
Different is Good: Detecting the Use of Uninitialized Variables
through Differential Replay

Mengchen Cao∗
mengchen.cmc@alibaba-inc.com
Orion Security Lab, Alibaba Group

Xiantong Hou∗
xiantong.houxianto@alibaba-

inc.com
Orion Security Lab, Alibaba Group

Tao Wang∗
wt124724@alibaba-inc.com

Orion Security Lab, Alibaba Group

Hunter Qu
fuping.qfp@alibaba-inc.com

Orion Security Lab, Alibaba Group

Yajin Zhou†
yajin_zhou@zju.edu.cn

School of Cyber Science and
Technology, Zhejiang University

Xiaolong Bai
baiqiu.bxl@alibaba-inc.com

Orion Security Lab, Alibaba Group

Fuwei Wang
fuwei.wfw@alibaba-inc.com

Orion Security Lab, Alibaba Group

ABSTRACT
The use of uninitialized variables is a common issue. It could cause
kernel information leak, which defeats the widely deployed security
defense, i.e., kernel address space layout randomization (KASLR).
Though a recent system called Bochspwn Reloaded reported multi-
ple memory leaks in Windows kernels, how to effectively detect
this issue is still largely behind.

In this paper, we propose a new technique, i.e., differential re-
play, that could effectively detect the use of uninitialized variables.
Specifically, it records and replays a program’s execution in multi-
ple instances. One instance is with the vanilla memory, the other
one changes (or poisons) values of variables allocated from the
stack and the heap. Then it compares program states to find ref-
erences to uninitialized variables. The idea is that if a variable is
properly initialized, it will overwrite the poisoned value and pro-
gram states in two running instances should be the same. After
detecting the differences, our system leverages the symbolic taint
analysis to further identify the location where the variable was
allocated. This helps us to identify the root cause and facilitate the
development of real exploits. We have implemented a prototype
called TimePlayer. After applying it to both Windows 7 and Win-
dows 10 kernels (x86/x64), it successfully identified 34 new issues
and another 85 ones that had been patched (some of them were
publicly unknown.) Among 34 new issues, 17 of them have been
confirmed as zero-day vulnerabilities by Microsoft.

∗Authors contributed equally to this research.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3345654

ACM Reference Format:
Mengchen Cao, Xiantong Hou, Tao Wang, Hunter Qu, Yajin Zhou, Xiao-
long Bai, and Fuwei Wang. 2019. Different is Good: Detecting the Use of
Uninitialized Variables through Differential Replay. In 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’19), November
11–15, 2019, London, United Kingdom. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3319535.3345654

1 INTRODUCTION
In modern operating systems such asWindows and Linux, values of
variables are usually undetermined until being explicitly initialized.
These uninitialized variables could compromise the security of
a system, especially when they are crossing different privilege
domains. For instance, if a variable holds the address of a kernel
object and flows into user space, the kernel address will leak to
the (untrusted) user program. This defeats the widely deployed
kernel address space layout randomization (KASLR) mechanism. A
real-world example is a kernel exploit found in July 2015 [1], which
takes advantage of a kernel data leak from the heap (CVE-2015-2433)
to get the randomized base address of the win32k.sys driver, and
then uses it to exploit another vulnerability to escalate its privilege.
Previous research has shown that the use of uninitialized data [28,
34, 40, 48, 62] is among the most severe vulnerabilities in C and C++
language, and it accounts for more than 1/3 (147) of all memory
disclosure CVEs (388) from 2000 to 2015 [33]. What’s worse, a
recent research has demonstrated the way to automatically perform
privilege escalation attack, by exploiting uninitialized variables [35].

Unfortunately, the detection of such an issue is not easy, since it
generally does not cause a crash or other perceivable effects. One
possible way is using dynamic taint analysis to track the flow of
variables inside the system. Specifically, it sets the newly allocated
memory regions from the stack and the heap as taint sources,
and propagates taint tags. Tags will be removed if tainted mem-
ory regions are being written with new values (being initialized).
If a tainted memory region is referred by the program, a use of
uninitialized variables is detected.

