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ABSTRACT

Existing greybox fuzzers mainly utilize program coverage as the
goal to guide the fuzzing process. Tomaximize their outputs, coverage-
based greybox fuzzers need to evaluate the quality of seeds properly,
which involves making two decisions: 1) which is the most promis-
ing seed to fuzz next (seed prioritization), and 2) how many efforts
should be made to the current seed (power scheduling). In this
paper, we present our fuzzer, Cerebro, to address the above chal-
lenges. For the seed prioritization problem, we propose an online
multi-objective based algorithm to balance various metrics such
as code complexity, coverage, execution time, etc. To address the
power scheduling problem, we introduce the concept of input po-
tential to measure the complexity of uncovered code and propose a
cost-effective algorithm to update it dynamically. Unlike previous
approaches where the fuzzer evaluates an input solely based on
the execution traces that it has covered, Cerebro is able to fore-
see the benefits of fuzzing the input by adaptively evaluating its
input potential. We perform a thorough evaluation for Cerebro
on 8 different real-world programs. The experiments show that
Cerebro can find more vulnerabilities and achieve better coverage
than state-of-the-art fuzzers such as AFL and AFLFast.

CCS CONCEPTS

• Security and privacy→ Vulnerability scanners.
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1 INTRODUCTION

Fuzzing, or fuzz testing, is progressively gaining popularity in both
industry and academia since proposed decades before [1]. Various
fuzzing tools (fuzzers) have been springing up to fulfill different
testing scenarios in recent years [2]. These fuzzers can be classified
as blackbox, whitebox, and greybox based on the awareness of
the structural information about the program under test (PUT).
Blackbox fuzzers [3] have no knowledge about the internals of PUT.
So they can scale up but may not be effective. On the contrary,
whitebox fuzzers utilize heavy-weight program analysis techniques
(e.g. symbolic execution tree [4]) to improve effectiveness at the
cost of scalability. To have the best of both worlds, greybox fuzzers
(GBFs), such as AFL [5], are advocated to achieve scalability yet
effectiveness. Fig. 1 depicts the workflow of greybox fuzzing.

A recent trend in academia is to make greybox fuzzing whiter
with various light-weight program analysis. For example,Vuzzer [6],
Steelix [7], and Angora [8] mainly help GBFs to penetrate path
constraints via modifications on the seed mutator and feedback col-
lector modules in Fig. 1. However, based on the nature that fuzzing’s
results are strong related with the seeds1, the effects of all the works
on these modules can be further maximized by enhancing the seeds’

1In this paper, we denote all the files fed to the PUT by fuzzers as inputs, and only
those inputs kept by fuzzers for subsequent mutations as seeds.

https://doi.org/10.1145/3338906.3338975
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quality. To be more specific, as shown in the Fig. 1, GBFs need to
deal with two fundamental problems — how to select the next seed
to fuzz (seed prioritization) and how many new inputs need to
be generated with the selected seed (power scheduling).

In most GBFs, new inputs are generated by mutating the seeds.
If an input exercises a new path, it is retained by the GBF as a new
seed; otherwise, it is discarded. In such a manner, the GBFmaintains
an increasing set of seeds. To maximize the number of bugs detected
within a limited time budget, the GBF needs to wisely put the seeds
in order by prioritizing the seeds with better quality. We call this
seed prioritization problem. After seed prioritization, the GBF
needs to decide, for each seed, the number of new inputs (a.k.a.
“energy” in AFLFast [9]) to be generated from that seed. Ideally,
the GBF should allocate more energy to a seed that brings more
benefits via mutations. We call this power scheduling problem.

Some research endeavors have been made on the two prob-
lems [6, 9, 10]. Among these studies, Shudrak et al. [10] propose
to use software complexity to facilitate the seed prioritization for
fuzzers based on the assumption that complex code is more error
prone. In AFLFast [9], Böhme et al. address both problems by pri-
oritizing the seeds that exercise rarely executed paths, in hope that
fuzzing such seeds can achieve more coverage rapidly.

Despite these efforts, two challenges remain to be addressed.
The first challenge is — whatever information (paths rarity or
code complexity) about the execution traces are utilized, existing
GBFs are not aware of the uncovered code close to the execution
trace (i.e. context). Lacking such knowledge is because that con-
text awareness normally requires heavy-weight program analysis
techniques, which can hinder the performance of GBFs. However,
context awareness can be very helpful in the fuzzing process, e.g.,
if the neighboring code around an execution trace gets covered,
then mutating the seed holding this trace becomes less beneficial as
the potential of leading to new coverage has dropped. The second
challenge is — existing fuzzers either utilize a single-objective for
seed prioritization [10] or mix several objectives via linear scalar-
ization into one single-objective (a.k.a. weighted-sum) [5] [9] to
perform seed prioritization. On one hand, using one single objective
may cause bias and starve certain seeds. On the other hand, the
weights used in linear scalarization are empirically decided without
statistical justifications.

In this paper, we propose Cerebro to make proper decisions for
seed prioritization and power scheduling by addressing the above
challenges. Cerebro focuses on the seed evaluator and seed queue
in Fig. 1. To bring context awareness to GBFs, we propose a new
definition, named input potential — the complexity of not yet
covered code near the execution trace of the input, together with
an online algorithm to efficiently calculate the potentials of inputs
with the ever changing context. To balance multiple important but
conflicting objectives, we propose a multi-objective optimization
(MOO)model together with a nondominated sorting based algorithm
to quickly calculate the Pareto Frontier for a growing set of seeds. In
Cerebro, the MOO model is applied to perform seed prioritization
and input potential is applied to facilitate power scheduling.

We implement Cerebro and evaluate it with 8 widely-used
real-world programs from different projects. Cerebro outperforms
AFLFast and AFL with significantly improved bug detection ca-
pability while maintaining a good coverage. Moreover, we find 14

previously unknown bugs in mjs and xed , and 1 CVE in radare2.
Besides, all the new bugs have been confirmed and fixed.

