states.
However, due to the huge numerical space of each neuron value and the large scale
nature of the DNN software, the fuzzer could be overloaded with flooded feedback.
In fact, without triaging, seed inputs with similar neuron values will be unnecessarily
retained. Due to the mutation instinct, there will be a huge number of such mutants
that originate from a given seed. To tackle this issue, we equally split the numerical
neuron-feedback interval of each criteria into different buckets, each of which will be
regarded as an “equivalent class”. If a new seed with its coverage results of a neuron
falling into existing buckets, it is out of the interest and discarded. This mechanism is
inspired from the “loop bucket” practice used in the traditional fuzzing framework (e.g.,
AFL), to mitigate the trace exploitation issue [45].

3.5 Batch Prioritization

Batch prioritization decides which batch should be picked next. We adopt a strategy
which probabilistically selects the batch based on the number of times it has been
fuzzed. Specially, the probability is computed by:

P (B) =

{
1− f(B)/γ, if f(B) < (1− pmin)× γ
pmin, otherwise

(2)

where B is a batch, f(B) represents how many times the batch B has been fuzzed and
pmin > 0 is the minimum probability. The values of parameters γ and pmin can be
adjusted.

10



Table 2: Subject datasets and DNN models.

DataSet Dataset DNN Model #Neuron #Layer Test
Description Acc.

MNIST
Hand written LeNet-1 52 7 0.976
digits recog. LeNet-4 148 8 0.989
from 0 to 9 LeNet-5 268 9 0.990

CIFAR-10 General image ResNet-20 2,570 70 0.917
with 10-class VGG-16 12,426 17 0.928

ImageNet 1000-class large MobileNet 38,904 87 0.871∗

scale image cla. ResNet-50 94,059 176 0.929∗

* The reported top-5 test accuracy of pretrained DNN model in [46].

The basic idea here is to prioritize the batches that have been seldomly fuzzed. For
example, the probability of new mutated batch is 1 since it gains new coverage and is
regarded as interesting. To keep the diversity, other batches that have been fuzzed many
times also have a minimum probability pmin to be selected.

4 Experiments

DeepHunter is implemented in Python and C: the metamorphic mutation component
and DNN coverage feedback component are implemented in Python based on deep
learning framework Keras (ver.2.1.3) [10] with TensorFlow (ver.1.5.0) backend [9];
the batch maintenance component is implemented in C for efficiency. We evaluate Dee-
pHunter by investigating the following research questions:

RQ 1: What coverage can DeepHunter achieve when guided by the six testing criteria?
RQ 2: Does DeepHunter facilitate the DNN model evaluation effectively?
RQ 3: Can DeepHunter enable diverse erroneous behavior detection of DNNs?
RQ 4: Can DeepHunter detect potential defects introduced during DNN quantization?

4.1 Datasets and DNN Models

We select three popular publicly available datasets (i.e., MNIST [47], CIFAR-10 [48],
and ImageNet [49]) as the evaluation subject datasets (see Table 2). For each dataset,
we study popular DNN models [50–52] that are widely used in previous work. In partic-
ular, we perform extensive controlled study on MNIST and CIFAR-10, and investigate
the scalability and usefulness of DeepHunter. Table 2 summarizes the structures and
complexity of the DNNs used in this paper.
MNIST is for handwritten digit image recognition, containing 60, 000 training data
and 10, 000 test data, with a total number of 70, 000 data in 10 classes (i.e., handwritten
digits from 0 to 9). Each MNIST image is a single-channel of size 28 × 28 × 1. On
MNIST, we have studied three LeNet family models (LeNet-1, LeNet4, LeNet-5 [50])

11



0 10 20 30 40 50 60 70 80 90 100
Epochs

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Ac
cu

ra
cy

Training Accuracy
Testing Accuracy

0 50 100 150 200 250 300
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

Training Accuracy
Testing Accuracy

0 10 20 30 40 50 60 70 80 90 100
Epochs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Tr
ai

ni
ng

 L
os

s

LeNet-1
LeNet-4
LeNet-5

0 50 100 150 200 250 300
Epochs

0

0.5

1

1.5

2

2.5

3

3.5

4

Tr
ai

ni
ng

 L
os

s

ResNet-20
VGG-16

LeNet-5 Accuracy LeNet-1,4,5 Training Loss

ResNet-20 Accuracy ResNet-20, VGG-16 Training Loss

Fig. 3: Controlled results on training loss, training accuracy, and test accuracy.

as the subject models. We train each of the LeNet models in a controlled setting, with
detailed configuration and discussion in Section 4.4.
CIFAR-10 is a collection of images for general-purpose image classification, includ-
ing 50, 000 training data and 10, 000 test data in 10 different classes (e.g., airplanes,
cars, birds, and cats). Each CIFAR-10 image is three-channel of size 32× 32× 3. The
classification task of CIFAR-10 is generally harder than that of MNIST due to the data
size and complexity. To obtain competitive performance on CIFAR-10, we study two
well-known DNN models (i.e., ResNet-20 [53] and VGG16 [54]) as the subject models.
ImageNet. To further demonstrate that DeepHunter scales to practical-sized dataset
and DNN models, we also select ImageNet, which is a large-scale visual recognition
challenge (ILSVRC) dataset for general-purpose image classification. The complexity
of ImageNet is characterized by a large number of training data (i.e., over one mil-
lion) and test data (i.e., 50,000), as well as large data points, each of which is of size
224× 224× 3 (∼ 50x dimensionality of CIFAR-10). Therefore, it would be an ordeal
for any automated testing tool to work on ImageNet sized dataset and DNN models.
Specifically, we try to examine whether DeepHunter enables the fuzz testing on Ima-
geNet dataset and practical-sized DNN models (i.e., VGG-19 [54], ResNet-50 [53]).

