
Steelix: Program-State Based Binary Fuzzing
Yuekang Li

School of Computer Science and
Engineering

Nanyang Technological University
Singapore

Bihuan Chen∗
School of Computer Science and
Shanghai Key Lab. of Data Science

Fudan University
China

Mahinthan Chandramohan
School of Computer Science and

Engineering
Nanyang Technological University

Singapore

Shang-Wei Lin†
School of Computer Science and

Engineering
Nanyang Technological University

Singapore

Yang Liu
School of Computer Science and

Engineering
Nanyang Technological University

Singapore

Alwen Tiu
School of Computer Science and

Engineering
Nanyang Technological University

Singapore

ABSTRACT
Coverage-based fuzzing is one of the most effective techniques to
find vulnerabilities, bugs or crashes. However, existing techniques
suffer from the difficulty in exercising the paths that are protected by
magic bytes comparisons (e.g., string equality comparisons). Several
approaches have been proposed to use heavy-weight program anal-
ysis to break through magic bytes comparisons, and hence are less
scalable. In this paper, we propose a program-state based binary
fuzzing approach, named Steelix, which improves the penetration
power of a fuzzer at the cost of an acceptable slow down of the ex-
ecution speed. In particular, we use light-weight static analysis and
binary instrumentation to provide not only coverage information
but also comparison progress information to a fuzzer. Such program
state information informs a fuzzer about where the magic bytes are
located in the test input and how to perform mutations to match the
magic bytes efficiently. We have implemented Steelix and evaluated
it on three datasets: LAVA-M dataset, DARPA CGC sample binaries
and five real-life programs. The results show that Steelix has better
code coverage and bug detection capability than the state-of-the-art
fuzzers. Moreover, we found one CVE and nine new bugs.

CCS CONCEPTS
• Security and privacy→ Software security engineering;

KEYWORDS
binary fuzzing, coverage-based fuzzing, binary instrumentation

ACM Reference format:
Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang
Liu, and Alwen Tiu. 2017. Steelix: Program-State Based Binary Fuzzing. In

∗Corresponding Author. Also with Nanyang Technological University, Singapore.
†Shang-Wei Lin and Yang Liu have equal contribution in this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106295

Proceedings of 2017 11th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, Paderborn, Germany, September 4–8, 2017 (ESEC/FSE’17),
11 pages.
https://doi.org/10.1145/3106237.3106295

1 INTRODUCTION
Since its introduction in early 1990s [37], fuzzing has become one of
the most effective and scalable testing techniques to find vulnerabili-
ties, bugs or crashes in commercial off-the-shelf (COTS) software. It
has also been widely used by mainstream software companies such
as Google [28], Microsoft [15] and Adobe [22] to ensure the quality
of their software products. The key idea of fuzzing is to feed the pro-
gram under test (PUT) with a large amount of malformed test inputs
to trigger unintended program behaviors, such as crashes or hangs.

The existing fuzzing approaches can be classified by two dimen-
sions. Based on how the structural knowledge of the PUT is utilized,
fuzzers can be classified as white-box, black-box or grey-box.White-
box fuzzers (e.g., [29, 30, 39]) either have access to the source code of
the PUT, or rely on binary lifting [34] to translate assembly into an
intermediate language. They usually apply heavy-weight program
analysis such as symbolic execution [43] to improve the effective-
ness but may have scalability problems. Black-box fuzzers (e.g., [49])
have no knowledge about the internals of the PUT and thus are less
effective. Grey-box fuzzers (e.g., [8, 24]) are in between. They apply
light-weight program analysis to extract partial information of the
PUT without sacrificing the fast execution speed of tests.

On the other hand, based on how the test inputs to the PUT are gen-
erated, fuzzers can be classified as mutation-based or generation-
based. Mutation-based fuzzers (e.g., [8, 23, 29]) start with a set of pre-
provided test inputs (i.e., seeds), and generate new test inputs bymu-
tating these test inputs (e.g., byte flipping). They are effective to fuzz
programs that process compact and unstructured data formats (e.g.,
image). Generation-based fuzzers (e.g., [14, 39, 50]) start with no test
inputs, and construct test inputs based on the knowledge of the
input format or grammar. They are more suitable for programs that
process highly-structured inputs (e.g., XML).

In this paper we focus on grey-box mutation-based fuzzing. One
of the most successful techniques is coverage-based fuzzing, which
uses light-weight instrumentation to extract coverage information
for each executed test input in order to determine which test inputs

627

https://doi.org/10.1145/3106237.3106295
https://doi.org/10.1145/3106237.3106295

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu

1 int main(void) {
2 char str [4];
3 gets(str);
4 if(strcmp(str , "MAZE") == 0)
5 // trigger the crash
6 return 0;
7 }
8

(a) Sample Code 1

1 int main(void) {
2 if (getchar () == 'M')
3 if (getchar () == 'A')
4 if(getchar () == 'Z')
5 if(getchar () == 'E')
6 // trigger the crash
7 return 0;
8 }

(b) Sample Code 2

Figure 1: Motivation Examples

should be retained for fuzzing. Specifically, if a test input can trigger
the execution of a new basic block, it is considered as interesting and
retained; otherwise, it is discarded. Thus, coverage-based fuzzers
explore execution paths of a PUT in an incremental manner. AFL [8]
is the state-of-the-art coverage-based fuzzer, and has discovered
hundreds of high-profile vulnerabilities [16].

However, coverage-based fuzzing has limited penetration power to
exercise the paths protected bymagic bytes comparisons. Magic bytes
refer to the bytes in the test input which are uses in comparison in-
structions. For example, the string “MAZE” in the program in Fig. 1a
is considered as four magic bytes. In this case, AFL has to mutate all
the four magic bytes correctly at once to trigger the crash because
mutating one, two or three bytes correctly cannot lead to new cov-
erage. Thus, it is very difficult for AFL to trigger the crash; i.e., AFL
needs at most 24∗8 executions of the program in Fig. 1a. The chal-
lenge is that coverage-based fuzzers do not have the knowledge of
where the magic bytes are located in the test input and how to perform
mutations to match the magic bytes efficiently.

Several advances have been already made to combine coverage-
based fuzzingwith some program analysis techniques to address the
challenge. For example, Driller [44] uses concolic execution to solve
those comparison constraints. VUzzer [40] uses dynamic taint anal-
ysis to penetrate those comparisons. AFL-lafintel [17] applies pro-
gram transformation at LLVM IR level to convert a magic bytes
comparison into multiple nested one-byte comparisons. Although
they have shown promising results, both Driller and VUzzer rely on
heavy-weight program analysis (i.e., concolic execution suffers from
the infamous path explosion problem, and dynamic taint analysis
can greatly slow down the execution speed); and AFL-lafintel works
at the source code level and fails to know where the magic bytes are
located in the test input.

In this paper, we propose a program-state based fuzzer Steelix1,
which works at the binary level and can exercise paths protected by
magic bytes comparisons at the cost of an acceptable slow down of
the execution speed. The key idea of Steelix is that we not only col-
lect the coverage information but also collect the comparison progress
information (i.e., whethermore bytes are correctlymatched inmagic
bytes comparisons). Thus program state in this paper refers to cover-
age and comparison progress. Whenever a test input, generated by
mutating some byte, triggers new program states, we infer the lo-
cation of the magic bytes as the mutated byte and its neighbors in
the test input, and retain the test input for further fuzzing.

In particular, instead of relying on heavy-weight program analy-
sis, Steelix leverages light-weight static analysis and binary instru-
mentation to collect the coverage and comparison progress informa-
tion as the dynamic feedbacks to guide the mutation. Static analysis
filters out uninteresting comparisons (e.g., one-byte comparisons),

1A Pokémon that can dig deep below the surface.

and extracts the information of interesting comparisons. Based on
the extracted information, binary instrumentation instruments the
PUT to obtain the actual value of comparison operands and gen-
erate comparison progress information during runtime. Then the
fuzzer takes the instrumented PUT, and uses the collected feedbacks
to perform adaptive mutation.

