
DifFuzz: Differential Fuzzing for
Side-Channel Analysis

Shirin Nilizadeh Yannic Noller Corina S. Pasareanu

!1yannic.noller@hu-berlin.de International Conference on Software Engineering (ICSE) 2019

Side-Channel Analysis
Problem Solution Example Summary

yannic.noller@hu-berlin.de !2

Evaluation

International Conference on Software Engineering (ICSE) 2019

• leakage of secret information
• software side-channels
• observables:

• execution time,

• memory consumption,

• response size,

• …

Background

yannic.noller@hu-berlin.de !3International Conference on Software Engineering (ICSE) 2019

Example: Side-Channel
Vulnerability

Problem Solution Example SummaryEvaluationBackground

0 boolean pwcheck_unsafe (byte[] pub, byte[] sec) {

1 if (pub.length != sec.length) {

2 return false;

3 }

4 for (int i = 0; i < pub.length; i++) {

5 if (pub[i] != sec[i]) {

6 return false;

7 }

8 }

9 return true;

10 }

Unsafe Password Checking

yannic.noller@hu-berlin.de !4International Conference on Software Engineering (ICSE) 2019

Example: Side-Channel
Vulnerability

Problem Solution Example SummaryEvaluationBackground

0 boolean pwcheck_unsafe (byte[] pub, byte[] sec) {

1 if (pub.length != sec.length) {

2 return false;

3 }

4 for (int i = 0; i < pub.length; i++) {

5 if (pub[i] != sec[i]) {

6 return false;

7 }

8 }

9 return true;

10 }

Unsafe Password Checking

yannic.noller@hu-berlin.de !5International Conference on Software Engineering (ICSE) 2019

Example: Side-Channel
Vulnerability

Problem Solution Example SummaryEvaluationBackground

0 boolean pwcheck_unsafe (byte[] pub, byte[] sec) {

1 if (pub.length != sec.length) {

2 return false;

3 }

4 for (int i = 0; i < pub.length; i++) {

5 if (pub[i] != sec[i]) {

6 return false;

7 }

8 }

9 return true;

10 }

Unsafe Password Checking

Side-Channel Analysis

yannic.noller@hu-berlin.de !6International Conference on Software Engineering (ICSE) 2019

• secure if the secret data can not be inferred by an
attacker through their observations of the system 
(aka non-interference)

• can be solved by self-composition [Barthe2004]

Problem Solution Example SummaryEvaluationBackground

Non-Interference by Self-Composition

yannic.noller@hu-berlin.de !7International Conference on Software Engineering (ICSE) 2019

Problem Solution Example SummaryEvaluationBackground

public value

two secret valuescost observation

program execution

∀pub, sec1, sec2 : c(P[pub, sec1]) = c(P[pub, sec2])

c(P[pub, sec2])c(P[pub, sec1])

c(P[pub, sec1]) = c(P[pub, sec2])

P[pub, sec1]

[Barthe2004]

c(P[pub, sec1])

secret value

equivalence

Side-Channel Analysis

yannic.noller@hu-berlin.de !8International Conference on Software Engineering (ICSE) 2019

• secure if the secret data can not be inferred by an
attacker through their observations of the system 
(aka non-interference)

• can be solved by self-composition

• "-bounded non-interference

∀pub, sec1, sec2 : c(P[pub, sec1]) = c(P[pub, sec2])

∀pub, sec1, sec2 : |c(P[pub, sec1]) − c(P[pub, sec2]) | < ϵ

[Barthe2004]

[Chen2017]