12



Table 3: DNN model and their training and test performance.

DataSet DNN Epoch Syno. Train Loss Train Acc. Test Acc.
10 A 0.131 0.965 0.967

LeNet-1 30 B 0.099 0.975 0.975
45 C 0.087 0.979 0.976
10 A 0.117 0.974 0.978

MNIST LeNet-4 25 B 0.077 0.986 0.986
50 C 0.058 0.990 0.989
10 A 0.116 0.977 0.983

LeNet-5 30 B 0.071 0.988 0.989
45 C 0.056 0.992 0.990
40 A 0.515 0.894 0.859

ResNet-20 55 B 0.385 0.932 0.880

CIFAR-10 95 C 0.239 0.977 0.917
30 A 0.623 0.914 0.850

VGG-16 55 B 0.443 0.965 0.900
95 C 0.316 0.995 0.928

4.2 Experiment Setup

Subject DNN Model Training and Preparation. Since the DNN model quality could
affect the evaluation results, we carefully select the well-known DNN models that ob-
tain competitive performance on each studied dataset. In this paper, we closely follow
the common machine learning training practice and instructions [55, 56], and set up a
three-stage adaptive learning rate for training MNIST and CIFAR-10 DNN models. The
larger learning rate at the early training stage accelerates the training convergence, while
the later stage with a smaller learning rate allows the performance fine-tuning. The
training loss, training accuracy, and test accuracy for each model are shown in Figure 3.
From the training accuracy and training loss curve, we can observe that the training
process jumps into three different stages as expected. We follow the machine learning
practice and select the best candidate models with the most competitive performance
without overfitting as the subject DNN model instances for fuzz testing (see Table 1
and DNN C variants in Table 3 with the detailed epochs and training information). Due
to the large size of training data and training effort of ImageNet, we select the pretrained
MobileNet and ResNet-50 [46] as the subject models [53].

For RQ 2, we try to evaluate whether DeepHunter enables the DNN model quality
evaluation. Therefore, besides the best candidate C instances for each model used for
MNIST and CIFAR-10, we also select other two instances A and B from each of the first
two training stages, which allows us to sort the model quality relationQA < QB < QC

as the groundtruth.7 The selected groundtruth model instances for quality evaluation is
summarized in Table 3.
Coverage-Guided Fuzz Testing. After all DNN models are obtained for each dataset (see
Table 2), we use DeepHunter to perform large-scale fuzz testing on each of these mod-
els to generate tests. For each DNN model, we randomly sample tests as initial seed
batches from their original test dataset such that all these tests are correctly handled

7The general DNN quality groundtruth is hard to obtain; the state of the practice still relies on test accuracy. Our three-stage
training procedure follows the machine learning practice [55, 56] and allows to obtain model instances, each from one of
the three training stages, so that we could obtain the desired model quality relation with high confidence.

13



by the model.8 Furthermore, on MNIST and CIFAR-10 datasets, the sampled initial
seeds are also correctly handled by each of the model instance A and B, as shown in
Table 3. This allows us to perform the controlled evaluation (for RQ 2) on the use-
fulness of DeepHunter for quality evaluation of models, where the initial seeds fail to
distinguish each of the model instances A, B, C in terms of prediction accuracy. We
configure DeepHunter to use the each of the six studied testing criteria for guided fuzz
testing with a time budget of 24 hours, allowing the testing coverage to achieve rela-
tively saturated status. The obtained tests are used to perform post-phase analysis for
each research question. Note that the post-phase analysis for all the research questions
are also computational intensive. To support such a large-scale subject DNN model set
training, which are fuzz testing and post-phase analysis, we run all the experiments on
a high performance computer cluster. Each cluster node runs a GNU/Linux system with
Linux kernel 4.4.0 on a 28-core 2.3GHz Intel Xeon 64-bit CPU with 196 GB of RAM
equipped with a NVIDIA Tesla V100 16G-GPU.

4.3 Coverage Results Guided by Different Testing Criteria

To answer RQ 1, the achieved coverage of DeepHunter guided by different testing
criteria is shown in Table 4. DeepHunter generates tests that significantly increase the
corresponding coverage compared with initial seeds, as confirmed by Wlicoxon Singed
Ranks Test (p < 0.01) for all cases.

The difficulty to cover different criteria is different. For example, the TKNC ob-
tained by initial seeds has already obtained very high coverage in some cases (see LN-5
with 76.3% initial NC), While the initial seeds only obtain 0.1% for ResNet-20 on NBC
and SNAC. Such results are consistent with the coverage trends reported in [24], where
the NBC and SNAC are more challenging to cover since they represent the corner-
regions where neuron states go beyond a normal region. Even though, DeepHunter is
still able to significantly boost such criteria, increased by 15.86x (from 0.7% to 10.3%
on MobileNet) to 77.5x (from 0.04% to 3.1% on VGG-16).

Answer to RQ 1: DeepHunter significantly boosts the coverage across with dif-
ferent criteria guidance.

4.4 DNN Model Quality Evaluation

Although software quality standards and metrics are well-established for traditional
software, the DNN quality assurance research is still at an early stage, with most current
work relying on test accuracy. To answer RQ 2, we investigate whether DeepHunter
provides more useful feedback and evaluation on the DNN model quality, by using
controlled setting on MNIST and CIFAR-10 (see Table 3). Note that the initial seeds
are all correctly predicted by all instances A, B, C of each model.

We have used DeepHunter to generate tests for instance C of each model. Among
these tests, we keep those correctly predicted by C, and run these tests on instances A
8We sample 1,000 initial seeding data in 10 batches (each contains 100 test data) for MNIST and CIFAR-10, and 500 seeding
data for ImageNet in 20 batches w/ equal size.