Session 8D: Language Security CCS ’19, November 11–15, 2019, London, United Kingdom

1883

https://doi.org/10.1145/3319535.3345654
https://doi.org/10.1145/3319535.3345654

Though the proposed method can work, it has a serious limi-
tation in practice. Specifically, leveraging the dynamic taint anal-
ysis in a full system software stack, including the kernel, system
components and user programs, will inevitably introduce a high
performance overhead. As such, Bochspwn Reloaded 1 [28], the
state-of-the-art tool that focuses on kernel memory disclosure bugs,
only propagates taint tags for specific instructions to reduce perfor-
mance overhead. However, it introduces false negatives. As stated
in the paper, “this means that every time data in memory is copied
indirectly through a register, the taint information is discarded in
the process, potentially yielding undesired false-negatives."
Our approach In this paper, we propose a method with two key
techniques to detect kernel information leak due to the use of unini-
tialized variables. Specifically, we leverage the first key technique,
i.e., differential replay, to quickly spot the use of uninitialized vari-
ables, without performing time-consuming full system dynamic
taint analysis. Then we use the second key technique, i.e., symbolic
taint analysis, to determine locations where uninitialized variables
were allocated.

First of all, our system adopts differential replay to record the ex-
ecution of kernels and user programs. Then we replay two different
instances, with vanilla and poisoned values of the stack and heap
memory, respectively. We compare differences of program states,
e.g., addresses and contents of memory operation instructions. As
poisoned variables will be overwritten during initialization, the two
instances should be exactly the same if newly allocated variables
have been properly initialized. In other words, the difference in
program states could indicate the occurrence of an uninitialized
variable is being used.

After that, our system will conduct a symbolic taint analysis to
determine the exact location where the variable was allocated. To
this end, our system performs offline taint analysis on the recorded
execution trace. It sets the new variable as the taint source, and
allocates a symbolic value for the variable. Then it propagates
the symbolic taint tag and generates symbolic expressions along
the trace. This process stops until reaching the instruction that
uses the uninitialized variable. Finally, we obtain the complete
symbolic expression of the variable. By using such an expression,
an analyst is able to determine the location whether the variable
was allocated. To speed up this process, symbolic expressions are
packed if necessary.

Note that a recent system kMVX [70] uses the concept of multi-
variant execution (MVE) to detect the kernel information leaks
in Linux. The idea of MVE is similar with differential replay by
executing multiple instances. However, it requires the kernel source
code, and thus cannot be applied to closed-source Windows kernels.
On the contrast, TimePlayer is a non-intrusive system that can
work towards closed-source systems. Its effectiveness has been
demonstrated by detecting new vulnerabilities in both Windows 7
and Windows 10 kernels.
Prototype and evaluation We have implemented a prototype
system called TimePlayer. The differential replay is implemented
based on the PANDA system [18], and the symbolic taint analysis

1In this paper, if not otherwise specified, we use the name Bochspwn to denote the
latest version of the tool, i.e., Bochspwn Reloaded that focuses on the kernel memory
disclosure detection.

leverages the SimuVEX [59] library. In order to evaluate its effec-
tiveness, we applied it to both Windows 7 and Windows 10 kernels
in a period of seven months. It successfully detected 34 issues of
information leak from kernel space to user space. Among them, 17
have been confirmed by the Microsoft Security Response Center
with CVE numbers. For the remaining 17 ones, at the time of writ-
ing this paper (August 2019), we are still collaborating with them
to assess potential security consequences.

To further evaluate the capability of our system to detect known
vulnerabilities, we used public test cases (exploits) released by
Google Project Zero in our system. The result is encouraging. We
have detected 85 vulnerabilities in Windows 7 and Windows 10.
Among them, 55 are publicly known vulnerabilities with CVE num-
bers. However, there exist 30 ones that do not have CVE numbers.
Our manual analysis confirmed that they are indeed kernel infor-
mation leaks.

To evaluate the efficiency of differential replay used by TimePlayer,
we implemented a reference system that purely leverages the taint
analysis to track uninitialized variables. We ran the same test cases
and logged the time when the kernel information leak is detected.
The result shows that our system can detect 34 new issues in around
47 hours, while the reference system can only detect 7 of them in
around 66 hours. This demonstrated the efficiency of TimePlayer
to detect new vulnerabilities.

In summary, this paper makes the following contributions.

