
Survey of Directed Fuzzy Technology

Yan Zhang and Junwen Zhang
School of Computer and Information

Technology
Beijing Jiaotong University

zjw@bjtu.edu.cn

Dalin Zhang
Nat ional Research Center of Railway

Safety Assessment
Beijing Jiaotong University

dalin@bjtu.edu.cn

YongminMu
School of Computer

Beijing In/ormation and Technology
University

yongminmu@163.com

Abstract- T he fuzzy testing technology can effectively detect
vulnerabilities. Based on Directed Symbolic Execution (DSE)
fuzzing and Directed Grey Box Fuzzing (DGF) , which can reach
the specified target locations and scan the vulnerability quickly
and efficiently. This paper introduces the theoretical knowledge
of directed fuzzy testing technology, and several state-of-the-art
fuzzy testing tools to elaborate the prl nclple, advantages,
disadvantages and the prospect of directed fuzzy technology.

Keywords- fuzZ)' testing; directed symbolic execution; directed
grey box fuzzing; fu zZ)' tools

I. INTRODUCTION

Software security information is critical to understanding
the security issues and distribution of software. According to a
report published by the well-known security company
Veracode in 2017 [1], today, agile development and open
source software are popular. An average of 75% of software
code in a software comes from open source components, but
vulnerabilities in these open source components bring a huge
security risk. At the same time, most of the information about
security comes from the protection technologies of firewalls or
anti-virus networks, gateways or terminals provided by
"perimeter defense companies". These techniques only focus
on known vulnerabilities and involve fewer a-day
vulnerabilities hidden in binary software.

Fuzzy testing is a security test technology, which uses
many semi-effective data as input to the application, and uses
the program as an indicator to find out the possible security
vulnerabilities [2] in the application. The fuzzy testing is
divided into the following three types [3]. Black box Fuzzing,
which only needs to analyze the results of the program
execution [4, 5, 6]; White Box Fuzzing [7], which requires
heavyweight level program analysis and constraint solving;
Grey Box Fuzzing (GF) is somewhere in between, using
lightweight tools to collect certain program structures and
constrain solving at compile time. However, existing grey box
fuzzers cannot be directed effectively.

Directed fuzzing is a vulnerability detection technology that
focuses on the location of a target in a user-specified program.
It is mainly divided into DSE and DGF. When the program
changes, we are more concerned about whether this change
introduces other vulnerabilities. The directed fuzzer uses this
change as the target location for vulnerability scanning to
detect more vulnerabilities and prevent them from spreading

978-1-5386-6565-7/18/$31.00 (f)2018 IEEE

696

widely. Unlike non-directed fuzzers, directed fuzzers spend a
lot of time on finding a specific target location instead of
wasting a lot of time on unrelated program modules. Directed
fuzzing, as an improvement to traditional random testing, uses
stain analysis to locate seed input areas that can affect security­
sensitive program points, and it focuses on changing these
seeds to reveal defects and vulnerabilities.

Most existing directed fuzzers are based on symbolic
execution [8]. The goal of a stain-based directed fuzzer is to
identify and fuzz specific input bytes in the seed to obtain a
particular value at a given program location. It uses classical
stain analysis [9] to identify certain parts of the seed input that
should be prioritized to increase the probability of generating
the value required to observe the target location vulnerability
(for example, the zero value in the denominator of the division
operator [10]), this can greatly reduce the search space. It does
not require heavyweight symbolic execution and constraint
solving mechanisms. However, the user is required to provide a
seed input that has reached the target location. DGF is a
vulnerability detection technology that implements orientation
based on GF, and the user can specify multiple target positions
at a time. At the same time, the user can give an initial seed
input or an empty input, and the directed grey box fuzzer can
be fuzzed.

At present, the mainstream fuzzers are as follows, as shown
in Table 1.