We have implemented the proposed approach by extending AFL,
and evaluated the effectiveness of Steelix using two sets of widely-
used benchmark programs (i.e., LAVA-M [27] and DARPA CGC sam-
ple binaries [9]) and five real-life programs (i.e., pngfix, tcpdump,
tiffcp, tiff2pdf and gzip). Steelix outperformed both VUzzer [40]
and AFL-lafintel [17] in three out of the four binaries from LAVA-M
and found an average of 3× more bugs. Moreover, Steelix covered
an average of respectively 12.7%, 9.7% and 14.2% more lines of code,
functions and branches than AFL-dyninst [11] in three out of the
five real-life programs where magic bytes comparisons are very
common, and found more bugs than AFL-dyninst in CGC sample
binaries and real-life programs. Specifically, we found one CVE and
nine new bugs, and three of them were not found by AFL-dyninst.

In summary, this work makes the following contributions.
• We proposed a program-state based binary fuzzing approach to

exercise paths protected by magic bytes comparisons at the cost
of an acceptable slow down of the execution speed.

• We proposed light-weight static analysis and binary instrumen-
tation to collect both coverage and comparison progress infor-
mation as the dynamic feedbacks to guide adaptive mutation.

• We implemented and evaluated Steelix on various benchmark
and real-life programs, which showed promising results.

• We found one CVE and nine previously unknown bugs in some
widely-used real-life programs.

2 OVERVIEW
In this section, we first introduce a motivating example, and then
present an overview of the proposed approach.

2.1 Motivation Example
Coverage-based fuzzers, such as AFL, use the coverage information
to determine which mutated test input should be kept. For example,
for the program in Fig. 1b, given the test input “XXXX”, AFL will
keep the test input “MXXX” after mutating the first byte correctly
because “MXXX” can pass the first if conditional and trigger new
code coverage. Based on “MXXX”, AFL can generate the test input
“MAXX” that will also be kept. In this incremental way, AFL can
eventually generate the test input “MAZE” and trigger the crash.

However, for the program in Fig. 1a that has the same logic as the
program in Fig. 1b, AFL will have difficulty in triggering the crash
because mutating one byte correctly does not trigger new code cov-
erage. For example, given the test input “XXXX”, AFL can generate
“MXXX” after some mutations, but “MXXX” does not trigger new
coverage. Thus, AFL will discard “MXXX” although some progress
has been made to pass the magic bytes comparison. In this case,
AFL has to mutate the whole four magic bytes correctly at once to
trigger the crash. AFL needs at most 24∗8 executions to trigger the
crash in Fig. 1a, but needs at most 4 ∗ 28 executions for Fig. 1b.

To break through the magic bytes comparison in Fig. 1a, AFL-
lafintel [17] attempts to transform the program in Fig. 1a into the

628

Steelix: Program-State Based Binary Fuzzing ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Program
Binary

Static
Analysis

Basic Block,
Comparison Info.

Binary
Instrumentation

Instrumented
Binary

Program
Execution

Adaptive
Mutation

Coverage, Comparison
Progress & Location Info.

Mutated
Test Input

The Fuzzing Loop

Figure 2: An Overview of the Proposed Approach Steelix

program in Fig. 1b, and relies on AFL’s capability to incrementally
trigger the crash. However, if the test input of the program in Fig. 1b
contains 1000 bytes and the magic bytes are just four of them, which
is quite common in real-life programs, AFL will still have difficulty
in triggering the crash because it does not know where the magic
bytes are located in the test input and thus cannot mutate the test
input efficiently. On the other hand, Driller [44] and VUzzer [40]
respectively use concolic execution and dynamic taint analysis to
break through magic bytes comparisons. However, as concolic exe-
cution and dynamic taint analysis are often known as heavy-weight
techniques, Driller and VUzzer can handle the program in Fig. 1a,
but may suffer from scalability problems for real-life programs.

Following the previous examples, we have two observations. First,
the test input “MXXX” has made some progress to match the magic
bytes, and should be kept for further fuzzing. Second, “MXXX” is
mutated from “XXXX”, which shows that part of the magic bytes is
located at the first byte, and may also be located at the neighbors of
the first byte. Motivated by these observations, we propose to col-
lect both coverage and comparison progress information, infer the
location information of magic bytes by tracking if mutating cer-
tain byte can lead to new coverage or comparison progress, and
use such information to guide the mutation.

2.2 Approach Overview
Our approach is designed to fuzz a PUT directly on its executable
binary with two considerations. First, the source code of a PUT is
not always available. By working at the binary level, Steelix can
be applicable to both open and close source programs. Second, the
comparison operands in assembly code lose their type information.
The comparisons of integer, float or string/buffer become the com-
parisons of bytes. Hence, comparisons at assembly code level are
more explicit for analysis than those at the source code level.

Fig. 2 gives an overview of Steelix, which contains three main
components: static analysis, binary instrumentation, and the fuzzing
loop. In particular, static analysis (see Section 3.1) takes the program
binary as an input and disassembles it. Based on the assembly code,
it filters out uninteresting comparisons according to several rules
so that only a portion of the comparisons are dynamically analyzed
during fuzzing. Then it extracts the information of those interesting
comparisons and the information of basic blocks, which tells binary
instrumentation where to instrument and what to instrument. Note
that basic blocks are used to collect coverage information for the
fuzzer, which are instrumented in the sameway as current coverage-
based fuzzing approaches (e.g., AFL). Thus, we will not discuss how
to analyze and instrument basic blocks in Section 3.1 and 3.2.

The statically extracted information, togetherwith the program bi-
nary, are then passed to binary instrumentation (see Section 3.2). The

binary instrumentation has twomain concerns. First, we need tomark
comparison progress in a compact way as comparison progress is
recorded in the shared memory whose size is designed to be limited
(64KB) for efficiency [8]. Second, we instrument the program to get
the actual value of comparison operands and generate comparison
progress information during fuzzing.

Finally, the fuzzing loop (see Section 3.3) takes the instrumented
binary and starts the fuzzing. Specifically, after executing the instru-
mented program, the fuzzer will get the coverage and comparison
progress feedback, and derive the location information of the magic
bytes based on the feedback. The coverage, comparison progress
and location information are then used to guide the adaptive muta-
tion, i.e., choosing suitable mutation operators.

3 METHODOLOGY
In this section, we elaborate each component in Fig. 2 in details.

3.1 Static Analysis
The purpose of static analysis in Steelix is to provide the basic block
and comparison information for binary instrumentation (Section 3.2).
Here we only discuss the comparison information.

3.1.1 Comparison Instructions. Static analysis first disassembles
the program binary. The instruction set for assembly varies on dif-
ferent platforms. In this work, we focus on the x86 32-bit instruction
set. The comparisons in x86 assembly can be achieved by using the
cmp/test instructions or function calls.

Both test and cmp instructions have two operands. The test in-
struction performs a bitwise logical AND operation and sets the flags.
For example, the instrument test ebx, ebx will set the Zero Flag
(ZF) if the value of register ebx is 0.

The cmp instruction subtracts the operands and set the flags. For
example, the instrument cmp dword ptr [ebp-4], 9 will set the
ZF if the memory content of ebp-4 is 9.

The operands of cmp and test instructions can be a register, mem-
ory reference, or immediate value. The size of an operand can be 4
bytes (dword), 2 bytes (word), or 1 byte (byte).

For comparing strings or buffer values, the program first pushes
the values of the function arguments onto the stack and then in-
vokes the corresponding functions (e.g., strcmp/strncmp).

3.1.2 Filtering Out Uninteresting Comparisons. In Steelix, we
only perform instrumentation on the interesting comparison instruc-
tions because the instrumentation slows down the program execu-
tion. We want to add them as precise as possible to reduce the exe-
cution overhead. Interesting cmp/test instructions are those whose
comparison operands aremeaningful for Steelix. The following rules
describe how uninteresting instructions are filtered out.

629

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu

1 int main(void) {
2 int magic_number = 666;
3 int in_num;
4 scanf("%d", &in_num);
5 if (in_num == magic_number)
6 // trigger the crash
7 return 0;
8 }
9
10

(a) Sample Code 3

1 int main(void) {
2 int magic_number = 666;
3 char in_str [20];
4 int in_num;
5 gets(in_str);
6 in_num = hash(in_str)
7 if (in_num == magic_number)
8 // trigger the crash
9 return 0;
10 }

(b) Sample Code 4

Figure 3: Examples of Comparisons

• One-byte comparisons are not instrumented. As discussed, the size
of operands used in a cmp/test instruction can be 1, 2 or 4 bytes.
One-byte comparisons can be easily matched with those default
bit-flippings or arithmetic plus/minus mutations used by AFL.