• We propose a technique called differential replay, which can
quickly detect the use of uninitialized variables in Windows
kernels without the need of the source code.

• We propose symbolic taint analysis to locate the sources of unini-
tialized variables, and present two optimizations to speed up this
process.

• We have implemented a prototype and applied it to both Win-
dows 7 and Windows 10 in a time period of seven months. It
reported 34 new issues, and 17 of them have been confirmed as
zero-day vulnerabilities by Microsoft.

To engage the community, we have released the test cases, recorded
program traces, differences of program states during the replay that
leads to the discovery of new vulnerabilities in the following link:
https://github.com/AlibabaOrionSecurityLab/TimePlayer.

The rest of this paper is structured as follows: we introduce the
background and a motivating example in Section 2, and illustrate
the overall design of our system in Section 3. We illustrate the two
key techniques of our system in Section 4 and Section 5, respectively.
We then present the evaluation result in Section 6 and discuss the
potential limitation of our work in Section 7. At last, we describe
the related work in Section 8 and conclude our work in Section 9.

2 BACKGROUND AND A MOTIVATING
EXAMPLE

2.1 Background

Deterministic record and replay of PANDA PANDA is an
open source dynamic analysis platform with many unique features,
which make it a powerful platform for analyzing complicated soft-
ware. Our system leverages the record and replay feature offered by

Session 8D: Language Security CCS ’19, November 11–15, 2019, London, United Kingdom

1884

https://github.com/AlibabaOrionSecurityLab/TimePlayer

Figure 1: The overview of deterministic record and replay
of PANDA. IN: input from port; INT: hardware interrupts;
DMA: DMA events.

PANDA to record the execution first, and then replay the program
with poisoned memory values of the kernel stack and heap.

In order to detect uninitialized variables by comparing differ-
ences of two replay instances, the record and replay should be deter-
ministic. PANDA solves this challenges in the following way [18].
When starting recording, it first takes a snapshot of machine states,
including registers and memory values. Then it records three kinds
of non-deterministic events, including input events (through the
IN instruction), hardware interrupts, and DMA events. When any
event happens, it logs the trace point information, which consists of
the program counter (PC value), the instruction count since record
began, and the ECX counter value used in the x86 loop instruction.
The information is sufficient to distinguish one trace point from
another [19].

During the replay, PANDA first restores system states based
on the saved snapshot. Then it executes the program and feeds
non-deterministic events into the system, when the current trace
point is identical to the logged one. By doing so, it ensures that
non-deterministic events are generated in a same (virtual) timeline
as in the recording process. Figure 1 shows the overview of this
process. Note that, the multi-threading will not cause any issue,
since the execution trace of the multi-threaded program will be
deterministically replayed.

It is worth mentioning that, during the replay, there is no device
emulation code executed, and the replay cannot go live to accept
new inputs. The purpose of PANDA is to analyze the recorded trace.
This design choice makes the implementation of record and replay
really simple and clean.

Taint analysis Taint analysis [46, 57] is a data flow analysis
technique with wide usage. The basic idea is that it marks certain
types of data as the taint sources, assigns taint tags to them and
then propagates the tags when the program executes. When the
program reaches certain locations, namely taint sinks, rules could
be enforced by checking the tags. Our system uses the symbolic
taint analysis to identify the location where the uninitialized data
was allocated.

// nt!IopXxxControlFile (Entry: nt!NtDeviceIoControlFile):
/* Code 01:
IO_STATUS_BLOCK localIoStatus;//And other stack vars
*/
// a new kernel stack is allocated (and uninitialized)
01: 0x83c6f838 sub esp, eax
…
/* Code 02-03:
if (fastIoDispatch->FastIoDeviceControl(&localIoStatus){

*IoStatusBlock = localIoStatus; //Last 4 bytes leaked
}*/
// move value from the kernel stack into ecx
02: 0x83e244fe mov ecx, dword ptr [ebp - 0x70]
// move from ecx to a user space memory (eax + 4)
03: 0x83e24501 mov dword ptr [eax + 4], ecx

Figure 2: The code snippet of a kernel information leak
(CVE-2018-8408).

