
Hunting for Bugs in Code Coverage Tools via Randomized Differential Testing

Yibiao Yang∗, Yuming Zhou∗, Hao Sun†, Zhendong Su‡§, Zhiqiang Zuo∗, Lei Xu∗, and Baowen Xu∗
∗State Key Lab. for Novel Software Technology, Nanjing University, Nanjing, China

†Unaffiliated
‡Department of Computer Science, ETH Zurich, Switzerland

§Computer Science Department, UC Davis, USA

Abstract—Reliable code coverage tools are critically important
as it is heavily used to facilitate many quality assurance activities,
such as software testing, fuzzing, and debugging. However, little
attention has been devoted to assessing the reliability of code
coverage tools. In this study, we propose a randomized differ-
ential testing approach to hunting for bugs in the most widely
used C code coverage tools. Specifically, by generating random
input programs, our approach seeks for inconsistencies in code
coverage reports produced by different code coverage tools, and
then identifies inconsistencies as potential code coverage bugs. To
effectively report code coverage bugs, we addressed three specific
challenges: (1) How to filter out duplicate test programs as many
of them triggering the same bugs in code coverage tools; (2) how
to automatically reduce large test programs to much smaller
ones that have the same properties; and (3) how to determine
which code coverage tools have bugs? The extensive evaluations
validate the effectiveness of our approach, resulting in 42 and
28 confirmed/fixed bugs for gcov and llvm-cov, respectively. This
case study indicates that code coverage tools are not as reliable
as it might have been envisaged. It not only demonstrates the
effectiveness of our approach, but also highlights the need to
continue improving the reliability of code coverage tools. This
work opens up a new direction in code coverage validation which
calls for more attention in this area.

Index Terms—Code Coverage; Differential Testing; Coverage
Tools; Bug Detection.

I. INTRODUCTION

Code coverage [1] refers to which code in the program

and how many times each code is executed when running

on the particular test cases. The code coverage information

produced by code coverage tools is widely used to facilitate

many quality assurance activities, such as software testing,

fuzzing, and debugging [1]–[15]. For example, researchers

recently introduced an EMI (“Equivalence Modulo Inputs”)

based compiler testing technique [7]. The equivalent programs

are obtained by stochastically pruning the unexecuted code of

a given program according to the code coverage information

given by the code coverage tools (e.g., llvm-cov, gcov). There-

fore, the correctness of “equivalence” relies on the reliability

of code coverage tools.

In spite of the prevalent adoption in practice and extensive

testing of code coverage tools, a variety of defects still remain.

Fig. 1(a) shows a buggy code coverage report produced by

llvm-cov [16], a C code coverage tool of Clang [17]. Note

that all the test cases have been reformatted for presentation

in this study. The coverage report is an annotated version of

source code, where the first and second column list the line

number and the execution frequency, respectively. We can see

that the code at line 5 is marked incorrectly as unexecuted by

1 | |
2 | |
3 | 1 |
4 | 1 |
5 | 0 |
6 | 1 |
7 | 1 |

i n c l u d e <s t d i o . h>
i n t main ()
{

i n t g =0 , v =1;
g = v | | ! v ;
p r i n t f (”%d\n ” , g) ;

}

i n c l u d e <s t d i o . h>
i n t main ()
{

i n t g =0 , v =1;
/ / g = v | | ! v ;
p r i n t f (”%d\n ” , g) ;

}
(a) (b)

Fig. 1. (a) Bug #33465 of llvm-cov and (b) The “equivalent” program
obtained by pruning the unexecuted code (Line #4) of the program in (a)

llvm-cov. Given the program p and its corresponding code

coverage as shown in Fig. 1(a), EMI compiler testing [7]

generates its “equivalent” program p’ as shown in Fig. 1(b)

by removing unexecuted code (statement 5). The program p
and p’ will be compiled by a compiler under testing and

then executed to obtain two different outputs, i.e. 1 and 0,

resulting in a bug reported by the EMI approach. However,

this is obviously not a real compiler bug. The incorrect code

coverage report leads to the false positive in compiler testing.

As the code coverage tools offer the fundamental information

needed during the whole process of software development,

it is essential to validate the correctness of code coverage.

Unfortunately, to our best knowledge, little attention has been

devoted to assessing the reliability of code coverage tools.

This work makes the first attempt in this direction. We

devise a practical randomized differential testing approach

to discovering bugs in code coverage tools. Our approach

firstly leverages programs generated by a random generator to

seek for inconsistencies of code coverage reports produced by

different code coverage tools, and identifies inconsistencies as

potential code coverage bugs. Secondly, due to the existence of

too many inconsistency-triggering test programs reported and

a large portion of irrelevant code within these test programs,

reporting these inconsistency-triggering tests directly is hardly

beneficial to debugging. Before reporting them, the reduction

to those test programs is required [18]. However, it is usually

very costly and thus unrealistic to reduce every and each of

the test programs [18]. We observe that many test programs

trigger the same coverage bugs. Thus, we can filter out many

duplicate test programs. Note that ‘duplicate test programs’ in

this study indicates multiple test programs triggering the same

code coverage bug. Overall, to effectively report coverage

bugs, we need to address the following key challenges:

Challenge 1: Filtering Out Test Programs. To filter out

potential test programs triggering the same code coverage

bugs, the most intuitive way is to calculate similarities between

488

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

1558-1225/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE.2019.00061

programs using the whole text. However, we use Csmith [19]

as the random program generator and two Csmith-generated

programs are not meaningfully comparable as they diverge in

many ways [20]. In addition, calculating similarities between

programs using the whole text is expensive. To tackle this

challenge, only lines of code triggering inconsistencies are

used for computing similarities between programs.
Challenge 2: Reducing Test Programs. Reducing test pro-

grams for code coverage bugs is much more complex than

reducing test programs for compiler bugs as the later one

only requires testing the behavior of the compiled executables

or the exit code of compilers [18]. However, reducing test

programs for code coverage bugs involves processing textual

code coverage reports and identify inconsistencies. After each

iteration of reduction, we need to specify the inconsistency of

interest we would like to preserve. In this study, we design a

set of inconsistency types over coverage reports as the interest.
Challenge 3: Inspecting Coverage Bugs. With the reduced

test program, we need to inspect which code coverage tools

have bugs before reporting bug. In practice, it is usually done

manually [21]. In other words, developers manually inspect the

coverage reports to determine which coverage tools are buggy.

To relieve the burden of manual intervention, we summarize

a number of rules that code coverage reports must follow.

With those rules, we develop a tool to examine part of the

inconsistent coverage reports and determine which tools have

bugs automatically.
We implemented a differential testing prototype called C2V

(“Code Coverage Validation”) for code coverage tools. In

order to evaluate the effectiveness of our approach, we have

applied C2V to gcov and llvm-cov, two widely used C

code coverage tools respectively in the production compilers

GCC [22] and Clang [17]. Our evaluation confirms that C2V
is very effective in finding code coverage bugs: 46 bugs were

found (42 bugs confirmed/fixed) for gcov, while 37 bugs were

found (28 bugs confirmed/fixed) for llvm-cov.
Contributions. We made the following contributions:

• We introduce an effective testing approach to validating the

code coverage tools, and have implemented it as a practical

tool C2V for testing C coverage tools. C2V mainly consists

of a random program generator, a comparer to identify

inconsistencies between coverage reports, a filter to remove

test programs triggering same coverage bugs, a test program

reducer, and an inspector to automatically determine which

coverage tools have bugs for bug reporting.

• We adopted C2V to uncover 46 and 37 bugs for gcov and

llvm-cov both of which are widely used and extensively

tested C code coverage tools, respectively. Specifically, for

gcov, 42 bugs have already been confirmed/fixed; for llvm-

cov, 28 bugs have been confirmed/fixed.

• Our evaluation indicates that code coverage tools are not

as reliable as it might have been envisaged. It opens up a

new research direction to improve the reliability of code

coverage tools which calls for more attention in this area.

Besides, there is a need to examine the influence of those

bugs on other techniques which depend on code coverage.

Organization. The rest of this paper is structured as follows.