14



Table 4: The coverage of initial seeds and tests with DeepHunter guided by the corresponding
testing criteria.

DNN NC(%) KMNC(%) NBC(%) SNAC(%) TKNC(%) BKNC(%)
Model Init. D.H. Init. D.H. Init. D.H. Init. D.H. Init. D.H. Init. 35.4
LN-1 22.9 31.3 31.4 92.2 1.2 24.4 0.3 22.1 49.7 49.8 49.8 49.8
LN-4 56.3 61.1 21.9 75.9 0.4 15.1 0.2 20.2 69.5 72.7 27.2 31.1
LN-5 58.0 70.8 20.6 78.4 0.3 11.3 0.2 19.2 76.3 83.2 24.6 30.5
RN-20 7.5 10.8 36.0 75.1 0.1 8.1 0.1 8.11 62.3 68.0 63.3 68.7
VGG16 41.9 46.2 41.1 84.1 0.04 3.1 0.1 3.1 13.3 15.1 13.9 16.2
MN 7.0 7.8 26.9 73.4 0.7 10.3 0.4 9.5 4.9 7.9 5.2 8.5
RN-50 4.8 9.4 23.9 51.6 0.1 3.2 0.1 3.8 14.1 22.9 13.7 20.6
Avg. 28.3 33.9 28.8 75.8 0.4 10.8 0.2 12.3 41.4 45.6 28.2 32.2

Table 5: The controlled DNN model instance quality evaluation accuracy results.

DNN NC(%) KMNC(%) NBC(%) SNAC(%) TKNC(%) BKNC(%)
Instan. A B A B A B A B A B A B
LN-1 99.0 99.5 92.8 97.5 93.0 96.5 90.1 96.0 91.5 98.5 95.4 98.7
LN-4 98.1 99.6 92.7 97.3 87.1 95.5 91.0 95.4 91.5 95.7 89.3 95.9
LN-5 95.4 97.7 91.3 94.1 88.4 96.9 91.1 97.0 92.4 97.0 91.3 96.7
RN-20 92.6 93.9 81.7 87.2 83.8 87.4 83.8 86.3 81.9 87.1 85.3 87.8
VGG16 86.0 87.7 78.0 83.3 80.0 81.3 82.9 83.9 82.8 83.3 84.1 85.2
Avg. 94.2 95.7 87.3 91.9 86.4 91.5 87.8 91.7 88.0 92.3 89.1 92.9

and B of each model. The obtained accuracy for instances A and B of each model is
shown in Table 5. We can see that DeepHunter facilitates the DNN model quality eval-
uation, and the quality evaluation results are largely consistent with the model quality
groundtruth (i.e., QB > QA). The tests generated by different coverage guidance ex-
hibit different abilities to show the model quality difference. For example, on LeNet-5,
the NC only slightly shows B might have better quality; however, this becomes obvi-
ous when it comes to NBC, where instance A achieves 88.4% accuracy and instance B
achieves 96.9%.

We see that most of the accuracy of instances A and B under our generated tests (see
Table 5) are lower than the original test accuracy (see Table 2). On the contrast, most of
the absolute accuracy differences between instances A and B under our generated tests
outnumber those under original test data. This indicates that the generated tests can
better distinguish the qualities of instances A and B, and instance C is able to generate
high quality tests than the other two, which is consistent with our expectations.

Answer to RQ 2: DeepHunter facilitates the model quality evaluation through
guided fuzz testing. The tests generated with different coverage guidance exhibit
different test capabilities, providing different feedback to the model quality.

4.5 DNN Erroneous Behavior Detection

To answer RQ 3, during the fuzz testing process of DeepHunter, we continuously col-
lect the generated tests that trigger erroneous behaviors of DNNs. Since our metamor-
phic mutation performs constraint-based transformation on inputs, to ensure no changes

15



Table 6: The number of unique error triggering tests generated by DeepHunter with different
coverage guidance.

DNN Unique Error Triggering Tests (unit in 1 k)
Models NC KMNC NBC SNAC TKNC BKNC
LeNet-1 6.9 1.1 6.7 8 6.8 8.6
LeNet-4 4.7 0.6 2.9 3.3 2.2 4.5
LeNet-5 2.9 0.7 3.1 3.3 1.3 3.2
RN-20 0 7.0 7.8 7.9 6.1 7.2
VGG-16 2.2 6.3 8.1 8.5 6.8 8.3
MobileNet 1.5 10.8 11.6 9.6 16.6 13.8
RN-50 1.3 8.1 8.8 8.8 9.7 8.6
SUM 19.5 34.6 49 49.4 49.5 54.2

of the semantic between the original image and the transformed one, we perform pre-
diction check on images before and after transformation in batch and record the tests
that trigger the erroneous behaviors of the DNN under test. The detected erroneous
behaviors from proposed coverage criteria for each model is shown in Table 6.9 Conse-
quently, it is not surprising that DeepHunter successfully generates tests to trigger the
erroneous behaviors of DNNs. The recent work [22, 23] have already shown that test-
ing only based on neuron coverage already generates thousands of erroneous triggering
tests.

There appears a case on RN-20 with the neuron coverage 0. After generating 24
batches, the tests generation converges (i.e., new seeds cannot cover new coverage in
terms of NC). Thus the metamorphic mutation is always run on existing batches, and
new seeds are always one-time mutated from existing batches. As a result, in this case,
one transformation under our conservative strategy (c.f . Section 3.2) is difficult to gen-
erate erroneous triggering tests.

Answer to RQ 3: DeepHunter can effectively generate tests to trigger erroneous
behaviors of the DNN under tests, which also scales well to practical-sized datasets
and DNN models.