2.2 A Motivating Example
Before presenting the detailed system design and implementation,
we first use a new kernel information leak vulnerability (CVE-2018-
8408) detected by our system to show limitations of existing tools,
which motivate our work. Figure 2 shows the code snippet of this
vulnerability that leaks the kernel data from the stack.
A kernel information leak vulnerability This vulnerability
exists in both Windows 7 and Windows 10 kernels. The system
call NtDeviceIoControlFile can be used to set the UDP socket
with a flag FIONBIO for the non-blocking I/O mode. This routine
is invoked by the user-mode function WSARecvFrom. If this func-
tion is invoked without any incoming UDP data, a special status
value 0xc00000a3 (STATUS_DEVICE_NOT_READY) will be assigned to
the variable IoStatusBlock.Status. Four uninitialized bytes on
the kernel stack will be leaked to a user-space variable named
IoStatusBlock.Information, in the condition that the function
FltpFastIoDeviceControl returns a nonzero value.
Why it cannot be detected by Bochspwn Bochspwn [28] is
the state-of-the-art tool to detect kernel memory disclosure bugs.
The core idea is using the double-tainting technique to trace the
data flow of the uninitialized variable.

However, the tool cannot detect this vulnerability due to the
limitation of its taint analysis capability. For instance, to reduce
performance overhead, the tool only propagates the taint tag for the
instructions of memory to memory operations. In other words, the
tag will be lost when the tainted data flows into a register (which is
indeed the case of this vulnerability.) Also, as stated by the author,
its bug detection module is activated only if certain conditions are
satisfied, i.e., when the esi is in kernel-mode and edi is in user-
mode. However, in this case, the uninitialized kernel stack memory
is first passed to the ecx register and then leaked to user space
memory (Line 3 in Figure 2). This will cause the tool to generate a
wrong taint state, and miss this vulnerability.
Whyour system can detect this vulnerability Our system ap-
plies the differential replay technique to quickly spot the occurrence
of the use of uninitialized data, without the need to dynamically

Session 8D: Language Security CCS ’19, November 11–15, 2019, London, United Kingdom

1885

rr_icount:302035663
pc:83e24501 module:\SystemRoot\system32\ntoskrnl.exe,
base:83c18000, offset:0020c501
addr1:021afad8 value:[01 00 00 00](Difference) 00 00 00 00

rr_icount:302035663
pc:83e24501 module:\SystemRoot\system32\ntoskrnl.exe,
base:83c18000, offset:0020c501
addr1:021afad8 value:[aa aa aa aa](Difference) 00 00 00 00

8408a7a2 nt!IopXxxControlFile+0x3d9
83e48b8e nt!NtDeviceIoControlFile+0x2a
771f6bb4 nt!KiSystemServicePostCall
771f538c ntdll!KiFastSystemCallRet
004011e8 ntdll!ZwDeviceIoControlFile+0xc

Stack trace

Different program state

Figure 3: The observed different memory states of two re-
play instances, one is the normal replay instance, and the
other one is the replay instance with the poisoned stack
memory value 0xaa.

trace data flow at runtime. In the following, we will describe how
our tool detects this vulnerability with a high-level description.

First, we leverage the first key technique of our system to re-
play the recorded execution with poisoned kernel stack. During
this process we find a difference of the program state as shown in
Figure 3. Specifically the value at the memory location 0x021afad8
is different in two instances. That means an uninitialized data from
the kernel stack is used. Moreover, we get the stack trace by us-
ing the function symbols and stack information that comes with
TimePlayer. This stack trace helps the manual analysis of the vul-
nerability.

After that, we leverage the second key technique of our system
to locate the source of the uninitialized variable, i.e., where this data
was allocated. To this end, we perform a symbolic taint analysis
starting from the last N (we used 500 in the experiment) kernel stack
frames, and find the source of the leaked kernel data by applying
the taint analysis on the execution trace, as shown in Figure 5 on
page 7.