TABLE!. SUMMARIES OF TIIE TYP ICAL FUZZERS

Nmn e Birtlt YeaI' KeyTechniques

Peach 2004 Black box fuzzing

TaintScope 2010 Symbolic execution

AFL 2013 Grey box fuzzing

KArCH 2013 Symbolic execution

SDFuzz 2014 Directed fuzzing

SeededFuzz 2016 Directed fuzzing

Kelinci 2017 Grey box fuzzing

AFLGo 2017 Directed grey box fuzzing

ColIAFL 2018 Grey box fuzzing

SAFL 2018 Directed grey box fuzzing/
directed symbolic execution

PTfuzz 2018 Grey box fuzzing

II. DIRECTED SytvlBOLIC EXECUTION

A. Symbolic Execution Algorithm
Symbolic execution was originally used in the field of

compilers, program understanding, etc. [11]. The main idea is
to symbolize the input of the program, and execute these
symbol variables as input, collect the predicate constraints of
the branch condition judgment, and finally use the solver to get
the new test input [12].

The most traditional symbolic execution is static symbolic
execution. First, the input variable is symbolized, that is, the
input variable is set to x. Then through the static analysis
program, it is converted into an intermediate language, and the
symbolized variable is changed in the program flow, thereby
outputting a value of the symbolized variable. An example is
shown in Figure 1 [13]:

a = raw_inputO;

b = 2*a;

if (b = = 10)

print "win" ;

else

print "lose";

Figure 1. Simple code example

In this code example, the traditional run is to enter the value
of a, then run the following code . In the process of static
symbolic execution, a is first symbolized, e.g. a = x, b = 2*x.
When b == 2 * x, it enters the 'win' path; ifb != 2 * x, it enters
the ' lose' path. The states in which the two paths are combined
is called the execution tree, b == 2 * x and b != 2 * x are the
path constraints. When the symbolic execution ends (that is,
the program is normal or abnormally exited), the constraint
solver will solve the path constraint, and the solution is the
value required to go to this path . On another level, symbolic
execution is the transformation of reachability problems into
constraint solving problems.

Of course, this approach looks perfect, but there are many
problems in the actual implementation process, such as the
constraints cannot be solved. Combining traditional static
symbolic execution with actual execution is called dynamic
symbolic execution [14]. Dynamic symbolic execution
maintains two states: one is the state of the actual variable, and
the other is the symbolized state . The actual state maps
randomly generated values to variables, while the symbolized
state symbolizes variables. The dynamic symbolic execution
first runs according to the actual state, and collects the
constraints of the symbolization of the variables actually
running to the path and solves them. Then, the constraint is
inverted, and the constraints of the other path are obtained and
solved. The process repeats until all paths have been explored
or the user-set limits are reached.

As shown as Figure 1, the dynamic symbolic performs a
randomly generated variable a = 7, which enters the 'lose' path

697

when actually executed. In the judgment statement, another
path can be obtained by negating the collected constraints.
Therefore, in this way, the problem that the constraint cannot
be identified or solved is avoided. Zhe Chen et al. extract
behavior information from the original complex Control Flow
Graph (CFG) by using dynamic symbolic execution, and then
add constraints to the control flow model to present a control
flow-based Extended Program Behavior model with Finite
State Machine control parameters (EPBFS:tv1). Finally, a new
fuzzy input is generated by solving the constraints generated by
EPBFSM. This approach not only finds possible path-aware
vulnerabilities, but also identifies possible access control
object-aware vulnerabilities [15].

B. Directed Symbolic Execution
DSE translates the reachability problem into an iterative

constraint solving problem. Since most paths are not feasible,
the search is typically iterative by finding a feasible path to the
intermediate target. For example, the patch test tool KATCH [16]
uses the symbolic actuator KillE to reach the part of the
program changes. KLEE [17] uses the method of symbolic
execution to systematically explore the state space of feasible
paths by heavy-weight analysis of program analysis and
constraint solving [18]. Once a feasible path that can actually
reach the target location is identified, the test case is generated
a posteriorly as a solution to the corresponding path constraint.