Problem Solution Example SummaryEvaluationBackground

yannic.noller@hu-berlin.de !9

initial seed
inputs queue mutate 

repeatedly

mutated inputs that 
showed (new) 

interesting behavior

Differential Fuzzing for
Side-Channel Analysis

assess input 
for program P

1
2 3 4

5

Problem Solution Example SummaryEvaluationBackground

International Conference on Software Engineering (ICSE) 2019

Input Assessment to find
Side-Channel vulnerabilities

!10yannic.noller@hu-berlin.de

initial seed files queue mutate 
repeatedly

mutated files that 
showed (new) 

interesting behavior assess input 
for program P

1

4

2

5

3

parse input

P[pub, sec1] P[pub, sec2]

calculate cost 
difference

check: new cost 
highscore or

increased 
coverage

pub, sec1 pub, sec2

cov2, cost2cov1, cost1

Problem Solution Example SummaryEvaluationBackground

International Conference on Software Engineering (ICSE) 2019

costdiff =
 |cost1 - cost2|

Side-Channel Analysis

yannic.noller@hu-berlin.de !11International Conference on Software Engineering (ICSE) 2019

• can be solved by self-composition

• "-bounded non-interference

• differential fuzzing for side-channel analysis:

∀pub, sec1, sec2 : c(P[pub, sec1]) = c(P[pub, sec2])

∀pub, sec1, sec2 : |c(P[pub, sec1]) − c(P[pub, sec2]) | < ϵ

[Barthe2004]

[Chen2017]

Problem Solution Example SummaryEvaluationBackground

maximize:
pub,sec1,sec2

δ = |c(P[pub, sec1]) − c(P[pub, sec2]) |

costdiff =
 |cost1 - cost2|

!12yannic.noller@hu-berlin.de

initial seed files queue mutate 
repeatedly

mutated files that 
showed (new) 

interesting behavior assess input 
for program P

1

4

2

5

3

parse input

P[pub, sec1] P[pub, sec2]

calculate cost 
difference

check: new cost 
highscore or

increased 
coverage

pub, sec1 pub, sec2

cov2, cost2cov1, cost1

Problem Solution Example SummaryEvaluationBackground

International Conference on Software Engineering (ICSE) 2019

maximize:
pub,sec1,sec2

δ = |c(P[pu b, sec1]) − c(P[pu b, sec2]) |

Differential Fuzzing for
Side-Channel Analysis

fuzzing driver

!13yannic.noller@hu-berlin.de

Problem Solution Example SummaryEvaluationBackground

International Conference on Software Engineering (ICSE) 2019

Differential Fuzzing Driver

1: pub, sec1, sec2 ⃪ parse(input, constraints)
2: cost1 ⃪ measure(P(pub,sec1))
3: cost2 ⃪ measure(P(pub,sec2))
4: costDiff ⃪ |cost1 - cost2|
5: setUserDefinedCost(costDiff)

!14yannic.noller@hu-berlin.de

Problem Solution Example SummaryEvaluationBackground

International Conference on Software Engineering (ICSE) 2019

0 boolean pwcheck_unsafe (byte[] pub, byte[] sec) {

1 if (pub.length != sec.length) {

2 return false;

3 }

4 for (int i = 0; i < pub.length; i++) {

5 if (pub[i] != sec[i]) {

6 return false;

7 }

8 }

9 return true;

10 }

Example

Unsafe Password Checking

timing side-channel: measured by number of instructions executed

!15yannic.noller@hu-berlin.de

Problem Solution Example SummaryEvaluationBackground

International Conference on Software Engineering (ICSE) 2019

Example Results
Initial Input:
secret1 = [72, 101, 108, 108, 111, 32, 67]
secret2 = [97, 114, 110, 101, 103, 105, 101]
public1 = [32, 77, 101, 108, 108, 111, 110]

secret1 = [72, 77, -16, -66, -48, -48, -48, -48, -28, 0, 100, 0, 0, 0, 0, -48]
secret2 = [-48, -4, -48, 7, 17, 0, -24, -48, -48, 16, -48, -3, 108, 72, 32, 0]
public1 = [-48, -4, -48, 7, 17, 0, -24, -48, -48, 16, -48, -3, 108, 72, 32, 0]

costDiff > 0 after ~ 5 sec

Input with highscore costDiff = 47 after ~ 69 sec
(maximum length = 16 bytes):

costDiff = 0

Experiments

!16yannic.noller@hu-berlin.de International Conference on Software Engineering (ICSE) 2019