The contributions of the paper are as following:
• We formulate a new concept, input potential, which represents
the complexity of uncovered code close to an execution trace.
We also propose a cost-effective algorithm to quickly calculate
the input potential to facilitate power scheduling.

• We propose a multi-objective based model together with an effi-
cient sorting algorithm for seed prioritization.

• We implement Cerebro and evaluate its effectiveness with ex-
periments from several aspects. The results are promising as we
discover 14 previously unknown bugs and 1 CVE in widely-used
open-source projects and all these bugs are confirmed and fixed.

2 BACKGROUND & PROBLEM STATEMENT

2.1 Background of Greybox Fuzzing

The workflow of greybox fuzzing is shown in Fig. 1. The seed eval-
uator in the GBF first tries to select a seed from the queue and
the selected seed is called prioritized seed. Then the seed evaluator
calculates a power schedule for the prioritized seed to determine
the number of new test inputs to be generated from that seed (en-
ergy). The prioritized seed, together with its power schedule are then
passed to the seed mutator to mutate and generate new test inputs.
Then, the executor executes the PUT with the mutated input. After
execution, the feedback collector collects the runtime information
such as edge coverage and helps to decide whether the test input
should be kept as a new seed or not. Alternatively, if the test input
causes the PUT to crash, then it is kept as a proof-of-crash (PoC).

2.2 Problem Statement

Definition 1 (Seed Prioritization). Given a set of seeds S, seed
prioritization is to select a set of prioritized seeds as S ⊆ S which is
a solution of the optimization problem:

Min F(S)
s.t. F(S) = ∑

s ∈S
O(M1, · · · ,Mk ) (1)

where O(M1, · · · ,Mk ) is an objective function (in practice this
usually denotes a cost), each Mi (i = 1, · · · ,k) denotes a metric
that measures the quality of a seed. Existing fuzzing tools, such as
AFL, typically apply a scalarized objective function in the form of
O(M1, · · · ,Mk ) =

∑k
i=1Mi (s), andMi may measure the execution

time, file size, number of covered edges etc.

Definition 2 (Power Scheduling). Given a set of seeds S to be
fuzzed and a duration of n epochs, a power schedule for S is to assign
an epoch number xs for each input s ∈ S:

Max B(S) = ∑
s ∈S

(B(s,xs ))

s.t.
∑
s ∈S

(xs ) = n
(2)

where B(s,xs ) denotes the number of bugs found by exercising
seed s for xs epochs and usually two types of epochs are used:
fixed-run and fixed-time.

AFL’s power scheduling is based on the performance score of the
seed, which is calculated mainly based on the edge coverage and
execution time of that seed. While AFLFast allocates more energy
to seeds that can cover rare edges (low-frequency paths in [9]).
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Figure 1: The workflow of greybox fuzzing

3 MOTIVATION EXAMPLE & SYSTEM

OVERVIEW

3.1 Motivation Example

1 i n t m j s _ f f i _ c a l l ( . . . ) { / / Func A
2 . . .
3 m j s _ p a r s e _ f f i _ s i g n a t u r e ( . . . ) ; / / Func B
4 . . .
5 }
6 i n t m j s _ p a r s e _ f f i _ s i g n a t u r e ( . . . ) {
7 . . .
8 i f ( ∗ tmp_e != ' ( ' ) {
9 i f ( mjs−>dlsym==NULL ) {
10 mj s_p r ep end_e r r o r f ( ) ; / / Func C
11 goto c l e an ;
12 }
13 mjs−>dlsym ( . . . ) ; / / Func D
14 . . .
15 }
16 e l s e {
17 goto c l e an ;
18 }
19 . . .
20 c l e an :
21 . . .
22 }

Listing 1: code snippets frommjs

Listing 1 is a code segment taken from mjs [11]. We omit the
exact details and assign a short notation for each of the functions
for convenience. Inside Function B, it may call C or D based on
two branch conditions. Suppose a seed sa executes the false branch
at line 8 and covers functions {A,B,D} with the function level
execution trace A → B → D. Fig. 2 shows two different coverage
states corresponding to Listing 1. At state 1 functionC is not covered
by any exercised seeds while at state 2 it is covered by one or more
seeds. Since at state 1, sa has the potential to be mutated to execute
the true branch at line 8, it is reasonable to generate more new test
inputs with sa . When it is at state 2, where the true branch at line 8
has already been covered, the possibility of gaining more coverage
via mutating sa decreases. Therefore, the fuzzer should assign less
energy for sa at state 2. Existing GBFs are not aware of the change
from state 1 to state 2. In fact, their evaluation of the quality of sa
remains unchanged between these states. Hence, when evaluating
a seed, the GBF should be aware of the context (uncovered code)
of its trace to evaluate potential benefits brought by mutating that
seed.

3.2 Approach Overview

Fig. 3 depicts the basic work flow andmain components of Cerebro.
The input of the overall system is a set of initial seeds and the
outputs are the decisions for seed prioritization and the power
scheduling. Cerebro consists of four main components (the green
rounded rectangles in Fig. 3): static analyzer, dynamic scorer, multi-
objective sorter and power scheduler.

A

B

C D

(a) state 1

A

B

C D

(b) state 2

Figure 2: Seed execution traces under different coverage

states.
∗

∗Legend: yellow circles denote the functions covered by seed sa ; at state 1,C (white) is not
covered previously; at state 2,C (grey) has been covered by other seed(s).

Seed Inputs Execution Traces

Dynamic ScorerStatic Analyzer

Multi-objective Scorer Power Scheduler

Complexity 
Score

Potential 
Score

New 
Edge? File Size Coverage Exec 

Time

Seed Prioritization Power Scheduling

static analysis related metrics

inherited properties of inputs

Figure 3: Overview of Cerebro
∗

∗Legend: green rounded rectangles denote the major components of the system; squashed
rectangles in the grey boxes denote scores or metrics associated with a seed.