From Figure 5, we can see that the kernel frame is allocated at
the instruction 0x83c6f838 (sub esp, eax). Our system sets the
memory region ([0x9e12fc44:0x9e12fcbf]) as the taint source
with a symbolic taint tag <BV992 TAINT_s_0_992> 2. Then, with
the program execution, the taint tag will be removed from the
memory region if it is initialized (line 2), or propagated to other
memory regions (line 3) and registers (line 4). At last, the use
of the uninitialized variable is detected (line 5). In this example,
the taint tag is first propagated to the ecx register (line 4), and
then leaked to the user space memory ([0x21afad8:0x21afadb])
through the ecx register at the instruction address 0x83e24501
(nt!IopXxxControlFile+418) (line 5). Note that, the symbolic taint

2BV992 denotes the tag that is a bit vector with a length of 992 bits, each one denotes
one tainted memory bit.

tag <BV32 TAINT_s_0_992[256:287]> denotes part of the kernel
stack (from bit 256 to 287, 4 bytes in total) has been leaked.
Takeaway Instead of using the traditional dynamic taint tracking
technique, TimePlayer leverages the differential replay to detect
the use of the uninitialized data, which could be missed by other
tools. Moreover, the symbolic taint analysis further helps us find
the location where the uninitialized data was allocated, and the
exact portion of the memory region that has been leaked with a
bit-level granularity.

3 SYSTEM OVERVIEW
Detecting the use of uninitialized variables is not as easy as one may
think. A variable could be allocated from multiple locations (stack
and heap), and frequently used that may cross different privilege
domains. If we leverage the dynamic taint analysis to track the vari-
able in the whole system, including the kernel and user programs,
it may introduce a high performance overhead, which makes the
system impractical. Hence, it is a common practice to only partially
track the instructions, which introduces false negatives [28].

Our system proposed a new technique called differential replay to
quickly detect such an issue. Figure 4 shows the overall architecture
of our system. Specifically, we use a full system emulator to record
the execution of the operating system kernel and user programs
(❶). Then we replay the execution, but with poisoned values for
variables allocated from the stack and the heap (❷). If variables are
properly initialized before being used, then two replay instances
should have the same program states, since the initialization will
overwrite the poisoned value. However, if the variables are used
without being initialized, it will cause differences of program states.
Thus our system can detect the use of uninitialized variables by
detecting the differences during replay (❸), without performing the
time-consuming whole system taint tracking.

After that, we further leverage the symbolic taint tracking to
help us identify sources of uninitialized variables (❹). Our system
performs a forward symbolic taint tracking along the program
execution trace (❺). By doing so, we can identify the exact location
where the variable was allocated (❻), and the uninitialized memory
region that has been leaked.

In the following two sections, we will illustrate the two key
techniques, i.e., differential replay and symbolic taint tracking, of
our system.

4 KEY TECHNIQUE I: DIFFERENTIAL REPLAY
Differential replay involves several steps, i.e., recording the exe-
cution to save the program’s state, poisoning memory, replaying
programs and comparing the differences. In the following, we will
illustrate these steps one by one.

4.1 Recording Program Execution
The main purpose of recording program execution is to save the
state for replaying. Though there aremany frameworks, e.g., PIN [36],
Valgrind [45], that could be used, our system uses PANDA, a full-
system emulation and analysis tool based upon Qemu [7], due to
the following reasons.

First, PANDA is a non-intrusive framework that does not change
the program’s state, e.g., the memory layout, when recording the

Session 8D: Language Security CCS ’19, November 11–15, 2019, London, United Kingdom

1886

Execution
Recording

Whole-system
Execution Trace

Deterministic
Replay

Normal Memory

Deterministic
Replay

Poisoned Memory
(Stack & Heap)

Execution
Comparison

Detected the Use of
Uninitialized Variable

at Instructiondiff

Symbolic
Execution

Taint Analysis

Instruction0

Instructionn

Instructiondiff

……

……

Instructiondiff

Taint SinkTaint Source

Poisoned Memory
(Stack & Heap)

Identified Sources of
Uninitialized Variables

Key Technique I: Differential Replay

Key Technique II: Symbolic Taint Analysis

1
2

3

4

5

6

Figure 4: The overview of TimePlayer. It leverages the differential replay to detect the use of uninitialized variables, and the
symbolic taint analysis to identify the sources of these variables.

execution. Other user-level tools like PIN and Valgrind will reside
in the program’s memory space, which could change the program’s
behaviors like memory allocation. This non-intrusive requirement
to the target program (or the operating systems) is important to
our system.

