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Abstract—Industrial networks are the cornerstone of mod-
ern industrial control systems. Performing security checks of
industrial communication processes helps detect unknown risks
and vulnerabilities. Fuzz testing is a widely used method for
performing security checks that takes advantage of automation.
However, there is a big challenge to carry out security checks on
industrial network due to the increasing variety and complexity
of industrial communication protocols. In this case, existing
approaches usually take a long time to model the protocol
for generating test cases, which is labor-intensive and time-
consuming. This becomes even worse when the target protocol is
stateful. To help in addressing this problem, we employed a deep
learning model to learn the structures of protocol frames and deal
with the temporal features of stateful protocols. We propose a
fuzzing framework named SeqFuzzer which automatically learns
the protocol frame structures from communication traffic and
generates fake but plausible messages as test cases. For proving
the usability of our approach, we applied SeqFuzzer to widely-
used Ethernet for Control Automation Technology (EtherCAT)
devices and successfully detected several security vulnerabilities.

Index Terms—industrial safety, deep learning, vulnerability
mining, self-learning, fuzzing, EtherCAT

I. INTRODUCTION

With the development of networks and technologies, the in-

dustrial control system (ICS) has developed rapidly, especially

in terms of industrial network communication. Technologies

like ”Industrial Ethernet” have contributed greatly to the devel-

opment of industrial communication systems. However, these

advantages also pose new threats to the ICS [1]. Originally,

the ICS was isolated from the Internet, which ensured its

communication security to a large extent. Nowadays, however,

the ICS network is interconnected with the outside world, thus

exposing itself to various network attacks.

Performing security testing on industrial network protocols

can help decrease the security risks of the ICS. Fuzzing [2]

is a widely used technology for handling network security.

It is a kind of testing technology which inputs the target

system with random and malformed test data in order to trigger

system abnormalities so that potential vulnerabilities can be

identified. Fuzzing is often combined with other technologies
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(e.g., context-free grammar) in order to achieve better fuzzing

results. When it comes to the application of fuzzing in the

industrial circle, researchers have developed various fuzzing

tools for revealing security loopholes in network protocols or

industrial devices. Wang et al. proposed a fuzzing technology

for Open Platform Communications protocol [3]. Voyiatzis

et al. designed a fuzzing technology for Modbus protocol

[4]. A vulnerability scanner SimaticScan was developed for

Siemens SIMATIC Programmable Logic Controllers (PLC)

[5]. In addition, Zhang et al. proposed a fuzzing approach

for Profinet Discovery and Configuration Protocol [6]. These

efforts have contributed greatly to the development of fuzzing

technology and have improved industrial security. However,

they also have some limitations. On the one hand, these

fuzzing tools are developed for specific protocols. On the other

hand, these tools generally require some understanding of the

formats or skeleton of the target protocol, which is difficult

for private protocols. The situation is even worse when the

protocol is stateful.

Stateful network protocols are required in order to keep

track of a server’s internal state and can be modeled as

finite state machines, where the entire communication process

consists of a series of state transitions. The current state

of a network communication depends on its previous state

and the protocol message in each state must conform to a

predetermined format [7]. In this case, the protocol that has

an ordered data transfer feature is more complex to understand,

which makes fuzzing harder to perform.

Therefore, we are committed to developing a general in-

dustrial network protocol fuzzing approach that figures out

protocol formats automatically and deals with the temporal

features of stateful protocols. Sequence-to-sequence (seq2seq)

[8] is an encoder-decoder model structure that can handle input

and output sequences of different lengths. In addition, the

Long Short-Term Memory (LSTM) [9] model is a widely-used

deep learning model that has shown great power in learning

the structure and precise timing of sequence data [10]. Here,

we combined deep learning with fuzzing technology. The key

contributions of this paper are as follows:

1. A seq2seq-based fuzzing approach is proposed, which
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can be used to learn the formats and state transition relations

of protocols and perform security testing. We apply LSTM as

the encoder and the decoder of seq2seq. The encoder LSTMs

model learns the syntax of real protocol sequences, while

the decoder LSTMs model generates real-looking but fake

protocol messages which are used as fuzzing data.