Section II introduces the background on code coverage. Sec-

tion III describes our approach for code coverage validation.

Section IV reports the experimental results in detail. Section V

surveys related work. Section VI concludes the paper and

outlines the direction for future work.

II. CODE COVERAGE

In this section, we introduce the preliminary knowledge, the

importance, and the bug categories of code coverage.

A. Preliminaries

Code coverage is a quality assurance metric used to describe

the degree to which the code of a given program is executed

when a particular test suite executes [1]. It is suggested that a

program with a high test coverage will have a lower chance of

containing undetected software bugs compared to a program

with a low test coverage.

The code coverage analysis process is generally divided

into three tasks: code instrumentation, data gathering, and

coverage analysis. Specifically, code instrumentation inserts

additional code instructions or probes to monitor whether the

specific program chunk is executed or not at runtime. The

instrumentation can be done at the source level in a separate

pre-processing phase or at runtime by instrumenting byte code.

Data gathering aims to collect the coverage data produced at

test runtime. Finally, coverage analysis aims to analyze the

collected results and to provide test strategy recommendations

in order to reduce, to feed or to modify the relevant test suite.

Currently, many code coverage tools are available [16],

[23]–[31], which support different languages (e.g., C/C++ and

Java), instrumentation levels (e.g. source code and byte code

level), or coverage criteria. Coverage criteria are the rules or

requirements that a test suite needs to satisfy [32]. In the lit-

erature, many coverage criteria have been proposed, including

statement coverage, branch coverage, path coverage, condition

coverage, decision coverage, and data-flow coverage [33].

These criteria can be used to guide the generation of a test

suite or to evaluate the effectiveness of a test suite [33].

B. Importance of Code Coverage

Code coverage is widely used in, but not limited to, the

following software techniques:

• Coverage-based regression testing. In the context of regres-

sion testing, test case prioritization and test suite augmenta-

tion are the two widely used techniques [2]–[4], [10], [15],

[34]–[36]. The former aims to improve the ability of test

cases to find bugs by scheduling test cases in a specific

order [10], [15], [37]. One common practice is to achieve

a high code coverage as fast as possible [38]. The latter is

to generate new test cases to strengthen the ability of a test

suite to find bugs [6], [14], [36], [39]. In practice, it is often

to generate new test cases to cover the source code affected

by code changes.

• Coverage-based compiler testing. Recent years have seen an

increasing interest in compiler testing which aims to validate

489

1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |

10 |
11 |
12 |
13 |

|
|
|

1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |

i n c l u d e < s t d l i b . h>

i n t main (void)
{

s t a t i c i n t *p ;

p = m a l l o c (s i z e o f (i n t)) ;
i f (p == NULL)

re turn 0 ;

*p = 7 ;
re turn 1 ;

}
Fig. 2. Spurious marking (Bug #37092 of llvm-cov)

1 :
− :
1 :
1 :

:
− :
− :
1 :
− :
1 :
2 :
1 :
− :

1 :
2 :
3 :
4 :
5 :
6 :
7 :
8 :
9 :

10 :
11 :
12 :
13 :

i n t func (i n t i)
{

i f (i > 0)
re turn 1 ;

re turn 0 ;
}

i n t main ()
{

i n t i = 1 , j = 2 ;
func ((i ==0) | | (i&&j , 1)) ;
re turn 0 ;

}
Fig. 3. Wrong frequency (Bug #85163 of gcov)

the correctness of compilers. One of the most attractive

compiler testing techniques is based on the code coverage

of a program’s execution to generate equivalence modulo

inputs by stochastically pruning its unexecuted code [7],

[40], [41]. With the equivalence modulo inputs, we can

differentially test compilers.

• Coverage-based fuzzing. Fuzzing technique is one of the

most effective testing techniques to find vulnerabilities

in software. In practice, coverage-based fuzzing has been

widely used [8], [42]. Based on the code coverage infor-

mation of test cases, it aims to determine which test cases

should be retained for fuzzing. In general, a test case is

retained if a new basic block is covered.

• Coverage-based debugging. Debugging is a common activity

in software development which aims to find the root cause

of a fault. Spectrum-Based Fault Localization (SBFL) is one

of the most extensively studied debugging techniques which

is heavily based on code coverage [5], [43]–[47]. Under a

specific test suite, SBFL leverages the code coverage and

the corresponding failed/passed information to infer which

code is the root cause of a fault.

As can be seen, the above-mentioned software techniques

heavily depend on the code coverage information produced

by code coverage tools. Therefore, it is of great importance

to guarantee the correctness of the code coverage reports.

Otherwise, they might inevitably produce incorrect results or

lead to suboptimal decisions.

C. Categories of Code Coverage Bugs

Code coverage bugs can be categorized into the following

three general classes:

• Spurious Marking. Spurious marking denotes that a program

chunk is unexecuted at runtime but is wrongly marked as

executed by a code coverage tool. Figure 2 gives such an

example. In the main function, the two return-statements

at line 9 and line 12 cannot be executed at the same time.

Thus, one of them must be wrongly marked by llmv-cov.

At runtime, function main returns “1”, indicating that line

9 was wrongly marked. A code coverage tool with spurious

marking bugs will cause non-executed code wrongly marked

as executed. Consequently, for a program under test, a part

of elements are indeed untested and hence may have latent

bugs undetected.

• Missing Marking. Missing marking denotes that a program

chunk is actually executed at runtime but is wrongly marked

as unexecuted by a code coverage tool. The coverage bug as

shown in Figure 1 belongs to this class. A code coverage tool

with missing marking bugs will cause a predefined coverage

goal never achieved, regardless of how much testing time

and resource are allocated.

• Wrong Frequency. Wrong frequency denotes that a program

chunk is executed m times at runtime but is wrongly marked

as executed n times by a code coverage tool {(m �= n) ∧
(m > 0)∧(n > 0)}. Figure 3 shows a gcov coverage report,

in which the first column lists the execution frequency and

the second column lists the line number. As can be seen, the

code at line 11 is wrongly marked as executed twice but it

was actually executed only once. A code coverage tool with

wrong frequency bugs might lead to a suboptimal decision

in many coverage-based software engineering activities.

III. METHODOLOGY

Figure 4 presents our framework for code coverage vali-

dation. In the following, we describe the key steps in this

framework. In particular, we will use gcov and llvm-cov as

the subject code coverage tools to illustrate our approach to

hunting for code coverage bugs if necessary.

A. Generating Test Programs

Our approach starts with a random program generator. The

Generator randomly generates a large program set P . Each

program p ∈ P will be used as a test program for differentially

testing two code coverage tools under examination. In other

words, each program will be fed to the two code coverage

tools to obtain two raw coverage reports.

In our study, test programs refer to a collection of compi-

lable C programs with the corresponding inputs. We choose

Csmith to generate the test programs because of the following

reasons: (1) it supports many C language features and can

avoid generating programs with undefined behaviors [48], thus

outperforming some random C program generators [49], [50];

(2) each generated program is one single file with input self-

contained which does not require extra inputs; and (3) it is

fast enough to generate programs with tens of thousands of

lines within a few seconds.

490

IPS: Inconsistency-triggering Program Set

R-IPS: Reduced IPS

Bug Reports

IPS = IPS + { (p, ic, <ur1, ur2>) }

i <= |P|

program set P
Generator

Parser

Reducer

i = i+1

IPS

Comparer

Inspector

p = P[i]

R-IPS

Yes

duplicate?Yes

No

No

i = 1

coverage tool t1 coverage tool t2

report r1 report r2

unified report ur1 unified report ur2

Filterconsistent? No

Yes

Fig. 4. The framework for code coverage validation

B. Parsing Code Coverage Reports

For each test program p in the generated program set P,

we obtain the raw code coverage reports r1 and r2 emitted

from the coverage tools t1 and t2 respectively. However, the

raw coverage reports cannot be directly compared since they

are presented in different formats. We thus develop a parser

to transform ri into uri in a unified format (1 ≤ i ≤ 2).