• Comparisons of function return values are not instrumented. The
reason is that the computations in functions can make the link be-
tween comparison operands and input bytes less explicit. For ex-
ample, for the program in Fig. 3a, the comparison between in_num
and magic_number is interesting as in_num is directly from the
test input. However, the comparison in the program in Fig. 3b is
uninteresting. This is because the comparison uses the result of
a hash function that is linked with all bytes in the test input. To
match one byte correctly at the comparison requires mutating
many bytes in the test input, and the complexity is not reduced.

3.1.3 Extracting Comparison Information. After filtering out the
uninteresting comparisons, Steelix extracts the information of the
remaining comparisons with static analysis by scanning through
the assembly and generating two lists of comparison information.

The first list keeps the information of the interesting cmp and test
instructions. Each entry of this list is in the following format:

instruction_address: operand1_info: operand2_info

where instruction_address is the address of the instruction, and
operand#_info holds the type of the operand, i.e., whether it is a
register, a memory reference, or an immediate value. It also contains
some other useful information for getting the actual value of the
operand at runtime. For example, in the following statement, the
offset -4 is also included in operand1_info.

cmp dword ptr [ebp-4], 9

The second list keeps the information of function calls of strcmp,
strncmp or memcmp. Each entry of this list contains the address of
the function call and the name of the called function:

function_call_instruction_address: function_name

Note that the address of instructions in each entry informs the
binary instrumentation of where to add the instrumentation.

3.2 Binary Instrumentation
Static analysis only provides static information of the interesting
comparisons in the program binary, and the actual value of a com-
parison operand remains unknown during the static analysis unless
it is an immediate value. Thus, based on the statically extracted com-
parison information, we adopt program instrumentation to provide
runtime feedback (i.e., get the actual value of comparison operands
and generate comparison progress information) for the fuzzer.

3.2.1 Comparison Progress. Comparison progress, togetherwith
the coverage information, is recorded in the shared memory whose

1

2 3 4

6

5

7 8 9 10 11

12 13 14 15

16

Figure 4: The States of a Four-Byte Comparison (A Shaded
Block Means a Matched Byte)

size is designed to be limited (64KB) for efficiency [8]. As we record
the progress for all comparisons, we need to mark the comparison
progress in a compact way to fit with the shared memory. Here we
define comparison progress as how many consecutive bytes, starting
from the first or last byte of the comparison operands, are matched.

For example, a four-byte comparison has 16 different states as
shown in Fig. 4. It is too costly to keep the information of all the 16
states because the number of states will explode when the number
of magic bytes grows. To avoid the state explosion, we selectively
use some of the states to mark the progress of a comparison. From
Fig. 4, we can see that there are 24 paths from state 1 to state 16.
According to our definition of the comparison progress, we use the
states on the path 1 → 2 → 6 → 12 → 16 and the states on the
path 1→ 5→ 11→ 15→ 16 to infer the comparison progress.

The reason for choosing those two paths is that given any two
consecutive states on those paths, we can know which exact byte
the fuzzer should mutate in the next iteration. For example, given
state 2 (with the first byte matched) and state 6 (with the first and
second bytes matched), we can infer that we should mutate the next
byte in the forward direction, i.e., the third byte. Similarly, given
state 11 (with the last two bytes matched) and state 15 (with the
last three bytes matched), we can infer that we should mutate the
next byte in the backward direction, i.e., the first byte.

Furthermore, states on the same row in Fig. 4 can be merged into
one situation. For example, both state 2 and 5 are matching one byte
correctly and can bemerged into one situation. The difference is that
to make comparison progress, we need to mutate the next byte in
forward direction for state 2 but in backward direction for state 5,
and the direction of mutation can be inferred as discussed above.

Thus, instead of considering all the 16 states, we only consider
5 situations to represent the progress of a four-byte comparison:
matching 0, 1, 2, 3, and 4 bytes. These 5 situations correspond to
rows 1 to 5 in Fig. 4, respectively. Matching 0 byte means that there
is no progress at all. Matching 4 bytes means that the magic bytes
are found. The situations in between are intermediate steps. For ex-
ample, if we have a test input at state 2, any mutation leading to new
test inputs at states other than state 6 will not be counted as mak-
ing progress and the fuzzer will focus on producing a test input at
state 6. The detail of how themutation operator utilizes the progress
information will be discussed in Section 3.3. By categorizing com-
parison states into different situations, we can reduce the number of
shared memory entries for a n-byte comparison from 2n to n + 1.

3.2.2 InstrumentationMechanisms. The instrumentationswe add
to the PUT are to generate the program state feedback, i.e., the cov-
erage change and comparison progress, for the fuzzer. Here, we
focus on the instrumentations for comparisons.

630

Steelix: Program-State Based Binary Fuzzing ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

X X X X

M X X X

M A X X

M A Z X

M A Z E

Input 0

Input 1

Input 2

Input 3

Input 4

 0 1 2 3 4 5 6 7

Bit-flipping, Arithmetic Operations …

Exhaustive Mutation

Exhaustive Mutation

Exhaustive Mutation

Figure 5: An Example of Adaptive Mutation

As introduced in Section 3.1.3, two lists of comparison informa-
tion are generated by static analysis. One list keeps the information
of the cmp/test instructions and the other one keeps the informa-
tion of the comparison function calls. These two lists are used for
providing guidance about where and what to instrument.

Specifically, for cmp and test instructions, we add the instru-
mentations before them based on the address information in the
list. The logic flow inside the instrumentations is as follows.
• First, the actual values of comparison operands are extracted dur-

ing runtime. For a register operand, its value can be directly ac-
cessed given the register name. For a memory reference operand,
the memory address is computed and the operand value is gen-
erated by dereferencing the corresponding memory addresses.

• Then, the operand values are used for generating the comparison
progress information as discussed in Section 3.2.1.

• Finally, the fuzzer is informed about the comparison progress
information via the shared memory.
For the comparisons using function calls, since the function argu-

ments can be hard to access from the stack, we replace the function
calls with calls to our implemented version which accepts the same
number and type of arguments. Our implemented versions have the
same functionality as the original ones, and additional logic to gen-
erate the comparison progress information and inform the fuzzer.

The instrumentations help the fuzzer to keep the test inputs that
can trigger program state changes, allowing the fuzzer to match
the magic bytes comparison byte by byte. For instance, in a n-byte
comparison, if we want to match all the whole n bytes correctly
at once, the search space is in the complexity of 28∗n . However, if
we match the magic bytes byte by byte, the search space will be
reduced to the complexity of n ∗ 28, which is a magnitude reduction.
Thus, the instrumentations contribute to solving the problem of
how to perform mutations to match the magic bytes.

3.3 The Fuzzing Loop
The fuzzing loop takes the instrumented binary and starts fuzzing.
The instrumentations (Section 3.2) can inform the fuzzer of whether
a test input makes comparison/coverage progress or not. This in-
formation alone is still not sufficient to efficiently match the magic
bytes as we do not know where the magic bytes locate in the test
input. To know the location information of the magic bytes, one
possible approach is to use taint analysis to extract the information

Algorithm 1: The Fuzzing Loop
1 S = ∅;
// S is the test input queue

2 load S with the user provided test input(s);
3 while time budget reached or abort signal received do
4 s = NEXT(S);

// s is the current input
5 if s is an intermediate step test input then
6 apply local exhaustive mutations (LEM);

// n is the new test input
7 if LEM generates input n that triggers new program state then
8 append n to S;
9 if n improves comparison progress but not coverage then

10 mark n as an intermediate step test input;
11 keep the location of the mutated byte;
12 remove s from S;
13 continue;

14 apply normal mutations (NM);
// n is the new test input

15 if NM generates input n that triggers new program state then
16 append n to S;
17 if n improves comparison progress but not coverage then
18 mark n as an intermediate step test input;
19 keep the location of the mutated byte;
20 if s is an intermediate step test input then
21 remove s from S;

of how the comparison operands are linked with the test input.
For example, VUzzer [40] uses dynamic taint analysis to gather in-
formation of comparisons. However, though powerful and precise,
taint analysis is not suitable for fast program execution [40]. Here,
we propose an approach using feedback of the instrumentations
to get the location information. The approach uses the heuristic
that, if a byte of a test input is used in a comparison, then the bytes
nearby may also be used in that comparison. In Steelix, after the
fuzzer makes a mutation, if it is informed by the instrumentations
that it makes progress in matching magic bytes, it will keep the
new test input together with the position of the byte that it just
mutated. When the fuzzer tries to mutate the new test input, it
will exhaustively try all the possibilities of the two neighbor bytes
according to different situations, i.e., local exhaustive mutation.