2. A general industrial network protocol fuzzing framework,

SeqFuzzer, is proposed, which is protocol-independent. We

perform testing experiments on the Ethernet for Control Au-

tomation Technology (EtherCAT) protocol using SeqFuzzer.

3. Several security vulnerabilities of the EtherCAT protocol

were detected by SeqFuzzer. To the best of our knowledge, this

paper presents the first attempt applying fuzzing to EtherCAT.

EtherCAT is a real-time Ethernet-based stateful industrial pro-

tocol. It is well known for its high speed and efficiency. Many

researchers have used EtherCAT to develop or improve the

communication performance of industrial systems [11], [12],

[13]. The security of the EtherCAT protocol is very important

for the entire ICS. We found a number of potential vulnerabili-

ties in EtherCAT, such as packet injection attack, Man-in-the-

Middle attack, Media Access Control address spoofing, and

other unknown attacks. The experimental results demonstrate

the effectiveness of SeqFuzzer in mining stateful protocol

vulnerabilities with no prior knowledge.

The rest of this paper is organized as follows. Section 2

introduces the LSTM and seq2seq models. Section 3 details

the deep-learning-based fuzzing method and the SeqFuzzer

framework. Section 4 presents an experiment on EtherCAT.

Related work is then discussed in Section 5. Finally, we come

to a conclusion and discuss some ideas about future work in

Section 6.

II. PRELIMINARY

In this paper, we utilize the deep learning model seq2seq.

A deep learning LSTM network is used as the encoder and

decoder of seq2seq to learn the stateful protocol syntax. In this

section, we will introduce the LSTM and seq2seq models.

A. Long Short-Term Memory Network

The Recurrent Neural Network (RNN) is a type of neural

network for processing sequential data. It performs the same

operation for each element in the sequence and has the same

weight parameters at each time step. Therefore, when learning

long-term sequences, it will cause gradient disappearance or

explosion problems [14].

An LSTM [9] is a special RNN that can avoid the problems

of long-term dependencies [10]. Its structure is shown in Fig.

1. In addition to the original hidden unit ht, the LSTM adds

several architectures of units: a cell state ct and three control

gates which are the forget gate ft, the input gate it, and the

output gate ot. ct is used to save the long-term state and the

three control gates determine whether the data is added to ct
[15] according to a pass rate between 0 and 1. Therefore, each

LSTM cell has different weight parameters and the effects of

hidden cells on the next cells are controllable.

Fig. 1. Long Short-Term Memory network structure

For example, a long sequence x : 〈x0, x1, ..., xt, ..., xn〉
is entered into the LSTMs. At time t, ft determines the

degree of forgetting of the previous ct−1 based on the xt
and output of the last hidden cell, ht−1. it determines the

update of the current cell state by ht−1 and xt. c
′
t updates its

status based on the ht−1 and the it. Finally, ot determines the

output of the current cell ht by filtering ct. Compared with

other neural network models, the mechanisms of cell state

and gate control allow the LSTM to better learn long sequence

relationships. Therefore, the LSTM has achieved great success

in many fields, such as large vocabulary speech recognition

[16], semantic representation, [17] and information retrieval

[18]. In this paper, we utilize the great potential of an LSTM

to learn and predict the precise timing of complex network

protocols.

B. Sequence-to-Sequence Network Model

Seq2seq [8] is an encoder-decoder network model structure.

The input and output of seq2seq are sequences which can be

of different lengths. The encoder model learns the information

of the input sentence x : 〈x0, x1, ..., xn〉, and outputs a latent

vector C containing the input sentence information. The C
is learned by the decoder model for predicting the output

sentence y : 〈y0, y1, ..., ym〉.
For the encoder and decoder models, RNN, LSTM, and

other neural network models can be used. The input and output

data can be in the form of images, voices, videos, etc. In this

paper, we utilized the LSTM as the encoder and decoder of

seq2seq to learn the stateful protocol grammar.