4.6 Defect Detection under Controlled DNN Quantization Settings

To answer RQ 4, recently there exists a strong demand to deploy DNN solutions on
diverse platforms such as mobile device, edge computing device. Due to the compu-
tation and power limitation, a common practice is to quantize the DNN model from
high precision floating to a lower precision form, to reduce the size for deployment.
However, the quantization could introduce potential unexpected erroneous behaviors.
An effective test suite should be able to capture such error cases as feedback to DL
developer for further analysis and debugging. In this research question, we investigate
whether DeepHunter is useful to detect potential defects during quantization.

For each of studied DNN model in Table 2 (that is 32-bit floating point precision),
we perform quantization with 3 configurations: (1) randomly sample 1% of weights
9Note that once error-trigger tests are generated, they are recorded for further processing without putting them back into the
batch pool.

16



to truncate 32-bit floating point to 16-bit, resulting a mixed precision DNN model,
(2) randomly sample 50% weights to truncate 32-bit floating point to 16-bit, and (3)
truncate all weights from 32-bit floating point to 16-bit.10

Notice that the initial seeds of each dataset cannot detect the erroneous behavior
before and after quantization. Then, we reuse the tests generated by DeepHunter to
evaluate quantized models, the results are summarized in Table 7. In all cases, Deep-
Hunter enables to detect the potential minor erroneous behaviours introduced during
quantization.

In many of the configurations, the tests generated with NBC and SNAC guidance
detect more erroneous issues. One potential reason is that the tests with higher NBC
and SNAC tends to cover the corner-region behavior of neurons, which could poten-
tially trigger the erroneous behaviors of quantized model. Another interesting founding
we found that the number error trigger tests for full quantization DNN model could
sometimes be smaller than the mix-precision quantization counterparts. For example
on LeNet-4 TKCN configuration, we found that 31 erroneous behavior on full quanti-
zation DNN model, while averaged 33 erroneous behavior on 50%. Intuitively, the large
quantization ratio, more weights lose precision, and more erroneous behavior could be
introduced. However, our evaluation results hints that sometimes the error introduced
by more weight precision loss might cancel each other and obtain an less erroneous
quantized version.

Answer to RQ 4: DeepHunter can effectively detect potential defects introduced
during DNN quantization, albeit a minor precision loss.

4.7 Discussion and Threats to Validity

We perform extensive study on fuzz testing using 6 coverage criteria for guidance.
In this section, we tend to discuss the potential effects of studied coverage criteria as
feedback to guide fuzz testing, based on our experimental results.

From the coverage results (c.f . Table 4) as well as the corresponding criteria def-
inition, we find that KMNC is a fine-grained criterion, representing k-multisection of
neurons, which easily facilitates to generate interesting tests. For example, the average
coverage gain of KMNC is 47%, outnumbering the others. On the other hand, NC is a
relatively coarse-grained criterion which represents records the ratio of activated neu-
rons. Due to this (see Table 5), the fuzz testing guided by NC cannot generate effective
results to evaluate the models with various quality. The results in Table 2 and Table 3
also show that NC is less effective in error triggering test detection and sensitive defect
detection.

In comparison to KMNC and NC, the other four criteria show different behavior to
guide fuzz testing, some of which could be difficult to cover such as SNAC and NBC.
They tend to guide fuzz testing in generating corner-case tests, so that to trigger more
errornous behaviors In Table 2, more error-triggering tests are generated by the four than
those by KMNC and NC in many cases. Meanwhile, KMNC is a fine-grained coverage

10Due to randomness of the first two configurations, we repeat the sampling procedure 5 times to average the results.

17



Table 7: The number of sensitive defects are detected by DeepHunter during DNN model quan-
tization, with full quantization from 32-bit to 16-bit floating conversion, as well as with mixed
precision with random parts of weights quantized. The number of defects for 1% and 50% quan-
tization ratio are averaged detected defects over five runs.

DNN Quan. Number Defects Detected
Models Ratio (%) NC KMNC NBC SNAC TKNC BKNC

1 9 17 61 63 18 21
LeNet-1 50 43 79 111 141 75 67

100 36 77 107 164 82 62
1 17 10 9 16 11 39

LeNet-4 50 31 43 38 84 33 65
100 25 45 43 85 31 55
1 2 7 16 16 13 7

LeNet-5 50 22 46 91 45 51 24
100 23 49 100 46 53 28
1 0 14 8 6 6 15

RN-20 50 0 58 62 40 44 57
100 0 64 68 42 46 71
1 1 5 7 7 11 9

VGG-16 50 3 48 36 34 39 44
100 5 44 38 41 38 52
1 89 46 64 33 84 53

MobileNet 50 400 783 880 709 1,198 872
100 435 819 751 569 1,113 830
1 7 11 11 6 22 15

RN-50 50 11,805 41,217 37,822 30,009 58,796 47,703
100 11,793 41,132 37,810 29,979 58,747 47,712

and able to generate tests that capture a large scope of major functional behaviors of
DNNs. For the case of VGG16 in Table 5, KMNC can more obviously distinguish
accuracy of instances A and B with its generate tests compared with ones generated
by the other criteria whose accuracy difference is about 1%. On other models, BNC,
SNAC, TKNC, and BKNC perform well in many cases. Our in-depth investigation
reveals the possible reason that the tests generated from these four criteria are more
likely to be the error triggering tests for instance A or B.

The selection of the subject datasets and DNN models could be a threat to valid-
ity. In this paper, we try to counter this issue with 3 well-studied datasets with di-
verse complexity. For DNN models on MNIST and CIFAR-10, we follow the common
machine learning training practice to obtain DNN models achieved with competitive
performance. On ImageNet dataset, we select the well-pretrained models from Keras
(ver.2.1.3) release. Another threat could be the randomness of the weight sampling in
the mixed precision quantization, we counter this issue by repeating the same setting
five times and averaging the results.

