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Abstract—Existing directed fuzzers are not efficient enough.
Directed symbolic-execution-based whitebox fuzzers, e.g. BugRe-
dux, spend lots of time on heavyweight program analysis and
constraints solving at runtime. Directed greybox fuzzers, such as
AFLGo, perform well at runtime, but considerable calculation
during instrumentation phase hinders the overall performance.

In this paper, we propose Sequence-coverage Directed Fuzzing
(SCDF), a lightweight directed fuzzing technique which explores
towards the user-specified program statements efficiently. Given
a set of target statement sequences of a program, SCDF aims to
generate inputs that can reach the statements in each sequence
in order and trigger bugs in the program. Moreover, we present
a novel energy schedule algorithm, which adjusts on demand
a seed’s energy according to its ability of covering the given
statement sequences calculated on demand. We implement the
technique in a tool LOLLY in order to achieve efficiency both
at instrumentation time and at runtime. Experiments on several
real-world software projects demonstrate that LOLLY outper-
forms two well-established tools on efficiency and effectiveness,
i.e., AFLGo–a directed greybox fuzzer and BugRedux–a directed
symbolic-execution-based whitebox fuzzer.

Index Terms—sequence coverage, greybox fuzzing, directed
testing, verifying true positives, crash reproduction

I. INTRODUCTION

Fuzzing is a popular and effective testing technique for

automatically discovering bugs in real-world software systems

[1]. By mutating a set of provided seed inputs, it generates

lots of unexpected or random test cases and feeds them to

the program under test (PUT) in order to trigger crashes,

assertion violations or other abnormalities. Fuzzing searches a

PUT’s state space randomly and thus inevitably spends a lot

of machine time on code regions unrelated to bugs. Instead,

directed fuzzing technique focuses on specific code regions in

a program, which can significantly alleviate the randomness

of original fuzzing.

Most of the existing directed fuzzers [2], [3], [4], [5], [6],

[7], [8], [9], [10], [11] are white box fuzzers based on symbolic

execution. They simulate program execution with symbolic

values, collect symbolic path constraints, and generate inputs

by solving the constraints. For instance, Do et al. [3] employ

data dependence analysis and extended chaining approach to

build event sequences leading to the target locations, and

perform directed dynamic symbolic execution to generate

goal-oriented test inputs. To test software patches, KATCH

[7] combines symbolic execution with several novel heuristics

to reach the patch code quickly. Directed symbolic execution

converts the reachability problem to iterative constraint satis-

fiability problem, and spends most of runtime on heavyweight

program analysis and constraint solving, and hence is effective

but inefficient [12].
Greybox fuzzers like AFL [13] can generate several orders

of magnitude more inputs during the time that symbolic

execution generates a single input, so greybox fuzzers can be

used to develop lightweight directed fuzzers (e.g. [14], [15],

[12], [16]). AFLGo [17] is the state-of-the-art directed greybox

fuzzer which focuses on reaching a set of target locations in a

program. It takes reachability problem as an optimization prob-

lem and aims to minimize the distance of seeds to the target

locations by introducing simulated annealing into seed energy

schedule. Unfortunately, AFLGo moves most of program

analysis to instrumentation phase in exchange of efficiency at

runtime. Since it measures seed distance to target locations by

calculating the distance between each basic block and a target

location in instrumentation phase, AFLGo has to parse the call

graph and intra-procedure control flow graph of the PUT. Both

parsing graphs and calculating distances in the instrumentation

phase is very time consuming. If users are sensitive to time

consuming or have limited computing resources, the above

overhead will be their serious concern. Therefore, such users

will prefer a lightweight analysis approach, which can reduce

the computing resource requirements and overall analysis time.
To resolve the problem, we propose a novel lightweight

directed fuzzing technique SCDF, which explores towards the

user-specified program statements efficiently. Given a set of

target statement sequences of a program, our approach aims to

generate inputs that can reach the statements in each sequence

in order and trigger bugs in the program. To measure a

seed’s quality, SCDF exploits the seed’s ability of covering

the target sequences, which we name as “sequence coverage”.

SCDF gives a seed more opportunity (i.e. energy) to generate

new mutations if the seed achieves higher sequence coverage.

Our approach can be used in a variety of scenarios, such as

bug detection, directed testing and crash reproduction. We

implement our approach in LOLLY, a fuzzer built on AFL.

Evaluation on several real-world software shows that it is

effective and efficient due to its directness and lightweight.
In summary, the main contributions of this paper are:

• A lightweight directed fuzzing technique SCDF which

is guided by user-specified statement sequences, and a

novel energy schedule algorithm which adjusts a seed’s

energy according to its ability, calculated on demand, of

covering the given statement sequences;
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• A fuzzer named LOLLY which implements the above

technique and algorithm to expose/verify bugs;

• An evaluation, which shows LOLLY’s better effectiveness

and efficiency than two state-of-the-art tools, i.e. AFLGo

and BugRedux.

The rest of this paper is structured as follows. In section II,

we explain our motivation. In section III, we give an overview

and then detail the design of our approach. We describe the

implementation of our prototype tool LOLLY in section IV

and evaluate the performance of LOLLY in section V. Section

VI elicits the threats to validity. The survey of related work

in section VII is followed by our conclusion in VIII.

II. MOTIVATION

AFLGo focuses on reaching a given set of target locations in

a program and it treats these targets as independent. Therefore,

the metric it uses to measure a seed is the distance of the

seed to target program points. To reduce runtime overhead,

AFLGo chose to statically calculate the distance from each

basic block to the target points during instrumentation phase.

Specifically, the control flow graph and call graph of the

program are parsed and distance information of each node (i.e.

basic block) in the graphs is calculated and kept in the node

during instrumentation phase. As a result, AFLGo is efficient

at runtime as all the distance information required to measure

a seed is already calculated.