Problem Solution Example SummaryEvaluationBackground

• build on top of AFL

• Blazer
• Themis
• and more projects from GitHub  

and STAC

• runtime: 30min

[Antonopoulos2017]
[Chen2017]

[AFL, Kersten2017, Noller2018]

[DARPA2018]

Benchmark Subject Version Average δ Std. Error Maximum
MicroBench Array Safe 1.00 0.00 1

Unsafe 192.00 2.68 195

LoopAndbranch Safe 1,468,212,312.40 719,375,479.77 4,278,268,7

Unsafe 4,283,404,852.40
 4,450,278.15 4,294,838,7
Sanity   Safe 0.00 0.00 0

Unsafe 4,213,237,198.00
 60,857,888.00 4,290,510,8
Straightline Safe 0.00 0.00 0

Unsafe 8.00 0.00 8
unixlogin Safe 3.00 0.00 3

Unsafe 2,880,000,008.00 286,216,701.00 3,200,000,0
STAC modPow1 Safe 0.00 0.00 0

Unsafe 2,576.00 168.21 3,068
modPow2 Safe 0.00 0.00 0

Unsafe 1,471.00
 891.00 5,206
passwordEq Safe 0.00 0.00 0

Unsafe 86.40 20.31 127
Literature k96 Safe 0.00 0.00 0

Unsafe 338.00 185.13 3,087,339
gpt14 Safe 163.20 79.84 517

Unsafe 6,673,760.00 2,211,811.00 12,965,890

login Safe 0.00 0.00 0

Unsafe 62.00 0.00 62
!17yannic.noller@hu-berlin.de International Conference on Software Engineering (ICSE) 2019

Problem Solution Example SummaryEvaluationBackground

Blazer
RQ1: Effectiveness

Benchmark Version DifFuzz Themis
Average δ Std. Error Maximum ϵ = 64 ϵ = 0

Spring-Security Safe 1.00 0.00 1 ✓ ✓
Unsafe 149.00 0.00 149 ✓ ✓

JDK-MsgDigest
 Safe 1.00 0.00 1 ✓ ✓
Unsafe 10,215.00 6,120.00 34,479 ✓ ✓

Picketbox Safe 1.00 0.00 1 ✓ X
Unsafe 4,954.00 1,295 8,794 ✓ ✓

Tomcat Safe 12.20 1.61 14 ✓ X
Unsafe 33,20 3.40 37 ✓ ✓

Jetty Safe 5454.00 1330.88 8898 ✓ ✓
Unsafe 10786.60 2807.51
 16020 ✓ ✓

oriented Safe 6.00 0.00 6 ✓ X
Unsafe 6,604.00 3,681 19,300 ✓ ✓

pac4j Safe 10.00 0.00 10 ✓ X
Unsafe 11.00 0.00 11 ✓ ✓
Unsafe* 39.00 0.00 39 - -

boot-auth
 Safe 5.00 0.00 5 ✓ X
Unsafe 101.00 0.00 101 ✓ ✓

tourPlanner Safe 0.00 0.00 0 ✓ ✓
Unsafe 522.40 18.60 576 ✓ ✓

DynaTable Unsafe 95.80 0.44
 97 ✓ ✓
Advanced_table Unsafe 92.40 1.54 97 ✓ ✓
OpenMRS Unsafe 206.00 0.00 206 ✓ ✓
OACC Unsafe 47.00 0.00 47 ✓ ✓

!18yannic.noller@hu-berlin.de International Conference on Software Engineering (ICSE) 2019

Problem Solution Example SummaryEvaluationBackground

RQ1: Effectiveness

Benchmark Subject Version Average δ Std. Error Maximum
STAC CRIME Unsafe 295.40 117.05 782

ibasys Unsafe 191.00 20.88 262
Zero-day
Vulnerabilities

Apache ftpserver Clear Unsafe 47.00 0.00 1
Apache ftpserver MD5 Unsafe 151.00 0.00 151
Apache ftpserver SaltedPW Unsafe 178.80 5.13 193
Apache ftpserver StringUtils Unsafe 53.00 0.00 53
AuthmeReloaded Unsafe 383.00 0.00 383

