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ABSTRACT
Random program generation — fuzzing — is an effective technique
for discovering bugs in compilers but successful fuzzers require
extensive development effort for every language supported by the
compiler, and often leave parts of the language space untested.

We introduce DeepSmith, a novel machine learning approach
to accelerating compiler validation through the inference of gen-
erative models for compiler inputs. Our approach infers a learned
model of the structure of real world code based on a large cor-
pus of open source code. Then, it uses the model to automatically
generate tens of thousands of realistic programs. Finally, we apply
established differential testing methodologies on them to expose
bugs in compilers. We apply our approach to the OpenCL program-
ming language, automatically exposing bugs with little effort on our
side. In 1,000 hours of automated testing of commercial and open
source compilers, we discover bugs in all of them, submitting 67
bug reports. Our test cases are on average two orders of magnitude
smaller than the state-of-the-art, require 3.03× less time to generate
and evaluate, and expose bugs which the state-of-the-art cannot.
Our random program generator, comprising only 500 lines of code,
took 12 hours to train for OpenCL versus the state-of-the-art taking
9 man months to port from a generator for C and 50,000 lines of
code. With 18 lines of code we extended our program generator to
a second language, uncovering crashes in Solidity compilers in 12
hours of automated testing.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;
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1 INTRODUCTION
Compilers should produce correct code for valid inputs, and mean-
ingful errors for invalid inputs. Failure to do so can hinder software
development or even cause catastrophic runtime errors. Still, prop-
erly testing compilers is hard. Modern optimizing compilers are
large and complex programs, and their input space is huge. Hand
designed suites of test programs, while important, are inadequate
for covering such a large space and will not touch all parts of the
compiler.

Random test case generation — fuzzing — is a well established
and effective method for identifying compiler bugs [6, 7, 16]. When
fuzzing, randomly generated valid or semi-valid inputs are fed to
the compiler. Any kind of unexpected behavior, including crashes,
freezes, or wrong binaries, indicates a compiler bug. While crashes
and freezes in the compiler are easy to detect, determining that
binaries are correctly compiled is not generally possible without
either developer provided validation for the particular program’s
behavior or a gold standard compiler fromwhich to create reference
outputs. In the absence of those, Differential Testing [22] can be
used. The generated code and a set of inputs form a test case which
is compiled and executed on multiple testbeds. If the test case should
have deterministic behavior, but the output differs between testbeds,
then a bug has been discovered.

Compiler fuzzing requires efficiently generating test cases that
trigger compiler bugs. The state-of-the-art approach, CSmith [32],
generates large random programs by defining and sampling a prob-
abilistic grammar which covers a subset of the C programming
language. Through this grammar, CSmith ensures that the gener-
ated code easily passes the compiler front-end and stresses the most
complex part of the compiler, the middle-end. Complex static and
dynamic analyses make sure that programs are free from undefined
behavior. The programs are then differentially tested.

While CSmith has been successfully used to identify hundreds
of bugs in compilers, it and similar approaches have a significant
drawback. They represent a huge undertaking and require a thor-
ough understanding of the target programming language. CSmith
was developed over the course of years, and consists of over 41k
lines of handwritten C++ code. By tightly coupling the genera-
tion logic with the target programming language, each feature of
the grammar must be painstakingly and expertly engineered for
each new target language. For example, lifting CSmith from C to
OpenCL [20] — a superficially simple task — took 9 months and an
additional 8k lines of code. Given the difficulty of defining a new
grammar, typically only a subset of the language is implemented.

What we propose is a fast, effective, and low effort approach
to the generation of random programs for compiler fuzzing. Our
methodology uses recent advances in deep learning to automatically
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construct probabilistic models of how humans write code, instead
of painstakingly defining a grammar to the same end. By training a
deep neural network on a corpus of handwritten code, it is able to
infer both the syntax and semantics of the programming language
and the common constructs and patterns. Our approach essentially
frames the generation of random programs as a language modeling
problem. This greatly simplifies and accelerates the process. The
expressiveness of the generated programs is limited only by what is
contained in the corpus, not the developer’s expertise or available
time. Such a corpus can readily be assembled from open source
repositories.

In this work we primarily target OpenCL, an open standard
for programming heterogeneous systems, though our approach
is largely language agnostic. We chose OpenCL for three reasons:
it is an emerging standard with the challenging promise of func-
tional portability across a diverse range of heterogeneous hardware;
OpenCL is compiled “online”, meaning that even compiler crashes
and freezes may not be discovered until a product is deployed to
customers; and there is already a hand written random program
generator for the language to compare against. We provide prelim-
inary results supporting DeepSmith’s potential for multi-lingual
compiler fuzzing.

We make the following contributions:
• a novel, automatic, and fast approach for the generation of
expressive random programs for compiler fuzzing. We infer
programming language syntax, structure, and use from real-
world examples, not through an expert- defined grammar.
Our system needs two orders of magnitude less code than
the state-of–the-art, and takes less than a day to train;

• we discover a similar number of bugs as the state-of–the-art,
but also find bugs which prior work cannot, covering more
components of the compiler;

• in modeling real handwritten code, our test cases are more
interpretable than other approaches. Average test case size
is two orders of magnitude smaller than state-of-the-art,
without any expensive reduction process.

2 DEEPSMITH
DeepSmith1 is our open source framework for compiler fuzzing.
Figure 1 provides a high-level overview. In this work we target
OpenCL, though the approach is language agnostic. This section
describes the three key components: a generative model for ran-
dom programs, a test harness, and voting heuristics for differential
testing.

2.1 Generative Model
Generating test cases for compilers is hard because their inputs are
highly structured. Producing text with the right structure requires
expert knowledge and a significant engineering effort, which has to
be repeated from scratch for each new language. Instead, we treat
the problem as an unsupervised machine learning task, employing
state-of-the-art deep learning techniques to build models for how
humans write programs. Our approach is inspired by breakthrough
results in modeling challenging and high dimensional datasets
through unsupervised learning [4, 27, 28]. Contrary to existing
1DeepSmith available at: https://chriscummins.cc/deepsmith
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Figure 1: DeepSmith system overview.

tools, our approach does not require expert knowledge of the target
language and is only a few hundred lines of code.