5 Related Work

In this section, we review the related work in the following three aspects: fuzz testing
in traditional software, testing and verification of DNNs, and adversarial deep learning.

18



5.1 Fuzz Testing in Traditional Software

Fuzz testing has been widely used to safeguard software quality. Coverage guided
grey-box fuzzing frameworks, such as AFL [15], libFuzzer [16], honggfuzz [17], and
FOT [18] have been quite successful in detecting thousands of bugs in traditional soft-
ware. On top of those, power scheduling [20] and some other techniques, such as [57],
[58], have been demonstrated to be effective to guide the fuzzing procedure for differ-
ent fuzzing purposes, such as increasing code coverage from low frequency execution
traces or improving directedness for directed fuzzing scenarios.

On the other hand, several other methods have been proposed to improve the muta-
tion quality by providing structure aware mutation strategies, including LangFuzz [59]
and Skyfire [21] which generate or mutate the seeds according to some predefined gram-
mars, or the libprotobuf mutator [60] which could be used to mutate protobuf supported
formats. Compared to dumb mutators, more meaningful mutants can be generated to
pass validity checks and detect more deeper bugs.

Other fuzzing techniques are also proposed to detect functionality bugs. For exam-
ple, NEZHA [61] has been used to exploit the behavioral asymmetries between test
programs to focus on inputs that are more likely to trigger logic bugs. The consistency
of behaviors between different implementations serves as the oracle to detect the func-
tionality bugs.

Finally, some works utilize machine learning or deep learning techniques to improve
the effectiveness of fuzzing [62–67]. Different from these works, we attempt to perform
fuzz testing on DNNs instead of leverage deep learning to fuzz traditional software.

5.2 Testing and Verification of DL Systems

Testing. DeepXplore [22] proposed a white-box differential testing technique to gen-
erate test inputs that potentially trigger inconsistencies between various DNNs; such
inconsistencies may identify incorrect behaviors. They also investigated the usefulness
of neuron coverage to measure how well the internal logic of a DNN is tested. In Tian
and Pei et al. following work DeepTest [23], they further leveraged neuron coverage
to guide testing of DNN-driven autonomous cars. DeepTest adopts the domain-specific
metamorphic relations between the car behaviors across different input images to de-
tect erroneous behaviors in a single DNN model, whereas DeepXplore [22] requires to
check multiple DNNs.

DeepCover [68] adapted MC/DC test criteria [69] for DNNs, they showed its use-
fulness on small-scale neural networks (with no more than 500 neurons and 5 layers).
Whether such criteria can scale to real-world sized DNN software remains to be inves-
tigated.11 DeepGauge [44] generalized the concept of neuron coverage and proposed a
set of 5 coverage criteria based on neuron numerical outputs. They have demonstrated
that DeepGauge scales well to practical sized DNN models (e.g., VGG-19, ResNet-50)
and could capture erroneous behavior introduced by four state-of-the-art adversarial test

11We have intended to include MC/DC criteria into DeepHunter. However, such coverage analysis on the large-scale seed
batch in DNNs is computationally expensive, and we leave the efficient MC/DC integration in future work.

19



generation techniques (i.e., FGSM, BIM, JSAM, and CW). DeepMutation [70], intro-
duces a set of fault inject operators to generate mutant DNN models for test data qual-
ity evaluation. However, similar to traditional mutation testing, DeepMutation could
be computationally intensive, since large amounts of mutant DNN models need to be
generated, each of which is evaluated against the target test set. DeepCT performs com-
binatorial testing of DNN models to balance the huge input and latent space, and testing
effectiveness [71]

Different from the existing works, this paper tends to propose a scalable and general-
purpose coverage-guided fuzz testing framework for DNN software. We have integrated
existing scalable coverage criteria into DeepHunter in order to guide testing and defect
detection in large scale.

A concurrent work, TensorFuzz [72], tries to debug neural networks with coverage-
guided fuzzing. DeepHunter differs from TensorFuzz mainly in three aspects. In Ten-
sorFuzz, the mutator provides only one type of mutation, which is additive noise, to the
inputs. In DeepHunter, the mutator is entrusted with eight semantic-preserving meta-
morphic mutation types based on global and local image transformation, resulting in
metamorphic inputs that are both diversified and plausible. Furthermore, in Tensor-
Fuzz, the feedback relies solely on one criterion, which is the basic neuron coverage. In
DeepHunter, instead, we are employing a set of six multi-granularity neuron coverage
criteria for providing multi-faceted feedback to the fuzzer. Most importantly, Deep-
Hunter also differs from TensorFuzz with regards to the scope of measurement. In fact,
the focus of our paper is to take a large-scale empirical study on multiple coverage
to investigate their usefulness to guide test generation towards detect potential issues
introduced during DNN development and deployment.
Verification. The reliability of DNNs has been investigated by recent work with formal
guarantees [73–78]. Pulina et al. [74] proposed an abstraction-refinement approach to
verify safety of a neural network with 6 neurons; Reluplex [75] adopted an SMT-based
approach on a neural network with 300 ReLU nodes. DeepSafe [76] tried to identify
safe regions in the input space using Reluplex as its core. A more recent work AI2

[77] proposed an abstract interpretation technique to verify DNN software, through
a well designed abstract domains and transformation operators. Since DNN software
often handles high-dimensional input has large runtime internal states, designing more
scalable and general verification methods towards complex real-world sized DNNs is
challenging but important.