In Cerebro, static analyzer scans throughout the source code
and calculates a complexity score for each function. As every seed
is associated with an execution trace, Cerebro calculates the com-
plexity score for the trace by accumulating the complexity scores of
functions on it. Details of static analyzer are in §4.1. The dynamic
scorer updates the potential scores for the seeds on the fly. The ini-
tial values of the potential scores are derived from the complexity
scores, which is elaborated in §4.2.

The outputs of static analyzer and dynamic scorer are then sup-
plied to multi-objective sorter and power scheduler to help with the
decisions of seed prioritization and power scheduling. For the seed
prioritization problem defined in Def. 1, the multi-objective sorter
utilizes a cost-effective nondominated sorting algorithm to dynam-
ically select the prioritized set of seeds. A detailed explanation of
the chosen objectives, the MOO model and the sorting algorithm
is illustrated in §4.3. For the power scheduling problem defined in
Def. 2, the power scheduler determines the energy for each seed
with the outputs from both static analyzer and dynamic scorer. The
power scheduler is elaborated in §4.4.
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4 METHODOLOGY

4.1 Static Analyzer

In Cerebro, static analysis is used to evaluate the complexity of
each function of the PUT and lay the foundation for dynamic scorer.
We use a mixture of two complexity metrics to evaluate the func-
tion level code complexity, namelyMcCabe’s Cyclomatic Complexity
(CC) [12] and Halstead Complexity Measures (H .B) [13]. CC repre-
sents the structural complexity of the function and H .B represents
the complexity based on the number of operations and operators.
The reasons of choosing them are as follows: 1)CC is a widely-used
complexity metric based on the number of edges and nodes in a
graph; 2) H .B is proven to be the second best complexity metric
to indicate code vulnerability in [10]; 3) CC and H .B complement
each other, since CC evaluates structural complexity while H .B
evaluates operational complexity.

After calculating CC and H .B for each function2, feature scaling
is applied to normalize eachmetric score separately. The normalized
scores are then combined together to form the static complexity
score with the following equation. This complexity score remains
unchanged throughout the fuzzing process.

c_score =
norm(CC) + norm(H .B)

2
· 100 (3)

Based on the complexity scores, we initialize the potential scores
for each function. The key rationale behind the potential score is
that each function brings bonus scores to the potential scores of its
predecessors, and once it is covered by the fuzzer, the bonus scores
are removed. Therefore, the initial potential score for a function is
calculated by accumulating the bonuses brought by its successors.
The formula to calculate the bonus that a function A brings to its
predecessor B is:

bonus(A,B) =
⌊

c_scoreA
2Distance(B,A)

⌋
(4)

where ⌊·⌋ denotes the floor function, c_scoreA is the complexity
score of A and Distance(B, A) is the shortest distance from B to A
in call graph.

For example, in Fig. 4a, A, B, C , D, E, F and G denote functions
in the program. Assume F has a complexity score of 9. According
to Equation 4 the bonuses it brings to its predecessors are: 4 for
D (⌊ 9

21 ⌋), 2 for B (⌊ 9
22 ⌋) and 1 for A (⌊ 9

23 ⌋). Similarly, the bonus G
brings to D is 2. Thus, because D has F and G as its successors, its
dynamic score is initialized to be 6 (4 + 2).

4.2 Dynamic Scorer

The purpose of the dynamic scorer is to evaluate the complexity
of the code that is not covered by the fuzzer presently but could
possibly get covered through mutations. Although a thorough ex-
amination of coverage with external tools like gcov [14] can achieve
this, it will greatly decrease the execution speed of the PUT. Fur-
thermore, calculating accurate coverage on basic-block level can
introduce significant overhead to GBFs. Due to these reasons, we

2Due to page limit, we omit the formula to calculate CC and H .B . Interested readers
can refer to [10] for details.

propose the following approach for function-level dynamic potential
evaluation (DPE).

Given a function A, the calculation of potential score is:

p_score(A) = ∑
F ∈SA

bonus(F ,A) (5)

where bonus(F ,A) is the bonus score that F ∈ SA brings to A, and
SA is the set of uncovered successors of A.

After the dynamic potential score is calculated, it is combined
with the static complexity score. The combined score will be sup-
plied to the power scheduler as a parameter (§ 4.4). Given a function
A, the combined score is:

combined_score(A) = c_score(A) + p_score(A) (6)

where c_score(A) is the static complexity score forA andp_score(A)
is the dynamic potential score for A.

Here, we use a step-by-step example shown in Fig. 4 to illustrate
how Cerebro performs DPE. Each subfigure shows a coverage state
held by the fuzzer. Each node in Fig. 4 is a function — yellow nodes
are covered functions and white nodes are uncovered functions.
Fig. 4a shows the state before fuzzing. After given an initial input
covering function A, B and E (named as ABE for convenience), the
fuzzer holds the state shown in Fig. 4b. Since B is covered, the bonus
it brings to A is removed — the function-value pair A : 2 for node B
is removed from Fig. 4b. So the potential score of A is updated to 3
(5− 2). The potential score of B is updated to 5 since its successor E
is covered. Thus, the potential score of input ABE is calculated by
accumulating the potential scores of each function on its execution
trace — the potential score of input ABE is 8 (3 + 5 + 0). Similarly,
the complexity score of input ABE is calculated by accumulating
the complexity scores of each function on its execution trace —
the complexity score for ABE is 9 (2 + 4 + 3), and it never changes
through out the fuzzing process. Thus, the final combined score of
ABE is 17 (9 + 8) in Fig. 4b. After generating two more inputs AC
and ABDF , the fuzzer holds the state shown in Fig. 4c. Then, the
static complexity score for input ABE remains 9 while its potential
score drops to 1 (0 + 1 + 0). The combined score of ABE now is 10
(9 + 1). We can clearly see that as more functions under the trace
of ABE are covered, the potential score and the total score of ABE
decrease. Note that fuzzers without awareness of input potentials
do not distinguish between state 2 and state 3 and thus will not
adjust power scheduling accordingly. Finally, assuming the fuzzer
covers the last function G, now it holds the state shown in Fig. 4d.
Since all functions are covered, all input potentials are used up (drop
to 0) and the combined score of a function is now only determined
by its complexity score.