Though AFLGo is successfully applied in patch testing and

crash reproduction, it has two serious issues due to its static

distance calculation scheme. First, users must undertake the

expensive burden in instrumentation phase and its efficiency in

total fuzzing is not obvious. For instance, in our experiments,

AFLGo spent nearly 2h on compiling Libming program

while AFL spent 40s; AFLGo spent over 4h on compiling

Libxml2 program, in comparison, AFL spent 1m44s. Second,

AFLGo is inconsistent to some extent with the dynamic nature

of fuzzing because of two facts: 1) it has to statically parse

graphs and calculate distances for all nodes in advance, though

only part of pre-computed distances are used at runtime; 2)

whenever users specify new or changed target statements,

which is common case in testing, AFLGo has to re-instrument

the program under test, and further hinders its efficiency and

exacerbates users’ burden.

Above observations motivate us to research on a novel

directed fuzzing technique with better efficiency, which is

named SCDF. SCDF allows that users specify a set of target

statement sequences which they are interested. SCDF has two

important features: sequence coverage and energy schedule.

First, for each target statement sequence, SCDF considers the

order of the statements which are explored. For each seed,

SCDF evaluates the seed’s ability of covering given statement

sequences at runtime, which is called sequence coverage, and

leverages it as the measure of distance (i.e., seed to target

statement sequences). Second, using this novel measure of

distance, we propose a new energy schedule algorithm in order

to control the fuzzing process by adjusting the seeds’ energy.

The energy of a seed is defined as the number of new inputs

generated from the seed. SCDF prefers the seeds with higher

sequence coverage, and assigns more energy to them.

III. DESIGN

A. Overview

Fig.1 shows the high-level architecture of SCDF. It mainly

consists of two components: SCDF Instrumentor and SCDF

Fuzzer. The inputs of SCDF are: a) source code files of a

software project under test, b) a set of statement sequences

and c) initial seeds for fuzzing. Its output is a set of test cases

that trigger bugs in the project.

A statement sequence (SS for short) is a set of statements

that SCDF tries to generate test cases to arrive in order, in other

words, an SS is considered as a path fragment that seeds are

expected to execute at runtime. An SS can be specified by

users or provided by other analysis tools (e.g., method calls

in a crash dump). Each statement in an SS is identified by

its source file and line in source code. Instead of treating

each target location independently as AFLGo does, in SCDF,

each given sequence is considered to be independent while

statements in each sequence are expected to be reached in

order.

Next we describe the workflow of SCDF shown in the Fig.1.

Given the source files of a project under test (a), at the time

of compiling the project, SCDF Instrumentor instruments the

files to facilitate collecting information at runtime, such as

branch coverage in AFL, and produces an instrumented binary

(d). Meanwhile, SCDF Sequences Transformer uses the debug

information to map each statement in the sequences to the

corresponding basic block, and each block is identified by

a location (i.e. a unique integer generated randomly). As a

consequence, each SS is converted to a basic block location

sequence (BLS for short) (c).

Our seed energy schedule algorithm named SCDF Strategy

is integrated in SCDF Fuzzer. Beginning with the initial

seeds (g), SCDF Fuzzer analyzes the instrumented binary (e),

calculates the sequence coverage of each seed using the BLSs

(f), and schedules the energy of all seeds. The fuzzer finally

generates test cases which can trigger crashes or expose bugs

in the project under test.

B. Instrumentation

To calculate the sequence coverage of a seed on a BLS,

SCDF needs to record the trace of basic blocks in the

BLS that the seed executes during a run, called target basic
block execution trace (TBBET for short). Therefore, SCDF

Instrumentor only instruments the basic blocks each of which

contains at least a target statement. Moreover, SCDF uses a

shared memory to sequentially record location identifiers of

the blocks in TBBET following the order in which they are

executed. More precisely, we denote the shared memory as

an integer array M [n], each of which records the location

identifier of a block in a TBBET. M0 stores the number

of executed basic blocks, initially 0. Mi is used to record

the location identifier of the ith basic block in the TBBET,

i ∈ {1, ..., n− 1}.
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Fig. 1. SCDF’s architecture

Specifically, while compiling a project under test, SCDF

Instrumentor traverses each statement in a basic block, and

obtains the source files and lines of the statements with the

help of debug information, recording them in a set StmtSet. If

a statement in a SS is in StmtSet, the basic block is labeled as

a target basic block. At the entry of each target basic block,

SCDF Instrumentor adds the following instructions:

1) Get the shared memory pointer, i.e., M ;

2) Read M0’s value, e.g., i, and add 1 to it, i.e., i = i + 1;

3) Write the location identifier of current basic block to

Mi;

4) Store the value of i back to M0.

During the process of fuzzing, when a seed explores the tar-

get basic blocks in a BLS, the instrumented code is executed,

and thus the trace of basic blocks in the BLS (i.e., TBBET)

is sequentially recorded in the shared memory.

C. Fuzzing

Algorithm 1 shows the process of the directed fuzzing in

SCDF approach. The inputs of the algorithm are: a) A set

of seed inputs S; b) The given BLSs BBSeqs. The output

is a set of test cases TC that can trigger crashes or expose

bugs in the project under test. SCDF fuzzer first selects a

seed s from S via SelectSeed (line 2). RunSeed (line 3)

executes the instrumented binary with seed s, and with the

help of instrumented code, the fuzzer obtains the target basic

block execution trace exeTrace from the shared memory.