Handwritten Programs. The generative model needs to be trained
on a seed corpus of example programs. We automated the assembly
of this corpus by mining 10k OpenCL kernels from open source
repositories on GitHub. We used an oracle compiler (LLVM 3.9) to
statically check the source files, discarding files that are not well-
formed. The main purpose of this step is to remove the need to
manually check that each file selected from GitHub does indeed
contain OpenCL. A downside is that any training candidate which
triggers a bug in the LLVM 3.9’s front end will not be included.
However, this did not prevent our system from uncovering errors
in that compiler (Section 4.4).

This corpus, exceeding one million lines of code, is used as a
representative sample of OpenCL code from which a generative
model can be derived.

Encoder. The textual representation of program codes must be
encoded as numeric sequences for feeding as input to the machine
learning model. Prior machine learning works have used character-
level encodings, token-level encodings, or fixed length feature vec-
tors. We extend the hybrid character/token-level encoding of [9],
in which a programming language’s keywords and common names
are treated as individual tokens while the rest of the text is encoded
on a character-level basis. This approach hits a balance between
compressing the input text and keeping the number of tokens in
the vocabulary low.

We additionally employed semantic-preserving transformations
to simplify the training programs. First, each source file is prepro-
cessed to expand macros and remove conditional compilation and
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comments. Then, all user-declared identifiers are renamed using an
arbitrary, but consistent pattern based on their order of declaration:
{a,b, c, . . . ,aa,ab,ac, . . .} for variables and {A,B,C, . . . ,AA,AB,
AC, . . .} for functions. This ensures a consistent naming conven-
tion, without modifying program behavior. Finally, a uniform code
style is enforced to ensure consistent use of braces, parentheses,
and white space. These rewriting simplifications give more opportu-
nities for the model to learn the structure and deeper aspects of the
language and speed up the learning. On the other hand, some bugs
in the preprocessor or front-end might no longer be discoverable.
We reason that this is an acceptable trade-off. For languages where
the corpus can be many orders of magnitude larger, for example, C
or Java, models may be generated without these modifications.

Neural Network. We use the Long Short-Term Memory (LSTM)
architecture of Recurrent Neural Network tomodel program code [12].
In the LSTM architecture activations are learned with respect not
just to their current inputs but to previous inputs in a sequence. In
our case, this allows modeling the probability of a token appear-
ing in the text given a history of previously seen tokens. Unlike
previous recurrent networks, LSTMs employ a forget gate with a
linear activation function, allowing them to avoid the vanishing
gradients problem [24]. This makes them effective at learning com-
plex relationships over long sequences [21] which is important for
modeling program code. Our LSTM networks model the vocabu-
lary distribution over the encoded corpus. After initial experiments
using different model parameters, we found that a two layer LSTM
network of 512 nodes per layer provided a good trade-off between
the fidelity of the learned distribution and the size of the network,
which limits the rate of training and inference. The network is
trained using Stochastic Gradient Descent for 50 epochs, with an
initial learning rate of 0.002 and decaying by 5% every epoch. Train-
ing the model on the OpenCL corpus took 12 hours using a single
NVIDIA Tesla P40. We provided the model with no prior knowledge
of the structure or syntax of a programming language.

Program Generation. The trained network is sampled to generate
new programs. The model is seeded with the start of a kernel
(identified in OpenCL using the keywords kernel void), and
sampled token-by-token. A “bracket depth” counter is incremented
or decremented upon production of { or } tokens respectively, so
that the end of the kernel can be detected and sampling halted. The
generated sequence of tokens is then decoded back to text and used
for compiler testing.

2.2 Test Harness
OpenCL is an embedded compute kernel language, requiring host
code to compile, execute, and transfer data between the host and
device. For the purpose of compiler fuzzing, this requires a test
harness to run the generated OpenCL programs. At first, we used
the test harness of CLSmith. The harness assumes a kernel with no
input and a ulong buffer as its single argument where the result
is written. Only 0.2% of the GitHub kernels share this structure.
We desired a more flexible harness so as to test a more expressive
range of programs, capable of supporting multi-argument kernels
and generating data to use as inputs.

Figure 2: Test case execution, and possible results.

We developed a harness which first determines the expected
arguments from the function prototype and generates host data
for them. At the moment, we support scalars and arrays of all
OpenCL primitive and vector types. For a kernel execution across
n threads, buffers of size n are allocated for pointer arguments and
populated with values [1 . . .n]; scalar inputs are given valuen, since
we observe that most kernels use these for specifying buffer sizes.

The training programs from which the generative model is cre-
ated are real programs, and as such do not share the argument
type restrictions. The model, therefore, may generate correct pro-
grams for which our driver cannot create example inputs. In this
case, a “compile-only” stub is used, which only compiles the kernel,
without generating input data or executing the compiled kernel.

Unlike the generativemodel, this test harness is language-specific
and the design stems from domain knowledge. Still, it is a relatively
simple procedure, consisting of a few hundred lines of Python.

Test Harness Output Classes. Executing a test case on a testbed
leads to one of seven possible outcomes, illustrated in Figure 2. A
build failure occurs when online compilation of the OpenCL kernel
fails, usually accompanied by an error diagnostic. A build crash
or build timeout outcome occurs if the compiler crashes or fails to
produce a binary within 60 seconds, respectively. For compile-only
test cases, a pass is achieved if the compiler produces a binary. For
test cases in which the kernel is executed, kernel execution leads
to one of three potential outcomes: runtime crash if the program
crashes, timeout if the kernel fails to terminate within 60 seconds,
or pass if the kernel terminates gracefully and computes an output.