55 /* Read type and payload length first */

56 hbtype = *p++;

57 n2s(p, payload);

58 pl = p;

65 if (hbtype == TLSl _HB_REQUEST) {

77 /* Enter response type, length and copy payload */

78 *bp++ = TLS 1_HB_RE SPONSE;

79 s2n(payload, bp);

80 memcpy(bp,pl,payload);

Figure 2. Heartbleed commit[19]

Suppose that line 80 is set as the target and KATCH finds a
feasible path no to reach line 65 as the intermediate target.
Next, KATCH solves the constraint <r(no) n hbtype ==

TLSl _HB_REQUEST condition by the constraint solver to
generate an input that can be executed to the line 80 (target
position). Unlike grey box fuzzers, white box fuzzers based on
symbolic execution provide a simple handle to achieve directed
fuzzing. Most patch testing tools are based on DSE.

However, the effectiveness of DSE sacrifices its efficiency
[20]. DSE takes a long time to perform program analysis and
constraint solving. During each iteration, DSE uses program
analysis to identify those branches that need to be negated to
get closer to the target, constructing the corresponding path
conditions based on the sequence of instructions along those

paths, and use a constraint solver to verify the satisfiability of
these conditions.

DSE has been used to reach dangerous locations in the
program, overwrite changes in the patch, overwrite previously
uncovered program elements to increase coverage, verify static
analysis reports, abrupt detection, and reproduce field failures.

III . DIRECTED GREY BOX FUZZING

A. Grey Box Fuzzing
Coverage-based fuzzing is designed to generate input that

can achieve maximum code coverage, as well as the ability to
explore deeper program paths. Saahil Ognawala et al. proposed
an open source framework Munch [21] that implements two
hybrid techniques based on fuzzing and symbolic execution,
which achieves functional coverage of deeper paths.

AFL [22] is a very good grey box fuzzer for C programs
and has the ability to discover many high-impact vulnerabilities
[23] and can be extended. It builds test cases based on code
instrumentation, resulting in high availability of use cases, and
many performance optimizations for Linux that make it very
fast. AFL is easy to extend, and Kelinci [24] is a tool for
linking AFL to instrumented Java programs. It does not require
modification of AFL and is easy to parallelize. This tool
implements the possibility of applying AFL-type fuzz testing to
Java programs and can prove its effectiveness. AFL gets the
input program from the file or standard input 'stdin' and makes
a good fuzzing, but the program on the network is not
convenient and needs some support from the auxiliary library.
CollAFL [25] uses the application as input and uses three fuzzy
strategies to provide more accurate coverage information to
mitigate path conflicts and improve the speed of discovering
new paths. Among them, three are untouched neighbor
descendants preferentially fuzzed; untouched neighbor
branches are preferentially fuzzed; seed priority fuzzy with
more access memory operations. SAFL [26] is based on KLEE
and AFL to generate seeds that can explore deeper paths earlier
and easier, and proposes an algorithm that can perform a rare
or deeper path with higher probability.

B. Directed Grey Box Fuzzing
DGF maps the reachability problem to an optimization

problem and uses a specific meta heuristic algorithm to
calculate the minimum distance from which the seed is
generated to the target. AFLGo is a directed grey box fuzzer
that is an extension of AFL.

AFLGo [27] can expose more vulnerabilities in less time
[28]. While the DSE generates a single input, the grey box
fuzzer can generate more orders of magnitude of input. Starting
with the same seed input, the directed grey box fuzzer AFLGo
takes less than 20 minutes to expose the Heartbleed
vulnerability; however, the DSE tool KATeR does not expose
the Heartbleed vulnerability for 24 hours.