This paper further pushes quality assurance of DNNs from the automated fuzz test-
ing perspective, by examining whether coverage guided fuzz testing could be a useful
potential software quality assurance technique for DNN software. DeepHunter could
scale to ImageNet like pratical dataset with large DNN models like ResNet-50. Whether
the potential integration of existing formal verification and fuzz testing is possible could
be an interesting direction to explore.

5.3 Adversarial Deep Learning

A plethora of research has shown that carefully-crafted adversarial examples can un-
dermine the robustness of DNNs [79–86]. In response to these attacks, several de-
fenses have been proposed, such as ensemble method [87], GAN-based defense [88,89],

20



a certified approach [90], game theoretic based defense [91], stochastic quantization
method [92], and so on [93–95]. However, it has been shown that none of these de-
fenses or detection methods is robust enough against adaptive attacks [86].

Different from adversarial techniques, DeepHunter generates tests to detect both
potential defects introduced during DNN development and quantization phase for de-
ployment. In addition, these error triggering tests generated by DeepHunter are not
limited to adversarial tests, which makes DeepHunter more general and promising than
existing defenses or detection methods.

6 Conclusion and Future Work

Deep learning has seen tremendous success over the past decade, and has become the
driving force for many novel intelligence applications. However, the quality assurance
technique for DL is still at its early stage, and scalable DL testing framework is highly
demanding. In this paper, we have proposed a coverage-guided fuzz testing framework
for DNN software that systematically generates tests for detecting potential defects in-
troduced during the DNN development and deployment phase. We have conducted a
large-scale study to demonstrate its usefulness in facilitating defect detection, model
quality evaluation, etc., with data complexity increasing from MNIST to practical sized
ImageNet.

Due to the computation resource limitation, we mainly focus on the investigation of
how each single coverage criteria contributes to the effectiveness of DeepHunter, and
on the opposite side, whether DeepHunter can effectively improve the corresponding
coverage. How to intelligently combine the multiple criteria to further enhance the test-
ing performance would be our future work. Furthermore, we intend to investigate how
to integrate DeepHunter into DNN development and deployment practice, by providing
useful feedback to help DL developers to enhance the DNN software quality. Since the
investigation on quality assurance of deep learning is still at an early stage, we hope that
DeepHunter can benefit both SE and AI communities, and facilitate further extensive
studies towards constructing high quality DNN software.

References
1. J. E. Kelly III and S. Hamm, Smart machines: IBM’s Watson and the era of cognitive com-

puting. Columbia University Press, 2013.
2. Amazon, “Amazon Alexa,” 2018. [Online]. Available: https://developer.amazon.com/zh/

alexa
3. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep re-
inforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

4. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game of go
with deep neural networks and tree search,” Nature, vol. 529, no. 7587, p. 484, 2016.

5. G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 82–97, 2012.

21

https://developer.amazon.com/zh/alexa
https://developer.amazon.com/zh/alexa


6. D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep neural networks seg-
ment neuronal membranes in electron microscopy images,” in NIPS, 2012, pp. 2843–2851.

7. D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for image
classification,” in CVPR, 2012, pp. 3642–3649.

8. F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke, “Towards vision-based deep
reinforcement learning for robotic motion control,” arXiv:1511.03791, 2015.

9. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irv-
ing, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system
for large-scale machine learning,” in 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), 2016, pp. 265–283.

10. F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
11. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” NIPS 2017 Workshop Autod-
iff, 2017.

12. A. Karpathy, “Software 2.0,” https://medium.com/@karpathy/software-2-0-a64152b37c35,
2018.

13. Google Accident, “A Google self-driving car caused a crash for the
first time,” 2016. [Online]. Available: https://www.theverge.com/2016/2/29/11134344/
google-self-driving-car-crash-report

14. Uber Accident, “After Fatal Uber Crash, a Self-Driving Start-Up Moves For-
ward,” 2018. [Online]. Available: https://www.nytimes.com/2018/05/07/technology/
uber-crash-autonomous-driveai.html

15. “ American Fuzzy Lop ,” 2018. [Online]. Available: http://lcamtuf.coredump.cx/afl/
16. “ libFuzzer ,” 2018. [Online]. Available: https://llvm.org/docs/LibFuzzer.html
17. Google. (2018) honggfuzz. [Online]. Available: https://github.com/google/honggfuzz
18. H. Chen, Y. Li, B. Chen, Y. Xue, and Y. Liu, “Fot: A versatile, configurable, extensible

fuzzing framework,” in The ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE), 11 2018 (to appear).

19. S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “Vuzzer: Application-
aware evolutionary fuzzing,” in Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2017.

20. M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox fuzzing as
markov chain,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY, USA: ACM, 2016, pp.
1032–1043. [Online]. Available: http://doi.acm.org/10.1145/2976749.2978428

21. J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed generation for fuzzing,” in
2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26,
2017, May 2017, pp. 579–594. [Online]. Available: https://doi.org/10.1109/SP.2017.23

22. K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox testing of deep
learning systems,” in Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 1–18.

23. Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of deep-neural-network-
driven autonomous cars,” in Proceedings of the 40th International Conference on Software
Engineering. ACM, 2018, pp. 303–314.

24. A. Authors, “DeepGauge,” https://deepgauge.github.io/, 2018.
25. R. Pressman, Software Engineering: A Practitioner’s Approach, 7th ed. New York, NY,

USA: McGraw-Hill, Inc., 2010.
26. N. B. Ruparelia, “Software development lifecycle models,” SIGSOFT Softw. Eng. Notes,

vol. 35, no. 3, pp. 8–13, May 2010.