Then for each BLS BBSeqi in BBSeqs, the fuzzer compares

exeTrace and BBSeqi to calculate the sequence coverage of

seed s by invoking CalSeqCov (line 7), whose algorithm is

shown in Algorithm 2. After calculating the sequence coverage

of exeTrace on each BLS, the fuzzer takes the average value

as the coverage capability cov of seed s (lines 8-12). The

seed energy schedule algorithm of SCDF assigns energy to

seed s based on its sequence coverage (line 14). Seed energy

determines the number of new inputs generated by mutating

the seed. The mutation strategy is implemented in MutateSeed

Algorithm 1 SCDF’s directed fuzzing

Input:
a. Seed inputs S
b. Basic block location sequences BBSeqs

1: repeat
2: s = SelectSeed(S)

3: exeTrace = RunSeed(s)

4: cov = 0 //sequence coverage of s on BBSeqs
5: bnum = 0 //number of sequences on each of which s

gains coverage greater than 0
6: for each BBSeqi in BBSeqs do
7: bcov = CalSeqCov(BBSeqi, exeTrace)

8: if bcov > 0 then
9: bnum = bnum + 1

10: cov = cov + bcov
11: end if
12: cov = cov / bnum
13: end for
14: e = AssignEnergy(s, cov) // energy schedule for s
15: for i from 1 to e do
16: s′ = MutateSeed(s)

17: if s′ crashes or exposes a bug then
18: add s′ to TC
19: else if IsInterested(s′) then
20: add s′ to S
21: end if
22: end for
23: until time budget exhausted or abort-signal

Output: Test cases TC that trigger crashes or expose bugs

in the project

(line 16), where the fuzzer generates new inputs by performing

mutations, e.g., bit/byte flips, addition or subtraction, splicing

two distinct inputs at a random location.

For each new input s′ generated by mutation, if it causes

the program to crash or exposes a bug, it is added to TC (lines
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Algorithm 2 CalSeqCov: Calculating sequence coverage

Input:
a. A basic block location sequence (BLS) BBSeqi, e.g.

< B0, B1, ..., Bn >
b. The target basic block execution trace exeTrace, e.g.

< t1, t2, ..., tm >
1: maxSClen = 0

2: curGoal = B0

3: curSClen = 0

4: for each ti in exeTrace do
5: if curGoal == ti then
6: curSClen = curSClen+1

7: curGoal = the block that just follows curGoal in

BBSeqi
8: else if ti is prior to curGoal in BBSeqi then
9: maxSClen = max(maxSClen, curSClen)

10: curSClen = 1

11: curGoal = the block that just follows ti in BBSeqi
12: else if ti is posterior to curGoal in BBSeqi then
13: curSClen = curSClen+1

14: curGoal = the block that just follows ti in BBSeqi
15: end if
16: end for
17: maxSClen = max(maxSClen, curSClen)

18: covi = maxSClen / len(BBSeqi)
Output: Sequence coverage covi for the ith sequence in

BBSeqs (i.e. BBSeqi)

17-18). If it covers a new branch, it is added to S as a seed

input for subsequent fuzzing process (line 19-20). If neither

of the above is true, the input is discarded. The fuzzer repeats

the process until time budget is exhausted or an abort signal

is received (line 23).

D. Sequence Coverage Calculation

Below we describe in detail the algorithm for calculating the

sequence coverage of a seed s on a BLS. As shown in Algo-

rithm 2, CalSeqCov() function is given a BLS (i.e., BBSeqi <
B0, B1, ..., Bn >) and the target basic block execution trace

of current seed s (i.e., exeTrace < t1, t2, ..., tm >). The

algorithm traverses each basic block location recorded in

exeTrace, and compares it with the locations of target basic

blocks in BBSeqi. It aims to find in the two sequences, i.e.

exeTrace and BBSeqi, the longest common sub-sequence,

which is called maximum sequential coverage.

At the beginning of the algorithm, maxSClen which

records the length of the maximum sequential coverage is

initialized as 0 (line 1). The curGoal denotes the target block

that exeTrace is expected to reach, and is initialized to be the

first target in BBSeqi (line 2). The curSClen is the current

sequential coverage length of exeTrace, initially 0 (line 3). In

a loop of traversing each basic block location ti in exeTrace
(line 4), the algorithm handles the following three situations:

1) If ti is the same block with the current goal curGoal,
the algorithm updates curSClen to curSClen+1 and

Fig. 2. An example of SS, BLS and basic block execution trace. (a) denotes
the conversion from statement sequence to basic block location sequence; (b)
depicts the nodes in the control flow graph; (c) describes how SCDF records
the target basic block execution trace in the shared memory.

curGoal to the next goal1 following curGoal in

BBSeqi (lines 5-7);

2) If ti is a goal before curGoal in BBSeqi, which

means that exeTrace does not reach in order the target

blocks in BBSeqi, the algorithm updates maxSClen
to max(maxSClen, curSClen), resets curSClen to 1

and updates curGoal to the next target following ti in

BBSeqi (lines 8-11);

3) If ti is a goal after curGoal in BBSeqi, exeTrace is

still considered to reach the target blocks in BBSeqi
in order, but those target blocks between curGoal and

ti are missed. So the algorithm updates curSClen to

curSClen + 1 and updates curGoal to the next target

following ti in BBSeqi (lines 12-14).

After exeTrace is traversed, the algorithm performs the last

update (line 17) and calculates the coverage of exeTrace on
BBSeqi (line 18) as:

covi = maxSClen/len(BBSeqi) (1)

where len(BBSeqi) is the number of blocks in BBSeqi.
To further illustrate the Algorithm 2, suppose that the

BLS is <b0, b1, b3, b5> and the TBBET of a seed s is

<b0, b5, b0, b1, b5> as shown in Fig.2. At the beginning,

the algorithm performs initialization of three variables as

{curGoal = b0, curSClen = 0,maxSClen = 0}. The

algorithm then traverses the trace and meets the first block b0,

which is the same with curGoal, so three variables are updated

1If curGoal is the last block in BBSeqi, we define its next one as itself.
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as {curGoal = b1, curSClen = 1,maxSClen = 0}. The

algorithm continues to handle the next block b5, a target block

after curGoal. Since b5 is the last one in the BLS, curGoal
is maintained to be b5, so current result of three variables is

{curGoal = b5, curSClen = 2,maxSClen = 0}. Next, the

algorithm meets b0 again in the trace, since b0 is a target

before curGoal in the BLS, maxSClen is updated as the

maximum of maxSClen and curSClen (Line 9) and we

get {curGoal = b1, curSClen = 1,maxSClen = 2}. The

next b1 makes the result be {curGoal = b3, curSClen =
2,maxSClen = 2}. Finally, the last block in the trace b5

is met, and it is a target after curGoal in the BLS, so

three variables are updated as {curGoal = b5, curSClen =
3,maxSClen = 2} and the for loop ends. Then the algorithm

update maxSClen to 3. Since the length of the BLS is 4, the

sequence coverage of the seed s on the BLS is 3/4=0.75.