III. SEQFUZZER FRAMEWORK

As stated above, the purpose of this work is to search for

effective solutions for the automatical fuzz testing of private

protocols whose formats are unknown and to properly handle

the temporal features of stateful protocols. To achieve this, we

utilize a deep learning method. By training the seq2seq model

on the network traffic of a real industrial environment, we can

derive the structure characteristics (formats) included in the

model parameters. The temporal features are also learned for

stateful protocols.

In this paper, we propose the SeqFuzzer framework, as

shown in Fig. 2. Under the workflow of the SeqFuzzer, the
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Fig. 2. SeqFuzzer framework

introduction can be divided into the following steps. The first

step is to capture network traffic in the real industrial scenario

and to perform some pre-processing steps on the captured

data. The second step is to construct and train the seq2seq

model. The third step is to generate test cases using the trained

seq2seq model. The final step is to perform testing in order to

find vulnerabilities where monitoring is needed to watch for

irregular ICS behaviors. The details of these steps are provided

in the following subsections.

A. Training Data Capture and Pre-processing

Since we leverage deep learning techniques, it is important

to collect training data. Equipment is needed for capturing

original messages to learn in the real industrial control envi-

ronment. In the present work, we captured the real protocol

messages as the training data.

After we have captured enough real protocol messages, we

perform two simple data pre-processing steps on them which

are converted into a decimal sequence file and normalized to

standard decimal data containing the temporal features of the

protocol. The details of the two pre-processing steps are given

below.

• Feature data conversion. Using capture tools, we can

obtain a digital protocol message file where each se-

quence represents one protocol message. We transfer the

digital messages into decimal sequences. The decimal file

containing the real protocol messages is obtained.

• Adding special symbols. In data communication, the

lengths of the messages are different. Before starting

the seq2seq model with decimal sequences, we need to

add some special characters in order to standardize the

training. In this paper, we use PAD (pad) to fill short

decimal sequences, STA (start) as the sequences start

flag, and END (end) as the sequences end flag.

At this point, the processed decimal feature data is stored in

the communication dataset as input data for the deep learning

seq2seq model.

This subsection embodies the encapsulation of SeqFuzzer.

It only requires simple processing and does not require an

understanding of the true meaning of decimal feature data.

B. Seq2seq Model Construction and Training

In the literature on network protocol fuzzing, the quality

of test cases has a direct impact on the final fuzzing result.

High-quality test cases may have more chances to find target

vulnerabilities. Researchers generally go to great lengths to

acquire high-quality test cases. In this paper, obtaining high-

quality test cases depends on two parts, one is the initial

sequence captured, which was introduced above, and the other

is to build a network model to generate test cases.

This subsection embodies the versatility and automation of

SeqFuzzer. It utilizes the deep learning models of seq2seq and

LSTM to obtain favorable test cases.

1) Seq2seq Model Building: We assume si is the input

sequence that indicates the decimal feature, and our aim is

to obtain si+1 that conforms to the state transition relations

of the stateful protocol. At the same time, we use X and Y
to describe the input feature sequences and the corresponding

next feature sequences, respectively.

We apply a three-layer deep LSTMs in the seq2seq model

whereby an encoder LSTMs model learns the syntax of the

protocol data, a decoder LSTMs model predicts the corre-

sponding receiving protocol sequence, and the semi-effective

protocol data (which is fake but plausible) along with the

sequential syntax structure is obtained for fuzzing. A three-

layer deep LSTMs model can express features more abstractly

at a higher level, improve recognition accuracy, and reduce

training time [19]. The seq2seq network structure is shown

in Fig. 3. It includes an input layer, an embedding layer, a

multilayer LSTMs, and an output layer. Both the input and

output are sequences and are not required to be equal in length.

After data pre-processing, each message is converted into

a decimal feature sequence, such as ’[1, 15, 232, 0, ...]’, and

converted into a vector by the embedding layer before be-

ing input into the LSTMs. We use the feature sequence
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Fig. 3. Seq2seq structure

X(xi| 〈x0, x1, ..., xn〉) which is processed by the embedding

layer as the input data for the first layer of the LSTMs. Each

LSTM cell hi has two inputs, oi and hi−1, that contain the

previous protocol statement information. hi can be expressed

as the following formula (1):

hi =

{
ξ(oi), i = 0

ξ(oi, hi−1), i �= 0
(1)

where ξ is a non-linear activation function, such as tanh,

sigmoid, etc., and oi is the output of the previous LSTM

cell. When LSTM layer=1, oi = xi. The output of the first

layer is used as input data for the second layer to convey

the state transition relations of the stateful protocol. In the

third layer of the encoder LSTMs model, the output of each

LSTM cell is only used for the input of the next cell. Only

the output of the last cell is saved, which is the latent vector

C = κ(x0, x1, ..., xn). It represents all the state and structure

information of the input protocol sequence X .