2.3 Voting Heuristics for Differential Testing
We employ established Differential Testingmethodologies to expose
compiler defects. As in prior work, voting on the output of programs
across compilers has been used to circumvent the oracle problem
and detect miscompilations [22]. However, we extend this approach
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Table 1: OpenCL systems and the number of bug reports submitted to date (22% of which have been fixed, the remainder are
pending). For each system, two testbeds are created, one with compiler optimizations, the other without.

#. Platform Device Driver OpenCL Operating system Device Type Open
Source?

Bug Reports
Submitted

1 NVIDIA CUDA GeForce GTX 1080 375.39 1.2 Ubuntu 16.04 64bit GPU 8
2 NVIDIA CUDA GeForce GTX 780 361.42 1.2 openSUSE 13.1 64bit GPU 1
3 Beignet Intel HD Haswell GT2 1.3 1.2 Ubuntu 16.04 64bit GPU Yes 13
4 Intel OpenCL Intel E5-2620 v4 1.2.0.25 2.0 Ubuntu 16.04 64bit CPU 6
5 Intel OpenCL Intel E5-2650 v2 1.2.0.44 1.2 CentOS 7.1 64bit CPU 1
6 Intel OpenCL Intel i5-4570 1.2.0.25 1.2 Ubuntu 16.04 64bit CPU 5
7 Intel OpenCL Intel Xeon Phi 1.2 1.2 CentOS 7.1 64bit Accelerator 3
8 POCL POCL (Intel E5-2620) 0.14 1.2 Ubuntu 16.04 64bit CPU Yes 22
9 Codeplay ComputeAorta (Intel E5-2620) 1.14 1.2 Ubuntu 16.04 64bit CPU 1
10 Oclgrind Oclgrind Simulator 16.10 1.2 Ubuntu 16.04 64bit Emulator Yes 7

to describe not only miscompilations, but also anomalous build
failures and crashes.

When evaluating the outcomes of test cases, build crash (bc) and
build timeout (bto) outcomes are of immediate interest, indicative of
erroneous compiler behavior (examplesmay be found in Section 4.1).
For all other outcomes, differential tests are required to confirm
anomalous behavior.We look for test cases where there is a majority
outcome – i.e. for which some fraction of the testbeds behave the
same – but some testbed deviates. We use the presence of the
majority increasing the likelihood that there is a ‘correct’ behavior
for the test case. In this work, we choose the majority fraction to
be ⌈ 23n⌉, where n is the number of testbeds.

An anomalous build failure (abf) or anomalous runtime crash
(arc) occurs if, for a given test case, the majority of testbeds execute
successfully, and a testbed yields a compilation error or runtime
crash. An anomalous wrong-output (awo) occurs if, for a given
test case, the majority of testbeds execute successfully, producing
the same output values, and a testbed yields a result which differs
from this majority output. Anomalous wrong-output results are
indicative of miscompilations, a particularly hard to detect class of
bug in which the compiler silently emits wrong code. CSmith is
designed specifically to target this class of bug.

False Positives for Anomalous Runtime Behavior. Generated pro-
grams may contain undefined or non-deterministic behavior which
will incorrectly be labeled as anomalous. CSmith circumvents this
problem by performing complex analyses during generation so as
to minimize the chance of producing programs with undefined be-
havior. Although similar analyses could be created as filters for our
system, we take a simpler approach, filtering only the few types of
non-deterministic behavior we have actually observed to happen
in practice.

We filter data races, out-of-bounds and uninitialized accesses
with GPUverify [2] and Oclgrind [26]. Some compiler warnings
provide strong indication of non-deterministic behavior (e.g. com-
parison between pointer and integer) – we check for these warnings
and filter accordingly.

Floating point operations in OpenCL can be imprecise, so code
can produce different output on different testbeds. For this reason,
CSmith and CLSmith do not support floating point operations.
DeepSmith allows floating point operations but since it cannot
apply differential testing on the outputs, it can detect all results
except for the anomalous wrong-output results.

The last type of undefined behavior we observed comes from
division by zero and related mathematical functions which require
non-zero values. We apply a simple detection and filtering heuristic
– we change the input values and check to see if the output remains
anomalous. While theoretically insufficient, in practice we found
that no false positives remained.

3 EXPERIMENTAL SETUP
In this section we describe the experimental parameters used.

3.1 OpenCL Systems
We conducted testing of 10 OpenCL systems, summarized in Table 1.
We covered a broad range of hardware: 3 GPUs, 4 CPUs, a co-
processor, and an emulator. 7 of the compilers tested are commercial
products, 3 of them are open source. Our suite of systems includes
both combinations of different drivers for the same device, and
different devices using the same driver.

3.2 Testbeds
For each OpenCL system, we create two testbeds. In the first, the
compiler is run with optimizations disabled. In the second, opti-
mizations are enabled. Each testbed is then a triple, consisting of
<device, driver, is_optimized> settings. This mechanism gives 20
testbeds to evaluate.

3.3 Test Cases
For each generated program we create inputs as described in Sec-
tion 2.2. In addition, we need to choose the number of threads to use.
We generate two test cases, one using one thread, the other using
2048 threads. A test case is then a triple, consisting of <program,
inputs, threads> settings.

3.4 Bug Search Time Allowance
We compare both our fuzzer and CLSmith. We allow both to run
for 48 hours on each of the 20 testbeds. CLSmith used its default
configuration. The total runtime for a test case consists of the
generation and execution time.

4 EVALUATION
We report on the results of DeepSmith testing of the 10 OpenCL
systems from Table 1, in which each ran for 48 hours. We found
bugs in all the compilers we tested — every compiler crashed, and
every compiler generated programs which either crash or silently
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1 kernel void A(global float* a, global float* b) {

2 a[0] = max(a[c], b[2]);

3 }

(a) Testbeds 10± assertion Uncorrected typos! during semantic analysis.

1 kernel void A(float4 a, global float4* b,

2 global float4* c, unsigned int d,

3 global double* e, global int2* f,

4 global int4* g, constant int* h,

5 constant int* i) {

6 A(a, b, c, d, d, e, f, g, h);

7 }

(b) Testbeds 1±, 2± segmentation fault due to implicit address space conver-
sion.