DGF preserves the efficiency of GF because all program
analysis is in the compile phase. At the same time, DGF can be
easily parallelized, allowing more computing power to be
allocated in order to detect vulnerabilities quickly and

698

efficiently. AFLGo is easy to set up with just a few thousand
lines of code and can be integrated with OSS-Fuzz to expose
more security critical programs and libraries. BuzzFuzz [29]
only gets the stain data of the target program, which is a good
example of how the grey box fuzzer works. Compared to DSE,
the DGF does not require heavyweight symbolic execution,
program analysis, and constraint solving. The lightweight
program analysis implemented by DGF is done at compile time.

The GF test uses the branch information collected at
program run time as feedback to guide the selection of seeds.
AFL and AFLGo detect and obtain branch information at
compile time. QEMU emulation extended AFL can also obtain
branch information of binary program. PTfuzz uses hardware
mechanism (Intel processor trace) to collect branch information
and obtained the performance equivalent to the compile-time
detection method [30].

Seed input is very important for directed fuzzing.
SeededFuzz [31] implements a seed selection method to cover
more critical programs and detect more vulnerabilities. SDFuzz
[32] searches for key function locations on binary software,
uses stain analysis to classify input data into security-related
data and security-independent data, and finally changes
security-related data to implement directed testing. TaintScope
[33] is a directed fuzzy tool that implements fine-grained
dynamic stain tracking at the binary level, identifies key
operations in the input, and identifies potential vulnerabilities.
In addition, it is also a fuzzy test tool that supports checksums.

IV. CONCLUTION AND PROSPECT
Both DSE and DGF can reach the program-specified

location. However, DSE has more heavyweight program
analysis than DGF fuzzing. In the future, it is possible to
integrate directed white box fuzzing and DGF based on
symbolic execution, and to take advantage of the precise
analysis of symbolic execution and the multi-input of grey box
fuzzing generation, the integrated directed fuzzy technology
will be able to take advantage of their comprehensive
advantages to alleviate their individual weaknesses. At the
same time, when choosing to execute test cases, you can use
machine learning algorithms to determine the pros and cons of
test cases and the order of priority of test case execution based
on some models learned from past experience.

However, fuzzy testing also has certain limitations. For
example, access control vulnerability, that is, the fuzzy testing
does not recognize the permissions of the application itself.
Bad design logic, that is, fuzzy testing does not identify
whether the problem found is due to a security problem. The
back door, that is, the fuzzy testing does not recognize whether
it is a back door function. Destruction, that is, the SIGSEGV
signal will cause the fuzzy testing to fail to identify whether the
memory is corrupted. Multi-stage security vulnerabilities, that
is, fuzzy testing is useful for identifying a single vulnerabilities,
but they are not very useful for vulnerabilities that are caused
by small chain of vulnerabilities. In the future, perhaps for
these limitations, directed fuzzy techniques can give an answer.

At present, we customize the fuzzers according to input
characteristics, mutation strategy, seed sample screening and
abnormal sample discovery and analysis, which is expensive.

REFERENCES

Yang Meifang integrated the grey box fuzzers such as AFL,
Peach and Honggfuzz with the programmable fuzzy test
framework into a programmable fuzzer, customized the service
at a small cost, and achieved certain results [34]. The directed
fuzzy technology still has a lot of application space. In the
future, it will be a research hotspot to explore how to use it in
the fields of defect detection, confirmation and test data
generation [35,36,37] and so on.

A CKNOWLEDGMENT

The National Natural Science Foundation of China under
Grant N0.61502029, the Beijing Natural Science Foundation
(Z160002), Postgraduate Education (71D 1811013) and the
Opening Project of Beijing Key Laboratory of Internet Culture
and Digital (5221835409) sponsor this work. We are grateful to
the anonymous reviewers for their comments on earlier drafts
of this paper.

[12] Weina Niu, Xuefen g Ding, Zhi Liu . Binary Code Vulnerability
Discovery Ba sed on Symb olic Ex ecution[J] . Computer Science, 2013,
40(10) : 119-121.