E. Seed energy schedule
Before fuzzing or mutating a seed s, the fuzzer calculates

the sequence coverage of s and leverages it to determine

the number of mutated inputs from s, i.e. the seed energy.

This strategy is implemented in SCDF’s seed energy schedule

algorithm. We first define the sequence coverage seqcov of a

seed s. Suppose the target basic block execution trace of s is

exeTrace, SCDF calculates the coverage covi of exeTrace
on each BLS BBSeqi and takes their average value as the

sequence coverage seqcov of s, which is:

seqcov = avg(covi) (2)

The coverage of exeTrace on a BLS is calculated according

to the algorithm 2. The sequence coverage of an input reflects

the capability of the input to cover the given sequences.

Therefore, the higher sequence coverage an input achieves,

the more energy SCDF assigns to it.
In addition, AFLGo presented simulated annealing-based

power schedule for greybox fuzzing. It regards greybox

fuzzing as a Markov chain, and thus fuzzing process can be

optimized with Simulated Annealing (SA for short). Classical

random walk schedule always accepts better solutions which

may be trapped in local optimum. Unlike random walk, SA

accepts a solution that is worse than the current solution

with a certain probability, so it is possible to jump out of

the local optimum and reach the global optimal solution.

This probability gradually decreases as the control parameter

temperature decreases. An initial temperature is given at the

beginning of SA, and as the temperature continues to decrease,

the algorithm will find an approximate optimal solution to

the problem in polynomial time. The temperature reduction

follows a specified cooling schedule algorithm.
SCDF borrows the above idea from AFLGo and applies

simulated annealing to our seed energy schedule algorithm for

global optimum. For the directed fuzzing in SCDF, an optimal

solution is a test case that can achieve maximum sequence

coverage. In our approach, temperature T with an initial value

T0 = 1 decreases following an exponential cooling schedule
as:

T = T0 × αk (3)

where α is a constant satisfying 0.8 ≤ α ≤ 0.99 and k is the

temperature cycle. The threshold of temperature Tk is set to

0.05, and SCDF Fuzzer will not accept worse solutions when

the temperature is lower than Tk. Specifically, if Tk > 0.05,

the cooling schedule is in the exploration stage during which

SCDF randomly mutates the provided seeds to generate many

new inputs. Otherwise, it enters the exploitation stage during

which SCDF generates more new inputs from seeds that have

higher sequence coverage. In this case, the simulated annealing

process is comparable to a classic gradient descent algorithm.

Since the common limitation in fuzzing is the time budget,

time t is used as a factor to adjust temperature cycle k as:

k/kx = t/tx (4)

where kx and tx are the temperature cycle and time when

the temperature reaches Tk, respectively. Therefore, we can

establish the relationship between time t and temperature T
by means of k:

Tk = 0.05 = αkx (5)

T = αk = α
t
tx
× log(0.05)

log(α) = 20−
t
tx (6)

Similar with the annealing-based energy schedule in

AFLGo, given a seed s whose sequence coverage is seqcov,

we define the capability of s to cover the given statement
sequences is:

capcov = seqcov ∗ (1− T ) + 0.5 ∗ T (7)

At the beginning of fuzzing, the initial value of temperature

T is 1, that is, capcov is independent on the sequence cover-

age. As time goes by, the temperature T gradually decreases

and the sequence coverage becomes increasingly important.

To integrate SCDF Strategy into the existing seed energy

schedule algorithm of a fuzzer (e.g. AFL), SCDF integrates

the capability of covering the sequences as an impact factor

into the seed energy calculation formula. SCDF calculates the

integrated energy for a seed as:

Lenergy = energy ∗ 2.0(capcov−0.2)∗10 (8)

where energy is the original energy given by the original

fuzzer and Lenergy is the energy given by SCDF Fuzzer

which integrates SCDF Strategy in the original fuzzer.

IV. IMPLEMENTATION

In our current implementation, we integrate our approach

into American Fuzzing Lop (AFL) 2.52b and implement a

prototype system LOLLY. In theory, the instrumentor and

fuzzer in our approach can be any tool that can accomplish

the tasks described in section III.

AFL instrumentor uses LLVM pass to instrument a software

project under test (PUT) during compilation. First, the front
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end of LLVM compiler converts the PUT’s source code to

LLVM IR. Then the instrumentor traverses all basic blocks of

each function in IR and produces a random integer for each

basic block as its location identifier. LOLLY utilizes these

location identifiers to convert a statement sequence (SS) to a

basic block location sequence (BLS) during the instrumenta-

tion phase. Specifically, LOLLY’s instrumentor first gets the

source file name of currently compiled module and then reads

the related SS if they exist in the file. With the help of debug

information, LOLLY’s instrumentor maps the statements in

each SS to location identifiers of the basic blocks that contain

the statements. Once all source files are handled, all SS are

converted to BLS.

AFL uses a 64KB-shared memory to save branch execution

information at runtime. LOLLY uses additional 2M bytes as

an array to record the target basic block execution traces

(TBBET), where on a 64-bit architecture, the first element

of the array records the number of exercised basic blocks and

the remaining space is used to sequentially record the location

identifiers of the exercised basic blocks.