1 kernel void A(read_only image2d_t a,

2 global double2* b) {

3 b[0] = get_global_id(0);

4 }

(c) Testbeds 3± assertion sel.hasDoubleType() during code generation.

1 kernel void A(global float4* a) {

2 a[get_local_id(0) / 8][get_local_id(0)] =

3 get_local_id(0);

4 }

(d) Testbeds 3± assertion scalarizeInsert during code generation.

1 kernel void A() {

2 __builtin_astype(d, uint4);
3 }

(e) Of the 10 compilers we tested, 6 crash with segfault when compiling this
kernel.

Figure 3: Example kernels which crash compilers.

compute the wrong result. To date, we have submitted 67 bug re-
ports to compiler vendors. We first provide a qualitative analysis
of compile-time and runtime defects found, followed by a quanti-
tative comparison of our approach against the state-of-the-art in
OpenCL compiler fuzzing — CLSmith [20]. DeepSmith is able to
identify a broad range of defects, many of which CLSmith cannot,
for only a fraction of the engineering effort. Finally, we provide a
quantitative analysis of compiler robustness over time, using the
compiler crash rate of every LLVM release in the past two years
as a metric of compiler robustness. We find that progress is good,
compilers are becoming more robust, yet the introduction of new
features and regressions ensures that compiler validation remains
a moving target.

Unless stated otherwise, DeepSmith code listings are presented
verbatim, with only minor formatting changes applied to save space.
No test case reduction, either manual or automatic, was needed.

For the remainder of the paper we identify testbeds using the
OpenCL system number from Table 1, suffixed with +, −, or ± to
denote optimizations on, off, or either, respectively.

4.1 Compile-time Defects
OpenCL is typically compiled online, which amplifies the signifi-
cance of detecting compile-time defects, as they may not be discov-
ered until code has been shipped to customers. We found numerous
cases where DeepSmith kernels trigger a crash in the compiler

1 void A(){(global a*)()}

(a) Reduced from 48 line kernel.

1 void A(){void* a; uint4 b=0; b=(b>b)?a:a}

(b) Reduced from 52 line kernel.

1 void A(){double2 k; return (float4)(k,k,k,k)}

(c) Reduced from 68 line kernel.

Figure 4: Example codes which crash parsers.

(and as a result, the host process), or cause the compiler to loop
indefinitely. In the testing time allotted we have identified 199 test
cases which trigger unreachable code failures, triggered 31 different
compiler assertions, and produced 114 distinct stack traces from
other compiler crashes.

Semantic Analysis Failures. Compilers should produce meaning-
ful diagnostics when inputs are invalid, yet we discovered dozens
of compiler defects attributable to improper or missing error han-
dling. Many generation and mutation based approaches to com-
piler validation have focused solely on testing under valid inputs.
As such, this class of bugs may go undiscovered. We believe that
our approach contributes a significant improvement to generat-
ing plausibly-erroneous code over prior random-enumeration ap-
proaches.

The use of undeclared identifiers is a core error diagnostic which
one would expect to be robust in a mature compiler. DeepSmith
discovered cases in which the presence of undeclared identifiers
causes the Testbeds 10± compiler to crash. For example, the unde-
clared identifier c in Figure 3a raises an assertion during semantic
analysis of the AST when used as an array index.

Type errors were an occasional cause of compile-time defect.
Figure 3b induces a crash in NVIDIA compilers due to an implicit
conversion between global to constant address qualifiers. Worse,
we found that Testbeds 3± would loop indefinitely on some kernels
containing implicit conversions from a pointer to an integer, as
shown in Figure 5a.While spinning, the compiler would utilize 100%
of the CPU and consume an increasing amount of host memory
until the entire system memory is depleted and the process crashes.

Occasionally, incorrect program semantics will remain unde-
tected until late in the compilation process. Both Figures 3c and 3d
pass the type checker and semantic analysis, but trigger compiler
assertions during code generation.

An interesting yet unintended byproduct of having trained Deep-
Smith on thousands of real world examples is that the model learned
to occasionally generate compiler-specific code, such as invoking
compiler builtins. We found the quality of error handling on these
builtins to vary wildly. For example, Figure 3e silently crashes 6
of the 10 compilers, which, to the best of our knowledge, makes
DeepSmith the first random program generator to induce a defect
through exploiting compiler-specific functionality.

Parser Failures. Parser development is a mature and well under-
stood practice. We uncovered parser errors in several compilers.
Each of the code samples in Figure 4 induce crash errors during
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1 kernel void A(global int* a) {

2 int b = get_global_id(0);

3 a[b] = (6 * 32) + 4 * (32 / 32) + a;

4 }

(a) Testbeds 3± loop indefinitely, leakingmemoryuntil the entire systemmem-
ory is depleted and the process crashes.

1 kernel void A(global float* a, global float* b,

2 global float* c) {

3 int d, e, f;

4 d = get_local_id(0);

5 for (int g = 0; g < 100000; g++)

6 barrier(1);
7 }

(b) Testbed 1+ hangs during optimization of kernels with large loop bounds.
Testbeds 1− and 2± compile in under 1 second.

1 kernel void A(global int* a) {

2 int b = get_global_id(0);

3 while (b < 512) { }

4 }

(c) Testbeds 4+, 5+, 6+, 7+ hang during optimization of kernels with non-
terminating loops.

1 kernel void A(global unsigned char* a,

2 unsigned b) {

3 a[get_global_id(0)] %= 42;

4 barrier(1);
5 }

(d) Testbeds 7± loops indefinitely, consuming 100% CPU usage.

Figure 5: Example kernels which hang compilers.

parsing of compound statements in both Testbeds 5± and 7±. For
space, we have hand-reduced the listings to minimal code samples,
which we have reported to Intel. Each reduction took around 6
edit-compile steps, taking less than 10 minutes. In total, we have
generated 100 distinct programs which crash compilers during
parsing.