Specifically, uri is a sequence of two-tuple, including the

monitored program chunk and the corresponding execution

frequency. Given a program p with N lines of source code,

uri is a sequence of N two-tuples (nj , fj) in ascending order

according to the value of nj , 1 ≤ j ≤ N . Here, nj is the line

number and fj is the corresponding execution frequency. If

line nj is not an instrumentation site for a particular coverage

tool, fj is assigned −1.

In our study, gcov and llvm-cov are selected as the subject

code coverage tools, which are integrated with the mature

production compilers GCC and Clang respectively. In the

following, we give an illustrating example to demonstrate

how the parser works in real world. Figure 5(a) shows the

code coverage report r1 produced by gcov for a program, and

Figure 5(b) shows the code coverage report r2 produced by

llvm-cov for the same program. r1 and r2 are two annotated

versions of the source file. However, there are three differences

between r1 and r2. First, they have different instrumentation

sites. On the one hand, lines 4, 6∼8, 12, 19, and 22 are

treated as the instrumentation sites by llvm-cov but not by

gcov. On the other hand, lines 3 and 18 are treated as an

instrumentation site by gcov but not by llvm-cov. Hence, only

the common instrumentation sites used by gcov and llvm-cov

need to be compared later. Second, gcov and llvm-cov have

different annotation formats for execution frequency. A non-

instrumentation site is noted as hyphen “-” in r1 but is noted

as a null string in r2 (e.g. line 3). Besides, an unexecuted line

is noted as hashes “#####” in r1 (e.g. line 15), while it is

noted as “0” in r2 (e.g. line 9). Third, coverage statistics are

included in r1 but are not available in r2. Figure 5(c) lists the

unified coverage reports produced by our parser for gcov and

llvm-cov respectively. As can be seen, there are 9 common

instrumentation sites between them: lines 5, 7, 9, 10, 11, 13,

14, 15, 20, and 21.

C. Comparing Unified Coverage Reports

After obtaining the unified coverage reports ur1 and ur2, we

use a tool Comparer to determine whether they are consistent.

If not, the corresponding p and associated coverage reports

will be added to a set named IPS (Inconsistency-triggering test

Program Set). When comparing the unified coverage reports,

Comparer only takes into account the execution frequencies

of the common instrumentation sites among the n coverage

tools. During the comparison of ur1 and ur2, the following

types of cases might occur:

• Type A: one line code is marked as executed by t1 but as

unexecuted by t2;

• Type B: one line code is marked as unexecuted by t1 but

as executed by t2;

• Type C: one line code is marked as executed k times by

t1 and as executed l times by t2 while k �= l.

Consequently, the inconsistent unified reports can be di-

vided into seven categories (C001 : Type C; C010 :
Type B; C100 : Type A; C011 : Type B + C; C101 :
Type A+C; C110 : Type A+B; C111 : Type A+B+C). If

the unified coverage reports corresponding to the test program

p are found to have an inconsistency category ic, it will be

handled by the filter.

Considering the two unified coverage reports shown in

Fig. 5, Comparer will compare the execution frequencies of

the common 9 instrumentation sites to determine whether ur1
and ur2 are consistent. As can be seen, there are four incon-

sistent execution frequencies in the unified coverage reports

between gcov and llvm-cov: Type C at line 5, Type C at line

13, Type A at line 9, and Type B at line 15. Consequently, the

inconsistency category of ur1 and ur2 is found to be C111. In

other words, the inconsistency introduced by the test program

p belongs to the C111 category.

491

− :
− :
2 :
− :
6 :
− :
− :
− :
1 :
2 :
1 :
− :
4 :
2 :

:
− :
− :
1 :
− :
1 :
1 :
− :

1 :
2 :
3 :
4 :
5 :
6 :
7 :
8 :
9 :

10 :
11 :
12 :
13 :
14 :
15 :
16 :
17 :
18 :
19 :
20 :
21 :
22 :

i n t g =1;

i n t f (i n t a r g)
{

f o r (i n t i =0 ; i !=1 ;++ i)
{

i n t f [1] ;
i f (0)

break ;
i f (a r g)

break ;
}
f o r (; g ;)

re turn 0 ;
re turn 0 ;

}

i n t main ()
{

f (0) ; f (1) ;
re turn 0 ;

}

(1 , −1) ,
(2 , −1) ,
(3 , 2) ,
(4 , −1) ,
(5 , 6) ,
(6 , −1) ,
(7 , −1) ,
(8 , −1) ,
(9 , 1) ,
(1 0 , 2) ,
(1 1 , 1) ,
(12 , −1) ,
(1 3 , 4) ,
(1 4 , 2) ,
(1 5 , 0) ,
(16 , −1) ,
(17 , −1) ,
(1 8 , 1) ,
(19 , −1) ,
(2 0 , 1) ,
(2 1 , 1) ,
(22 , −1)

1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |

10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |

|
|
|

2 |
3 |
2 |
2 |
2 |
0 |
2 |
1 |
2 |
2 |
2 |
2 |
2 |

|
|

1 |
1 |
1 |
1 |

i n t g =1;

i n t f (i n t a r g)
{

f o r (i n t i =0 ; i !=1 ;++ i)
{

i n t f [1] ;
i f (0)

break ;
i f (a r g)

break ;
}
f o r (; g ;)

re turn 0 ;
re turn 0 ;

}

i n t main ()
{

f (0) ; f (1) ;
re turn 0 ;

}

(1 , −1) ,
(2 , −1) ,
(3 , −1) ,
(4 , 2) ,
(5 , 3) ,
(6 , 3) ,
(7 , 2) ,
(8 , 2) ,
(9 , 0) ,
(1 0 , 2) ,
(1 1 , 1) ,
(1 2 , 2) ,
(1 3 , 2) ,
(1 4 , 2) ,
(1 5 , 2) ,
(1 6 , 2) ,
(17 , −1) ,
(18 , −1) ,
(1 9 , 1) ,
(2 0 , 1) ,
(2 1 , 1) ,
(2 2 , 1)

(a) Raw coverage report by gcov 7.3.0 and unified report ur1 (b) Raw coverage report by llvm-cov 6.0.0 and unified report ur2

Fig. 5. An illustrating example.

D. Filtering out Test Programs

Intuitively, using a test program set P with a larger size has

a higher chance to discover code coverage bugs. Therefore,

in practice, we prefer to generate a very large number of

test programs and further resulting in a large number of

inconsistency-triggering test programs. This will lead to the

following two problems. On the one hand, it may be unrealistic

to inspect all the inconsistency-triggering test programs, as

the reduction is very costly [18] and inspection resources are

often limited. On the other hand, we observe that many test

programs trigger the same code coverage bugs. Therefore, we

can filter out duplicate test programs.

In Fig. 4, we use Filter to determine whether the

inconsistency-triggering test program is “duplicate”, i.e,

triggering the same code coverage bug with other test

programs. To filter out potential “duplicate” test programs,

the most intuitive way is to calculate similarities between

programs using the whole text. However, we use Csmith [19]

as the random program generator and two Csmith-generated

programs are not meaningfully comparable as they diverge in

many ways [20]. In addition, calculating similarities between

programs using the whole text is expensive. To tackle this

challenge, only lines of code triggering inconsistencies are

used for computing similarities between programs. More

specifically, we first transform the inconsistency-triggering

lines of code in each program into a token based string

with variable names insensitive and then use a token

based similarity algorithm to calculate similarities between

programs. We calculate program similarity with variable name

insensitive since the variable names in Csmith-generated

programs have no specific meaning. For example, we assume

“int i = 0; i = 1;” are inconsistency-triggering lines of

code in program p. We first transform these two statements

into “int identifier equal numeric_constant
semi identifier equal numeric_constant

semi” with the help of the clang compiler. After that, we

calculate its similarities with other programs. In this study,

we use Jaccard index similarity as it is the most widely used

token based similarity algorithm [51]. If all the similarity

coefficients between p and each of the programs in IPS are

less than 0.8, a tuple (p, ic, < ur1, ur2 >) will be added

to the set IPS. Otherwise, p will be filtered out.