4.3 Multi-objective Sorter

The purpose of the multi-objective sorter (MO sorter) is to prioritize
the seeds via various metrics. In this section, we first introduce
the objectives for prioritizing seeds, then describe the MOO model
addressing the problem defined in Def. 1, and finally present the
nondominated sorting algorithm which solves the problem based
on the MOO model.

4.3.1 Metrics. The metrics for seed prioritization are file size (M1),
execution time (M2), number of covered edges (M3), whether the seed
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No Input
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B-4-5 C-2-0

D-5-6 E-3-0

F-9-0 G-5-0

ABE: 9 8 17

D: 4
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A-2-0

B-4-1 C-2-0

D-5-2 E-3-0

F-9-0 G-5-0

ABE: 9 1 10
AC: 4 0 4

ABDF: 20 3 23

D: 2
B: 1

(c) step 3

A-2-0

B-4-0 C-2-0

D-5-0 E-3-0

F-9-0 G-5-0

ABE: 9 0 9
AC: 4 0 4

ABDF: 20 0 20
ABDG: 16 0 16

(d) step 4

Figure 4: A step-by-step demonstration of the dynamic scoring algorithm
∗

∗Legend: Each node is a function. For example, in F -9-0, the letter (F ) is the function name, the first number (9) in the node is the complexity score, the second number (0) is the potential score. The
function-value pairs (e.g., D :4 for node F in Fig.4a) associated with the curly brackets are the bonus scores that the function brings to its predecessors.

brings new edge coverage (M4) and its static complexity score of the
execution trace (M5)3. The rationale of using these metrics is:
• file size: smaller seeds are more compact — mutations on them
are more likely to hit interesting bytes.

• execution time: seeds with shorter execution time can increase the
average speed of the PUT and consequently the fuzzing efficiency.

• number of covered edges: seeds with higher coverage are preferred,
like inmost GBFs — intuitively, fuzzing a seedwith good coverage
might generate more test inputs with good coverage.

• whether the seed brings new edge coverage: seeds covering new
edges are preferred because fuzzing such seeds are more likely
to bring new coverage.

• static complexity score of the execution trace: seeds covering more
complex code are preferred because intuitively complex code
tends to be more error-prone [10].
Our model to handling the metrics takes into account two facts.

1). Some of these metrics are conflicting each other, e.g., a seed cov-
ering more complex code may execute slower. 2). The scalarization
model adopted by existing GBFs needs a proper weighting schema,
which may vary from project to project. Thus, we need a MOO
model to balance between these metrics.

4.3.2 MOO Model for Seed Prioritization. With the above multiple
metrics, a new MOO model can be inferred as follows:

Definition 3 (Multi-objective Seed Prioritization). Given
a set of seeds S, multi-objective seed prioritization is to select a set of
seeds S:

Min
( ®F(S)) = Min

(
O1(s),O2(s)...Ok (s)

)
, s ∈ S (7)

where ®F(S) is an objective vector that denotes k objective functions
ranging from O1 to Ok .

In our case, k = 5 as we have 5 metrics. Instead of solving the
problem in Def. 1 by scalarizing different metrics into a single
objective function, we set a separate objective for each metric in

3Potential score is not used in seed prioritization (see Fig. 3). In implementation, only
when the fuzzer chooses to fuzz a seed, its potential score will be lazily updated — the
actual potential score is calculated on the fly after a seed is selected to be fuzzed, since
it is too costly to update the potential score for every seed every time whenever a new
function is covered.

our MOO model. Here is the mapping between metrics and ob-
jectives: let Mk (s) denote the k-th metric for seed s ∈ S, we have
Min(O1(s)) = Min(M1(s)), Min(O2(s)) = Min(M2(s)), Min(O3(s)) =
−Max(M3(s)), Min(O4(s) = −Max(M4(s)), Min(O5(s)) = −Max(M5(s)).
The reason behind the mapping is that, we want to minimizeM1,
M2 but maximizeM3,M4,M5.

4.3.3 Pareto frontier. Pareto frontier calculation is one of the most
commonly used posteriori preference techniques for MOO prob-
lems. In our proposed MOO model, the prioritized seeds are inside
the Pareto frontier of the entire set of seeds. Given a set of the
seeds S and an objective vector ®F = [f1, f2, · · · , fk ], we say s
dominates(≺) s ′ iff :

fi (s) < fi (s ′), ∀i ∈ {1, 2, · · · ,k}

where s, s ′ ∈ S; the Pareto frontier(P ) is defined as [15]:

P(S) = {s ∈ S | {s ′ ∈ S | s ′ ≺ s, s ′ , s} = ∅} (8)

Theoretically, the calculation of Pareto frontier requires to com-
pare each seed against all the other seeds to check their domination
relation. However, as shown in Fig. 1, S keeps expanding as new
seeds come in. It is costly to recalculate the Pareto frontier every
time a new seed is added. To tackle this problem, we propose Algo. 1
based on the nondominated sorting in [16].

4.3.4 Nondominated Sorting. In greybox fuzzing, the seeds are
stored in a queue as shown in Fig. 1. To efficiently calculate the
Pareto frontier, the entire queue is splitted into four sub-queues as
shown in Fig. 5. They are Frontier (P ), Dominion (D), Recycled (R)
and Newly Added (N ).