The decoder LSTMs model decodes C and predicts the next

message si+1 that matches the features of the stateful protocol.

It is different from the encoder LSTMs model in which each

cell output Y (yi| 〈y0, y1, ..., ym〉) generated by the third layer

of the decoder LSTMs model is saved and input to the next

stage, yi : γ(STA, y0, y1..., yi−1).

As shown in Fig. 3, the stateful protocol feature message

s1 = 〈0x01, 0x10, 0xab, ..., 0x00〉 is the input of the encoder

LSTMs model, and the latent vector C representing s1 is

obtained. In the decoder LSTMs model, y0 = 0x10 is

obtained based on decoding the inclusion of stateful pro-

tocol information C. y0 is also used as the input for the

next stage. y1 = 0x05 is then obtained. Finally, s2 =
〈0x10, 0x05, 0x02, ...0x00〉 is obtained. s2 is the next se-

quence which matches the state transition relationship of s1,

as predicted by the seq2seq model.

2) Seq2seq Model Training: The input feature data is

divided into three parts, a train set, a validation set, and a

test set. We utilize the Adam gradient optimization algorithm

[20] which is an effective random optimization algorithm. It

has a small memory requirement and is very effective for large

datasets. In the training and validation phase, we utilize the

N-gram [21] as a criterion for judging the similarity between

the generated data Y and the true data. The more N-grams that

the generated data share with the real data si+1, the better the

generated data.
The parameters of the training, validation and test phases

are shared, and the training and validation phases are designed

to learn ideal parameters. In order to train the model well,

we use the decoder LSTMs model differently for training and

validation.
In the training phase, the real sequence si is used as the

input of the encoder LSTMs model as it can learn the sequence

syntax better. Instead of generated data Y , the next real data

si+1 is used as the input of the decoder LSTMs model. Instead

of generating, the decoder learns how to predict during the

training process.
The validation phase can prevent overfitting and make the

model more robust. Parameters trained by the training phase

are used for prediction. In this phase, we value the results

predicted by the decoder, and the prediction result yi of each

stage is used as the output of the next stage.
Before formally starting, we need to set the parameters for

the seq2seq model training randomly. Dai et al. [22] found

that setting parameters by pre-training is better than random

initialization for deep learning network models, which can sig-

nificantly stabilize the training. In SeqFuzzer, the pre-training

includes an input layer, an embedding layer, a multilayer

LSTMs, and an output layer, which is the same structure as

the formal training. Batch size data is used for pre-training

with low dimensional training. The weights obtained from the

pre-training are used as initialization parameters Ws for the

encoder LSTMs model and decoder LSTMs model.

C. Test Cases Generation
In the predicting step, the input of the decoder LSTMs

model requires C and Y to participate. After operating the

training and validation, favorable parameters were obtained.

The data sequence X(xi| 〈x0, x1, ..., xn〉) was entered into

the encoder LSTMs model. The output yi of each decoder

LSTM model stage is the result of the prediction. There is a

normalization recovery step at the output layer of the decoder

LSTMs model. Y (yi| 〈y0, y1, ..., ym〉) is normalized to become

the semi-effective fuzzing data we need.
Our goal is to automatically learn the temporal features

of stateful protocols and generate real-looking fake messages

for fuzzing. In this subsection, semi-effective fuzzing data is

acquired and stored in the communication dataset for fuzzing.