E. Reducing Test Programs

An inconsistency-triggering test program only indicates that

some of the two code coverage tools are buggy but does not

inform which one contains bugs. Therefore, there is a need

to inspect the inconsistency-triggering test program to obtain

the correct coverage report (as the coverage oracle). After

that, for each code coverage tool, we can easily determine

whether it is buggy by comparing the corresponding coverage

report with the coverage oracle. Since a test program may

have a large code size, it is time-consuming and error-prone

to determine the corresponding coverage oracle. Furthermore,

if a large test program is submitted as a bug report, it is also

difficult for developers to determine the location of bugs in the

code coverage tool(s). To tackle this problem, we use Reducer
to reduce each inconsistency-triggering test program in IPS by

removing the code irrelevant to the inconsistency.

For each inconsistency-triggering test program p in IPS,

Reducer takes the following steps to obtain the reduced test

program. At step 1, the tool C-Reduce [18] is applied to p to

obtain the reduced version p′. if p′ has a smaller size than

p, go to step 2; otherwise, stop the reduction. At step 2,

feed p′ to the n coverage tools, collect the coverage reports,

and determine the inconsistency category. If the inconsistency

category triggered by p′ is the same as the inconsistency

category triggered by p, assign p′ to p. The above process is

repeated until p cannot be further reduced. Consequently, we

reduce IPS to obtain R-IPS, the set of reduced test programs.

492

F. Inspecting Reduced Test Programs

With the reduced test program, we need to inspect which

code coverage tools have bugs before reporting. In practice,

it is usually done manually [21]. In other words, developers

manually inspect the coverage reports to determine which

coverage tools are buggy. To relieve the burden of manual

intervention, we summarize the following rules that code

coverage reports must comply with:

• Identical Coverage: Assuming statements s1 and s2 in the

same block: {s1; s2;}. If s1 is not a jump statement (i.e,

break, goto, return, exit, or abort statement) and

s2 is not a label statement nor a loop (for or while)

statement, s1 and s2 should have identical coverage.

• Unexecuted Coverage: Assuming statements s1 and s2 in

the same block: {s1; s2;}. If s1 is a return, break,

goto, or exit statement and s2 is not a labeled statement,

s2 should be never executed.

• Ordered Coverage: Assuming statements s1 and s2 form:

s1; if (...) {s2; ...}. If s2 is not a labeled state-

ment, the execution time of s1 should be no less than s2.

With the above rules, we develop the tool Inspector to examine

the inconsistent coverage reports and determine which tools

have bugs automatically. There is still some inconsistent cov-

erage reports in R-IPS that can not be inspected automatically

by our tool. We inspect those coverage reports manually. This

process does not require too much human inspection effort, as

the reduced test programs only have a few lines (usually less

than 13 lines in our study).

G. Reporting Test Programs to Developers

For each test program in RS-IPS, this step simply generates

bug reports for the corresponding buggy tool(s). A bug report

mainly consists of the reduced test program and the affected

versions. If a test program triggers multiple bugs, multiple

separate bug reports will be generated.

IV. EVALUATION

In this section, we first present the subject coverage tools

and the testing environment. Then, we describe our experi-

mental results in detail.

A. Subject Code Coverage Tools

In this study, we select gcov and llvm-cov as our subject

code coverage tools. We choose these two code coverage tools

since: (1) they have been widely used in software engineering

community; and (2) they have been integrated with the most

widely-used production compilers, i.e. GCC and Clang. More

specifically, we chose gcov in latest development trunk of GCC

and llvm-cov in the latest LLVM development trunk.

For gcov, the command flags we used to compile a given

source file, e.g., t.c, and produce the corresponding coverage

report is as follows:

gcc -O0 --coverage t.c; ./a.out; gcov t.c

The gcov-generated coverage report is stored in a file named

t.c.gcov. For llvm-cov, we use the following command:

clang -fprofile-instr-generate -fcoverage-mapping

-O0 t.c; ./a.out; llvm-profdata merge

default.profraw -o t.profdata; llvm-cov show

-instr-profile=t.profdata ./a.out t.c > t.c.lcov

The llvm-cov-generated coverage report is stored in a file

named t.c.lcov. Then these two produced coverage

reports will be parsed into unified format and compared to

detect inconsistency. It is worth noting that we are using -O0
option to turn off compiler optimizations. It make sense to

compare the coverage reports produced in this way.

B. Testing Environment Setup

Our evaluation was conducted on a Linux server with

Intel(R) Xeon(R) CPU@2.00GHz (60 cores) and 32GB RAM.

The server is running on Ubuntu 17.10 (x86 64). We spent

non-continuous four months, of which over one month we

devoted to developing various tools. The rest of time was

spent in testing the two code coverage tools, filtering out test

programs, reducing test programs, and inspect test programs.

Initially, we only used Csmith-generated programs as the test

programs. Later, we made use of the programs selected from

GCC’s and Clang’s test-suites as our test programs since they

may cover many C semantics that Csmith does not cover. This

is further confirmed in Section IV-C as a number of bugs are

detected by programs inside test-suites.

C. Experimental Results

Inconsistent Coverage Reports. Table I shows the statis-

tics of inconsistency-triggering test programs over Csmith-

generated programs, GCC’s test-suite, and Clang’s test-suite.

Column 2 shows the total number of test programs and

Column 3 shows the number of test programs which run out

of time (10 seconds in our experiment). We used 1 million

Csmith-generated programs and collected 2, 756 and 106 C

compilable programs respectively from GCC’s and Clang’s

test-suites. Note that there are more than tens of thousands

of test programs in GCC and Clang’s test-suites. Only those

C files that can be compiled independently are considered

here. Among them, 182, 927 programs executed more than

10 seconds and hence were excluded for further analysis. The

remaining test programs were fed to C2V. Column 4 is in

the form of ‘a / b’, where ‘a’ refers to the total number

of test programs which can lead to inconsistencies and ‘b’

refers to the percentage of ‘a’ over the number of all the

test programs C2V analyzed (i.e. Column 2 − Column 3).

We found 261, 347 programs leading to inconsistent coverage

reports (261, 065, 262, and 20 respectively from Csmith-

generated programs, GCC’s test-suite, and Clang’s test-suite).

About 31.95% Csmith-generated programs caused inconsistent

coverage reports, much higher than those from GCC’s test-

suite and Clang’s test-suite. Columns 5 to 11 display the

distributions of inconsistency-triggering test programs over 7

different categories. In the third rows of these columns, the

number in parentheses indicates the number of test programs

after filtering potential test programs that trigger the same code

coverage bugs. Most of inconsistent reports fell into the C010
category, indicating that the majority of inconsistencies belong

493

TABLE I
STATISTICS OF INCONSISTENCY-TRIGGERING TEST PROGRAMS.

#Test Programs #Time out
Inconsistency-triggering Test Programs(After filtering)

#Num(After filtering) / %P C001 C010 C100 C011 C101 C110 C111

Csmith-generated 1,000,000 182,927 261,065 (758) / 31.95% 3,331 (119) 238,554 (251) 1,625 (36) 4,547 (115) 87 (33) 12,470 (151) 451 (53)
GCC’s test-suite 2,756 15 262 / 9.56% 81 124 15 30 8 1 3
Clang’s test-suite 106 15 20 / 21.98% 9 5 4 1 0 1 0

TABLE II
STATISTICS OF LINES OF CODE FOR THE ORIGINAL AND REDUCED

VERSION OF CSMITH-GENERATED TEST PROGRAMS

min mean median max
Original 41 210 167 874
Reduced 2 10 8 27
Relative – 4.76% 4.79% –

TABLE III
INFORMATION OF ALL REPORTED BUGS

gcov llvm-cov Total
Confirmed 42 28 70
Pending 1 5 6
Duplicate 0 4 4
Rejected 3 0 3
Reported 46 37 83

TABLE IV
BUG TYPES OF CONFIRMED BUGS

gcov llvm-cov Total
Spurious Marking 18 16 34
Missing Marking 13 5 18
Wrong Frequency 11 7 18
Total 42 28 70

to the cases where some code is marked as unexecuted by gcov

but as executed by llmv-cov. C101 category has the minimal

number of inconsistent reports, indicating that inconsistencies

of Type A and Type C rarely occur simultaneously. In

addition, we can found that our method is very efficient for

filtering potential “duplicate” test programs.