Compiler Hangs. As expected, some compile-time defects are
optimization sensitive. Testbed 1+ hangs on large loop bounds,
shown in Figure 5b. All commercial Intel compilers we tested hang
during optimization of non-terminating loops (Figure 5c).

Testbeds 7± loop indefinitely during compilation of the simple
kernel in Figure 5d.

Other errors. Some compilers are more permissive than others.
Testbeds 4±, 6±, 9± reject out-of-range literal values e.g. int i =
0xFFFFFFFFFFFFFFFFFFFFFFFF, whilst Testbeds 3±, 5±, 7±,
8±, and 10± interpret the literal as an unsigned long long
and implicitly cast to an integer value of -1. Testbeds 1±, 2± emit
no warning.

Testbeds 1±, 2±, 3± rejected address space qualifiers on auto-
matic variables, where all other testbeds successfully compiled and
executed.

On Testbeds 3±, the statement int n = mad24(a, (32),
get_global_size(0)); (a call to a math builtin with mixed
types) is rejected as ambiguous.

1 kernel void A(global double* a, global double* b,

2 global double* c, int d, int e) {

3 double f;

4 int g = get_global_id(0);

5 if (g < e - d - 1)

6 c[g] = (((e) / d) % 5) % (e + d);

7 }

(a) Testbeds 4+, 6+ incorrectly optimize the if statement, causing the condi-
tional branch to execute (it shouldn’t). This pattern of integer comparison to
thread ID is widely used.

1 kernel void A(global int* a, global int* b) {

2 switch (get_global_id(0)) {

3 case 0:

4 a[get_global_id(0)]=b[get_global_id(0)+13];

5 break;
6 case 2:

7 a[get_global_id(0)]=b[get_global_id(0)+11];

8 break;
9 case 6:

10 a[get_global_id(0)]=b[get_global_id(0)+128];

11 }

12 barrier(2);
13 }

(b) A race condition inswitch statement evaluation causes 10± to sporadically
crash when executed with a number of threads > 1.

1 kernel void A(global int* a, global int* b,

2 global int* c) {

3 c[0] = (a[0] > b[0]) ? a[0] : 0;

4 c[2] = (a[3] <= b[3]) ? a[4] : b[5];

5 c[4] = (a[4] <= b[5]) ? a[7] : b[7];

6 c[7] = (a[7] < b[0]) ? a[0] : (a[0] > b[1]);

7 }

(c) Testbeds 3± silently miscompile ternary assignments in which the
operands are different global buffers.

1 kernel void A(local int* a) {

2 for (int b = 0; b < 100; b++)

3 B(a);

4 }

(d) Compilation should fail due to call to undefined function B(); Testbeds 8±
silently succeed then crash upon kernel execution.

Figure 6: Example kernels which are miscompiled.

4.2 Runtime Defects
Prior work on compiler test case generation has focused on exten-
sive stress- testing of compiler middle-ends to uncover miscompila-
tions [6]. CSmith, and by extension, CLSmith, specifically targets
this class of bugs. Grammar based enumeration is highly effective at
this task, yet is bounded by the expressiveness of the grammar. Here
we provide examples of bugs which cannot currently be discovered
by CLSmith.

Thread-dependent Flow Control. A common pattern in OpenCL is
to obtain the thread identity, often as an int, and to compare this
against some fixed value to determine whether or not to complete a
unit of work (46% of OpenCL kernels on GitHub use this (tid → int,
if (tid < ...) {...}) pattern). DeepSmith, having mod-
eled the frequency with which this pattern occurs in real hand-
written code, generates many permutations of this pattern. And
in doing so, exposed a bug in the optimizer of Testbeds 4+ and
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Figure 7: Comparison of runtimes (a) and test case sizes (b).
DeepSmith test cases are on average evaluated 3.03× faster
than CLSmith (2.45×, and 4.46× for generation and execu-
tion, respectively), and are two orders of magnitude smaller.
Timings do not include the cost of timeouts which would
increase the performance gains of DeepSmith by nearly a
factor of two.

6+ which causes the if branch in Figure 6a to be erroneously ex-
ecuted when the kernel is compiled with optimizations enabled.
We have reported this issue to Intel. CLSmith does not permit the
thread identity to modify control flow, rendering such productions
impossible.

Figure 6b shows a simple program in which thread identity
determines the program output. We found that this test case would
sporadically crash Testbeds 10±, an OpenCL device simulator and
debugger. Upon reporting to the developers, the underlying cause
was quickly diagnosed as a race condition in switch statement
evaluation, and fixed within a week.

Kernel Inputs. CLSmith kernels accept a single buffer parameter
into which each thread computes its result. This fixed prototype
limits the ability to detect bugs which depend on input arguments.
Figure 6c exposes a bug of this type. Testbeds 3± will silently mis-
compile ternary operators when the ternary operands consist of
values stored in multiple different global buffers. CLSmith, with its
fixed single input prototype, is unable to discover this bug.

Latent Compile-time Defects. Sometimes, invalid compiler inputs
may go undetected, leading to runtime defects only upon program
execution. Since CLSmith enumerates only well-formed programs,
this class of bugs cannot be discovered.

Figure 6d exposes a bug in which a kernel containing an unde-
fined symbolwill successfully compilewithoutwarning on Testbeds 8±,
then crash the program when attempting to run the kernel. This
issue has been reported to the developers and fixed.

4.3 Comparison to State-of-the-art
In this section, we provide a quantitative comparison of the bug-
finding capabilities of DeepSmith and CLSmith.

Results Overview. Table 2 shows the results of 48 hours of consec-
utive testing for all Testbeds. An average of 15k CLSmith and 91k
DeepSmith test cases were evaluated on each Testbed, taking 12.1s
and 1.90s per test case respectively. There are three significant fac-
tors providing the sixfold increase in testing throughput achieved
by DeepSmith over CLSmith: test cases are faster to generate, test
cases are less likely to timeout (execute for 60 seconds without ter-
mination), and the test cases which do not timeout execute faster.