!19yannic.noller@hu-berlin.de International Conference on Software Engineering (ICSE) 2019

Problem Solution Example SummaryEvaluationBackground

RQ1: Effectiveness

Benchmark Subject Version Time (sec)
DifFuzz δ > 0 Blazer Themis

MicroBench Array Safe 7.40 (+/- 1.21) 1.60 0.28
Unsafe 7.40 (+/- 0.93) 0.16 0.23

LoopAndbranch Safe 18.60 (+/- 6.40) 0.23 0.33
Unsafe 10.60 (+/- 2.62) 0.65 0.16

Sanity   Safe - 0.63 0.41
Unsafe 163 (+/- 40.63) 0.30 0.17

Straightline Safe - 0.21 0.49
Unsafe 14.60 (+/- 6.53) 22.20 5.30

unixlogin Safe 510.00 (+/- 91.18) 0.86 -
Unsafe 464.20 (+/- 64.61) 0.77 -

STAC modPow1 Safe - 1.47 0.61
Unsafe 4.80 (+/- 1.11) 218.54 14.16

modPow2 Safe - 1.62 0.75
Unsafe 23.00 (+/- 3.48) 7813.68 141.36

passwordEq Safe - 2.70 1.10
Unsafe 8.60 (+/-2.11) 1.30 0.39

Literature k96 Safe -
 0.70 0.61
Unsafe 3.40 (+/- 0.98) 1.29 0.54

gpt14 Safe 4.20 (+/- 0.80) 1.43 0.46
Unsafe 4.40 (+/- 1.03) 219.30 1.25

login Safe - 1.77 0.54
Unsafe 10.00 (+/- 2.92) 1.79 0.70

!20yannic.noller@hu-berlin.de International Conference on Software Engineering (ICSE) 2019

Problem Solution Example SummaryEvaluationBackground

RQ2: Analysis Time

Benchmark Version Time (sec)
DifFuzz δ > 0 Themis

Spring-Security Safe 9.00 (+/- 1.26)
 1.70
Unsafe 8.80 (+/- 1.16) 1.09

JDK-MsgDigest
 Safe 15.80 (+/- 3.93) 1.27
Unsafe 7.40 (+/- 1.29) 1.33

Picketbox Safe 29.20 (+/- 5.00) 1.79
Unsafe 16.80 (+/- 2.58)
 1.79

Tomcat Safe 13.80 (+/- 1.29) 9.93
Unsafe 128.60 (+/- 87.20) 8.64

Jetty Safe 9.40 (+/- 1.86) 2.50
Unsafe 7.00 (+/- 1.05)
 2.07

oriented Safe 3.20 (+/- 0.97) 37.99
Unsafe 3.00 (+/- 0.84) 38.09

pac4j Safe 5.00 (+/- 1.22) 3.97
Unsafe 8.00 (+/- 2.76) 1.85
Unsafe* 10.80 (+/- 5.80) -

boot-auth
 Safe 5.20 (+/- 0.20) 9.12
Unsafe 5.20 (+/- 0.20) 8.31

tourPlanner Safe - 22.22
Unsafe 19.20 (+/- 0.80) 22.01

DynaTable Unsafe 3.60 (+/- 1.21) 1.165
Advanced_table Unsafe 11.20 (+/- 1.62) 2.01
OpenMRS Unsafe 11.60 (+/- 3.22) 9.71
OACC Unsafe 7.00 (+/- 1.30) 1.83

!21yannic.noller@hu-berlin.de International Conference on Software Engineering (ICSE) 2019

Problem Solution Example SummaryEvaluationBackground

RQ2: Analysis Time

!22yannic.noller@hu-berlin.de International Conference on Software Engineering (ICSE) 2019

Problem Solution Example SummaryEvaluationBackground

0 100 200 300
0

10

20

time (seconds)

co
st

(#
in

st
ru

ct
io

ns
)

orientdb

0 100 200 300
0

50

100

150

200

time (seconds)

co
st

(#
in

st
ru

ct
io

ns
)

IBASys

0 100 200 300
0

1

2

3

4

time (seconds)

co
st

(#
in

st
ru

ct
io

ns
)

LoopAndbranch

Fig. 2: Averaged cost over time for orientdb, IBASys, and LoopAndbranch (unsafe versions).

them. Only for three experiments we observed case (c). As an
illustration the plots in Figure 2 show the average maximum
cost development within the first 5 minutes for the three cases.