For those Csmith-generated inconsistency-triggering pro-

grams, our filtering strategy led to 758 test programs for re-

duction and inspection. Table II lists their code size before and

after reduction. We can see that the mean lines of code drops

from 210 to 10, thus helping effectively report code coverage

bugs. For those inconsistency-triggering test programs from

GCC’s and Clang’s test-suites, we intended to inspect all of

them. The reasons are two-fold. First, programs in these test-

suites are usually unique in program structures (unlike the

randomly generated programs produced by Csmith). Second,

the total number is not large (i.e. 262 from GCC’s test-suite

and 20 from Clang’ test-suite). In summary, we analyzed about

1000 inconsistency-triggering test programs.

Bug Count. We filed a total of 83 bug reports for gcov and

llvm-cov during our testing period. They can be found un-

der “yangyibiao@nju.edu.cn” in GCC’s and LLVM’s

Bugzilla databases. Table III shows the details of all the bugs

we have reported so far. As shown in Column 4, till April

16, 2018, we have reported 83 bugs, of which 70 bugs are

confirmed by developers. Of the 70 confirmed bugs, 11 are

resolved as “fixed”, 17 as “won’t fix”, and 2 as “works for me”

in latest version. It is worth noting that “won’t fix” indicates a

confirmed bug but will not be fixed by developers. There are

total 6 bugs are pending for developers’ responses which are

not listed in Table V. Consistent with C. Sun et al’s [21] and

V. Le et al’s [52] studies, due to the bug management process

of LLVM is not organized as that of GCC, if a llvm-cov bug

report has been CCed by Clang developers and there is no

objection in the comments, we label the bug as confirmed. In

addition, as stated by developers, if someone does not close

the reported bug as “invalid”, then the bug is real in LLVM

Bugzilla. Another 4 reported bugs were marked as duplicate
by developers, since similar test programs trigger the same

coverage bug inside gcov or llvm-cov. The remaining 3 reports

were rejected by GCC developers. Two of them is GCC’s

default optimization strategy and the other is with invalid code.

Table V lists all the confirmed bugs in detail, including the

identity, priority, current report status, bug types, the origins of

the bug-triggering test programs (i.e. Csmith-generated, GCC’s

or Clang’s test-suite), and affected versions. Note that ‘New’

indicates confirmed in GCC’s Bugzilla, and ‘Assigned’ refers

to that the confirmed bugs are under the process of fixing.
Bug type. We categorize coverage bugs into three classes as

mentioned in Section II-C: Spurious Marking, Missing Mark-
ing, and Wrong Frequency. Table IV shows the breakdown

of the bug types of all the confirmed bugs. Most of the bugs

are spurious marking bugs, i.e. unexecuted code is wrongly

marked as executed.
Bug importance. As shown in Column 4 of Table V, all

our confirmed bugs have the default priority P3 except 14 of

them are reset to P5 by developers. Besides, 13 of our reported

coverage bugs have been fixed by developers. Note that 3 bugs

are confirmed as ‘Works’ which means that they are fixed in

developers’ version. Thus, we consider these three bugs as

fixed by developers. This together shows that our reported

bugs are important and worth the effort.
Program source. As shown in Column 7 of Table V,

test programs from all the three main sources (i.e. Csmith-

generated, GCC’s test-suite, and Clang’s test-suite) can trigger

coverage bugs. Two programs from Clang’ test-suite trigger

coverage bugs of gcov, and a number of programs from

GCC’s test-suite can also help find coverage bugs for llvm-

cov as well. It is worth noting that test programs from

different sources may induce the same coverage bugs. It indeed

happened in our experiment, and we only reported once.
Affected versions. We only tested gcov and llvm-cov inside

the latest development trunks of GCC and Clang respectively.

When we find a test case that reveals a bug in gcov or llvm-cov,

we also check the corresponding compiler’s stable releases

against the same test case. Column 8 of Table V shows the

494

TABLE V
CONFIRMED BUGS

#ID Prio. Status Type Source Affected Ver.
1 gcov 83434 P4 New Missing Csmith v7,trunk
2 gcov 83465 P3 Won’t fix Missing Csmith v4∼7,trunk
3 gcov 83486 P3 Won’t fix Missing Csmith v4∼7,trunk
4 gcov 83505 P5 New Spurious Csmith v4∼7,trunk
5 gcov 83587 P5 New Missing Csmith v7,trunk
6 gcov 83616 P4 Assigned Missing Csmith v7,trunk
7 gcov 83617 P3 Works Wrong Freq. Csmith v4∼7
8 gcov 83678 P3 Won’t fix Spurious Csmith v4∼7,trunk
9 gcov 83813 P3 Fixed Missing Cmsith trunk

10 gcov 85163 P5 New Wrong Freq. Csmith trunk
11 gcov 85178 P3 Won’t fix Missing Csmith v4∼7,trunk
12 gcov 85179 P4 Assigned Missing Csmith trunk
13 gcov 85188 P3 Assigned Spurious Csmith v4∼7,trunk
14 gcov 85197 P3 Won’t fix Wrong Freq. Csmith v4∼7,trunk
15 gcov 85199 P4 Assigned Missing Csmith v4∼7,trunk
16 gcov 85201 P5 Assigned Wrong Freq. Csmith trunk
17 gcov 85202 P3 Won’t fix Spurious Csmith v4∼7,trunk
18 gcov 85217 P3 Fixed Spurious Csmith v4∼7,trunk
19 gcov 85218 P3 Won’t fix Spurious Csmith v4∼7,trunk
20 gcov 85219 P3 Won’t fix Spurious Csmith v4∼7,trunk
21 gcov 85225 P5 Assigned Wrong Freq. Csmith v4∼7,trunk
22 gcov 85243 P3 Won’t fix Spurious Csmith v4∼7,trunk
23 gcov 85245 P3 Won’t fix Spurious Csmith v4∼7,trunk
24 gcov 85272 P3 Won’t fix Spurious Csmith v4∼7,trunk
25 gcov 85273 P3 Won’t fix Spurious Csmith v4∼7,trunk
26 gcov 85274 P3 Won’t fix Spurious Csmith v4∼7,trunk
27 gcov 85276 P5 New Wrong Freq. Csmith trunk
28 gcov 85294 P3 Won’t fix Spurious Csmith v4∼7,trunk
29 gcov 85297 P3 Won’t fix Spurious Csmith v4∼7,trunk
30 gcov 85299 P3 Won’t fix Spurious Csmith v4∼7,trunk
31 gcov 85332 P3 Fixed Wrong Freq. GCC v7,trunk
32 gcov 85333 P3 Won’t fix Missing GCC v4∼7,trunk
33 gcov 85336 P4 New Wrong Freq. GCC v4∼7,trunk
34 gcov 85337 P5 New Wrong Freq. Clang v7,trunk
35 gcov 85338 P3 Fixed Wrong Freq. Clang v4∼7,trunk
36 gcov 85349 P5 New Spurious GCC v6∼7,trunk
37 gcov 85350 P3 Fixed Spurious GCC v4∼7,trunk
38 gcov 85351 P5 Assigned Missing GCC v4∼7,trunk
39 gcov 85367 P3 Works Wrong Freq. GCC v5∼7,trunk
40 gcov 85370 P3 Fixed Spurious GCC trunk
41 gcov 85372 P3 Fixed Missing GCC trunk
42 gcov 85377 P4 New Missing GCC v4∼7,trunk
43 llvm-cov 33465 P3 Fixed Missing Csmith v3∼5,trunk
44 llvm-cov 35404 P3 Confirmed Spurious Csmith trunk
45 llvm-cov 35426 P3 Fixed Spurious Csmith trunk
46 llvm-cov 35495 P3 Fixed Missing Csmith trunk
47 llvm-cov 35556 P3 Fixed Missing Csmith trunk
48 llvm-cov 37001 P3 Confirmed Spurious Csmith trunk
49 llvm-cov 37003 P3 Confirmed Spurious Csmith trunk
50 llvm-cov 37012 P3 Confirmed Spurious Csmith trunk
51 llvm-cov 37017 P3 Confirmed Spurious Csmith trunk
52 llvm-cov 37043 P3 Confirmed Spurious Csmith trunk
53 llvm-cov 37046 P3 Confirmed Spurious Csmith trunk
54 llvm-cov 37070 P3 Confirmed Missing Clang v3∼5,trunk
55 llvm-cov 37071 P3 Confirmed Spurious Clang trunk
56 llvm-cov 37072 P3 Confirmed Wrong Freq. GCC trunk
57 llvm-cov 37081 P3 Confirmed Missing Clang v3∼5,trunk
58 llvm-cov 37083 P3 Confirmed Wrong Freq. GCC trunk
59 llvm-cov 37084 P3 Confirmed Wrong Freq. GCC trunk
60 llvm-cov 37085 P3 Confirmed Spurious GCC trunk
61 llvm-cov 37090 P3 Confirmed Spurious GCC trunk
62 llvm-cov 37092 P3 Confirmed Spurious GCC trunk
63 llvm-cov 37099 P3 Confirmed Spurious GCC trunk
64 llvm-cov 37102 P3 Confirmed Spurious GCC trunk
65 llvm-cov 37103 P3 Confirmed Wrong Freq. GCC v3∼5,trunk
66 llvm-cov 37105 P3 Confirmed Spurious GCC trunk
67 llvm-cov 37107 P3 Confirmed Wrong Freq. GCC v3∼5,trunk
68 llvm-cov 37124 P3 Confirmed Wrong Freq. GCC trunk
69 llvm-cov 37125 P3 Confirmed Wrong Freq. Clang v3∼5,trunk
70 llvm-cov 37126 P3 Confirmed Spurious GCC v3∼5,trunk