Algorithm 1 gives the procedure of the fuzzing loop, where the nor-
mal mutations and our local exhaustive mutation are applied adap-
tively.Wewill use Fig. 5 as an example to show how these mutations
are guided by the coverage and comparison progress information.
Assume that the magic string used for comparison is “MAZE” and
the corresponding bytes in the initial input are “XXXX”. The circles
in Fig. 5 are the bytes that the fuzzer tries to mutate. First, the byte at
offset 2 is mutated from “X” to “M”, which can be easily achieved by
normal mutation operators like bit-flipping or arithmetic plus/mi-
nus (Line 14). After this mutation, input 1 is generated. A coverage-
based fuzzer will not be aware of this change andwill discard input 1.
However, the instrumentation used by Steelix will inform the fuzzer
of hitting one byte of a magic bytes comparison (Line 15 and 17).
Thus Steelix will keep input 1 as an intermediate step input, keep
the location of the mutated byte, and discard input 0 (Line 17–21).
When the fuzzer retrieves input 1 from the input queue, it will get

631

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu

this information: input 1 is an intermediate step input; and the last
mutated location is at offset 2 (Line 5). Then, the fuzzer will try
out all the 256 possibilities for the byte at offset 1 (Line 6). It will
not get any feedback because the byte at offset 1 is just a dummy
byte in this example. Thus the fuzzer will try with the byte at off-
set 3, and will be notified of making progress in matching bytes
for comparisons when it generates input 2. The fuzzer will keep
input 2, discard input 1, and continue fuzzing with input 2 (Line
7–13). When the fuzzer retrieves input 2 from the queue, it will
receive two more pieces of information: input 2 is generated with
the local exhaustive mutation; and input 2 is generated by mutating
in the direction of increasing offsets (Line 5). Then, the fuzzer will
only try out all the possibilities of the byte at offset 4. Like input 2,
input 3 will be generated and used for generating input 4. When
input 4 is generated and applied to execution, it will trigger a new
execution path. The basic block instrumentation will inform the
fuzzer that input 4 leads to new basic block coverage and it is no
longer an intermediate step input. Thus the fuzzer will not apply
the local exhaustive mutation on input 4.

From the example, we can see that with the comparison progress
and location information, the fuzzer will generate a lot of inputs.
However, not every one of them is of the same importance. In
Steelix, the intermediate step inputs become useless after the input
holding the final magic bytes is generated. Steelix will drop an inter-
mediate step input from the queue once the fuzzermakes progress in
solvingmagic byte comparisons based on that input (Line 12 and 21).

As discussed, the location information is based on the heuristic
that the magic bytes used in a comparison are clustered in the input.
However, it is possible that themagic bytes used in a comparison are
from different parts of the input. In such a case, Steelix will not be
informed of making any progress after applying the local exhaustive
mutations. Steelix will keep the intermediate step input and apply
the normal mutations on other bytes (Line 14), instead of removing
that intermediate step input from the queue.

4 IMPLEMENTATION AND EVALUATION
We have implemented Steelix in Python, C and C++. Specifically,
static analysis was implemented using IDAPython [20], and binary
instrumentation was implemented using Dyninst [6]. We extended
AFL 2.33b to be the fuzzer in Steelix. All the experimental results
are available at our website [21].

4.1 Evaluation Setup
To evaluate the effectiveness of Steelix, we compared Steelix with
several state-of-the-art fuzzers on a variety of programs.

Evaluation Datasets. We used two sets of widely-used bench-
marks (i.e., LAVA-M [27] and DARPA CGC sample binaries [9]) and
five real-life programs (i.e., tiff2pdf, tiffcp, pngfix, gzip and
tcpdump) for our evaluation. The benchmark programs are known to
have certain vulnerabilities, and hence form a ground-truth corpora
for tool evaluation. The real-life programs are used to demonstrate
the scalability and effectiveness of Steelix on large programs.
• LAVA-M Dataset. LAVA-M consists of 4 buggy version of Linux

utilities, i.e., base64, md5sum, uniq and who. It was generated by
automatically injecting hard-to-reach bugs into existing program
source code [27], andwas designed as a benchmark for evaluating

the bug detection capability of fuzzers. The LAVA authors have
demonstrated that a coverage-based fuzzer (FUZZER) and a SAT-
based approach (SES) cannot find the injected bugs effectively
[27]. Recent fuzzers (e.g., VUzzer [40]) all used this benchmark.

• DARPACGCSampleBinaries. In 2016, TheDefenseAdvanced
Research Projects Agency (DARPA) [5] held a Cyber Grand Chal-
lenge (CGC), which was the first all-computer Capture the Flag
tournament [9]. DARPA released the 141 binaries used in the qual-
ification and final event of CGC and the 17 representative sam-
ple binaries. However, these binaries run under the DARPA Ex-
perimental Cyber Research Evaluation Environment (DECREE),
while Steelix relies on Dyninst and it is hard to port Dyninst into
DECREE. Although the team TrailofBits migrated these binaries
into the Linux system [18], it is difficult to set up the fuzzing en-
vironment for some binaries due to some migration problems.
Therefore, we only used the 17 representative sample binaries.
Compared to LAVA-M, CGC sample binaries are smaller in size
and contain fewer bugs per program, which are more suitable
for detailed analysis of how Steelix helps bug detection.

• Real-Life Programs. We selected five real-life programs, i.e.,
pngfix+libpng [3], tcpdump+libpcap [1], tiffcp+libtiff [2],
tiff2pdf+libtiff [2] and gzip [4], based on the following two
criteria. First, each program is officially published together with
the widely-used libraries. We also instrumented the libraries used
by these programs to fuzz the program logic inside those libraries.
Second, the programs/libraries represent different types of real-
life programs. pngfix, tiffcp and tcpdump are about data pars-
ing, while tiff2pdf and gzip are to perform calculations.
State-of-the-Art Tools.We compared Steelix with three most

related state-of-the-art fuzzers: AFL-dyninst [11], VUzzer [40] and
AFL-lafintel [17]. Note that Driller [44] is also closely related to Steelix,
but its current release [19] was designed and built for only DECREE
binaries. Thus we did not compare with Driller in the evaluation.
• AFL [8] only works on programs with source code provided. To

enable AFL to fuzz program binaries effectively, researchers have
proposed several extensions such as AFL-Qemu [12], AFLPIN [13]
and AFL-dyninst [11]. Among them, AFL-dyninst is the closest
one to Steelix since our implementation also relies on Dyninst.
Thus we compared with AFL-dyninst on all the three datasets.

• VUzzer is a recently published fuzzer that also aims at solving the
magic bytes comparison problem. The tool was not releasedwhen
we conducted the experiments. Hence, we compared with VUzzer
on the LAVA-M dataset using the data provided in their paper.

• AFL-lafintel, unlike AFL-dyninst, VUzzer and Steelix that work
on binaries, requires the source code of the PUT. We decided to
compare with AFL-lafintel as its divide-and-conquer approach is
similar to our utilization of comparison progress, and used the
LAVA-M dataset for the comparison across these four approaches.
Experimental Infrastructure.We ran all our experiments on a

machine with 8 Intel(R) Xeon(R) CPU E5-1650 v3 cores and 8GB
memory, running 32-bit Ubuntu 16.04 LTS system. Although AFL
supports the master-slave fuzzing paradigm, for all the AFL-based
fuzzers, including Steelix, AFL-dyninst and AFL-lafintel, we only
used onemaster fuzzer instance for the experiments. This is not only
to align with VUzzer, which does not support parallel fuzzing cur-
rently, but also to reduce the bias introduced by parallel fuzzing.