The basic idea is to keep popping seeds from P for fuzzing, which
requires P to be maintained as the Pareto frontier of the seeds not
yet fuzzed in the current cycle. To efficiently calculate the Pareto
frontier, we adopt the concept of rank from nondominated sorting.
Each seed is associated with a rank representing the domination
relation. Intuitively, the value of the rank for a seed represents the
number of seeds dominating it. For instance, seeds with rank 0 are
not dominated by any other seeds so they are on the Pareto frontier;
seeds with rank 1 are only dominated by seeds with rank 0; seeds
with rank 2 are only dominated by seeds with rank 0 and 1, and so
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Algorithm 1: Cycle-based Nondominated Sorting
1 P = D = N = R = ∅;
2 load D with the user provided test seed(s);
3 queue_cycle = 0;
4 queue_rank = -1;
5 def update_ranks(a: seed, b: seed):
6 if a , b then
7 if a ≺ b then
8 b .rank += 1
9 if b ≺ a then

10 a.rank += 1;
11 while not (time budget reached or kill signal received) do
12 if P is ∅ then

13 n.rank = queue_rank + 1 for n in N;
14 D = D ∪ N ;
15 for n in N do

16 for d in D do

17 update_ranks(d , n);
18 N = ∅;
19 if D is ∅ then

20 queue_cycle += 1;
21 queue_rank = -1;
22 r.rank = 0 for r in R;
23 for r in R do

24 for r’ in R do

25 update_ranks(r , r ′);
26 D = D ∪ R;
27 R = ∅;
28 queue_rank += 1;
29 for d in D do

30 if d.rank == queue_rank then

31 pop d from D ;
32 push d into P ;
33 pop s from P ;
34 update power schedule for s ;
35 fuzz s ;
36 push s into R;

on. So given a set of seeds S and their ranks R, P is calculated as:

P(S) = {s ∈ S | s .rank =min(R)} (9)

In Algo. 1, the variable queue_rank maintains the min(R) in
Equation 9. R is used to store the seeds fuzzed in the current cycle.
D is to store the seeds that are not fuzzed in the current cycle and
are dominated by the seeds in P . N is to temporarily store the in-
teresting seeds kept by the fuzzer through fuzzing the seed popped
from P . The logic for updating ranks according to domination rela-
tion between seeds corresponds to line 5 – line 10. The calculation
of P corresponds to line 29 – line 32. Each time the fuzzer uses up
the seeds in P , a new Pareto frontier will be calculated based on
N and D and stored into P (line 12 to line 32 in Algo. 1). If both N
and D are empty during calculation of the new P , it indicates that
the fuzzer has fuzzed every seed in current cycle and a new cycle
starts. Now that every seed is stored in R, the fuzzer will move the
seeds from R to D and calculate P accordingly (line 19 to line 32).

The benefit of maintaining the rank is to avoid redundant dom-
ination relation checks between seeds that are already compared
with each other. Assuming there are n seeds in N and d seeds in
D, (d + n) · (d + n − 1) checks are needed without maintaining the
ranks. However, only n · (d + n − 1) checks are needed with the
ranks maintained, saving a total number of d2 + nd − 1 checks.

Initial Seed Inputs

Frontier Dominion Recycled

Input Newly Added Input

Main Fuzzing Process (mutation, trace checking, etc.)

After One Cycle

Figure 5: Structure of the seed queue in Cerebro

4.4 Power Scheduler

The purpose of power scheduler is to assign proper energy to the
seeds selected by the MO sorter addressing the problem defined in
Def. 2. Most GBFs calculate the energy for a seed as follows4:

enerдy = allocate_enerдy(qi ) (10)

where qi is the quality of the seed.
InCerebro, the power scheduler incorporates the combined score

of the static complexity and the dynamic potential for seed energy
allocation:

enerдy′ = enerдy · sf ·
is

as
(11)

where enerдy is the energy calculated in Equation 10, sf is the score
factor, is is the combined score of the seed and as is the average
combined score of all the seeds.

The combined score enables the fuzzer to fully exploit the knowl-
edge about the complexity of both covered and uncovered code.
The static complexity score indicates the inherent complexity of
the execution trace of a seed, while the dynamic potential score
indicates the complexity of uncover code near the execution trace.
By combining both scores, Cerebro allocates more energy for seeds
with better potential of leading to bugs or new edges.

5 IMPLEMENTATION AND EVALUATION

We implement a novel fuzzer, Cerebro. Specifically, the static com-
plexity analyzer is written based on Clang’s [17] Python binding
and lizard [18] with about 800 lines of Python. The instrumenta-
tion module used to track the execution traces is implemented in
1400 lines of C++ on top of LLVM [19] framework. The core dy-
namic fuzzing logic of Cerebro is an extension of our fundamental
fuzzing framework — Fuzzing Orchestration Toolkit (FOT) [20],
which is a Rust implementation of AFL for better modularity and
extensibility. A more detailed introduction about Cerebro, together
with a demonstration kit, is available at http://sites.google.com/
site/cerebrofuzzer/.

5.1 Evaluation Setup

Evaluation Dataset. The evaluation is conducted on 8 widely-
used real-world open source programs, each of which is from a
different project in a different domain.

mjs is a light weight javascript engine for embedded system [11].
pngfix is a tool from libpng [23]. fuzzershell is the official fuzzing

4For clarity, we omitted some details in Eqt. 10 and Eqt. 11. In actual implementation
for both Cerebro and AFL, the fuzzers utilize several different metrics to calculate qi
(a.k.a. performance_score in [5] or α (i) in [9]).

http://sites.google.com/site/cerebrofuzzer/
http://sites.google.com/site/cerebrofuzzer/
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Table 1: Details of the evaluated programs

∗"Stars" means the number of Github stars.

Program Size (B) Stars Duration Project

fuzzershell 3.7M 851 18y SQLite [21]
mjs 291.0K 686 2y8m MJS [11]
nm 6.0M - 28y Binutils [22]
cxxfilt 13.0M - 28y Binutils [22]
pngfix 313.0K 268 23y2m libpng [23]
radare2 60.0M 8002 13y Radare2 [24]
xed 16.0M 732 2y8m Intel XED [25]

harness of sqlite [21]. xed is the disassembler used in Intel PIN [26].
radare2 is a famous open source reverse engineering tool [24].
cxxfilt is a program in GNU Binutils [22] to demangle C++ function
names. nm is a program from GNU Binutils to list symbols in an
object file. Specifically, we used the same version (version 2.15) of
cxxfilt and nm as in the AFLFast paper for more direct comparison.
Furthermore, we also ran Cerebro on a newer version (version
2.29) of nm in hope of finding new bugs. For clarity, we denote nm
version 2.15 as nm(old) and nm version 2.29 as nm(new).