Orientdb (case (a)) checks passwords by comparing be-
tween user-given and stored passwords. The longer the match-
ing prefix is, the higher will be the processing cost. Exact
value matching is in general very difficult for fuzzing because
it is hard to randomly generate the exact (unlikely) values that
match the stored password. While DIFFUZZ finds quickly a
small prefix, which reveals a cost difference greater than zero,
it needs some time to reach a higher value.

For IBASys (case (b)), DIFFUZZ finds the maximum average
value already after a few seconds, and thus leads very fast to
the shown plateau value. The reason could be that the initial
seed file guides the fuzzer already into a costly path or that
the costly paths have a high probability, and hence, the fuzzer
can easily catch them.

For LoopAndbranch (case (c)) DIFFUZZ reaches some parts
of the code only with specific values for the secret and this is
difficult to achieve with fuzzing. We believe that the limitations
illustrated with cases (a) and (c) can be mitigated by adding
further guidance to the fuzzer and by, e.g., combining fuzzing
and symbolic execution.

Vulnerability vs Exploit: DIFFUZZ can identify side-
channel vulnerabilities but can not assess whether they are
exploitable by a real attack. The synthesis of a real attack,
which would be necessary to assess the severity of the found
vulnerability, is out of scope for this work. Nevertheless, we
believe that our contribution is a first step in this direction.

IV. RELATED WORK

DIFFUZZ is related to a large body of work on checking
non-interference via self-composition [10]. In particular, re-
lated work [7] presents a self-composition checking approach
to timing channel security verification. Instead of checking
non-interference, which might not hold for most realistic
applications, we check a notion of bounded non-interference,
which tolerates small differences in cost between different
secret-dependent paths. The most recent related approaches
are BLAZER [8] and THEMIS [14]. We already compared
DIFFUZZ with them throughout the paper.

CoCoChannel [12] uses static analysis for finding side-
channel vulnerabilities and presents a comparison with

THEMIS and BLAZER on the same benchmarks, showing
better scalability. While that paper also describes some dis-
crepancies found in the THEMIS and BLAZER benchmarks,
the approach still fails to report vulnerabilities for the repaired
versions in, e.g., loopAndBranch and jetty, due to the same
reasons: i.e., the intermediate representation may be inaccurate
and the analysis does not handle overflow.

Stacco [40] also uses a differential analysis for finding
timing side-channels, using random inputs. However, Stacco
does not direct the generation of inputs to expose differences
in executions. This is necessary as in general, it is not the case
that any two random inputs will expose a side-channel.

There is a large amount of related work on side-channel
analysis, for example [6], [13], [15], [17], [25], [26], [33].
The most successful approaches use abstract interpretation (for
cache side-channels analysis) [18], [27], [32] and are thus quite
different than DIFFUZZ. Other techniques [9], [35], [37] use
symbolic execution and constraint solving with model count-
ing for quantifying side-channel leakage and for synthesis
of attacks. They address JAVA programs, but have scalability
issues, due to the expensive constraint manipulation.

Other related techniques aim to quantify leakage using
Monte Carlo sampling [16], [23]. In contrast to DIFFUZZ,
these techniques provide quantitative results, but they may be
imprecise in practice.

Fuzzing has received renewed interest in the software
engineering community, with many recent approaches re-
ported [29], [30], [34], [39]. Most related are techniques that
use fuzzing alone [29], [39] or a combination of fuzzing and
symbolic execution [34] to analyze the algorithmic complexity
of programs, by monitoring a resource consumption. In par-
ticular, Badger [34] also uses Kelinci and AFL for the fuzzing
part. None of these works aim to maximize the difference in
resource usage, as required by side-channel analysis.