632

Steelix: Program-State Based Binary Fuzzing ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 1: Detected Bugs on LAVA-M Dataset

Program Total Bugs FUZZER SES VUzzer AFL-lafintel Steelix

base64 44 7 9 17 28 43 (26)
md5sum 57 2 0 1 0 28 (21)
uniq 28 7 0 27 24 7 (1)
who 2136 0 18 50 2 194 (77)

Total 2265 16 27 95 54 272 (125)

Research Questions. The experiments were designed to an-
swer the following three research questions:
• RQ1. How good is the bug detection capability of Steelix?
• RQ2. How good is the code coverage of Steelix?
• RQ3. How is the overhead of Steelix on the fuzzing loop?

4.2 Results on LAVA-M Dataset (RQ1)
The authors of LAVA [27] evaluated a coverage-based fuzzer (FUZZER)
and a SAT-based approach (SES) on the LAVA-Mdataset for five hours,
but did not reveal any detailed references of the two tools. Similarly,
the authors of VUzzer [40] conducted the evaluation on the LAVA-
M dataset for five hours, but the tool was not released when we con-
ducted our experiments. Therefore, we also ran the experimentswith
AFL-dyninst, AFL-lafintel and Steelix for five hours, and just re-
stated the results from the LAVA and VUzzer papers.

Table 1 reports the number of detected bugs with respect to these
approaches. The first column reports the name of target programs.
The second column shows the total number of bugs injected in each
program. The third to fifth columns report the results from the LAVA
and VUzzer paper. The last two columns gives the numbers of bugs
detected by AFL-lafintel and Steelix. Note that AFL-dyninst did
not find any bugs in five hours and we omitted its result. Each bug
in LAVA-M has a unique ID, and the IDs of the bugs detected by
Steelix in the experiments can be found at our website [21].

From Table 1, we can see that Steelix significantly outperformed
SES and AFL-dyninst for all the programs; and it significantly out-
performed FUZZER, VUzzer and AFL-lafintel for three out of the
four programs. The reasons for the promising results are:
• Many bugs are injected in the execution paths protected bymagic

bytes comparisons. For example, the bug with ID 832 is triggered
by mutating the bytes “las!” correctly at offset 56 of the test input.
We also computed the number of bugs that were directly found
by our local exhaustive mutation, and the results are reported in
parentheses at the last column of Table 1. Our local exhaustive
mutation can also generate test inputs that can lead to new execu-
tion paths but not crashes, and the crashing test inputs generated
based on those test inputs are not included here. We can see that
our local exhaustive mutation found 46% of the detected bugs.
This indicates that our local exhaustive mutation guided by com-
parison progress is effective to pass magic bytes comparisons.

• Compared to VUzzer, Steelix enjoys a balance of execution speed
and penetration power due to our light-weight nature, in contrast
to the heavy-weight taint analysis used in VUzzer. Quantitatively,
Steelix executed an average of 645× more inputs than VUzzer in
five hours based on the data reported in their paper, which allows
Steelix to run more test inputs. On the other hand, Steelix can
handle cmp/test instructions with all operand types (memory
reference, register and immediate values), while VUzzer can only

handle cmp/test instructions with immediate value. In particular,
around 80% of the comparisons involve immediate value in the
four programs, which means VUzzer misses 20% of comparisons.

• Compared to AFL-lafintel, Steelix has the knowledge of the loca-
tion of magic bytes in the test input, while AFL-lafintel does not
knowwhere to mutate the test input. Moreover, Steelix filters out
uninteresting comparisons and marks comparison progress in
a compact way, which is helpful for fuzzing large binaries, e.g.,
who. Instead, AFL-lafintel transforms the multi-byte comparisons
into multiple nested one-byte comparisons, and adds many basic
blocks to the PUT. For example, AFL-lafintel instrumented 99,866
locations in who, but the shared memory in AFL only has 65,536
entries, hindering AFL-lafintel from detecting coverage change
of the PUT. In contrast, Steelix only instrumented 4,833 compar-
isons and 6,385 basic blocks for who, using around 25,000 entries
in the shared memory. This explains why Steelix found many
more bugs than AFL-lafintel on who and why we did not run
AFL-lafintel on those large-size real-life programs in Section 4.4.
On the other hand, we can see that Steelix performed worse than

VUzzer and AFL-lafintel on uniq, and found the same number of
bugs as FUZZER. Comparing with VUzzer, the mutation operations
used in Steelix are too fine-grained for the test input of uniq, which
is a text file consisting of ASCII strings. The exhaustive mutation in
Steelix is on the byte level and cannot quickly make large changes to
the file. Instead, VUzzer uses crossover mutation in its genetic algo-
rithm to exchange chunks of strings between test inputs, allowing it
to quickly cover the code in uniq. Comparing with AFL-lafintel, our
instrumentations, added by binary rewriting technique, is slower
than AFL-lafintel’s instrumentations added during the compilation.
Particularly, in five hours, AFL-lafintel conducted 32.6 million test
executions, while AFL-dyninst and Steelix only performed 5.3 mil-
lion and 4.5 million test executions respectively. Although relying
on the source code, the speed advantage allows AFL-lafintel to find
more bugs in uniq within five hours.
From the analysis of the LAVA-M experimental results, we can
positively answer RQ1 that Steelix significantly outperformed
the state-of-the-art fuzzers in terms of bug detection capability.

4.3 Results on CGC Sample Binaries (RQ1)
For the 17 representative CGC sample binaries, we filtered out some
of the binaries for the following reasons:
• Some binaries are duplicates of others. For example, CADET00003

is a duplicate of CADET00001with only someminor changes. Thus,
experiments on these two binaries will produce the same result.

• Some binaries have interaction with others. For example, LUNGE-
00005 involves inter-process communication of six binaries. Such
binaries are not applicable to fuzzing, and thus are removed.

• It is hard to generate valid initial test inputs for some binaries, as
some inputs are interactively generated by including part of the
program output and some inputs are in binary format. For exam-
ple, KPRCA00003 is an image compressor which accepts custom-
defined images as inputs.
After the filtering, we used eight CGC sample binaries in this

experiment to analyze how Steelix helps find bugs, comparing with
existing coverage-based fuzzers. We ran Steelix and AFL-dyninst

633

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu

Table 2: Detected Bugs on CGC Sample Binaries

Program AFL-dyninst Steelix
CADET00001 ✓ ✓

EAGLE00005 ✓ ✓

NRFIN00010 ✓ ✓

YAN0100001 ✓ ✓

YAN0100003 ✓ ✓

KPRCA00001 ✗ ✓

KPRCA00015 ✓ ✓

YAN0100002 ✗ ✗

1 ïż£static int page_root64(char *input) {
2 char buf [256];
3 const char *mode = variable_get("mode");
4 ...
5 if (strcmp(mode , "encode") == 0)
6 // vulnerable code
7 else if (strcmp(mode , "decode") == 0)
8 ...
9 ...
10 }

Figure 6: The page_root64 Function in KPRCA00001

on them for three hours. Table 2 shows the overall results of the
experiment. Specifically, AFL-dyninst found the bugs in six out of
the eight binaries, and Steelix found the bugs in seven binaries.

We analyzed these binaries in detail and had some insightful
findings. For YAN0100002, both AFL-dyninst and Steelix failed to
find any bugs in three hours. This binary is a tennis ball motion
calculator, and the bug in this binary is modeled against “The Patroit
Missile Failure” [7]. The bug is triggered only when a test input can
cause the program to performmillions of floating-point calculations.
Thus, the bug is not related to magic bytes comparison, and in such
cases Steelix cannot improve the bug detection capability.