D. Testing
This subsection is the ultimate embodiment of SeqFuzzer’s

high efficiency. Semi-effective fuzzing data is sent to the field

device for attacking and monitoring. Before performing the

fuzzing, we need to set up a fake controller to attack the field

device. Capture tools are utilized to monitor the response of the

field device to the fuzzing. Finally, the outbound fake packets

and the inbound real packets are analyzed by the detection

program for vulnerabilities.
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IV. EXPERIMENT EVALUATION

In this section, the experiment on the EtherCAT protocol is

discussed. This includes the EtherCAT message capture, mes-

sage data pre-processing, seq2seq model of the self-learning

syntax, generation of test data, fuzzing, and result analysis.

Before introducing the experiment, we will provide a brief

introduction to EtherCAT.

A. EtherCAT Real-Time Industrial Ethernet Protocol

EtherCAT is a real-time industrial Ethernet technology.

EtherCAT uses master/slave mode media access control and

sends data in a specific ring topology, depending on the imple-

mentation of the master. It uses standard Ethernet packets with

a data frame type of 0x88A4. EtherCAT is stateful and has four

states, including Init, Pre-Operational, Safe-Operational, and

Operational. Its transition from initialization to running state

must follow the order of an Init → Pre-Operational → Safe-

Operational → Operational sequence and cannot be done by

skipping the steps. The conversion relationship between states

is shown in Fig. 4.

Unable to leapfrog

: Operational: Pre-Operational

: Init : Safe-Operational

Fig. 4. EtherCAT state machine

B. Real EtherCAT Data Capture

In this experiment, the controller was a Beckhoff [23] PLC,

and the field devices were a Beckhoff bus coupler EK1100,

digital input EL1004, digital output EL2004, and system ter-

minal EL9011. The capture tools were the Beckhoff Listener

ET2000 [24] and the terminal capture software Wireshark

[25]. ET2000 is an industrial Ethernet multi-channel listener

and has a software interface that can display the captured

packets via the Wireshark software on the terminal equipment.

ET2000 can support all real-time Ethernet standards, such

as EtherCAT, Profinet, etc. Moreover, these tools have little

impact on the actual industrial communication environment,

which make them good candidates for capturing network

protocol messages.

The capture environment is shown in Fig. 5. The ET2000 is

connected between the master and the salves. The Wireshark

software on the PC is connected to the ET2000 interface and

displays the data captured by the monitor ET2000. Using

Wireshark, we obtain a hexadecimal array file, where each

array represents a message. We capture millions of protocol

messages with the ET2000 and display them on Wireshark.

Preprocessor 

ET2000

Beckhoff  PLC

Software interface

Slaves Station
 Beckhoff bus coupler EK1100 
 Digital input EL1004
 Digital output EL2004
 System terminal EL9011

Master Station

Monitor

communication communication

Wireshark
messages
...
0x0a, 0x00, 0x00, 0x00, 0x00, 0x09, 0x01, 0x80, /* ........ */
0x00, 0x00, 0x00, 0x00, 0x00, 0x0b, 0x8d, 0x00, /* ........ */
0x00, 0x00, 0x01, 0x0c, 0x80, 0x00, 0x00, 0x00, /* ........ */
...

Fig. 5. Capture environment

C. Data Pre-processing

Protocol messages are exported as a hex C array file on

Wireshark and processed into hexadecimal feature data. The

data are then converted into a decimal feature data file. For

example, 0x00 :→ 0, 0xff :→ 255. The data conversion is

shown in Fig. 6. Since the lengths of the EtherCAT protocol

messages are not uniform, we insert the special character

PAD mentioned above to fill the shorter decimal feature

sequences, which makes the length of all messages consistent

with the longest length max. The input feature sequences are

then obtained, as shown in Fig. 7.