V. CONCLUSIONS AND FUTURE WORK

We presented the first differential fuzzing approach for
automatically finding side-channel vulnerabilities. We have
shown that our implementation DIFFUZZ can keep up with
existing approaches for side-channel analysis like BLAZER [8]
and THEMIS [14]. Furthermore, our approach was able to
reveal new side-channel vulnerabilities in popular open-source
JAVA applications such as Apache FtpServer. As we discussed,

RQ2: Analysis Time

0 100 200 300
0

10

20

time (seconds)

co
st

(#
in

st
ru

ct
io

ns
)

orientdb

0 100 200 300
0

50

100

150

200

time (seconds)

co
st

(#
in

st
ru

ct
io

ns
)

IBASys

0 100 200 300
0

1

2

3

4

time (seconds)

co
st

(#
in

st
ru

ct
io

ns
)

LoopAndbranch

Fig. 2: Averaged cost over time for orientdb, IBASys, and LoopAndbranch (unsafe versions).

them. Only for three experiments we observed case (c). As an
illustration the plots in Figure 2 show the average maximum
cost development within the first 5 minutes for the three cases.

Orientdb (case (a)) checks passwords by comparing be-
tween user-given and stored passwords. The longer the match-
ing prefix is, the higher will be the processing cost. Exact
value matching is in general very difficult for fuzzing because
it is hard to randomly generate the exact (unlikely) values that
match the stored password. While DIFFUZZ finds quickly a
small prefix, which reveals a cost difference greater than zero,
it needs some time to reach a higher value.

For IBASys (case (b)), DIFFUZZ finds the maximum average
value already after a few seconds, and thus leads very fast to
the shown plateau value. The reason could be that the initial
seed file guides the fuzzer already into a costly path or that
the costly paths have a high probability, and hence, the fuzzer
can easily catch them.

For LoopAndbranch (case (c)) DIFFUZZ reaches some parts
of the code only with specific values for the secret and this is
difficult to achieve with fuzzing. We believe that the limitations
illustrated with cases (a) and (c) can be mitigated by adding
further guidance to the fuzzer and by, e.g., combining fuzzing
and symbolic execution.

Vulnerability vs Exploit: DIFFUZZ can identify side-
channel vulnerabilities but can not assess whether they are
exploitable by a real attack. The synthesis of a real attack,
which would be necessary to assess the severity of the found
vulnerability, is out of scope for this work. Nevertheless, we
believe that our contribution is a first step in this direction.

IV. RELATED WORK

DIFFUZZ is related to a large body of work on checking
non-interference via self-composition [10]. In particular, re-
lated work [7] presents a self-composition checking approach
to timing channel security verification. Instead of checking
non-interference, which might not hold for most realistic
applications, we check a notion of bounded non-interference,
which tolerates small differences in cost between different
secret-dependent paths. The most recent related approaches
are BLAZER [8] and THEMIS [14]. We already compared
DIFFUZZ with them throughout the paper.

CoCoChannel [12] uses static analysis for finding side-
channel vulnerabilities and presents a comparison with

THEMIS and BLAZER on the same benchmarks, showing
better scalability. While that paper also describes some dis-
crepancies found in the THEMIS and BLAZER benchmarks,
the approach still fails to report vulnerabilities for the repaired
versions in, e.g., loopAndBranch and jetty, due to the same
reasons: i.e., the intermediate representation may be inaccurate
and the analysis does not handle overflow.

Stacco [40] also uses a differential analysis for finding
timing side-channels, using random inputs. However, Stacco
does not direct the generation of inputs to expose differences
in executions. This is necessary as in general, it is not the case
that any two random inputs will expose a side-channel.