AFL fuzzer mutates seeds to generate new inputs. It

considers each seed as a byte sequence and performs two

stages of mutations: deterministic stage and havoc stage. At

deterministic stage, AFL traverses every byte of a seed and

makes several kinds of mutations on consecutive positions in

the byte sequence. The number of generated new inputs in

this stage depends on the length of the seed. At havoc stage,

AFL makes a series of random mutations on the seed and the

number of produced new inputs depends on the energy that

AFL assigns to the seed. AFL assigns energy to each seed

to be fuzzed based on its execution time, branch coverage,

and how late and deep it is discovered, etc. In our approach,

after executing a seed input, LOLLY obtains the TBBET from

the extended space in the shared memory and computes the

sequence coverage of the seed according to the given BLSs.

LOLLY integrates SCDF Strategy into AFL’s energy schedule

algorithm and leverages sequence coverage of a seed as main

energy measure.

V. EVALUATION

A. Infrastructure

We executed all experiments on a laptop computer with an

Intel Core CPU i7-6500U processor that has 4 logical cores

running at 2.5GHz with access to 12GB of main memory and

Ubuntu 16.04 (64 bit) as operating system. To evaluate the

effectiveness and efficiency of LOLLY, we compare LOLLY

with two state-of-the-art directed fuzzing tools, i.e., AFLGo

and BugRedux. We evaluated them with the same programs

under test, initial input corpus, time budget, computing re-

sources, and target locations as LOLLY.

B. True positives verification

In the software development cycle, developers and testers

usually apply analysis tools to discover bugs or vulnerabilities

in the programs before release. Static analysis is a popular

analysis technique to find structural errors and security vulner-

abilities in programs. Since it does not execute the programs

actually, static analysis usually has high false positive, and thus

requires a lot of manual efforts to verify the analysis results.

Due its directed execution feature, directed fuzzing technique

can be used for automatic verification of bugs. Specifically, the

analysis results of static analyzers, e.g. Clang static analyzer

[18], which contain potential bugs or vulnerabilities in a

program, can be converted to the target statements of directed

fuzzing, which can generate test cases exposing real bugs in

the program.

We use Libming 0.4.8 [19], a library for generating and

reading with Macromedia Flash files (.swf) written in C, as our

subject program. We leverage Clang static analyzer to analyze

Libming and obtain some statements, which witness the found

potential bugs by the way of vulnerable paths. We provide

these statements as targets to LOLLY and AFLGo, a state-of-

the-art directed greybox fuzzer. In the experiment, the analysis

results of Clang analyzer are not purposely filtered, and thus

may contain false positives and infeasible paths.

In order to evaluate the efficiency of two fuzzers, we use

them to trigger the same CVE vulnerabilities of Libming

guided by the above target statements, and compare the time

cost that two fuzzers take in the instrumentation phase and

runtime phase. We repeated all experiments 20 times and used

the average values.

The CVE vulnerabilities used in experiments are listed in

Table I, which shows their CVE-ID and vulnerability type.

Both AFLGo and LOLLY successfully generated crash inputs

triggering the vulnerabilities in Table I, in other words, for

each given CVE, the generated crash inputs by two fuzzers

can produce exactly the same stack traces as that in the CVE’s

description.

In the experiments, LOLLY and AFLGo spent 41.568s and

119m12.512s respectively in instrumentation phase. As a base-

line, the original AFL took 39.718s. Obviously, Calculating the

distances between each basic block and targets in AFLGo is

significantly expensive.

In runtime phase, we ran LOLLY and AFLGo to fuzz

Libming in order to trigger the CVE vulnerabilities listed

in Table I. We set the time budget as 5 hours, where the

exploration phase of fuzzing is 1 hour.

The experimental results are shown in Table II. The first

column of Table II is the CVE ID of each vulnerability and the

second column indicates the fuzzing tools. The third column

shows the number of runs that successfully trigger a particular

vulnerability. Time-to-Exposure (TTE) measures the length of

the fuzzing campaign until the first test input is generated that

exposes a given vulnerability. And the forth column shows the

mean of TTE values in all 20 experiments. In particular, if a

tool fails to trigger a vulnerability in a run within the time

limit, its TTE is uniformly recorded as the time budget. The

factor improvement (Factor) measures the performance gain

as the mean TTE of AFLGo divided by the mean TTE of

LOLLY. Values of Factor greater than one mean that LOLLY

outperforms AFLGo. The Vargha-Delaney statistic (A12) is
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TABLE I
CVE VULNERABILITIES OF LIBMING USED IN EXPERIMENTS

CVE-ID Type of vulnerability

2017-16883 NULL pointer dereference

2018-7874 Invalid memory address dereference

2018-7876 Memory exhaustion

2018-8807 Use after free

2018-8961 Use after free

2018-8962 Use after free

2018-8963 Use after free

a recommended standard measure for evaluating randomized

algorithms [20]. Given a performance measure M (e.g., TTE

here) seen in m measures of LOLLY and n measures of

AFLGo, the A12 statistic measures the probability that running

LOLLY yields higher M values than running AFLGo, which

indicates the confidence that LOLLY performs better than

AFLGo.

As shown in Table II, LOLLY is 2.44X to 12.85X faster

in most cases than AFLGo at runtime. A single exception

occurs for CVE-2018-8807, LOLLY triggered the vulnerability

in 50% of runs while AFLGo succeeded in 60% of runs, and

LOLLY spent a little longer time than AFLGo. But the A12

value (i.e., 0.5) means that they had similar performance statis-

tically. For CVE-2018-8961, LOLLY outperforms AFLGo on

the Factor value, though the A12 value is 0.35. That’s because

LOLLY successfully exposed the vulnerability in all runs and

TTE of most runs is 14 minutes, while AFLGo succeeded

in 18 runs and most runs completed in 11 minutes, but its

mean TTE greatly increases due to the other 2 failed runs.