gcov llvm-cov #N Source Code

10 :
10 :

1 :
9 :
9 :
− :

10 :
− :
1 :

11 :
10 :

1 :
− :

10 |
10 |
10 |
10 |

9 |
10 |
10 |

|
1 |

11 |
10 |

1 |
1 |

1
2
3
4
5
6
7
8
9

10
11
12
13

void func (i n t i) {
s w i t c h (i) {

case 1 : break ;
case 2 : ;
d e f a u l t : break ;

}
}

i n t main () {
f o r (i n t i =0 ; i <10;++ i)

func (i) ;
re turn 0 ;

}
Fig. 6. One program triggering multiple bugs

affected various versions of GCC and Clang for each bug.

Note that as for GCC, we select GCC-4.8.0, GCC-5.4.1, GCC-

6.4.0, GCC-7.2.0, and the latest trunk version (GCC-8.0), and

for Clang, we select Clang-3.8, Clang-4.0, Clang-5.0, and the

latest trunk version (Clang-7.0). As can be seen, 42 out of all

the bugs can affect stable releases, and a considerable number

of bugs have been latent in the old stable releases (such as

GCC-4.8.0 and Clang-3.8) for many years.

D. Interesting Bugs Found

One program triggering multiple bugs. In Figure 6, Col-

umn 4 lists a code snippet and Column 3 shows the line

numbers. Column 1 and Column 2 display the coverage results

by gcov and llvm-cov respectively. This code snippet is a

simple switch-statement inside a for-loop from the caller. The

code at line 3 and line 4 actually executes only one time,

however, they are wrongly marked as executed 10 times by

llvm-cov and line 4 is wrongly marked as executed 9 times

by gcov. We have reported this case as Bug #85337 of gcov

and Bug #37124 of llvm-cov. This case is quite simple and

common in real world. Unfortunately, this single case triggers

coverage bugs for both gcov and llvm-cov, indicating that

coverage bugs are subtle and prevalent.

Coverage bugs or compiler bugs? Figure 7 shows the

coverage report for Bug #37082 of Clang. A definition of

strcmp function is first given at line 2, while strcmp is

redefined as the libc function. As a result, the calling of

strcmp at line 6 will invoke the libc function with internal

linkage, instead of the self-defined function (line 2). However,

in our test, GCC outputs “−1” whereas Clang outputs “20” for

this case. That means, GCC invokes the correct libc function

but Clang still invokes the self-defined function at line 2. That

is why line 2 is reported as executed one time by llvm-cov but

as not executed by gcov. As for this case, the root cause of

producing the incorrect coverage report is not the bugs inside

llvm-cov, but the bugs inside Clang instead.

Code formatting problem. Figure 8 shows the coverage

report for Bug #37102 of Clang. Line 8 is marked as executed

twice by gcov, but wrongly marked as executed only once in

llvm-cov. Along the execution, we can see that each of the four

statements at line 8 (i.e. foo(); goto L2; L1: bar())

executes actually only one time before the main function

finishes. However, from the perspective of line coverage, the

495

1 | |
2 | 1 |
3 | 1 |
4 | |
5 | 1 |
6 | 1 |
7 | 1 |
8 | 1 |
9 | 1 |

i n c l u d e <s t d i o . h>
s t a t i c i n t s t r c m p (){ re turn 2 ;}
d e f i n e s t r c m p b u i l t i n s t r c m p
i n t main ()
{

i n t r e t = s t r c m p (” a ” , ” b ”) ;
p r i n t f (”%d\n ” , r e t) ;
re turn 0 ;

}
Fig. 7. Coverage or compiler bug (Bug #37082 of llvm-cov)

1 | |
2 | |
3 | 1 |
4 | 1 |
5 | |
6 | |
7 | 1 |
8 | 1 |
9 | 1 |

10 | 2 |
11 | 2 |
12 | 1 |
13 | 1 |

i n t a = 0 ;

void foo () { a ++; }
void b a r () { a ++; }

i n t main ()
{

foo () ; goto L2 ; L1 : b a r () ;

L2 :
i f (a == 1)

goto L1 ;
}

Fig. 8. Code formatting problem (Bug #37102 of llvm-cov)

code at line 8 executes twice. For the first time, the first two

statements, i.e. foo() and goto L2, get executed and then

the control flow jumps to line 10. After executing the goto-

statement at line 12, the control flow jumps back to line 8.

Then the last two statements, i.e. L1: bar();, get executed.

Note that the coverage result will be correct if we put the four

statements at line 8 into four separate lines.

Non-trivial inspection. Figure 9 follows the same notions

with Figure 6. Lines 18 and 19 are marked as executed by gcov

but as unexecuted by llvm-cov. Human inspection is conducted

to determine whether gcov or llvm-cov produces the incorrect

coverage report. But this process is non-trivial. Intuitively, the

two branches of the if -statement at line 15 should not be

executed simultaneously, implying that the coverage report by

gcov is incorrect. Besides, this code outputs “0” instead of

“1” at runtime, further supporting the implication. However,

it is actually llvm-cov that produces the incorrect report (Bug

#37081 of Clang). Function setjmp and function longjmp
are provided to perform complex flow-of-control in C. Due to

their existence, the execution flows for this code are: (1) the

if -statement at line 11 takes the false branch, (2) then the

if -statement at line 15 also takes the false branch, assigning

variable ret as 1 and calling function foo at line 4, (3)

function longjmp restores the program state when setjmp
at line 15 are called and returns 1, hence taking the true branch

at line 15. As a result, variable ret is assigned as 0. (4) the

main function returns after printing the value of variable ret.

E. Limitations

In this study, we assess the reliability of code coverage

tools via differential testing. This is a first effort towards this

direction. However, our technique has a number of limitations.