From Table 1, we can see that the selected programs are very
popular in the community and their sizes vary from a few hundred
KBs to tens of MBs. We can also see that the projects are long-time
supported. The diverse dataset helps to demonstrate the generality
and scalability of Cerebro.
Evaluated Tools. We compared Cerebro with two other fuzzers,
namely AFL and AFLFast [27]. AFL is by far the most popular
GBF. AFLFast represents the state-of-the-art seed prioritization
and power scheduling techniques. All the mutation operations are
the same across the tools and only non-deterministic mutation
operations are used because power scheduling does not affect the
deterministic mutations [28].
Experimental Infrastructure.We conducted all our experiments
on a machine of 12 Intel(R) Xeon(R) CPU E5-1650 v3 cores and
16 GB memory, running a 64-bit Ubuntu 16.04 LTS system. Each
experiment was repeated for 10 times and each took 24 hours except
for radare2, which took 72 hours due to its slow execution speed.
Research Questions. We aim to answer these questions:
RQ1. How is the crash detection capability of Cerebro?
RQ2. How is the vulnerability detection capability of Cerebro?
RQ3.How do seed prioritization and power scheduling in Cerebro
affect the performance separately?

5.2 Crashes (RQ1)

During the experiments, we found crashes in six programs: mjs,
cxxfilt, nm(old), nm(new), xed and radare2. We follow AFL’s def-
inition of unique crash, i.e., two crashing inputs with the same
edge trace are counted as the same crash. Unique crash serves as
a good indicator of a fuzzer’s capability of exercising error-prone
paths [9, 29].

Fig. 6 shows the average number of unique crashes found over
time in 24 hours by Cerebro, AFLFast, and AFL for ten runs. In
general, it is obvious that Cerebro significantly outperforms AFL
and AFLFast as to unique crashes found over time. From the trends
of the plots, we can see that Cerebro not only finds more crashes

(a) mjs (b) cxxfilt

(c) nm(new) (d) nm(old)

(e) xed (f) radare2

Figure 6: Unique crashes found over time (Higher is better)

after 24 hours but also finds them faster. This indicates Cerebro is
both efficient and effective for crash exposure.

In particular, we can see that all the fuzzers found less crashes
in the newer version of nm and AFL even failed to find any crash
in 24 hours. This is as expected because the developers patched the
bugs reported in the old version. On one hand, for the old version
with much more bugs, Cerebro can find considerably more crashes
(at least 30%) than both AFL and AFLFast. On the other hand, for
the new version with existing bugs fixed and new bugs introduced,
Cerebro can still find substantially more crashes with a shorter
time.

Table 2 shows the statistic test results for this experiment. As
suggested by Klees et al. [30], we adopted the MannWhitney U-test
and the Vargha-Delaney Â12 value [31] here. The MannWhitney U-
test measures the statistical significance of the results. The Vargha-
Delaney Â12 value measures if we randomly pick one run out of
the ten runs for both Cerebro and its competitor, the probability
that Cerebro performs better.

In general, we can see that Cerebro finds significantly more
crashes than both AFL and AFLFast. Most of the Â12 values are
also above the conventionally large effect size (0.71) [32]. The pitfall
comes to the case of nm(new), where all the fuzzers tends to find
very few crashes. Despite that, Cerebro still performs a bit better
than the other two tools on nm(new). We can conclude thatCerebro
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Table 2: Details of the unique crashes detected
∗

∗statistically significant results by Mann-Whitney U Test are marked as bold; C stands for

Cerebro; AF stands for AFLFast; A stands for AFL.

Project Average Crash # Â12
C AF A AF A

mjs 250.7 173.3 223.8 0.97 0.85

cxxfilt 1031.7 840.4 905.3 1.00 0.92

nm(old) 908.5 671.0 497.5 0.91 1.00

nm(new) 0.6 0.1 0.0 0.56 0.60
radare2 8.8 0.6 7.2 1.00 0.66

xed 3019.0 797.0 44.7 0.90 1.00

performs better than AFL and AFLFast in terms of crash detection
from the statistic point of view.

From the analysis of Figure 6 and Talbe 2, we can positively
answerRQ1 that Cerebro significantly outperforms the state-
of-the-art fuzzers in terms of crash detection.

5.3 Vulnerabilities (RQ2)

As suggested by Klees et al., besides unique crashes, researchers
should also use unique bugs as the ground truth for fuzzer evalua-
tion [30]. This is because several unique crashes could be related
to one unique bug with the same root cause. After scrutiny, we
further classified all the unique crashes from these programs into 16
unique previously unknown bugs according to how the developers
apply patches5. Notably, the bug in nm(new) is later verified to be a
reproducer of CVE-2017-13710.

Figure 7 is a boxplot showing the Time-To-Exposure (TTE) for
the bugs that every fuzzer can find for at least four out of ten experi-
ment runs. The y-axis is time. The dark bars inside the boxes are the
median values. The top border of a box indicates the 75th percentile
and the bottom border of a box indicates the 25th percentile. Hence,
a lower position of the box indicates a shorter TTE for a bug, which
means better performance. Moreover, a small box size means the
variance between every run is small and the fuzzer’s performance
is stabler.

In general, we can see that the Cerebro can detect the bugs
with a shorter time comparing to AFLFast and AFL. On average,
Cerebro can find the bugs 4.7 times and 2.9 times faster than
AFLFast andAFL respectively. In most cases, the box of Cerebro is
also smaller than AFLFast’s and AFL’s, which means that Cerebro
can stably detect those bugs earlier than them. However, in some
cases, the box size of AFLFast is the smallest. This is because
AFLFast finds the bug in fewer runs and the performance appears
to be stabler. For example, in xed invalid-read-3, AFLFast only finds
the bug in four experiment runs while Cerebro finds the bug in all
the ten runs (see Table 3) and one or two outliers make the box of
Cerebro larger in size.