LOLLY performs best on CVE-2018-7874 since it is 12.85

times faster than AFLGo and LOLLY outperforms AFLGo

with 85% confidence.

In summary, experimental results show that LOLLY’s di-

rected fuzzing is effective in exposing bugs or vulnerabilities

in programs and more efficient than AFLGo.

C. Crash reproduction

Today software systems are typically released with potential

bugs or vulnerabilities due to various factors. When a user

encounters a crash in a software product, he can submit a crash

report to the developers through the built-in crash reporting

mechanism in the software. A crash report usually contains

information about the crash, such as memory dumps or call

stacks. Based on it, developers need to generate test cases that

trigger the crash, i.e. reproduce the crash. Directed fuzzing

technique can also be applied to crash reproduction.

We evaluate the effectiveness of LOLLY in crash repro-

duction and compare it with AFLGo and BugRedux [21].

BugRedux is a directed whitebox fuzzer that is built on the

symbolic execution engine KLEE [22]. Given a sequence of

target locations of a program, BugRedux aims to generate test

cases that can exercise the targets in the sequence in order to

crash the program.

TABLE II
PERFORMANCE OF LOLLY OVER AFLGO ON LIBMING

CVE-ID Tool Runs μTTE(m) Factor A12

2017-16883
LOLLY 20 10.64 1.02 0.65

AFLGo 20 10.83 - -

2018-7874
LOLLY 20 9.62 12.85 0.85

AFLGo 12 123.59 - -

2018-7876
LOLLY 19 24.31 5.70 0.775

AFLGo 11 138.59 - -

2018-8807
LOLLY 10 157.24 0.80 0.5

AFLGo 12 126.36 - -

2018-8961
LOLLY 20 14.38 2.81 0.35

AFLGo 18 40.39 - -

2018-8962
LOLLY 20 4.54 4.38 0.8

AFLGo 19 19.91 - -

2018-8963
LOLLY 20 9.16 2.44 0.75

AFLGo 19 22.34 - -

Average A12 Median A12

LOLLY 0.668 0.75

In our experiments, the subjects and bugs come from the

dataset of BugRedux, which were also used by AFLGo in

its evaluation. The dataset of BugRedux contains some test

cases which can crash the programs under test, hence we

can run a subject with its test cases and obtain the stack

dump corresponding to a crash. The time budget for fuzzing

is set to 24 hours. We provide the stack dump of each bug to

LOLLY, where each stack dump is represented as a sequence

of statements. LOLLY performs directed fuzzing with the

sequences as targets and generates test cases to reproduce

the bugs, i.e. the generated test cases can lead to the same

stack dumps. The experiment results are shown in Table III.

The first column in Table III is the subjects and bugs to be

reproduced, and the remaining columns shows whether three

tools successfully reproduce the crashes. If a tool succeeds

within the time budget, its result is recorded as “
√

”. Otherwise

marked as “×”.

As shown in table III, LOLLY and AFLGo are more

effective than BugRedux. They reproduced three times more

crashes than BugRedux. AFLGo and LOLLY failed to repro-

duce the sed.fault1 crash because it requires a fuzzer to fuzz

two input files at the same time, for which AFLGo and LOLLY

are incapable. The experimental results show that LOLLY can

effectively reproduce a crash given its stack dump.

Note that, like other fuzzing techniques, our approach also

depends on the given set of initial seeds. If the initial seeds

cannot exercise any statements in the given sequences, which

is the worst case, LOLLY will get no information about the

sequence coverage, and thus acts same as the original AFL.

Moreover, to compare the performance of AFLGo and

LOLLY on triggering the crashes in the dataset of BugRedux,

we repeated each crash reproduction experiment 5 times and
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TABLE III
SUBJECTS AND RESULTS OF CRASH REPRODUCTION

Subjects BugRedux AFLGo LOLLY

sed.fault1 × × ×
sed.fault2 × √ √

grep × √ √

gzip.fault1 × √ √

gzip.fault2 × √ √

ncompress
√ √ √

polymorph
√ √ √

TABLE IV
PERFORMANCE OF LOLLY AND AFLGO ON BUGREDUX DATASET

Subjects
AFLGo LOLLY

Instru. time Runtime Instru. time Runtime

sed.fault1 - - - -

sed.fault2 1m13s 0.07s 2.79s 0.08s

grep 56.61s 0.05s 2.75s 0.11s

gzip.fault1 2.64s 13.27m 0.28s 11.18m

gzip.fault2 45s 16.4s 1.77s 18s

ncompress 1.5s 12.46m 0.09s 11.12m

polymorph 13.34s 10.77m 0.23s 10.86m

use the average values, as shown in Table IV. The first column

shows the subjects and bugs to be reproduced. The second and

third columns indicate the time AFLGo took at instrumentation

time and runtime respectively. The fourth and fifth columns

show the time LOLLY took at the two phases respectively. The

results show that the performance of LOLLY and AFLGo is

comparable statistically at runtime phase. However, LOLLY

is superior in terms of overall performance in a whole run

which contains both the instrumentation phase and runtime

phase. For instance, LOLLY is 25X faster than AFLGo on

the sed.fault2 subject.

D. Bugs exposure

In order to verify LOLLY’s ability to detect bugs or vul-

nerabilities as a fuzzer, we evaluated LOLLY on Binutils [23]

2.26, 2.30 and 2.32 versions, Libxml2 [24] 2.9.4, and Libming

[19] 0.4.8. Binutils are a set of programming tools for creating

and managing binary programs, object file, libraries, profile

data, and assembly source code. Libxml2 is a XML C parser

and toolkit developed for the Gnome project. We chose them

because they are widely used and well tested software. The

target statement sequences in this experiment come from the

results of Clang analyzer, i.e., these given sequences may

contain false positives and unreachable paths. LOLLY aims to

explore towards the potentially buggy code, so the reachability

of a given statement sequence is not strictly required.