For KPRCA00001, the binary is a root64 encoder/decoder. The
bug is a write-out-of-bound in the root64 encoding function. If we
provide an input that can trigger the encoding function, both AFL-
dyninst and Steelix can find the bug with around 8 minutes. How-
ever, if the initial input cannot trigger the encoding function, AFL-
dyninst can hardly find the bug in 3 hours, while Steelix can still
trigger the crash with around 10 minutes. This is because in the
page_root64 function of this binary (as shown in Fig. 6), the vari-
able mode extracted from the input is compared with string “encode”
and “decode”; and Steelix can capture such magic bytes comparison,
and rely on local exhaustive mutation to trigger the crash.
From the analysis of the CGC experiment results, we can pos-
itively answer RQ1 that given good initial inputs, both AFL-
dyninst and Steelix can efficiently find bugs; however, when the
initial input is not so desirable, Steelix has a better potential to
find bugs thanks to its penetration power.

4.4 Results on Real-Life Programs (RQ1 & RQ2)
We compared Steelix with AFL-dyninst on the real-life programs
in terms of crashes, bugs and code coverage. pngfix, tcpdump and
gzip were fuzzed for 24 hours, while tiffcp and tiff2pdf were
fuzzed for 72 hours as they are much larger in size.

4.4.1 Crash and Bug Analysis. Steelix found 500, 139 and 1 unique
crashes in tiffcp, gzip and tiff2pdf respectively, andAFL-dyninst
found 367 and 41 unique crashes in tiffcp and gzip respectively.
For pngfix and tcpdump, Steelix and AFL-dyninst did not trigger

Time (h)
3 9 15 21 27 33 39 45 51 57 63 69

N
u
m

b
e
r

o
f
C

ra
s
h
e
s
 (

#
)

150

200

250

300

350

400

450

500

550

Steelix
AFL-dyninst

(a) tiffcp

Time (h)
1 4 7 10 13 16 19 22

N
u
m

b
e
r

o
f
C

ra
s
h
e
s
 (

#
)

20

40

60

80

100

120

140

Steelix
AFL-dyninst

(b) gzip

Figure 7: Number of Unique Crashes Detected over Time
Table 3: New Bugs Detected in Real-Life Programs

Program Bug Type AFL-dyninst Steelix

tiffcp Out-of-Bounds Read (CVE-2017-5225) ✓ ✓

tiffcp Out-of-Bounds Write ✓ ✓

tiff2pdf Out-of-Bounds Write ✗ ✓

gzip Out-of-Bounds Write ✗ ✓

gzip Out-of-Bounds Write ✗ ✓

gzip Out-of-Bounds Read ✓ ✓

gzip Double-Free ✓ ✓

gzip Null-Pointer Dereference ✓ ✓

gzip Null-Pointer Dereference ✓ ✓

gzip Null-Pointer Dereference ✓ ✓

any crashes. A crash is considered as unique if at least one of its as-
sociated execution paths is not seen in previously-recorded crashes,
following the definition in AFL [8]. Further, Fig. 7 shows the num-
ber of unique crashes over time. We can see that Steelix can keep
finding more unique crashes than AFL-dyninst.

After analyzing these crashes, we found ten previously unknown
bugs and one of them has been accepted as a CVE, which are listed
in Table 3 together with their bug types. Specifically, we found two
out-of-bounds read bugs, four out-of-boundswrite bugs, one double-
free bug, and three null-pointer dereference bugs. More details
about these bugs can be found at our website [21]. However, AFL-
dyninst failed to find three of them, which were protected by magic
bytes comparisons. Instead, Steelix successfully found them with
the help of our local exhaustive mutations.

4.4.2 Coverage Analysis. Table 4 reports the number of lines,
functions and branches covered by AFL-dyninst and Steelix. Overall,
the improvement of Steelix over AFL-dyninst on programs that per-
form parsing (pngfix, tcpdump and tiffcp) is respectively 12.7%,
9.7% and 11.4% in terms of lines of code, functions and branches,
which is much larger than the improvement on programs that per-
form calculations (tiff2pdf and gzip). This is because the parser
programs involve more magic bytes comparisons in their logic and
Steelix is designed to tackle this problem.

More specifically, the coverage improvement on pngfix is the
largest, while the coverage improvement on gzip is the smallest.
For pngfix, the inputs are png files that contain four-byte chunk-
type strings which describe the type of chunk-data and are used
to control the parsing process. Matching the chunk types correctly
will greatly increase the code coverage. For example, Steelix covered
the codes dealing with the zTXt, iCCP and iTXt chunks, while AFL-
dyninst failed to generate inputs with these chunks due to the lack
of an effective way to match magic byte comparisons.

For gzip, its main logic is about the compression and decom-
pression of data. Unlike png files, the local header bytes in a zip file

634

Steelix: Program-State Based Binary Fuzzing ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 4: Line, Function and Branch Covered by Steelix and AFL-dyninst

Program AFL-dyninst Steelix

Line (#) Function (#) Branch (#) Line (#) Function (#) Branch (#)

pngfix + libpng 2098 136 1163 2540 (+21.1%) 155 (+14.0%) 1450 (+24.7%)
tcpdump + libpcap 3142 194 1775 3467 (+10.3%) 203 (+4.6%) 1994 (+12.3%)

tiffcp + libtiff 5528 296 3706 5889 (+6.5%) 327 (+10.5%) 3913 (+5.6%)
tiff2pdf + libtiff 6718 325 3950 6931 (+3.2%) 331 (+1.9%) 4072 (+3.1%)

gzip 842 41 620 855 (+1.5%) 41 (0%) 627 (+1.1)

Time (h)
1 5 9 13 17 21

N
u
m

b
e
r

o
f
T

e
s
t
In

p
u
ts

 (
#
)

60

80

100

120

140

160

180

Steelix
AFL-dyninst

(a) pngfix

Time (h)
1 5 9 13 17 21

N
u
m

b
e
r

o
f
T

e
s
t
In

p
u
ts

 (
#
)

50

100

150

200

250

300

Steelix
AFL-dyninst

(b) tcpdump

Time (h)
3 9 15 21 27 33 39 45 51 57 63 69

N
u
m

b
e
r

o
f
T

e
s
t
In

p
u
ts

 (
#
)

250

300

350

400

450

500

550

600

650

700

Steelix
AFL-dyninst

(c) tiffcp

Time (h)
3 9 15 21 27 33 39 45 51 57 63 69

N
u
m

b
e
r

o
f
T

e
s
t
In

p
u
ts

 (
#
)

250

300

350

400

450

500

550

600

650

700

Steelix
AFL-dyninst

(d) tiff2pdf

Time (h)
1 5 9 13 17 21

N
u
m

b
e
r

o
f
T

e
s
t
In

p
u
ts

 (
#
)

60

65

70

75

80

85

90

95

100

105

110

Steelix
AFL-dyninst

(e) gzip

Figure 8: The Number of Generated Test Inputs that Cover New Basic Blocks over Time

are used for calculation but not for comparison. This limits the im-
provement of Steelix over AFL-dyninst. Nevertheless, gzip is the
smallest amongst the five real-life programs, and both AFL-dyninst
and Steelix can cover most of the code in gzip and the improvement
of Steelix becomes less significant.

Moreover, we also computed the number of generated inputs that
covered new basic blocks over time. Note that we did not include the
generated inputs that made intermediate comparison progress. The
results are shown in Fig. 8. We can see that Steelix converges slower
than AFL-dyninst because of the overhead (see detailed discussion
in Section 4.5) caused by our extra instrumentations and extra logic
in the fuzzing loop. However, we can also see that Steelix can keep
generating new interesting inputs and thus have more interesting
inputs in the long run. This is because Steelix can break through
magic bytes comparisons and penetrate deeper than AFL-dyninst.
From the analysis of the real-life programs, we can positively
answer RQ1 and RQ2 that Steelix outperformed the state-of-
the-art coverage-based fuzzer in terms of both bug detection
capability and code coverage thanks to its penetration power.

4.5 Overhead Evaluation (RQ3)
To evaluate the execution speed overhead of Steelix, we first re-
ported the instrumentation statistics of Steelix, and compared Steelix
to AFL-dyninst in terms of the number of executions of test inputs.