Table 3 shows the statistic test results for this experiment. The #
runs column shows the number of runs that a fuzzer can detect a
particular bug in ten runs. The Â12 column shows the Â12 values
calculated based on the TTEs and the value is marked as bold if the
U-test shows significance.

5We filtered out assertion fails, which also contribute to the crashes found. The asser-
tion fails have also been reported and fixed.

Table 3: Details of the unique bugs discovered
∗

∗"-" means no bug is found in 10 runs; statistically significant results by Mann-Whitney U Test are

marked as bold; C stands for Cerebro; AF stands for AFLFast; A stands for AFL.

Project Bug/CVE ID # runs Â12
C AF A AF A

mjs

BufferOverflow 9 4 9 0.77 0.78

UseAfterFree-1 3 - 1 - 0.69

UseAfterFree-2 10 10 9 0.53 0.96

InvalidRead 10 9 10 0.65 0.68
NegSizeParam 10 8 9 0.66 0.72
StackOverflow 3 - - - -

FloatPointError 5 1 3 0.72 0.66

xed

InvalidRead-1 10 10 9 0.72 0.73

InvalidRead-2 4 1 4 0.67 0.52
InvalidRead-3 10 4 6 0.94 0.81

InvalidRead-4 10 10 10 0.65 0.89
InvalidRead-5 7 2 1 0.82 0.84

InvalidRead-6 10 4 7 0.97 0.77

InvalidRead-7 9 3 5 0.88 0.81

radare2 2018-14015 10 5 10 0.98 0.88

nm 2017-13710 2 1 - 0.56 -

mean - 7.63 4.50 5.81 0.78 0.80

In general, we can observe from Table 3 that Cerebro can find 9
of the 14 bugs significantly faster than AFL (the 2 bugs that AFL
cannot detect are not counted);.and 10 of the 14 bugs significantly
faster than AFLFast (the 2 bugs that AFLFast cannot detect are
not counted). We can also see that the mean Â12 values are 0.78
against AFLFast and 0.8 against AFL, both of which are above
the conventionally large effect size (0.71) [32]. The results suggest
that Cerebro can outperform both AFLFast and AFL from the
statistical aspect.
Case Study. To demonstrate the reason behind Cerebro’s supe-
riority, we present the case of CVE-2018-14015, where Cerebro
has a high confidence of being better (Â12 is 0.98 against AFLFast
and 0.88 against AFL). This CVE is triggered by an invalid memory
read caused by a strlen function call where the pointer passed
to strlen points to zero page due to a missing length check for
the parent string containing the pointer. The patched function is
r_bin_dwarf_parse_comp_unit, as the function code shown in List-
ing 2. The true branch of the if condition at line 3 is a relatively rare
branch and AFLFastwill prioritize the seeds exercising this branch.
However, this branch could mistakenly guide the fuzzer away from
triggering the bug. This explains the reason why AFLFast found
the bug only in 5 out of 10 runs while Cerebro and AFL can detect
it in all 10 runs. Comparing to AFL, Cerebro allocates more energy
to the seeds reaching r_bin_dwarf_parse_comp_unitmeanwhile not
getting into the true branch of the if condition on line 7. The reason
is that function sdb_set keeps contributing bonus potential scores
to its predecessor r_bin_dwarf_parse_comp_unit until it is covered
and the bug is triggered. Since Cerebro manages to generate more
new inputs from the seeds close to but not yet reaching the buggy
function, it can usually detect the bug faster than AFL.

From the analysis of Figure 7, Table 3 and the case study, we
can positively answer RQ2 that Cerebro significantly out-
performs the state-of-the-art fuzzers in terms of vulnerability
detection.
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1 ut8 ∗ r _b in_dwar f_pa r s e_comp_un i t ( . . . ) {
2 . . .
3 i f ( cu−>hdr . l e ng t h > d ebug_ s t r _ l e n )
4 r e t u r n NULL ;
5 whi l e ( . . . ) {
6 . . .
7 i f ( . . . ) {
8 / / m i s s ing check f o r the l e ng t h o f " name "
9 s d b _ s e t ( s , " DW_AT_comp_dir " , name , 0 ) ;
10 } / / end o f i f
11 . . . } / / end o f whi l e
12 }

Listing 2: code snippets from radare2

5.4 Evaluation of Individual Strategies (RQ3)

Cerebro uses an MOO-based seed prioritization strategy together
with an input potential aided power scheduling strategy. To analyze
the effects of each individual strategy, we configure 3 variants of
Cerebro: Cerebro-base uses no seed prioritization and allocates
a constant energy to every seed. Cerebro-moo-only uses only the
MOO-based seed strategy and allocates a constant energy to every
seed. Cerebro-pot-only uses no seed prioritization and applies the
input potential aided power scheduling. We evaluated these strate-
gies individually with two programs — mjs, representing relatively
small programs and xed, representing relatively large programs
(see Table 1). Fig 8 shows the number of crashes detected over time
for each individual strategy. In general, both strategies can help to
detect more crashes within the time budget.

In particular, on xed, the MOO-based seed prioritization strategy
seems to restrain the crash detection performance as it needs to
balance between exploitation and exploration as discussed earlier.
However, the seed prioritization strategy does help to boost crash
detection as the queue of seeds grows larger and it surpasses the
power scheduling strategy after around 1000 minutes. This explains
why Cerebro-pot-only has a better performance than Cerebro in
the first 12 hours but gets surpassed later.

If we compare the results of mjs and xed, we can see that the
performance improvement over the baseline strategy (Cerebro-base)
on xed is much more significant than on mjs. The rationale is that
as xed is a much larger program than mjs (see Table 1), the fuzzers
need to keep much more seeds in queue for xed and to evaluate the
quality of seeds properly and allocate the computational resource
precisely becomesmuchmore important. As a result, both strategies
becomes more effective on larger programs.

Lastly, combining both strategies leads to the best results for
finding crashes on both projects, which implies the two strategies
can mutually benefit each other without conflicts. Thus, it makes
sense that Cerebro needs to combine the seed prioritization strat-
egy with a proper power scheduling strategy by allowing better
seeds to produce more test inputs to boost the final coverage after
convergence.