There is a large amount of related work on side-channel
analysis, for example [6], [13], [15], [17], [25], [26], [33].
The most successful approaches use abstract interpretation (for
cache side-channels analysis) [18], [27], [32] and are thus quite
different than DIFFUZZ. Other techniques [9], [35], [37] use
symbolic execution and constraint solving with model count-
ing for quantifying side-channel leakage and for synthesis
of attacks. They address JAVA programs, but have scalability
issues, due to the expensive constraint manipulation.

Other related techniques aim to quantify leakage using
Monte Carlo sampling [16], [23]. In contrast to DIFFUZZ,
these techniques provide quantitative results, but they may be
imprecise in practice.

Fuzzing has received renewed interest in the software
engineering community, with many recent approaches re-
ported [29], [30], [34], [39]. Most related are techniques that
use fuzzing alone [29], [39] or a combination of fuzzing and
symbolic execution [34] to analyze the algorithmic complexity
of programs, by monitoring a resource consumption. In par-
ticular, Badger [34] also uses Kelinci and AFL for the fuzzing
part. None of these works aim to maximize the difference in
resource usage, as required by side-channel analysis.

V. CONCLUSIONS AND FUTURE WORK

We presented the first differential fuzzing approach for
automatically finding side-channel vulnerabilities. We have
shown that our implementation DIFFUZZ can keep up with
existing approaches for side-channel analysis like BLAZER [8]
and THEMIS [14]. Furthermore, our approach was able to
reveal new side-channel vulnerabilities in popular open-source
JAVA applications such as Apache FtpServer. As we discussed,

0 100 200 300
0

10

20

time (seconds)

co
st

(#
in

st
ru

ct
io

ns
)

orientdb

0 100 200 300
0

50

100

150

200

time (seconds)

co
st

(#
in

st
ru

ct
io

ns
)

IBASys

0 100 200 300
0

1

2

3

4

time (seconds)

co
st

(#
in

st
ru

ct
io

ns
)

LoopAndbranch

Fig. 2: Averaged cost over time for orientdb, IBASys, and LoopAndbranch (unsafe versions).

them. Only for three experiments we observed case (c). As an
illustration the plots in Figure 2 show the average maximum
cost development within the first 5 minutes for the three cases.

Orientdb (case (a)) checks passwords by comparing be-
tween user-given and stored passwords. The longer the match-
ing prefix is, the higher will be the processing cost. Exact
value matching is in general very difficult for fuzzing because
it is hard to randomly generate the exact (unlikely) values that
match the stored password. While DIFFUZZ finds quickly a
small prefix, which reveals a cost difference greater than zero,
it needs some time to reach a higher value.

For IBASys (case (b)), DIFFUZZ finds the maximum average
value already after a few seconds, and thus leads very fast to
the shown plateau value. The reason could be that the initial
seed file guides the fuzzer already into a costly path or that
the costly paths have a high probability, and hence, the fuzzer
can easily catch them.

For LoopAndbranch (case (c)) DIFFUZZ reaches some parts
of the code only with specific values for the secret and this is
difficult to achieve with fuzzing. We believe that the limitations
illustrated with cases (a) and (c) can be mitigated by adding
further guidance to the fuzzer and by, e.g., combining fuzzing
and symbolic execution.

Vulnerability vs Exploit: DIFFUZZ can identify side-
channel vulnerabilities but can not assess whether they are
exploitable by a real attack. The synthesis of a real attack,
which would be necessary to assess the severity of the found
vulnerability, is out of scope for this work. Nevertheless, we
believe that our contribution is a first step in this direction.

IV. RELATED WORK

DIFFUZZ is related to a large body of work on checking
non-interference via self-composition [10]. In particular, re-
lated work [7] presents a self-composition checking approach
to timing channel security verification. Instead of checking
non-interference, which might not hold for most realistic
applications, we check a notion of bounded non-interference,
which tolerates small differences in cost between different
secret-dependent paths. The most recent related approaches
are BLAZER [8] and THEMIS [14]. We already compared
DIFFUZZ with them throughout the paper.