Real C array messages

0x0a, 0x00, 0x00, 0x00, 0x00, 0x09, 0x01, 0x80, /* ........ */
0x00, 0x00, 0x00, 0x00, 0x00, 0x0b, 0x8d, 0x00, /* ........ */
0x00, 0x00, 0x01, 0x0c, 0x80, 0x00, 0x00, 0x00, /* ........ */

Hex feature data
0a0000000009018000000000000b8d000000010c80000000

Real decimal feature data
10 0 0 0 0 0 0 0 0 0 9 0 1 8 0 0 0 0 0 0 0 0 0 0 0 0 11 8 13 0 0 
0 0 0 0 0 1 0 12 8 0 0 0 0 0 0 0 

Fig. 6. Data conversion

D. Training of Seq2seq and Generation

The batch input feature sequences are used as input to the

seq2seq model for pre-training and obtain the initialization

parameters for the formal training. The input feature data is

divided into three parts, training data, validation data, and test

data. After the training and validation steps are completed,

relevant parameters are obtained for generating semi-effective

sequences. The special character STA indicates the beginning

of the prediction, and the special character END indicates the

end of the prediction. We utilize the Adam algorithm to train

feature data for multiple epochs (epoch = 1,3,8,13,18,23,28).

The data is saved for different epoch training. All generated

sequences are of length max, and the special character PAD
in each sequence is removed and restored to the original length

of the sequence.
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 0  9  0  1  8  0

 10  0  0  0  0  0  0  0  0  0  9  0  1  8  0  0  0  0  0  0  0  0  0  0  0  

the longest length
Length : max

 0  0  0  0  0  0  0  0  0  11  0  1  8  0  5  0  0  1

 0 9 0 1 8 0 PAD PAD PAD PAD PAD PAD PAD PAD 
PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD

 0 0 0 0 0 0 0 0 0 11 0 1 8 0 5 0 0 1  PAD PAD PAD PAD 
PAD PAD PAD

Length : max-19

Length : max-7

 10 0 0 0 0 0 0 0 0 0 9 0 1 8 0 0 0 0 0 0 0 0 0 0 0  

Length : max

Length : max

Length : max

Fig. 7. PAD fill shorter decimal feature sequences

E. Fuzzing and Results

SOEM (Simple Open EtherCAT Master) [26] is a free,

open source EtherCAT software library that sends and receives

EtherCAT frames through bare sockets. Based on the SOEM

source code, we developed the EtherCAT test master station

on the Ubuntu17 Linux operating system. We utilized a USB

network port hub as the master PC interface to implement the

hardware capabilities of the Beckhoff master. In order to have

the same monitoring conditions as the capture environment,

the ET2000 is used to connect the master station and the slaves

station EK1100.

The semi-effective test data generated by SeqFuzzer is sent

to the slaves station via the SOEM master station, and the

messages are displayed on the Wireshark as the ET2000

listens. During the experiment, we found red dataframe error

flags in Wireshark. In addition, in order to determine whether

the transmitted message is received, we have two criteria: the

Diagnostic LEDs for the EtherCAT fieldbus and the WKC

(Working Counter) processing flag in the EtherCAT sub-

messages.

EtherCAT protocol messages are input into SeqFuzzer,

which learns their syntax and constructs fake fuzzing data.

 Real protocol message  
  0x88 0xa4 0x43 0x10  0x0a 0x00 0x00 0x00 0x00 0x09 0x01 0x80 0x00 0x00 0x00 0x00 0x00 0x0b 0x73 

Fake fuzzing data
  0x88 0xa4 0x53 0x10  0x0b 0x00 0x00 0x00 0x00 0x09 0x01 0x80 0x00 0x00 0x00 0x10 0x00 0x0b 0x83 

input

SeqFuzzer

output

Wireshark  protocol message

Fig. 8. Generate data and real data

Compared to protocol messages, fuzzing data changed some

bytes by SeqFuzzer, as shown in Fig. 8. We judged the results

of the experiment with the following criteria:

• Recognition rate. Whether the sent message is recognized

by the Wireshark as the EtherCAT protocol.

• Acceptance rate. The proportion of messages processed

by the slaves.

• Detection ability. The ability of the EtherCAT protocol

in detecting vulnerabilities.

1) Recognition Rate: The protocol flag is displayed in the

syntax column protocol of Wireshark. The frame type of the

transmitted message data is 0x88A4, but some failed data is

misidentified. The recognition rate for different epochs are

shown in Table I. When the epoch is equal to 1, the result

does not show a high recognition rate. A large amount of

packet data is not recognized as an EtherCAT message. This

was probably because of insufficient training on the LSTMs.