Figure 7a shows the generation and execution times of Deep-
Smith and CLSmith test cases, excluding timeouts2. DeepSmith
generation time grows linearly with program length, and is on av-
erage 2.45× faster than CLSmith. Test case execution is on average
4.46× faster than CLSmith.

The optimization level generally does not affect testing through-
put significantly, with the exception of Testbed 7+. Optimization
of large structs is expensive on Testbed 7+, and CLSmith test cases
use global structs extensively. This is a known issue — in [20] the
authors omit large-scale testing on this device for this reason. The
use of structs in handwritten OpenCL is comparatively rare — only
7.1% of kernels on GitHub use them.

Comparison of Test Cases. The average CLSmith program is 1189
lines long (excluding headers). CLSmith test cases require reduction
in order to expose the underlying bug. An automated approach to
OpenCL test case reduction is presented in [25], though it requires
on average 100 minutes for each test case using a parallelized imple-
mentation (and over 6 hours if this parallelization is not available);
the authors also suggest a final manual pass after automated re-
duction. In contrast, DeepSmith learned to program from humans,
and humans do not typically write such large kernel functions. The
average DeepSmith kernel is 20 lines long, which is interpretable
without reduction, either manual or automatic.

Comparison of Results. Both testing systems found anomalous
results of all types. In 48 hours of testing, CLSmith discovered
compile-time crashes (bc) in 8 of the 20 testbeds, DeepSmith crashed
all of them. DeepSmith triggered 31 distinct compiler assertions,
CLSmith 2. Both of the assertions triggered by CLSmith were also
triggered by DeepSmith. DeepSmith also triggered 3 distinct un-
reachable! compile-time crashes, CLSmith triggered 0. The ratio of
build failures is higher in the token-level generation of DeepSmith
(51%) than the grammar-based generation of CLSmith (26%).

The Intel CPU Testbeds (4±, 5±, 6±, and 7±) would occasionally
emit a stack trace upon crashing, identifying the failure point in a
specific compiler pass. CLSmith triggered such crashes in 4 distinct
passes. DeepSmith triggered crashes in 10 distinct passes, including
3 of the 4 in which CLSmith did. Figure 8 provides examples. Many
of these crashes are optimization sensitive, and are more likely to
occur when optimizations are enabled. CLSmith was able to induce
a crash in only one of the Intel testbeds with optimizations disabled.
DeepSmith crashed all of the compilers with both optimizations
enabled and disabled.

CLSmith produced many bto results across 13 Testbeds. Given
the large kernel size, it is unclear how many of those are infinite
loops or simply a result of slow compilation of large kernels. The
2If timeouts are included then the performance improvement of DeepSmith is 6.5×
with the execution times being 11× faster. However, this number grows as we change
the arbitrary timeout threshold, so for fairness we have chosen to exclude it.
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Table 2: Results from 48 hours of testing using CLSmith and DeepSmith. System #. as per Table 1. ± denotes optimizations off
(−) vs on (+). The remaining columns denote the number of build crash (bc), build timeout (bto), anomalous build failure (abf),
anomalous runtime crash (arc), anomalous wrong-output (awo), and pass (✓) results.

CLSmith DeepSmith
#. Device ± bc bto abf arc awo ✓ total bc bto abf arc awo ✓ total

1 GeForce GTX 1080 − 0 0 0 2 2 15628 15632 27 0 3 0 5 62105 62140
+ 0 71 0 6 9 14007 14093 20 1 1 0 7 57361 57390

2 GeForce GTX 780 − 0 0 0 28 5 18220 18253 27 0 3 0 9 87129 87168
+ 26 14 0 0 3 17654 17697 32 1 1 0 9 82666 82709

3 Intel HD Haswell GT2 − 2714 2480 0 0 3 1121 6318 574 200 2 0 12 136977 137765
+ 2646 2475 0 0 3 1075 6199 569 200 5 0 10 135430 136214

4 Intel E5-2620 v4 − 0 27 1183 0 0 16313 17523 57 0 9 1 0 107982 108049
+ 487 87 1130 0 0 17350 19054 320 147 7 3 0 113616 114093

5 Intel E5-2650 v2 − 0 11 0 0 0 17887 17898 152 2 0 0 0 90882 91036
+ 112 175 0 0 0 14626 14913 170 117 0 0 1 90478 90766

6 Intel i5-4570 − 0 14 1226 0 0 17118 18358 73 0 9 2 1 111240 111325
+ 526 63 1180 0 0 19185 20954 318 140 7 2 1 117049 117517

7 Intel Xeon Phi − 4 84 0 0 8 13265 13361 68 4 0 0 1 37171 37244
+ 42 1474 0 0 2 3258 4776 77 47 0 0 0 37501 37625

8 POCL (Intel E5-2620) − 0 0 0 675 0 17250 17925 54 1 2 89 3 85318 85467
+ 0 3 0 99 5 13980 14087 46 0 1 104 4 81267 81422

9 ComputeAorta (Intel E5-2620) − 0 0 0 0 0 18479 18479 51 0 1 3 1 112324 112380
+ 0 0 0 300 11 18625 18936 59 0 0 48 4 115323 115434

10 Oclgrind Simulator − 0 0 0 0 0 5287 5287 2081 0 0 0 1 73261 75343
+ 0 0 0 0 0 5334 5334 2265 0 0 0 0 77959 80224

average size of CLSmith bto kernels is 1558 lines. Automated test
case reduction — in which thousands of permutations of a program
are executed — may be prohibitively expensive for test cases with
very long runtimes. DeepSmith produced bto results across 11
Testbeds and with an average kernel size of 9 lines, allowing for
rapid identification of the underlying problem.

The integrated GPU Testbeds (3±) frequently failed to compile
CLSmith kernels, resulting in over 10k bc and bto results. Of the
build crashes, 68% failed silently, and the remainder were caused by
the same two compiler assertions for which DeepSmith generated
4 line test cases, shown in Figure 9. DeepSmith also triggered silent
build crashes in Testbeds 3±, and a further 8 distinct compiler
assertions.