Recall that AFL-dyninst instruments every basic block and Steelix
instruments basic blocks and comparisons. Table 5 reports the num-
ber of basic blocks (column BB), the number of comparisons filtered
out by the two rules in Section 3.1.2 (i.e., one-byte comparison
(column One-Byte CMP) and function return value comparison (col-
umn FRV CMP)), and the number of instrumented comparisons
(column Instrumented CMP). We can see that Steelix added an av-
erage of around 40% more instrumentations. Besides, on average,
14.2% and 3.5% are one-byte comparisons and function return value
comparisons respectively, which were filtered out by Steelix.

Moreover, Fig. 9 shows the number of test input executions on
each real-life program. We can see that Steelix executed slightly
slower than AFL-dyninst for all programs except for pngfix. For

pngfix, Steelix had more input executions than AFL-dyninst. This
is because the execution speed is also affected by the quality of
the inputs. If the fuzzer keeps executing the inputs that exercise
slow execution paths, the execution speed will be heavily affected.
Quantitatively, the 40% more instrumentations introduced a 11.5%
smaller of test input executions, but covered more code and found
more bugs. This indicates that the overhead is small and acceptable.
From the analysis of Table 5 and Fig. 9, we can positively answer
RQ3 that Steelix introduced a small and acceptable overhead
with respect to the execution speed.

4.6 Discussion
From our evaluations, we can conclude that Steelix achieves better
bug detection and code coverage than the current state-of-the-art
fuzzers at a reasonable cost. Nevertheless, we want to highlight
that Steelix cannot handle all magic bytes comparisons effectively.
First, the comparisons of function return values, filtered out by
Steelix, are not handled by Steelix. Second, the heuristic that the
magic bytes used in a comparison are clustered in the input might
not always hold, and thus our instrumentation might be less ef-
fective to break through magic bytes comparisons. In such cases,
symbolic execution or taint analysis can be helpful to infer how
the input data is linked with the program instructions. Therefore,
Steelix cannot replace symbolic execution or taint analysis in every
case, but it can relieve some burden from them because not every
comparison requires symbolic execution or taint analysis to solve.

5 RELATEDWORK
In this section, we focus our discussion on mutation-based fuzzing
as Steelix is also mutation-based. Note that a number of advances
have also been made to improve the effectiveness and efficiency of
generation-based fuzzing [10, 14, 26, 30, 35, 39, 42, 45, 46, 50].

5.1 Symbolic-Based Approaches
Symbolic/concolic execution are commonly used to perform or help
fuzzing. SAGE [31, 32] leverages symbolic analysis on execution

635

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu

Table 5: The Number of Instrumented Comparisons

Program BB (#) One-Byte
CMP (#)

FRV
CMP (#)

Instrumented
CMP (#)

pngfix + libpng 8166 963 (23.1%) 115 (2.8%) 3090 (74.1%)
tcpdump + libpcap 7666 433 (12.1%) 142 (4.0%) 3001 (83.9%)

tiffcp + libtiff 8814 638 (14.7%) 112 (2.6%) 3586 (82.7%)
tiff2pdf + libtiff 10626 687 (13.6%) 169 (3.3%) 4206 (83.1%)

gzip 1542 70 (7.7%) 43 (4.7%) 801 (87.6%)

traces and relies on constraint solving to generate tests. By contrast,
several works use symbolic analysis to help fuzzing. SYMFUZZ [25]
applies symbolic analysis on a program-input pair to detect depen-
dencies among the bit positions of the input. The dependency in-
formation is used to compute the optimal mutation ratio. Babić et
al. [23] uses symbolic execution to generate test inputs and direct
its exploration to trigger the target potential vulnerabilities.

Driller [44], one of the closest work to Steelix, combines fuzzing
and concolic execution. Specifically, whenever the fuzzer gets stuck
at some magic bytes comparison, it uses concolic execution to gen-
erate a test input that can pass that comparison. Differently, Steelix
attempts to pass magic bytes comparisons with the mutation-based
fuzzer itself by the guidance provided by our light-weight program
instrumentation. Steelix can relieve some burden from symbolic/-
concolic execution, but cannot replace symbolic/concolic execution
as Steelix is not suitable for some magic bytes comparisons.

5.2 Taint-Based Approaches
Taint analysis can extract the relations between the data in the test
input and the logic of the program. Researchers have proposed to
use taint analysis to provide guidance for fuzzing. BuzzFuzz [29]
and VUzzer [40] use dynamic taint analysis to locate the interesting
bytes for the fuzzer to mutate. Besides, several works attempt to
combine taint analysis and symbolic execution to guide the fuzzing.
TaintScope [48] performs checksum-aware fuzzing. It identifies the
bytes that are used in security-sensitive operations by taint track-
ing, and generates inputs that are more likely to trigger potential
vulnerabilities using combined concrete and symbolic execution
techniques. Dowser [33] targets buffer overflow and underflow vul-
nerabilities. It uses taint analysis to determine the input bytes that
influence the array index, and then uses symbolic execution to
generate the test inputs that trigger the vulnerability. Similarly,
BORG [38] targets buffer over-read bugs. It works by first using
taint analysis to select buffer accesses and then guiding symbolic
execution towards those accesses to detect over-read.

Taint analysis can help to precisely locate the magic bytes in
the test input, but may have high performance overhead and slow
down the execution speed of fuzzers due to its heavy-weight nature.
Differently, Steelix uses light-weight instrumentation to help track
such taint information, which is not very precise but can provide
sufficient guidance to the fuzzers efficiently.

5.3 Fuzzing Boosting
Several boosting techniques have been proposed to improve the
efficiency of mutation-based fuzzing. Rebert et al. [41] and Woo et
al. [49] empirically studied how the seed selection algorithms and
fuzzing scheduling strategies can help maximize the bug detection

pngfix tcpdump tiffcp tiff2pdf gzip

N
u
m

b
e
r

o
f
E

x
e
c
u
ti
o
n
s
 (

#
)

×107

0

2

4

6

8

10

12

Steelix
AFL-dyninst

Figure 9: The Number of Executions on Real-Life Programs

capability of a fuzzer. AFLFast [24] speeds up AFL by focusing the
fuzzing efforts on low-frequency paths, which allows the fuzzer to
explore more paths with the same amount of time. Skyfire [47] lever-
ages the knowledge in existing samples to generate well-distributed
seed inputs for fuzzing programs that process highly-structured
inputs. Kargén and Shahmehri [36] take a different perspective to
perform the fuzzing. They perform mutations on the machine code
of the generating programs instead of directly on a well-formed
input. In this way, they can use the information about the input for-
mat encoded in the generating program to produce high-coverage
test inputs. Steelix is orthogonal to these boosting techniques. We
plan to combine them with Steelix and evaluate whether the effec-
tiveness or efficiency of fuzzing can be further improved.

Besides, AFL-lafintel [17] applies program transformation at
LLVM IR level to convert a magic bytes comparison into multiple
nested one-byte comparisons. Such transformations can help the
fuzzer to keep the test inputs that make progress in comparisons,
which is similar to Steelix. However, such transformations can
also prevent the fuzzer from discriminating and discarding such
intermediate step test inputs, which makes the fuzzer spammed
with less interesting test inputs. Instead, Steelix can discard such
intermediate step test inputs. Besides, AFL-lafintel works at the
source code level, but Steelix directly works at the binary level.
AFL-lafintel also fails to know where the magic bytes are located
in the test input, which limits its effectiveness.

6 CONCLUSION
In this paper, we have proposed a program-state based binary fuzzing
approach, named Steelix. The program state information kept by
Steelix contains not only coverage information but also the compar-
ison progress information, which are gathered by our light-weight
static analysis and binary instrumentation. With the guidance of
the comparison progress, Steelix can penetrate magic bytes com-
parisons more effectively and efficiently than traditional coverage-
based fuzzers while keeping the execution overhead at a low level.
We have implemented Steelix and evaluated it on various programs.
The results demonstrate that Steelix can effectively improve fuzzing
with respect to bug detection capability and code coverage.

ACKNOWLEDGMENTS
This research is supported by theNational Research Foundation, Sin-
gapore under its National Cybersecurity R&D Program (Award No.
NRF2014NCR-NCR001-30), the project M4081588.020.500000, the
National Natural Science Foundation of China (Grant No. 61370079)
and the NTU Start-Up grant (M4081190).