22

https://github.com/fchollet/keras
https://medium.com/@karpathy/software-2-0-a64152b37c35
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report
https://www.nytimes.com/2018/05/07/technology/uber-crash-autonomous-driveai.html
https://www.nytimes.com/2018/05/07/technology/uber-crash-autonomous-driveai.html
http://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/honggfuzz
http://doi.acm.org/10.1145/2976749.2978428
https://doi.org/10.1109/SP.2017.23
https://deepgauge.github.io/


27. L. Ma, F. Juefei-Xu, M. Xue, Q. Hu, S. Chen, B. Li, Y. Liu, J. Zhao, J. Yin, and S. See,
“Secure Deep Learning Engineering: A Software Quality Assurance Perspective,” ArXiv e-
prints, Oct. 2018.

28. B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko,
“Quantization and training of neural networks for efficient integer-arithmetic-only infer-
ence,” in CVPR, June 2018.

29. S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with limited
numerical precision,” in ICLR, 2015, pp. 1737–1746.

30. M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural networks with low preci-
sion multiplications,” arXiv preprint arXiv:1412.7024, 2014.

31. S. Wu, G. Li, F. Chen, and L. Shi, “Training and inference with integers in deep neural
networks,” arXiv preprint arXiv:1802.04680, 2018.

32. M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural networks with weights and
activations constrained to +1 or -1,” arXiv preprint arXiv:1602.02830, 2016.

33. M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural networks
with binary weights during propagations,” in NIPS, 2015, pp. 3105–3113.

34. M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classification
using binary convolutional neural networks,” in ECCV, 2016, pp. 525–542.

35. C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” ICLR, 2017.
36. I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized neural net-

works: Training neural networks with low precision weights and activations,” The Journal of
Machine Learning Research, vol. 18, no. 1, pp. 6869–6898, 2017.

37. F. Juefei-Xu, V. N. Boddeti, and M. Savvides, “Perturbative neural networks,” in CVPR.
IEEE, June 2018, pp. 3310–3318.

38. F. Juefei-Xu, V. Boddeti, and M. Savvides, “Local binary convolutional neural networks,” in
CVPR. IEEE, July 2017, pp. 19–28.

39. S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” ICLR, 2016.

40. “ NVIDIA TensorRT,” 2018. [Online]. Available: https://developer.nvidia.com/tensorrt
41. “ Peach Fuzzer Platform,” 2018. [Online]. Available: https://www.peach.tech/products/

peach-fuzzer/peach-platform/
42. C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and automatic generation of

high-coverage tests for complex systems programs.” in OSDI, vol. 8, 2008, pp. 209–224.
43. S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl: Path sensitive fuzzing,”

in 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018, pp. 679–696.
44. L. Ma, F. Juefei-Xu, J. Sun, C. Chen, T. Su, F. Zhang, M. Xue, B. Li, L. Li, Y. Liu

et al., “Deepgauge: Multi-granularity testing criteria for deep learning systems,” The 33rd
IEEE/ACM International Conference on Automated Software Engineering (ASE 2018), 2018.

45. M. Zalewski. (2014) Technical ”whitepaper” for afl-fuzz. [Online]. Available: http:
//lcamtuf.coredump.cx/afl/technical details.txt

46. F. Chollet et al., “Keras applications,” https://keras.io/applications/, 2018.
47. Y. LeCun and C. Cortes, “The MNIST database of handwritten digits,” 1998.
48. N. Krizhevsky, H. Vinod, C. Geoffrey, M. Papadakis, and A. Ventresque, “The cifar-10

dataset,” http://www.cs.toronto.edu/kriz/cifar.html, 2014.
49. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recog-
nition Challenge,” IJCV, vol. 115, no. 3, pp. 211–252, 2015.

50. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to docu-
ment recognition,” Proc. of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

51. C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and D. Song, “Generating Adversarial Examples
with Adversarial Networks,” ArXiv e-prints, Jan. 2018.

23

https://developer.nvidia.com/tensorrt
https://www.peach.tech/products/peach-fuzzer/peach-platform/
https://www.peach.tech/products/peach-fuzzer/peach-platform/
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://keras.io/applications/
http://www.cs.toronto.edu/kriz/cifar.html


52. N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in Secu-
rity and Privacy (SP), IEEE Symposium on, 2017, pp. 39–57.

53. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
CVPR, 2016, pp. 770–778.

54. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

55. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” in NIPS, 2012, pp. 1097–1105.

56. I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press, 2016, vol. 1.
57. M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed greybox fuzzing,”

in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17. New York, NY, USA: ACM, 2017, pp. 2329–2344. [Online].
Available: http://doi.acm.org/10.1145/3133956.3134020

58. Y. L. B. C. X. X. X. W. Hongxu Chen, Yinxing Xue and Y. Liu, “Hawkeye: Towards a
desired directed grey-box fuzzer,” in Proceedings of the 25th ACM Conference on Computer
and Communications Security. ACM, 2018.

59. C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,” in Presented as
part of the 21st USENIX Security Symposium (USENIX Security 12). Bellevue, WA:
USENIX, 2012, pp. 445–458. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/holler

60. Google. (2017) libprotobuf-mutator. [Online]. Available: https://github.com/google/
libprotobuf-mutator

61. T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana, “Nezha: Efficient domain-
independent differential testing,” in 2017 IEEE Symposium on Security and Privacy (SP),
May 2017, pp. 615–632.

62. P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning for input fuzzing,”
CoRR, vol. abs/1701.07232, 2017. [Online]. Available: http://arxiv.org/abs/1701.07232

63. Payatu. (2018) Cloudfuzz: Machine learning powered content specific input generation for
fuzzing.

64. G. Yan, J. Lu, Z. Shu, and Y. Kucuk, “Exploitmeter: Combining fuzzing with machine
learning for automated evaluation of software exploitability,” in 2017 IEEE Symposium on
Privacy-Aware Computing (PAC), Aug 2017, pp. 164–175.