[13] Web site . 2018 . http ://www .cnblogs.com/OxJDchen/p/9291335 .html
(2018) .

[14] Jing An. Research on Key Techniques of Dynamic Symbol Execut ion
[D]. Beij ing University of Posts and Telecommunications, 2014 .

[15] Chen Z, Guo S, Fu D . A Dir ected Fuzzing Based on the Dynamic
Symbolic Execut ion and Extended Program Behavior Model[M]. 2012 .

[16] Paul Dan Marinescu and Cristian Cadar. 2013 . KATCH : High-coverage
Testing of Softwar e Patch es. In Proceedings of the 2013 9th Joint

Meeting on Foundations of Software Engineering (ESEC/FSE 2013).
235-245 .

[17] Cristian Cadar, Danie l Dunbar, and Dawson Eng ler. 2008. KLEE :
Unassisted and Automatic Generation of High-coverage Tests for
Complex Systems Programs. In Proceedin gs of the 8th USE NIX
Conference on Operat ing Systems Design and Implementation
(OSDI '08) . 209-224.

[18] Kin- Keung Ma , Khoo Yit Phan g, Jeffrey S. Foster , and Mich ael Hick s.
2011. Directed Symbolic Execution. In Proc eedings of the 18th
International Conference on Stat ic Analysis (SAS' 11) . 95- 111.

[19] Wei Jin and Alessandro Orso . 2012 . BugRedux: Reproducing Field
Failures for Inhou se Debugging . In Proceedings of the 34th International
Conference on Softw are Engineering (lCSE ' 12) . 474--484.

[20] Marcel Bohm e and Soumya Paul. 2016. A Probabili stic Analysis of the
Efficiency of Automated Softw are Testing. IEEE Transacti ons on
Software Eng ineering 42, 4 (April 2016), 345-360 .

[21] Ognawa la S, Hutzelmann T, Psallid a E, et al. Improving fun ction
coverage with munch : a hybrid fuzzing and directed symbolic execution
approach [J]. 2017.

[22] Website . 201 7. American Fuzzy Lop (AFL) Fuzzer.
http ://lcamtuf.coredump .cx/afl/technical_details.txt. (2017). Accessed:
2017-05-13 .

[23] Website . 2017. AFL Vulnerability Trophy Cas e.
http ://lcamtuf.coredump .cx/afl / #bugs. (2017). Accessed: 2017-05-13 .

[24] Ker sten R, Luck ow K, Pasareanu C S. POSTER: AFL-b ased Fuzzing for
Java with Kelinci[C]11 ACM Sigsac Conference. ACM , 2017:2511-2513 .

[25] Gan S, Zhang C, Qin X, et al. CoIIAFL: Path Sensitive Fuzzing[C]11
CoIIAFL: Path Sensitive Fuzzing. IEEE Computer Society, 2018:679­
696.

[26] Mingzhe Wang,Jie Liang,Yuanliang Chen,Yu Jiang .SAFL: Increasing
and Acceleratin g Testing Coverage w ith Symbo lic Execution and
Guided Fuzzing[C]. IEEEIACM 40th Internation al Conference on
Software Engineering: Companion.2018.

[27] Marcel Bohrne, Van -Thuan Pham , Manh-Dung Nguyen, Abhik
Roychoudhury.2017. Directed Greybox Fuzzing.In CCCS ' 17.

[28] Pat rice Godefroid, Michael Y. Levin , and David M olnar . 2012 . SAGE:
Whitebox Fuzzing for Security Testing . Queue 10, 1, Article 20 (Jan .
2012),8 pages.

[29] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki , and V. Sekar, "BUZZ :
Testing context-dependent policies in statefu l networks," in
Proc.USE NIX Symp. Netw . Syst. Des. Implementation, 201 6, pp. 275­
289 .