In the experiments, LOLLY successfully triggers eight (8)

distinct bugs shown in Table IV. The first column shows the

names of subjects, and their versions are shown in the second

1595 i f ( OpCode ( a c t i o n s , n−1, maxn ) == SWFACTION PUSH

&&

1596 OpCode ( a c t i o n s , n +1 , maxn ) ==

SWFACTION STOREREGISTER &&

1597 r e g s [ a c t i o n s [ n + 1 ] . SWF ACTIONSTOREREGISTER .

R e g i s t e r ]−>Type == PUSH VARIABLE)

1598 {
1599 v a r = newVar2 ( dblop , g e t S t r i n g ( v a r ) ) ;

1600 i f ( ( OpCode ( a c t i o n s , n +2 , maxn ) == SWFACTION POP

1601 && a c t i o n s [ n−1].SWF ACTIONPUSH . NumParam==1)

1602 | | OpCode ( a c t i o n s , n +3 , maxn ) ==

SWFACTION POP)

1603 {
1604 var−>Type =11; / / l a t e r p r i n t i n c / dec
1605 }
1606 e l s e
1607 {
1608 . . .

Fig. 3. Code snippet of decompile.c in Libming project

column. The third and fourth columns indicate the type of the

vulnerabilities and the buggy function where LOLLY exposes

respectively. In the fifth column, if the bug has been publicly

reported, we give its report ID, such as CVE ID or Bugzilla

ID. Otherwise, we label it as “Previously Undiscovered”.

As shown in Table V, four (4) of them have already been

reported in CVE and Bugzilla, and LOLLY also exposes them

successfully. The other four (4) are previously undiscovered

bugs found by LOLLY. We have reported them to the devel-

opers and are waiting their confirmation. Below we take a

bug found in function “decompileINCR DECR” in Libming

0.4.8 as an example. When testing the “swftocxx” utility in

Libming 0.4.8, LOLLY triggered a crash in decompile.c. The

stack dump shows the specific crash location is line 1597 in

the decompile.c file whose related code snippet is shown in

Fig.3 .

We debugged the Libming program using the crash

input and found that there is a null pointer dereference

bug on line 1597, where the program uses the pointer

regs[actions[n+1].SWF ACTIONSTOREREGISTER.Register]
without checking beforehand whether it is a null pointer or

not. Hence, line 1597 may cause a null pointer dereference,

and result in a program crash.

VI. THREATS TO VALIDITY

In terms of external validity, our results may not hold for

other programs that we did not test, though our experiments

are all conducted on real-world open-source projects, which

are widely used by the literature. As a part of future work, we

will enhance our evaluation on a larger range of real-world

software.

To mitigate internal validity, our initial seeds for fuzzing

come from the regression test suites in projects under test, or

the seed corpus of common important file-formats provided by

AFL. And when comparing two fuzzers, they are started with

the same seed corpus. Another threat to internal validity is

the correctness of our implementation of LOLLY. To mitigate
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TABLE V
BUGS EXPOSED BY LOLLY

Subject Version Vuln. type Buggy function Reported before

Binutils 2.26 Integer Overflow d unqualified name CVE-2016-4490

Binutils 2.26 Out of bounds reference scan unit for symbols CVE-2017-15022

Binutils 2.30 Null pointer dereference print symbol Previously Undiscovered

Binutils 2.30 Assertion failure find section Sourceware Bugzilla 22793

Binutils 2.32 Memory leak bfd malloc Previously Undiscovered

Libxml2 2.9.4 Null pointer dereference xmlDumpElementContent GNOME Bugzilla 773707

Libming 0.4.8 Heap buffer overflow getName Previously Undiscovered

Libming 0.4.8 Null pointer dereference decompileINCR DECR Previously Undiscovered

the threat, we built LOLLY on AFL, a state-of-art greybox

fuzzer. And the experimental results show that LOLLY gains

both effectiveness and efficiency.

VII. RELATED WORK

A. Directed fuzzing based on greybox fuzzing

Böhme et al. [15] observe that most test inputs exercise

the same few “high-frequency” paths. They model greybox

fuzzing as a Markov chain and aim to cover low-frequency

paths. Their fuzzer AFLFast can expose an order of magnitude

more unique crashes than AFL in the same time budget and

expose bugs that AFL cannot find. Furthermore, AFLGo [17]

introduces simulated annealing into seed energy schedule of

fuzzing and measures a seed by the distance from it to a target

location. To improve the runtime efficiency, it moves most

of program analysis and distance calculation from runtime to

instrumentation phase. SCDF follows the idea of modeling

greybox fuzzing as a Markov chain and leverages simulated

annealing algorithm in seed energy schedule. Different from

AFLGo, SCDF introduces the ideas of sequence coverage and

calculates on demand the sequence coverage ability of a seed,

in order to make directed greybox fuzzing more effective and

efficient.

A program expecting complex structured inputs often han-

dles with its inputs in two broad stages: a syntax parser parses

the raw input into an internal data structure and then a semantic

parser checks the data structure and performs the core logic

of the program. Some studies attempt to generate valid inputs

based on the input domains, which helps greybox fuzzers

perform deep states of programs and improve the coverage.

Zest [25], whose two key ideas are validity fuzzing and

parametric generator, can generate valid inputs that exercise

the code deep in semantic analysis stages of programs with

high coverage. Pham et al. [26] propose smart greybox fuzzing

(SGF) to generate test files for applications which expect

and process complex file formats. The mutation operators of

SGF work on the virtual file structure which allows SGF to

explore completely new input domains while maintaining file

validity. With the help of its validity-based power schedule,

SGF attempts to generate files that are more likely to expose

vulnerabilities deep in the processing logic.