When the epoch is e3, e8, or e13, the ideal recognition rate

is obtained. This shows that SeqFuzzer is highly automated

and accessible given that the data generation process does

not require human involvement, not prior knowledge of the

protocol is required, and it does not depend on a specific

protocol.

TABLE I
RECOGNITION RATE

e1 e3 e8 e13 e18 e23 e28

Recognition
Rate

52% 100% 98.7% 99.93% 95.4% 96.3% 92.3%

* Where ex indicates epoch = x.

2) Acceptance Rate: According to the index field in the

sub-message, the transmit and receive message pairs are

obtained. The acceptance rate is obtained by calculating the

number of WKC field changes in the message pairs, as shown

in Table II. It shows that the generated data satisfies the state

transition relationship of EtherCAT. This is strong proof that

SeqFuzzer can generate test data for a stateful protocol. The

acceptance rate is favorable when the epoch is between 3 and

13. As the epoch increases, the acceptance rate decreases.

TABLE II
ACCEPTANCE RATE

e1 e3 e8 e13 e18 e23 e28

Acceptance
Rate

92.24% 99.99% 99.28% 98% 97.2% 93.11% 90.86%

3) Detection Ability: There are many known vulnerabilities,

such as MITM, MAC address spoofing, slave address attack,

packet injection and so on. The MAC address is important for

protocol detection. With regards to EtherCAT, we found that

Wireshark and LEDs would behave differently when sending

different MAC addresses. For better analysis, we discuss

detection ability in two situations:
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• Real MAC address plus constructed content. The real

MAC address instead of the MAC address spoof combine

with the protocol data content constructed by SeqFuzzer

to become fuzzing data for testing for vulnerabilities.

• Constructed MAC address plus constructed content. Pro-

tocol data constructed by SeqFuzzer was utilized to test

the MAC address spoofing vulnerability.

Real MAC Address plus Constructed Content The

MAC address of the generated protocol data is replaced with

the real MAC address in order to obtain the message pairs.

After analysis, we detected the following vulnerabilities:

1 Packet injection attack. SeqFuzzer modified the data field

of the sub-message, but the length field in the EtherCAT
frame header was not equal to the number of bytes in the

sub-message. However, the message was received, which

is a packet injection attack.

2 MITM attack. In the message pairs, we checked a sit-

uation where the message data generated by SeqFuzzer

only changed the data field, but the slaves processed it. If

the master is manipulated to use the same MAC address

as the PLC and modifies the data in the message, once

the slaves accept it, it will lead to MITM attack.

3 Unknown attacks. There are other potential crises that

may be dangerous, such as the data field changed, but

the WKC did not.

Constructed MAC Address plus Constructed Content
We send the protocol data generated by SeqFuzzer from the

SOEM master to the slaves. Watching the LEDs flashing and

looking at the changes in WKC to determine whether the slaves

have received a message from an unknown MAC address. If

the message is received, there is a MAC address spoofing

vulnerability.

DetectEcat is a program that was developed for detecting

vulnerability statistics. The program algorithm is shown in

Algorithm 1 DetectEcat

1: for each < si, ri >∈ MessagePairs do
2: if WKC in si �= WKC in ri then
3: if MAC is True then
4: if Length in si = Length in ri then
5: Packet injection
6: end if
7: if Data in si �= Data in ri then
8: MITM attack
9: end if

10: else
11: MAC address spoofing
12: end if
13: else
14: if Data in si �= Data in ri then
15: Unknown attacks
16: end if
17: end if
18: end for

TABLE III
SEQFUZZER DETECTS ETHERCAT VULNERABILITIES STATISTICS

e1 e3 e8 e13 e18 e23 e28

Packet injection 19 1724 282 83 93 91 64

MITM attack 13 1420 1001 285 72 43 44

MAC address spoofing 0 57 102 69 52 11 3

Unknown attacks 3 6 0 2 0 0 0

Alg. 1. After sending 132,200 generated fake messages, the

statistics of the attacks are shown in Table III. Among them,

the number of packet injection attacks and MITM attacks is

relatively high. When the epoch ranges from 5 to 13, the result

shows favorable detection ability. However, in order to obtain

better experimental results, the epoch should be set between

8-13.