636

Steelix: Program-State Based Binary Fuzzing ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] 1999. Tcpdump & Libpcap. (1999). http://www.tcpdump.org.
[2] 2001. Libtiff. (2001). http://www.libtiff.org.
[3] 2002. Libpng. (2002). http://www.libpng.org.
[4] 2003. Gzip. (2003). http://www.gzip.org.
[5] 2005. Defense Advanced Research Projects Agency. (2005). http://www.darpa.

mil/.
[6] 2005. Dyninst API. (2005). http://www.dyninst.org/dyninst.
[7] 2006. The Patroit Missile Failure. (2006). https://www.ima.umn.edu/~arnold/

disasters/patriot.html.
[8] 2014. American fuzzy lop. (2014). http://lcamtuf.coredump.cx/afl/.
[9] 2014. Cyber Grand Challenge. (2014). http://archive.darpa.mil/

cybergrandchallenge/about.html.
[10] 2014. Spike fuzzer platform. (2014). http://www.immunitysec.com/.
[11] 2015. AFL-dyninst. (2015). https://github.com/vrtadmin/moflow/tree/master/

afl-dyninst.
[12] 2015. AFL-QEMU. (2015). http://lcamtuf.coredump.cx/afl/technical_details.txt.
[13] 2015. AFLPIN. (2015). https://github.com/mothran/aflpin.
[14] 2015. Peach fuzzer platform. (2015). http://www.peachfuzzer.com/products/

peach-platform/.
[15] 2015. Sdl Process: Verification. (2015). https://www.microsoft.com/en-us/sdl/

process/verification.aspx.
[16] 2016. The bug-o-rama trophy case of AFL. (2016). http://lcamtuf.coredump.cx/

afl/#bugs.
[17] 2016. Circumventing fuzzing roadblocks with compiler trans-

formations. (2016). https://lafintel.wordpress.com/2016/08/15/
circumventing-fuzzing-roadblocks-with-compiler-transformations/.

[18] 2016. DARPA Challenge Binaries on Linux and OS X. (2016). https://github.
com/trailofbits/cb-multios/.

[19] 2016. Driller Source Code. (2016). https://github.com/shellphish/driller.
[20] 2016. IDAPython. (2016). https://www.hex-rays.com/products/ida/support/

idapython_docs/.
[21] 2017. Steelix. (2017). https://sites.google.com/site/steelix2017/.
[22] Brad Arkin. 2009. Adobe Reader and Acrobat Security Initiative. (2009). http:

//blogs.adobe.com/security/2009/05/adobe_reader_and_acrobat_secur.html.
[23] Domagoj Babić, Lorenzo Martignoni, Stephen McCamant, and Dawn Song. 2011.

Statically-directed Dynamic Automated Test Generation. In ISSTA. 12–22.
[24] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-

based Greybox Fuzzing as Markov Chain. In CCS. 1032–1043.
[25] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-adaptive

mutational fuzzing. In SP. 725–741.
[26] Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2014. Language Fuzzing Using

Constraint Logic Programming. In ASE. 725–730.
[27] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,

Wil Robertson, Frederick Ulrich, and Ryan Whelan. 2016. LAVA: Large-Scale
Automated Vulnerability Addition. In SP. 110–121.

[28] Chris Evans, Matt Moore, and Tavis Ormandy. 2011. Google online security
blog – Fuzzing at scale. (2011). https://security.googleblog.com/2011/08/
fuzzing-at-scale.html.

[29] Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based directed whitebox
fuzzing. In ICSE. 474–484.

[30] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. 2008. Grammar-based
whitebox fuzzing. In PLDI. 206–215.

[31] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2008. Automated white-
box fuzz testing. In NDSS.

[32] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE: Whitebox
Fuzzing for Security Testing. Commun. ACM 55, 3 (2012), 40–44.

[33] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. 2013.
Dowsing for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations. In
USENIX Security. 49–64.

[34] Niranjan Hasabnis and R. Sekar. 2016. Lifting Assembly to Intermediate Repre-
sentation: A Novel Approach Leveraging Compilers. In ASPLOS. 311–324.

[35] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code
fragments. In USENIX Security. 445–458.

[36] Ulf Kargén and Nahid Shahmehri. 2015. Turning programs against each other:
high coverage fuzz-testing using binary-code mutation and dynamic slicing. In
FSE. 782–792.

[37] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM 33, 12 (1990), 32–44.

[38] Matthias Neugschwandtner, Paolo Milani Comparetti, Istvan Haller, and Herbert
Bos. 2015. The BORG: Nanoprobing Binaries for Buffer Overreads. In CODASPY.
87–97.

[39] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2016. Model-based
whitebox fuzzing for program binaries. In ASE. 543–553.

[40] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In
NDSS.

[41] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing seed selection
for fuzzing. In USENIX Security. 861–875.

[42] Jesse Ruderman. 2007. Introducing jsfunfuzz. (2007). http://www.squarefree.
com/2007/08/02/introducing-jsfunfuzz

[43] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, JohnGrosen, Siji Feng, ChristopheHauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In S&P. 138–157.

[44] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
NDSS.

[45] Spandan Veggalam, Sanjay Rawat, Istvan Haller, and Herbert Bos. 2016. IFuzzer:
An Evolutionary Interpreter Fuzzer Using Genetic Programming. In ESORICS.
581–601.

[46] Joachim Viide, Aki Helin, Marko Laakso, Pekka Pietikäinen, Mika Seppänen,
Kimmo Halunen, Rauli Puuperä, and Juha Röning. 2008. Experiences with Model
Inference Assisted Fuzzing. InWOOT. 2:1–2:6.

[47] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-Driven
Seed Generation for Fuzzing. In SP. 579–594.

[48] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A Checksum-
Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detection. In
SP. 497–512.

[49] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.
Scheduling black-box mutational fuzzing. In CCS. 511–522.

[50] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Under-
standing Bugs in C Compilers. In PLDI. 283–294.

637

http://www.tcpdump.org
http://www.libtiff.org
http://www.libpng.org
http://www.gzip.org
http://www.darpa.mil/
http://www.darpa.mil/
http://www.dyninst.org/dyninst
https://www.ima.umn.edu/~arnold/disasters/patriot.html
https://www.ima.umn.edu/~arnold/disasters/patriot.html
http://lcamtuf.coredump.cx/afl/
http://archive.darpa.mil/cybergrandchallenge/about.html
http://archive.darpa.mil/cybergrandchallenge/about.html
http://www.immunitysec.com/
https://github.com/vrtadmin/moflow/tree/master/afl-dyninst
https://github.com/vrtadmin/moflow/tree/master/afl-dyninst
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://github.com/mothran/aflpin
http://www.peachfuzzer.com/products/peach-platform/
http://www.peachfuzzer.com/products/peach-platform/
https://www.microsoft.com/en-us/sdl/process/verification.aspx
https://www.microsoft.com/en-us/sdl/process/verification.aspx
http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/#bugs
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://github.com/trailofbits/cb-multios/
https://github.com/trailofbits/cb-multios/
https://github.com/shellphish/driller
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://sites.google.com/site/steelix2017/
http://blogs.adobe.com/security/2009/05/adobe_reader_and_acrobat_secur.html
http://blogs.adobe.com/security/2009/05/adobe_reader_and_acrobat_secur.html
https://security.googleblog.com/2011/08/fuzzing-at-scale.html
https://security.googleblog.com/2011/08/fuzzing-at-scale.html
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivation Example
	2.2 Approach Overview

	3 Methodology
	3.1 Static Analysis
	3.2 Binary Instrumentation
	3.3 The Fuzzing Loop

	4 Implementation and Evaluation
	4.1 Evaluation Setup
	4.2 Results on LAVA-M Dataset (RQ1)
	4.3 Results on CGC Sample Binaries (RQ1)
	4.4 Results on Real-Life Programs (RQ1 & RQ2)
	4.5 Overhead Evaluation (RQ3)
	4.6 Discussion

	5 Related Work
	5.1 Symbolic-Based Approaches
	5.2 Taint-Based Approaches
	5.3 Fuzzing Boosting

	6 Conclusion
	References