Some research efforts introduce taint analysis into grey-

box fuzzing. ANGORA [14] aims to generate high quality

inputs to execute unexplored branches. It selects an uncovered

branch each time during fuzzing and utilizes taint tracking

and search algorithm based on gradient descent to solve path

constraints. In addition, it employs context-sensitive branch

count, shape and type inference and input length exploration

to improve its performance. In the future work, we plan to

employ Angora’s gradient-descent based constraints solving

method to enhance SCDF’s branch breakthrough capability.

BuzzFuzz [27] uses dynamic taint tracing to identify those

regions in a seed that influence values used at attack points,

e.g., library and system calls. Then it mutates the identified

regions to produce new inputs which preserve the underlying

syntactic structure of the original seed. So these inputs can

pass the input check/validation and reach locations deep in a

program. FAIRFUZZ [16] aims to explore rare parts of the

program under test. It first prioritizes inputs that exercise rare

parts of the program and then increases the probability that

mutated inputs can exercise the same rare parts while still

exploring different paths. SAFL [28] is an efficient fuzzing tool

augmented with qualified seed generation based on symbolic

execution and efficient coverage-directed mutation, since the

performance of mutation-based fuzzing is greatly affected by

the quality of initial seeds and the effectiveness of mutation

strategy. Its approach helps the fuzzing process to exercise rare

and deep paths with higher probability.
In the fuzzing process, in addition to the seed energy

schedule algorithm, the mutation strategy is also important

in determining the performance of a fuzzer. Another future

work for SCDF is to leverage taint analysis technique for seed

mutation in a targeted manner, which will help further improve

the detection efficiency.

B. Directed fuzzing based on symbolic execution
KATCH [7] presents a technique based on symbolic ex-

ecution to automatically test software patches. It employs

several synergistic heuristics based on static and dynamic

program analysis to guide the exploration process. Ma et al. [2]

propose two directed symbolic execution strategies, which are

shortest-distance symbolic execution (SDSE) and call-chain-

backward symbolic execution (CCBSE). SDSE uses a distance
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metric in an inter-procedural control flow graph (ICFG) to

guide symbolic execution towards targets, that is, it prioritizes

the program branches associated with the shortest path to

the target in ICFG. CCBSE first performs forward symbolic

execution in the function containing the target line and then

iteratively searches the calling function backward along the

call chain until it finds a feasible path from the program entry

to the target line.

Do et al. [6] propose a goal-oriented test method to ef-

fectively and efficiently explore security vulnerability errors,

where a test goal is a potential security violation. They use

type inference analysis to diagnose potential security viola-

tions and dynamic symbolic execution for test input generation

using chaining approach. The main idea of chaining approach

is to find the statements that must be executed before the

execution of a given test target, and use these statements

to form a sequence of events which guide the exploration

process of symbolic execution. Dinges et al. [9] present a

method that focuses on the security-sensitive functions and

performs symbolic execution on the vulnerability-related ex-

ecution paths, which effectively mitigates the path explosion

problem in symbolic execution technique. First, it analyzes the

source code of a program through pattern matching technology

to find all hotspots that may cause vulnerabilities and build

security constraints (SC) for each hotspot. Then, it analyzes

the program backwards, builds a data flow tree for each hotspot

and obtains all paths that can reach the hotspot. Finally,

symbolic execution is performed along the paths, and path

constraints (PC) is collected. If PC∧¬SC is satisfied, the

hotspot is reported to be vulnerable.

WOODPECKER [11] directs symbolic execution toward the

program paths relevant to system rules and soundly prunes

redundant paths. Dowser [29] pinpoints the instructions that

access arrays in loops and ranks them according to an estima-

tion of how likely they are to contain interesting vulnerabilities

(buffer overflow and underflow). It determines which input

bytes influence the array index with taint analysis and perform

symbolic execution on the program, making only this set of

inputs symbolic. BugRedux [21] is a directed whitebox fuzzer

built on the symbolic execution engine KLEE, and aims to

help developers to reproduce field failures in house. It takes

a sequence of target locations and attempts to generate test

cases which exercise the locations in the sequence in order.

BugRedux considers four types of increasingly rich execution

data for reproduction, i.e. points of failure, stack traces, call

sequences, and complete program traces, where call sequences

show best performance.

The above work utilizes symbolic execution technique to

explore specific target codes of a program directionally. They

collect the path constraints to the target code, and generate test

cases that satisfy the constraints with the help of constraint

solvers. By contrast, as a greybox fuzzing technique, SCDF

performs lightweight instrumentation on a program under

test and does not require expensive program analysis and

constraints solving at runtime.

VIII. CONCLUSION

In this paper, we present a novel lightweight directed

fuzzing technique SCDF, which is guided by a set of user-

specified statement sequences. We also propose a novel energy

schedule algorithm which adjusts a seed’s energy according

to its ability of covering the given statement sequences.

Instead of statically calculating all distance information in

instrumentation phase, SCDF evaluates the sequence coverage

of seeds on demand using a lightweight calculation scheme at

runtime, which improves runtime efficiency without introduc-

ing excessive overhead in instrumentation phase.

We implemented this technique in a tool called LOLLY,

and evaluated LOLLY to three application scenarios, i.e. true

positive verification, crash reproduction, and bugs exposure,

in comparison with two state-of-the-art tools, i.e. AFLGo and

BugRedux on several real-world software. The experimental

results demonstrate that LOLLY outperforms AFLGo and

BugRedux both in terms of effectiveness and efficiency.

The performance of our technique is affected by the given

statement sequences and set of initial seeds. In the future

work, we plan to investigate how to optimally set target

statement sequences. For example, what is the optimal length

of a sequence to guide the directed fuzzing process, and how

the independence of statements in a sequence may affect the

performance.
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