In this experiment, SeqFuzzer automatically learned the

EtherCAT payload frame structure, generated fuzzing data

with a high receiving rate and detection ability even when

the EtherCAT format is unknown, and successfully detected

several security vulnerabilities.

V. RELATED WORK

Fuzz testing for network protocol. Fuzzing is not a new

technology. In fact, it has been prevalent for more than 20

years. Miller [2] was the pioneer of fuzzing through his work

testing UNIX programs. Fuzzing has since been applied widely

and developed greatly. More and more technologies were

introduced to enhance the power of fuzzing. Because of its

effectiveness, fuzzing has many applications in the field of

network protocol testing. Aitel et al. [27] introduced a block-

based approach that divides a network protocol packet into

several blocks and tests the target by removing all known

factors in the network protocol. Some researchers conduct se-

curity testing by synthesizing abstract behavioral models from

target protocols [28] or by constructing a finite state automaton

[29]. The reverse engineering method is also used to perform

dynamic monitoring of the target protocol and analyze the

processing [30], [31]. Comparetti et al. [32] applied the state

machine to reverse engineering, which enhanced the results.

Deep learning for grammar-based fuzzing. With the rapid

development of deep learning technology, fuzzing was also

combined with it. Learn&fuzz [33] uses the seq2seq model

to learn the syntax of PDF (a complex input format) objects

and uses the learned syntax to produce test data for testing

PDF parsers. Rajpal et al. used a neural network model to

predict good and bad locations in the input file to perform

fuzzing mutations [34]. Deep learning is also applied in

network protocol fuzzing. Fan et al. [35] used deep neural

networks to learn a generative input model of proprietary

network protocols, and used the learned model to generate

new messages for testing. Chockalingam et al. proposed a

deep-learning-based method to detect abnormalities for the

Controller Area Network bus [36]. These efforts have made a
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number of contributions to network security. In the present

work, we utilized the seq2seq model to learn the protocol

format. SeqFuzzer can properly handle the temporal features

of stateful protocol automatically, especially in the context of

an industrial environment. This work is different from others.
Vulnerability detection for real-time Ethernet protocol and

EtherCAT. Granat et al. [37] tested packet injection and

MITM attacks in the EtherCAT environment and defined a

preprocessor for the open source intrusion detection system

Snort. The attack is constructed and detected by the developer

under the understanding of the protocol. Ovaz Akpinar et al.

[38] also proposed the EtherCAT preprocessor for Snort. The

EtherCAT vulnerability is known in advance, attack vectors

such as MAC spoofing and data injection are generated, then

the attack is executed. However, SeqFuzzer is an automatic

learning framework that uses a common fuzzing approach to

effectively solve the security problems of network protocols.

It is an intelligent vulnerability detection tool that does not

require knowledge of the protocol rules.

VI. CONCLUSION AND FUTURE WORK

Industrial network protocols play very import roles in the

industrial environment. To improve industrial security, we have

to carry out appropriate testing on industrial network protocols.
However, the testing work is not easy as many industrial

network protocols are private, meaning that the protocol format

must be interpreted manually, which requires a large amount

of labor.
Moreover, there are many stateful protocols. Understanding

the temporal features is even more difficult. Current work is

almost protocol-specific and cannot handle the feature well. To

improve this situation, we leveraged a deep learning model to

learn the protocol format and deal with the state transition

relations of the stateful protocols .
We have proposed a fuzzing framework SeqFuzzer, which

can automatically learn the protocol format from network

traffic and generate fake but plausible messages which serve

as test cases. We applied SeqFuzzer to test the EtherCAT

protocol. SeqFuzzer automatically generated fuzzing data with

high receiving rates and detection capabilities even when the

format of EtherCAT messages was unknown, and successfully

detected several security vulnerabilities of EtherCAT.
In terms of future work, we first plan to combine SeqFuzzer

with other deep learning models, such as Convolutional Neural

Networks and Generative Adversarial Networks, to achieve

better learning of protocol features. Second, we plan to test

more industrial protocols, such as Powerlink and Profinet, in

order to future evaluate SeqFuzzer.
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