CoCoChannel [12] uses static analysis for finding side-
channel vulnerabilities and presents a comparison with

THEMIS and BLAZER on the same benchmarks, showing
better scalability. While that paper also describes some dis-
crepancies found in the THEMIS and BLAZER benchmarks,
the approach still fails to report vulnerabilities for the repaired
versions in, e.g., loopAndBranch and jetty, due to the same
reasons: i.e., the intermediate representation may be inaccurate
and the analysis does not handle overflow.

Stacco [40] also uses a differential analysis for finding
timing side-channels, using random inputs. However, Stacco
does not direct the generation of inputs to expose differences
in executions. This is necessary as in general, it is not the case
that any two random inputs will expose a side-channel.

There is a large amount of related work on side-channel
analysis, for example [6], [13], [15], [17], [25], [26], [33].
The most successful approaches use abstract interpretation (for
cache side-channels analysis) [18], [27], [32] and are thus quite
different than DIFFUZZ. Other techniques [9], [35], [37] use
symbolic execution and constraint solving with model count-
ing for quantifying side-channel leakage and for synthesis
of attacks. They address JAVA programs, but have scalability
issues, due to the expensive constraint manipulation.

Other related techniques aim to quantify leakage using
Monte Carlo sampling [16], [23]. In contrast to DIFFUZZ,
these techniques provide quantitative results, but they may be
imprecise in practice.

Fuzzing has received renewed interest in the software
engineering community, with many recent approaches re-
ported [29], [30], [34], [39]. Most related are techniques that
use fuzzing alone [29], [39] or a combination of fuzzing and
symbolic execution [34] to analyze the algorithmic complexity
of programs, by monitoring a resource consumption. In par-
ticular, Badger [34] also uses Kelinci and AFL for the fuzzing
part. None of these works aim to maximize the difference in
resource usage, as required by side-channel analysis.

V. CONCLUSIONS AND FUTURE WORK

We presented the first differential fuzzing approach for
automatically finding side-channel vulnerabilities. We have
shown that our implementation DIFFUZZ can keep up with
existing approaches for side-channel analysis like BLAZER [8]
and THEMIS [14]. Furthermore, our approach was able to
reveal new side-channel vulnerabilities in popular open-source
JAVA applications such as Apache FtpServer. As we discussed,

!23yannic.noller@hu-berlin.de

git clone https://github.com/isstac/diffuzz.git

DifFuzz: Differential Fuzzing for
Side-Channel Analysis

Problem Solution Example SummaryEvaluationBackground

International Conference on Software Engineering (ICSE) 2019

https://github.com/isstac/diffuzz.git

References

!24yannic.noller@hu-berlin.de

[AFL] Website. american fuzzy lop (AFL). http://lcamtuf.coredump.cx/afl/.

[Antonopoulos2017] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi,
and Shiyi Wei. 2017. Decomposition instead of self-composition for proving the absence of timing channels.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2017). ACM, New York, NY, USA, 362-375.

[Barthe2004] G. Barthe, P. R. D'Argenio and T. Rezk, "Secure Information Flow by Self-Composition,"
Computer Security Foundations Workshop, IEEE(CSFW), Pacific Grove, California, 2004, pp. 100.

[Chen2017] Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise Detection of Side-Channel Vulnerabilities using
Quantitative Cartesian Hoare Logic. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS '17). ACM, New York, NY, USA, 875-890. 
 
[DARPA2018] Mr. Dustin Fraze. Space/Time Analysis for Cybersecurity (STAC). https: //www.darpa.mil/
program/space-time-analysis-for-cybersecurity. Accessed: 2018-08-21. 
 
[Kersten2017] Rody Kersten, Kasper Luckow, and Corina S. Păsăreanu. 2017. POSTER: AFL-based
Fuzzing for Java with Kelinci. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’17).

[Noller2018] Yannic Noller, Rody Kersten, and Corina S. Păsăreanu. 2018. Badger: Complexity Analysis
with Fuzzing and Symbolic Execution. In Proceedings of 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA’18). ACM, New York, NY, USA.

International Conference on Software Engineering (ICSE) 2019

http://lcamtuf.coredump.cx/afl/

END OF DOCUMENT