From the analysis of Figure 8, we can positively answer RQ3
that the seed prioritization and the power scheduling can help
to improve the fuzzing performance separately; combining
them can further improve fuzzing efficiency.

Figure 7: Time-To-Exposure for bugs (Lower is better)

∗The y-axis is the time and the unit is hour except for xed invalid-read-4, which is second.

5.5 Discussion

Threats to validity. The threats of validity come from three as-
pects. First, although complexity is generally considered as the
enemy of software security [33], some researches are skeptical
about it [34]. After analyzing the bugs, our empirical finding is
that typically the program executes a series of complex functions,
makes a logical fault somewhere and eventually crashes in a possi-
bly simple function. So using the execution trace-level complexity is
reasonable. Second, we used only two complexity metrics (CC and
H .B). As there exist a vast variety of code evaluation metrics (e.g.,
Jilb metrics [35], CoCol metrics [35], LEOPARD [36], etc.), we will



ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Y. Li, Y. Xue, H. Chen, X. Wu, C. Zhang, X. Xie, H. Wang and Y. Liu

(a) mjs (b) xed

Figure 8: Crashes found over time with different strategies

(Higher is better)

seek more combinations to facilitate the input potential in future.
Third, results of tool evaluations could always be taken with a grain
of salt. For instance, we set the time limit of most experiments to
be 24 hours because the edge coverage of most programs we test
tends to converge in 24 hours.

Additional Experiments. Last but not least, we conducted ex-
tra experiments to better evaluate Cerebro from various aspects.
For example, to check how well Cerebro complements constraint
breaking techniques, we combine Cerebro with dictionary-based
mutation operators and conduct experiments to check the cover-
age gain. The results of combining with dictionary-based mutation
show that Cerebro can better complement orthogonal techniques.
We also conducted experiments with Cerebro by allowing it to
export the seed queue information during execution to evaluate
the quality of seeds on the Pareto frontier. These extra experiment
results and data are available on our website [37].

6 RELATEDWORK

Before Cerebro, there are several works on using multi-objective
optimization techniques for seed prioritization/selection as well as
search based testing [38–42]. Instead of listing all the related works,
we focus on fuzzing techniques related to Cerebro.
Seed Prioritization. Several techniques have been proposed [6, 9,
10, 43–46] for offline seed selection and online seed prioritization.
Shudrak et al. [10] propose an approach to evaluating and improving
black-box fuzzing effectiveness by prioritizing the seeds which
exercise high complexity codes. As they use software complexity
as the sole goal for seed prioritization, the results heavily rely on
the quality of the complexity analysis. In Cerebro, we propose
an MOO model to balance between different objectives instead of
only considering the execution trace complexity. In Vuzzer [6], the
error handling paths are deprioritized. This intuition aligns with
the concept of input potential. However, input potential is more
general as error handling code can be quite complex and bug-prone
sometimes [47]. Both Vuzzer and AFLFast [9] prioritize seeds
exercising low-frequency paths. However, as shown in §3.1 and
§5, the assumption that fuzzing such seeds brings more benefits
does not always hold. In CollAFL [29], three different strategies
are proposed to prioritize seeds with more neighbor branches or
descendants. The intuition of bringing awareness of uncovered
code to the fuzzer is similar to Cerebro, whereas Cerebro utilizes
the complexity of near neighbors instead of the quantity of direct
neighbors in [29]. Seed prioritization is also performed in directed

fuzzing [32, 48] to help the fuzzer to reach the targets as early as
possible.
Power Scheduling Techniques. AFLFast [9] assigns more en-
ergy to seeds exercising the low-frequency paths. AFLGo [32] and
Hawkeye [49] both apply a customized power schedule to improve
the directedness of fuzzing towards specific program target loca-
tions. The purposes of directed fuzzing and Cerebro are different.
The purpose of directed fuzzing is to reach the given specific targets
as fast as possible. The purpose of Cerebro, however, is to discover
as many bugs as possible given a time budget.

In comparison with these seed prioritization and power schedul-
ing techniques, Cerebro explicitly presents the concept of input
potential and proposes an MOO model to incorporate different
important and conflicting objectives.
Constraint Breaking & Fuzzing Boosting Techniques. Many
other techniques in fuzzing are orthogonal to Cerebro. In greybox
fuzzing, a hot topic is about penetrating through path constraints.
Plenty of approaches have been proposed to address this problem.
SAGE [50] and Driller [51] use symbolic/concolic execution to
solve the path constraints for fuzzers. Vuzzer uses dynamic taint
analysis to tackle path constraints. Steelix [7] utilizes comparison
progress information to solve magic-byte comparisons. Angora [8]
adopts byte-level taint analysis and a gradient-descent algorithm for
constraint penetration. These techniques often involves modifica-
tions of the seed mutator, executor or feedback collector in Fig. 1 but
not the seed evaluator, making them orthogonal to Cerebro. Sev-
eral techniques are proposed to boost the performance of fuzzing
from different aspects [52–58]. Among them, Fairfuzz [55] utilizes
masks to preserve key patterns inside a seed to reach certain edges.
FairFuzz targets rare edges with the help of the seed masks. How-
ever, the idea of input masks can be applied to target any edges, not
just rare edges, which makes it orthogonal to Cerebro. Another
potential enhancement is to replace the coarse loop bucket strategy
with static loop analysis [59–61].

7 CONCLUSION

In this paper, we propose the concept of input potential and a MOO
model for seed evaluation in greybox fuzzing. With the complexity
of covered code and the potential of uncovered code based on exe-
cution traces, we address two general problems of greybox fuzzing,
namely seed prioritization and power scheduling. We conduct eval-
uations on 8 real-world programs. Results exhibit that Cerebro
performs significantly better in bug detection and program coverage
than state-of-the-art techniques. In future, we plan to complement
Cerebro with other orthogonal fuzzing techniques.
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