[30] Zhang G, Zhou X, Lu o Y, et al. PTfuzz : Guided Fuzzing w ith Processor
Trace Feedback[J]. IEEE Access , 2018 , PP (99):I -1.

[31] Wang W, Sun H, Zeng Q. SeededFuzz: Sel ecting and Genera ting Seeds
for Directed Fuzzing[C]11 Intemational Symposium on Theoretic al
Aspects of Software Eng ineering . IEEE, 2016:49-56.

[32] Wu B, Zhang B, Wen S M, et al. Dir ected Fuzzing Based on Dynamic
Taint Analysis for Binary Software[J]. Applied Mechanics & Materials,
2014 ,571-572 :539-545.

[33] Wang T, Wei T, Gu G, et al. TaintScop e: A Checksum-Aware Directed
Fuzzing Tool for Automatic Software Vulnerability Detection[J]. 2010 ,
41(3):497-512.

[34] Meifang Yang, Wei Huo , Yanyan Zou. Programm able Fuzzy Testing
Technology[J] . Joum al of Software.2018(5) .

[35] Zhang D, Sui J, Gong Y. Large scale software test data generation based
on collectiv e constraint and weighted comb ination method[J] . Tehniki
vj esnik, 2017, 24(4): 1041 -1049.

[36] Zhang D, Jin D, Gong Y, et al. Re search of alarm correlations based on
static defect detection[J] . Tehni cki \j esnik , 2015, 22(2): 311-318 .

[37] Zhang D, Jin D, Gong Y, et al. Diagno sis-ori ented alarm
correlations[C]IISoftware Engineering Conference (APSEC), 2013 20th
Asia-Pacific. IEEE, 2013, 1: 172-179.

Platform.
(2017).

[11]

[10]

[1] Software Security Report [M]. Ver acode . 201 7
[2] Honghui Li, Jia Qi, Feng Liu . Research on Fuzzy Testing Techn ology[J].

Science in China , 2014, 44(10) : 1305 -1322 .
[3] Liang H, Pei X, Jia X, et al. Fuzzing : State of the Art[J] . IEEE

Transacti ons on Reliability, PP (99) :1-20.
[4] Website. 2017. Peach Fuzzer

http ://www .peachfuzzer .com/produ cts/peach-platform/.
Accessed : 201 7-05-13 .

[5] Website. 2017. SPIKE Fuzzer Platform . http ://www.immunitysec .com .
(2017). Accessed: 2017-05-13 .

[6] Website. 2017 . Zzuf: multi-purpose fuzzer. http://caca.zoy.org/wiki/zzuf.
(2017).Accessed: 201 7-05-13.

[7] Patrice Godefroid, Michael Y. Levin, and David Mo lnar. 2012 . SAGE :
Whitebox Fuzzing for Security Testing . Queue 10, 1, Articl e 20 (Jan.
2012), 8 pages.

[8] Maria Christaki s, Peter MOiler, and Valentin Wustholz. 2016. Guiding
Dyn amic Symbolic Execution Tow ard Unverified Program Execut ions .
In Proceedin gs of the 38th Intern ational Conference on Software
Engineering (ICSE ' 16). 144 155.

[9] An drew Henderson, Lok Kwon g Yan , Xunchao Hu, Aravind Prakash,
Heng Yin , Stephen Mc Camant, undefined, undefi ned , undefined, and
undefined . 2017 . DECAF: A Platform-Neutral Whole -System Dynamic
Binary Analysis Platform . IEEE Tran sacti ons on Software Engineering
43,2 (2017), 164 184.
Sanjay Rawat , Vive k Jain, Ashish Kum ar, Lucian Coj ocar, Cristiano
Giuffrida, and Herbert Bos. 2017. VUzzer : Application-aware
Ev olutionary Fuzzing . In NDSS' 17. 1 14 .
King JC. Symbolic execution and program testing[C] . Communications
of the ACM . 1976:385 -394.

699

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