The 4719 abf results for CLSmith on Testbeds 4± and 6± are
all a result of compilers rejecting empty declarations, (e.g. int;)
which CLSmith occasionally emits. DeepSmith also generated these
statements, but with a much lower probability, given that it is an
unusual construct (0.6% of test cases, versus 7.0% of CLSmith test
cases).

ComputeAorta (Testbeds 9±) defers kernel compilation so that it
can perform optimizations dependent on runtime parameters. This
may contribute to the relatively large number of arc results and
few bc results of Testbeds 9±. Only DeepSmith was able to expose
compile-time defects in this compiler.

Over the course of testing, a combined 3.4×108 lines of CLSmith
code was evaluated, compared to 3.8 × 106 lines of DeepSmith
code. This provides CLSmith a greater potential to trigger mis-
compilations. CLSmith generated 33 programs with anomalous
wrong-outputs. DeepSmith generated 30.

4.4 Compiler Stability Over Time
The Clang front-end to LLVM supports OpenCL, and is commonly
used in OpenCL drivers. This in turn causes Clang-related defects

to potentially affect multiple compilers, for example the one in Fig-
ure 3e. To evaluate the impact of Clang, we used debug+assert builds
of every LLVM release in the past 24 months and processed 75,000
DeepSmith kernels through the Clang front-end (this includes the
lexer, parser, and type checker, but not code generation).

Figure 10 shows that the crash rate of the Clang front-end is,
for the most part, steadily decreasing over time. The number of
failing compiler crashes decreased tenfold between 3.6.2 and 5.0.0.
Table 3 shows the 7 distinct assertions triggered during this ex-
periment. Assertion 1 (Uncorrected typos!) is raised on all compiler
versions — see Figure 3a for an example. The overall rate at which
the assertion is triggered has decreased markedly, although there
are slight increases between some releases. Notably, the current
development trunk has the second lowest crash rate, but is joint
first in terms of the number of unique assertions. Assertions 3 (Addr
== 0 || hasTargetSpecificAddressSpace()) and 4 (isScalarType()) were
triggered by some kernels in the development trunk but not under
any prior release. We have submitted bug reports for each of the
three assertions triggered in the development trunk, as well as for
two distinct unreachables.

The results emphasize that compiler validation is a moving target.
Every change and feature addition has the potential to introduce
regressions or new failure cases. Since LLVM will not release un-
less their compiler passes their own extensive test suites, this also
reinforces the case for compiler fuzzing. We believe our approach
provides an effective means for the generation of such fuzzers, at a
fraction of the cost of existing techniques.

4.5 Extensibility of Language Model
A large portion of the DeepSmith architecture is language-agnostic,
requiring only a corpus, encoder, and harness for each new lan-
guage. This potentially significantly lowers the barrier-to-entry
compared with prior grammar-based fuzzers. To explore this, we
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1 kernel void A() {

2 while (true)

3 barrier(1);
4 }

(a) Post-Dominance Frontier Construction pass.

1 kernel void A(global float* a, global float* b,

2 const int c) {

3 for (int d = 0; d < c; d++)

4 for (d = 0; d < a; d += 32)

5 b[d] = 0;

6 }

(b) Simplify the CFG pass.

1 kernel void A(global int* a) {

2 int b = get_global_id(0);

3 while (b < *a)

4 if (a[0] < 0)

5 a[1] = b / b * get_local_id(0);

6 }

(c) Predicator pass.

1 kernel void A(global float* a, global float* b,

2 global float* c, const int d) {

3 for (unsigned int e = get_global_id(0);

4 e < d; e += get_global_size(0))

5 for (unsigned f = 0; f < d; ++f)

6 e += a[f];

7 }

(d) Combine redundant instructions pass.

1 kernel void A(int a, global int* b) {

2 int c = get_global_id(0);

3 int d = work_group_scan_inclusive_max(c);

4 b[c] = c;

5 }

(e) PrepareKernelArgs pass.

1 kernel void A() {

2 local float a; A(a);

3 }

(f) Add SPIR related module scope metadata pass.

1 kernel void A() {

2 local int a[10];

3 local int b[16][16];

4 a[1024 + (2 * get_local_id(1) +

5 get_local_id(0)) + get_local_id(0)] = 6;

6 barrier(b);
7 }

(g) Intel OpenCL RemoveDuplicationBarrier pass.

1 kernel void A(global half* a) {

2 int b = get_global_id(0);

3 a[b] = b * b;

4 }

(h) X86 DAG->DAG Instruction Selection pass.

Figure 8: Example kernels which crash Intel compiler
passes.

1 kernel void A(global int* a, global int* b,

2 global int* c) {

3 a[get_global_id(0)] = a[get_global_id(0)] > b;

4 }

(a) Assertion storing/loading pointers only support private array.

1 kernel void A(global int* a) {

2 global int* b = ((void*)0);
3 b[0] = a;

4 }

(b) Assertion iter != pointerOrigMap.end().

Figure 9: Example kernels which trigger compiler assertions
which both CLSmith and DeepSmith exposed.

report on initial results in extending DeepSmith to the Solidity pro-
gramming language. Solidity is the smart contract programming
language of the Ethereum blockchain. At less than four years old,
it lacks much of the tooling of more established programming lan-
guages. Yet, it is an important candidate for rigorous testing, as
exploitable bugs may undermine the integrity of the blockchain
and lead to fraudulent transactions.

Testing Methodology. We applied the same methodology to train
the program generator as for OpenCL. We assembled a corpus
of Solidity contracts from GitHub, recursively inlining imported
modules where possible. We used the same tokenizer as for OpenCL,
only changing the list of language keywords and builtins. Code style
was enforced using clang-format. We trained the model in the same
manner as OpenCL. No modification to either the language model
or generator code was required. We created a simple compile-only
test harness to drive the generated Solidity contracts.