First, most of the test programs we used were generated by

Csmith. The Csmith-generated programs only cover a subset

of C semantics, which might cause C2V to miss a number of

code coverage defects. As a complement, we collected 2862 C

gcov llvm-cov #N Source Code

− :
− :
− :
1 :
− :
1 :
− :
− :
− :
− :
1 :

:
− :
− :
1 :
1 :
− :
1 :
1 :
− :
− :
1 :
− :

|
|
|

1 |
|
|

1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

i n c l u d e <s t d i o . h>
i n c l u d e <s e t j m p . h>

i n t foo (jmp buf b) { longjmp (b , 1) ; }

i n t main ()
{

i n t r e t ;
jmp buf buf ;

i f (s e t j m p (buf)) {
foo (buf) ;

}

i f (s e t j m p (buf) ! = 0) {
r e t = 0 ;

} e l s e {
r e t = 1 ;
foo (buf) ;

}

p r i n t f (”%d ” , r e t) ;
}

Fig. 9. Non-trivial inspection (Bug #37081 of Clang)

programs from GCC’s and Clang’s test-suites, and fed them to

C2V, which can mitigate this problem to some extent. Second,

we only take account inconsistency-triggering lines of code for

computing program similarities to filter out test programs that

potentially trigger the same code coverage bugs. In this study,

a large number of inconsistency-triggering test programs are

filtered out which may miss a number of quality test pro-

grams. If we can inspect all Csmith-generated inconsistency-

triggering test programs, it is reasonable to expect that more

code coverage bugs would be found. Third, it is possible

that both code coverage tools may have the same bugs. In

other words, these two coverage tools might produce same

but incorrect code coverage reports for a given program. Our

approach can not identify any inconsistencies from such paired

coverage reports and further miss this kind of bugs. Therefore,

in the future, more research efforts should be paid in this area

to improve the quality of code coverage tools. Forth, different

code coverage tools having different implementations may

make the coverage reports difficult to be compared. To mitigate

this problem, we have taken the following steps: (1) we

reformatted the generated test programs before feeding them

to the coverage tools, which led to formatted and comparable

coverage reports; (2) before comparing coverage reports, we

identified and excluded specific behavioral differences of the

coverage tools; and (3) before reporting bugs, we inspected

inconsistent coverage reports to determine which tools are

buggy. During inspection, false alarms are manually identified.

Therefore, we have taken careful steps to reduce false positives

resulting from the variability among different tools. Besides,

it is also interesting to develop more accurate techniques for

coverage reports comparison in the future.

V. RELATED WORK

This section introduces the related work on randomized

differential testing, coverage-directed differential testing, and

testing via equivalence modulo inputs.

496

A. Randomized Differential Testing

Differential testing is originally introduced by McKee-

man [53] which attempt to detect bugs by checking in-

consistent behaviors across different comparable software or

different software versions. Randomized differential testing

is a widely-used black-box differential testing technique in

which the inputs are randomly generated [19], [54]. Yang et

al. [19] developed Csmith, a randomized test case generation

tool that can support a large subset of C features and avoid

introducing undefined and unspecified behaviors, to find C

compiler bugs. Lidbury et al. [40] developed CLsmith, a tool

built on top of Csmith, to validate OpenCL compilers based

on differential testing and testing via equivalence modulo

inputs (EMI). They presented several strategies for random

generation of OpenCL kernels and an injection mechanism

which allowed EMI testing to be applied to kernel in order to

avoid little or no dynamically-dead code. Their study revealed

a significant number of OpenCL compiler bugs in commercial

implementations. Sun et al. [21] applied randomized differen-

tial testing to find and analyze compiler warning defects across

GCC and LLVM. In less than six months, they successfully

found 52 confirmed/fixed bugs. Different from prior studies,

we apply randomized differential testing to find code coverage

bugs which we believe is an important topic.

B. Coverage-based Differential Testing

A number of recent studies leverage coverage to improve the

effectiveness of differential testing. Chen et al. [55] proposed

a coverage-directed fuzzing approach to detecting inconsis-

tencies between different implementations of Java Virtual

Machine (JVM). They mutated seeding classfiles, executed

mutants on a reference JVM implementation, and used cov-

erage uniqueness as a discipline for accepting representative

mutants. The accepted mutants were then used as the inputs

to differentially test different JVM implementations. Pei et

al. [56] proposed DeepXplore, a whitebox coverage-directed

differential testing for detecting inconsistencies between multi-

ple DNNs. They first introduced neuron coverage as a system-

atic metric for measuring how much of the internal logic of a

DNNs had been tested and then used this information to guide

the testing process. As can be seen, the prerequisite of the

above techniques is to obtain the correct coverage. Our work

provides a general and practical approach to finding coverage

bugs, thus helping improve the quality of code coverage tools.

C. Testing via Equivalence Modulo Inputs

Testing via equivalence modulo inputs is a new testing tech-

nique proposed in recent years. In nature, EMI testing is a kind

of metamorphic testing, which modifies a program to generate

variants with the same outputs as the original program [57],

[58]. Le et al. [7] proposed to generate equivalent versions

of the program by profiling program’s execution and pruning

unexecuted code. Once a program and its equivalent variant are

constructed, both are used as input of the compiler under test,

checking for inconsistencies in their results. So far, this method

has been used to detect 147 confirmed bugs in two open source

C compilers, GCC and LLVM. Based on this idea, Athena

[59] and Hermes [60] are developed subsequently. Athena [59]

generates EMI by randomly inserting code into and removing

statements from dead code regions. Hermes [60] complements

mutation strategies by operating on live code regions, which

overcomes the limitations of mutating dead code regions.

Le et al. [52] first used Csmith to generate single-file test

programs and transformed each single-file test program into

multiple compilation units. Then, they stochastically assigned

each unit an optimization level to thoroughly exercise link-

time-optimizers. They discovered and reported 37 LTO bugs

for GCC and LLVM in 11 months. These techniques heavily

depend on the code coverage information.

VI. CONCLUSION AND FUTURE WORK

We proposed a randomized differential testing approach to

hunting code coverage bugs and implemented a tool named

C2V to test two C code coverage tools, gcov and llvm-cov.

Our evaluations where 42 and 28 bugs confirmed from gcov

and llvm-cov respectively in a short few months provided a

strong evidence that code coverage tools are not as reliable as

they might have been envisaged. Overall, our approach has the

following main advantages: (1) it simplifies the difficult code

coverage validation problem as a simple comparison problem;

(2) the comparison between code coverage reports not only

checks whether a program chunk gets executed or not, but

also the exact execution frequencies. Any discrepancy in these

dimensions would alert a potential bug report, which helps find

subtle but deep semantic bugs in code coverage tools; and (3)

our approach is simple, straightforward, and general. It can

be easily applied to validate different code coverage tools,

under various programming languages and coverage criteria.

In the future, more efforts should be paid on this area and

there is a need to examine the influence of those bugs on

other techniques which depend on code coverage.

ACKNOWLEDGMENT

We thank Yanyan Jiang, Zhaogui Xu, and the anony-

mous reviewers for their constructive comments. We also

thank the GCC and LLVM developers especially Martin

Liška for analyzing and fixing our reported bugs. This

work is supported by the National Natural Science Founda-

tion of China (61702256, 61772259, 61432001, 61832009,

61772263, 61802168, 61872177), the Natural Science Foun-

dation of Jiangsu Province (BK20170652), the China Post-

doctoral Science Foundation (2018T110481), the Fundamental

Research Funds for the Central Universities (020214380032,

02021430047), the National Key R&D Program of China

(2018YFB1003901). Zhendong Su was supported by United

States NSF Grants 1528133 and 1618158, and Google and

Mozilla Faculty Research awards. Yuming Zhou (zhouyum-

ing@nju.edu.cn) and Baowen Xu (bwxu@nju.edu.cn) are the

corresponding authors.

497

REFERENCES

[1] J. C. Miller and C. J. Maloney, “Systematic mistake analysis of digital
computer programs,” Commun. ACM, vol. 6, no. 2, pp. 58–63, Feb.
1963.

[2] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, and
D. Marinov, “Guidelines for coverage-based comparisons of non-
adequate test suites,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 4,
pp. 22:1–22:33, Sep. 2015.

[3] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does
automated white-box test generation really help software testers?” in
Proceedings of the 2013 International Symposium on Software Testing
and Analysis, ser. ISSTA 2013. New York, NY, USA: ACM, 2013, pp.
291–301.

[4] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Softw. Test. Verif. Reliab., vol. 22, no. 2, pp.
67–120, Mar. 2012.