65. M. Rajpal, W. Blum, and R. Singh, “Not all bytes are equal: Neural byte sieve for fuzzing,”
CoRR, vol. abs/1711.04596, 2017. [Online]. Available: http://arxiv.org/abs/1711.04596

66. C. Cummins, P. Petoumenos, A. Murray, and H. Leather, “Compiler fuzzing through deep
learning,” in Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ser. ISSTA 2018. New York, NY, USA: ACM, 2018, pp. 95–105.
[Online]. Available: http://doi.acm.org/10.1145/3213846.3213848

67. D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “NEUZZ: efficient fuzzing
with neural program learning,” CoRR, vol. abs/1807.05620, 2018. [Online]. Available:
http://arxiv.org/abs/1807.05620

68. Y. Sun, X. Huang, and D. Kroening, “Testing Deep Neural Networks,” ArXiv e-prints, Mar.
2018.

69. H. Kelly J., V. Dan S., C. John J., and R. Leanna K., “A practical tutorial on modified condi-
tion/decision coverage,” NASA, Tech. Rep., 2001.

70. L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li, Y. Liu, J. Zhao et al.,
“Deepmutation: Mutation testing of deep learning systems,” The 29th IEEE International
Symposium on Software Reliability Engineering (ISSRE), 2018.

71. L. Ma, F. Zhang, M. Xue, B. Li, Y. Liu, J. Zhao, and Y. Wang, “Combinatorial testing for
deep learning systems,” arXiv preprint arXiv:1806.07723, 2018.

24

http://doi.acm.org/10.1145/3133956.3134020
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://github.com/google/libprotobuf-mutator
https://github.com/google/libprotobuf-mutator
http://arxiv.org/abs/1701.07232
http://arxiv.org/abs/1711.04596
http://doi.acm.org/10.1145/3213846.3213848
http://arxiv.org/abs/1807.05620


72. A. Odena and I. Goodfellow, “Tensorfuzz: Debugging neural networks with coverage-guided
fuzzing,” arXiv preprint arXiv:1807.10875, 2018.

73. M. Wicker, X. Huang, and M. Kwiatkowska, “Feature-guided black-box safety testing
of deep neural networks,” CoRR, vol. abs/1710.07859, 2017. [Online]. Available:
http://arxiv.org/abs/1710.07859

74. L. Pulina and A. Tacchella, “An abstraction-refinement approach to verification of artificial
neural networks,” in International Conference on Computer Aided Verification. Springer,
2010, pp. 243–257.

75. G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An
efficient SMT solver for verifying deep neural networks,” CoRR, vol. abs/1702.01135, 2017.
[Online]. Available: http://arxiv.org/abs/1702.01135

76. D. Gopinath, G. Katz, C. S. Pasareanu, and C. Barrett, “Deepsafe: A data-driven approach
for checking adversarial robustness in neural networks,” CoRR, vol. abs/1710.00486, 2017.
[Online]. Available: http://arxiv.org/abs/1710.00486

77. D. D.-C. P. T. S. C. M. V. Timon Gehr, Matthew Mirman, “Ai2: Safety and robustness certifi-
cation of neural networks with abstract interpretation,” in 2018 IEEE Symposium on Security
and Privacy (SP), 2018.

78. K. Pei, Y. Cao, J. Yang, and S. Jana, “Towards practical verification of machine learning:
The case of computer vision systems,” CoRR, vol. abs/1712.01785, 2017. [Online].
Available: http://arxiv.org/abs/1712.01785

79. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial exam-
ples,” ICLR, 2015.

80. W. He, B. Li, and D. Song, “Decision boundary analysis of adversarial examples,” in ICLR,
2018.

81. W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models,” in ICLR, 2018.

82. Z. Zhao, D. Dua, and S. Singh, “Generating natural adversarial examples,” in ICLR, 2018.
83. C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song, “Spatially transformed adversarial

examples,” in ICLR, 2018.
84. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,

“Intriguing properties of neural networks,” in ICLR, 2014.
85. N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in IEEE

Symposium on Security and Privacy, 2017, 2017.
86. ——, “Adversarial examples are not easily detected: Bypassing ten detection methods,” in

Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. ACM, 2017,
pp. 3–14.

87. F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, “Ensemble
adversarial training: Attacks and defenses,” in ICLR, 2018.

88. P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protecting classifiers against
adversarial attacks using generative models,” in ICLR, 2018.

89. Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “Pixeldefend: Leveraging gener-
ative models to understand and defend against adversarial examples,” in ICLR, 2018.

90. A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against adversarial exam-
ples,” in ICLR, 2018.

91. G. S. Dhillon, K. Azizzadenesheli, J. D. Bernstein, J. Kossaifi, A. Khanna, Z. C. Lipton,
and A. Anandkumar, “Stochastic activation pruning for robust adversarial defense,” in ICLR,
2018.

92. A. Galloway, G. W. Taylor, and M. Moussa, “Attacking binarized neural networks,” in ICLR,
2018.

93. C. Guo, M. Rana, M. Cisse, and L. van der Maaten, “Countering adversarial images using
input transformations,” in ICLR, 2018.

25

http://arxiv.org/abs/1710.07859
http://arxiv.org/abs/1702.01135
http://arxiv.org/abs/1710.00486
http://arxiv.org/abs/1712.01785


94. J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer encoding: One hot way to
resist adversarial examples,” in ICLR, 2018.

95. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning mod-
els resistant to adversarial attacks,” in ICLR, 2018.

26


	DeepHunter: Hunting Deep Neural Network Defects via Coverage-Guided Fuzzing