Initial Results. We ran the generator and harness loop for 12
hours on four testbeds: the Solidity reference compiler solc with
optimizations on or off, and solc-js, which is an Emscripten
compiled version of the solc compiler. Our results are summarized
in Table 4. We found numerous cases where the compiler silently
crashes, and two distinct compiler assertions. The first is caused by
missing error handling of language features (this issue is known to
the developers). The source of the second assertion is the JavaScript
runtime and is triggered only in the Emscripten version, suggesting
an error in the automatic translation from LLVM to JavaScript.

Extending DeepSmith to a second programming required an
additional 150 lines of code (18 lines for the generator and encoder,
the remainder for the test harness) and took about a day. Given the
re-usability of the core DeepSmith components, there is a diminish-
ing cost with the addition of each new language. For example, the
OpenCL encoder and re-writer, implemented using LLVM, could
be adapted to C with minimal changes. Given the low cost of ex-
tensibility, we believe these preliminary results indicate the utility
of our approach for simplifying test case generation.

5 RELATEDWORK
The random generation of test cases is a well established approach
to the compiler validation problem. Prior approaches are surveyed
in [3, 16] and empirically contrasted in [6]. The main question of
interest is in how to efficiently generate codes which trigger bugs.
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Figure 10: Crash rate of the Clang front-end of every LLVM
release in the past 24 months compiling 75k DeepSmith ker-
nels.
Table 3: The number of DeepSmith programs which trigger
distinct Clang front-end assertions, and the number of pro-
grams which trigger unreachables.

3.6.2 3.7.1 3.8.1 3.9.1 4.0.1 5.0.0 Trunk

Assertion 1 2962 1327 1332 414 523 83 97
Assertion 2 1 1
Assertion 3 1
Assertion 4 2
Assertion 5 147
Assertion 6 1
Assertion 7 1 1
Unreachable 86 42 14 14 18 13 21

There are two main approaches: program generation, where inputs
are synthesized from scratch; and programmutation, where existing
codes are modified so as to identify anomalous behavior.

Program Generation. In the foundational work on differential
testing for compilers, McKeeman et al. present generators capable of
enumerating programs of a range of qualities, from random ASCII
sequences to Cmodel conforming programs [22]. Subsequent works
have presented increasingly complex generators which improve in
some metric of interest, generally expressiveness or probability of
correctness. CSmith [32] is a widely known and effective generator
which enumerates programs by pairing infrequently combined
language features. In doing so, it produces correct programs with
clearly defined behavior but very unlikely functionality, increasing
the chances of triggering a bug. Achieving this required extensive
engineering work, most of it not portable across languages, and
ignoring some language features. Subsequent generators influenced
by CSmith, like Orange3 [23], focus on features and bug types
beyond the scope of CSmith, arithmetic bugs in the case of Orange3.
Glade [1] derives a grammar from a corpus of example programs.
The derived grammar is enumerated to produce new programs,
though unlike our approach, no distribution is learned over the
grammar; program enumeration is uniformly random.

Program Mutation. Equivalence Modulo Inputs (EMI) testing [19,
29] follows a different approach to test case generation. Starting
with existing code, it inserts or deletes statements that will not be
executed, so functionality should remain the same. If it is affected,
it is due to a compiler bug. While a powerful technique able to
find hard to detect bugs, it relies on having a very large number
of programs to mutate. As such, it still requires an external code
generator. Similarly to CSmith, EMI favors very long test programs.
LangFuzz [13] also uses mutation but does this by inserting code

Table 4: The number of DeepSmith programs that trigger So-
lidity compiler crashes from 12 hours of testing.

Compiler ± Silent Crashes Assertion 1 Assertion 2

solc − 204 1
+ 204 1

solc-js − 3628 1 1
+ 908 1 1

segments which have previously exposed bugs. This increases the
chances of discovering vulnerabilities in scripting language engines.
Skeletal program enumeration [34] again works by transforming
existing code. It identifies algorithmic patterns in short pieces of
code and enumerates all the possible permutations of variable usage.
Compared to all these, our fuzzing approach is low cost, easy to
develop, portable, capable of detecting a wide range of errors, and
focusing by design on bugs that are more likely to be encountered
in a production scenario.

Machine Learning. There is an increasing interest in applying
machine learning to software testing. Most similar to our work
is Learn&fuzz [10], in which an LSTM network is trained over a
corpus of PDF files to generate test inputs for the Microsoft Edge
renderer, yielding one bug. Unlike compiler testing, PDF test cases
require no inputs and no pre-processing of the training corpus.
Skyfire [30] learns a probabilistic context-sensitive grammar over
a corpus of programs to generate input seeds for mutation test-
ing. The generated seeds are shown to improve the code coverage
of AFL [33] when fuzzing XSLT and XML engines, though the
seeds are not directly used as test cases. Machine learning has also
been applied to other areas such as improving bug finding static
analyzers [11, 15], repairing programs [17, 31], prioritizing test
programs [5], identifying buffer overruns [8], and processing bug
reports [14, 18]. To the best of our knowledge, no work so far has
succeeded in finding compiler bugs by exploiting the learned syntax
of mined source code for test case generation. Ours is the first to
do so.

6 CONCLUSIONS
We present a novel framework for compiler fuzzing. By posing
the generation of random programs as an unsupervised machine
learning problem, we dramatically reduce the cost and human effort
required to engineer a random program generator. Large parts of
the stack are programming language-agnostic, requiring only a
corpus of example programs, an encoder, and a test harness to
target a new language.

We demonstrated our approach by targeting the challenging
many-core domain of OpenCL. Our implementation, DeepSmith,
has uncovered dozens of bugs in OpenCL implementations.We have
exposed bugs in parts of the compiler where current approaches
have not, for example in missing error handling. We provided a
preliminary exploration of the extensibility of our approach. Our
test cases are small, two orders of magnitude shorter than the state-
of-the-art, and easily interpretable.
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