[5] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’05. New York, NY, USA: ACM, 2005, pp. 273–282.

[6] G. Fraser and A. Arcuri, “A large-scale evaluation of automated unit test
generation using evosuite,” ACM Trans. Softw. Eng. Methodol., vol. 24,
no. 2, pp. 8:1–8:42, Dec. 2014.

[7] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: ACM, 2014, pp. 216–226.

[8] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: ACM, 2016, pp. 1032–1043.

[9] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, and T. Xie, “To be optimal
or not in test-case prioritization,” IEEE Trans. Softw. Eng., vol. 42, no. 5,
pp. 490–505, May 2016.

[10] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei, “A unified
test case prioritization approach,” ACM Trans. Softw. Eng. Methodol.,
vol. 24, no. 2, pp. 10:1–10:31, Dec. 2014.

[11] Z. Zuo, S.-C. Khoo, and C. Sun, “Efficient predicated bug signature
mining via hierarchical instrumentation,” in Proceedings of the 2014
International Symposium on Software Testing and Analysis, ser. ISSTA
2014. New York, NY, USA: ACM, 2014, pp. 215–224.

[12] Z. Zuo, L. Fang, S.-C. Khoo, G. Xu, and S. Lu, “Low-overhead and
fully automated statistical debugging with abstraction refinement,” in
Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA 2016. New York, NY, USA: ACM, 2016, pp. 881–896.

[13] Z. Zuo and S.-C. Khoo, “Mining dataflow sensitive specifications,” in
Formal Methods and Software Engineering, L. Groves and J. Sun, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 36–52.

[14] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to less
traveled paths,” in Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages &
Applications, ser. OOPSLA ’13. New York, NY, USA: ACM, 2013,
pp. 19–32.

[15] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Trans. Softw. Eng., vol. 33, no. 4, pp. 225–
237, Apr. 2007.

[16] “llvm-cov,” https://llvm.org/docs/CommandGuide/llvm-cov.html.
[17] “Clang,” http://clang.llvm.org/.
[18] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang,

“Test-case reduction for c compiler bugs,” in Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’12. New York, NY, USA: ACM, 2012,
pp. 335–346.

[19] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in c compilers,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’11. New York, NY, USA: ACM, 2011, pp. 283–294.

[20] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and
J. Regehr, “Taming compiler fuzzers,” in Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’13. New York, NY, USA: ACM, 2013,
pp. 197–208.

[21] C. Sun, V. Le, and Z. Su, “Finding and analyzing compiler warning de-
fects,” in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16. New York, NY, USA: ACM, 2016, pp.
203–213.

[22] “Gcc,” https://gcc.gnu.org/.

[23] “Gcov,” https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[24] “Testwell ctc++,” http://www.testwell.fi/ctcdesc.html.

[25] “Covtool,” http://covtool.sourceforge.net/.

[26] “Jcov,” https://wiki.openjdk.java.net/display/CodeTools/jcov.

[27] “Jacoco,” https://www.jacoco.org/.

[28] “Emma: a free java code coverage tool,” http://emma.sourceforge.net/.

[29] “Atlassian clover,” https://www.atlassian.com/software/clover.

[30] “Codecover,” http://codecover.org/.

[31] “Openclover,” http://openclover.org/.

[32] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

[33] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The art of
software testing. Wiley Online Library, 2004, vol. 2.

[34] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization for
modified condition/decision coverage,” IEEE Trans. Softw. Eng., vol. 29,
no. 3, pp. 195–209, Mar. 2003.

[35] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “Regression muta-
tion testing,” in Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ser. ISSTA 2012. New York, NY, USA:
ACM, 2012, pp. 331–341.

[36] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Directed test generation
for effective fault localization,” in Proceedings of the 19th international
symposium on Software testing and analysis. ACM, 2010, pp. 49–60.

[37] G. Rothermel, R. J. Untch, and C. Chu, “Prioritizing test cases for
regression testing,” IEEE Trans. Softw. Eng., vol. 27, no. 10, pp. 929–
948, Oct. 2001.

[38] W. E. Wong, J. R. Horgan, S. London, and H. A. Bellcore, “A
study of effective regression testing in practice,” in Proceedings of the
Eighth International Symposium on Software Reliability Engineering,
ser. ISSRE ’97. Washington, DC, USA: IEEE Computer Society, 1997,
pp. 264–274.

[39] K. Jamrozik, G. Fraser, N. Tillmann, and J. De Halleux, “Augmented
dynamic symbolic execution,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2012. New York, NY, USA: ACM, 2012, pp. 254–257.

[40] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core com-
piler fuzzing,” in Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’15.
New York, NY, USA: ACM, 2015, pp. 65–76.

[41] Q. Zhang, C. Sun, and Z. Su, “Skeletal program enumeration for rigorous
compiler testing,” in Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI 2017.
New York, NY, USA: ACM, 2017, pp. 347–361.

[42] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, ser. ASE 2018. New York, NY, USA: ACM, 2018, pp. 475–485.

[43] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis of
the risk evaluation formulas for spectrum-based fault localization,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 4, pp. 31:1–31:40, Oct. 2013.

[44] T. Wang and A. Roychoudhury, “Automated path generation for software
fault localization,” in Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’05. New
York, NY, USA: ACM, 2005, pp. 347–351.

[45] S. Yoo, M. Harman, and D. Clark, “Fault localization prioritization:
Comparing information-theoretic and coverage-based approaches,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 3, pp. 19:1–19:29, Jul. 2013.

[46] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold, “Lightweight
fault-localization using multiple coverage types,” in Proceedings of the
31st International Conference on Software Engineering, ser. ICSE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 56–66.

[47] J. Xuan and M. Monperrus, “Test case purification for improving fault
localization,” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: ACM, 2014, pp. 52–63.

[48] X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama, “To-
wards optimization-safe systems: Analyzing the impact of undefined
behavior,” in Proceedings of the Twenty-Fourth ACM Symposium on

498

Operating Systems Principles, ser. SOSP ’13. New York, NY, USA:
ACM, 2013, pp. 260–275.

[49] E. Eide and J. Regehr, “Volatiles are miscompiled, and what to do
about it,” in Proceedings of the 8th ACM International Conference on
Embedded Software, ser. EMSOFT ’08. New York, NY, USA: ACM,
2008, pp. 255–264.

[50] A. Balestrat, “Ccg: A random c code generator,” https://github.com/
Merkil/ccg, 2015.

[51] P.-N. Tan, M. Steinbach, and V. Kumar, “Association analysis: basic
concepts and algorithms,” Introduction to Data mining, pp. 327–414,
2005.

[52] V. Le, C. Sun, and Z. Su, “Randomized stress-testing of link-time
optimizers,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ser. ISSTA 2015. New York, NY, USA:
ACM, 2015, pp. 327–337.

[53] W. M. McKeeman, “Differential testing for software,” DIGITAL TECH-
NICAL JOURNAL, vol. 10, no. 1, pp. 100–107, 1998.

[54] A. Groce, G. Holzmann, and R. Joshi, “Randomized differential testing
as a prelude to formal verification,” in Proceedings of the 29th Interna-
tional Conference on Software Engineering, ser. ICSE ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 621–631.

[55] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of jvm implementations,” in Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and

Implementation, ser. PLDI ’16. New York, NY, USA: ACM, 2016,
pp. 85–99.

[56] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles, ser. SOSP ’17. New York, NY, USA:
ACM, 2017, pp. 1–18.

[57] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse, and Z. Q.
Zhou, “Metamorphic testing: A review of challenges and opportunities,”
ACM Comput. Surv., vol. 51, no. 1, pp. 4:1–4:27, Jan. 2018.

[58] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Corts, “A survey on
metamorphic testing,” IEEE Trans. Softw. Eng., vol. 42, no. 9, pp. 805–
824, Sept 2016.

[59] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” in Proceedings of the 2015 ACM SIG-
PLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, ser. OOPSLA 2015. New York,
NY, USA: ACM, 2015, pp. 386–399.

[60] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code mutation,”
in Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA 2016. New York, NY, USA: ACM, 2016, pp. 849–863.

499