Second, our system needs to track the data flow inside the whole
system, since variables could cross different privileged domains.
Hence, we need a full system emulator that can run the OS ker-
nel, system services and user-mode applications. This requirement
excludes user-model instrumentation frameworks, e.g., PIN and
Valgrind.

Third, PANDA is able to perform a system-wide deterministic
replay. It ensures that the instructions, and other non-deterministic
system events like interrupts, inputs can be replayed in a determin-
istic order. This capability enables us to reliably compare program
states to find differences that are affected by the poisoned memory.

In our system, the recording functionality is built upon the
PANDA system. During the implementation, we found and fixed
several bugs in PANDA, such as missing some types of PCI DMA
data, errors of handling syscalls2 in the multi-threading scenario
and etc.

4.2 Poisoning Memory
During the replay, we launch two instances. One instance does not
change any memory, and another one is with poisoned memory
of both the stack and the heap. We call the instance with vanilla
memory as normal record-replay instance (RRNormal in short) in
this paper. For another replay instance, memory regions are initial-
ized with special values upon creation. Such an instance is called
poisoned record-replay instance (RRPoisoned in short). To be spe-
cific, we change initial values of the memory allocated from the

kernel stack and the heap. After that, if the program state is differ-
ent between the RRNormal instance and the RRPoisoned instance, a
use of an uninitialized variable variable is detected.

Poisoning timing To poison the memory allocated from the
kernel stack and the heap, we need to find a way to monitor the
creation of a new stack frame, and the allocation of new memory
regions from the heap.

(1) Stack frame creation: When there is a subtraction operation on
the stack pointer register (the esp register in x86 for instance),
a new stack frame is created and its size could be obtained from
the constant operator of the subtraction instruction. We can
then poison the memory region inside the newly allocated stack
frame accordingly.

(2) Heap memory allocation: When a function is invoked through
a call instruction (or a similar one), we check the callee to
determine whether a heap allocation occurs. For instance, if the
callee is ExAllocatePoolWithTag inWindows, then a new space
is being allocated from the heap, and the size of the memory
can be retrieved from the parameters of these functions.

Poisoning policies Different scenarios have different require-
ments in terms of the granularity and poisoned values. To this end,
TimePlayer supports different memory poisoning policies to fulfill
these needs.

(1) Granularity: Our system supports different poisoning granular-
ity, ranging from fine-grained byte level to coarse-grained word
level. For instance, when using byte-level poisoning granularity,
every poisoned byte will be different from one another. This is
the default granularity of our system.

(2) Poisoned value: By poisoning the kernel memory and comparing
the memory write operation to user space, our system could

Session 8D: Language Security CCS ’19, November 11–15, 2019, London, United Kingdom

1887

identify kernel information leak. For instance, we can poison
every byte allocated from the kernel stack with a special value
0xaa.
TimePlayer keeps a record of all the poisoned memory into a list

called poisoning history. This list will be used in the symbolic
taint analysis in Section 5 to help locate the source of uninitialized
variables.

4.3 Comparing Replay Instances
Our system compares the state of the RRPoisoned instance with the
RRNormal instance. It simultaneously checks and compares the exe-
cution of some specific instructions, which are defined as checking
points as follows.
Checking points Remember that TimePlayer is mainly designed
to detect the use of uninitialized variables. Accordingly, we only
perform the comparison at certain instructions, namely checking
points in our system. They include memory read and write instruc-
tions. For instance, for the mov rax, qword ptr [rsi] instruction,
our system compares both the address value in the register rsi
and the memory value fetched from that address in the two replay
instances. However, our system only considers a kernel information
leak when a memory write instruction is executed with the kernel
privilege and the destination address is in user-space area, while at
the same time there is a difference between two replay instances.
Difference comparison We implement the difference compari-
son via the memory R/W callbacks in PANDA. Our system main-
tains a block of shared memory between two replay instances,
which uses a data structure called Checking Points’ Information
Record (CPIR) to log detailed context information, e.g. accessed
memory addresses and contents. All the CPIR entities are main-
tained using a linked list in the shared memory.

Specifically, the two replay instances interact in a producer-
consumer manner. The RRNormal instance replays first. After a
basic block is executed, a corresponding CPIR entity is pushed onto
the top of CPIR list. Once the shared memory is full, the RRPoisoned
instance is notified to start execution and pause the execution itself.
The RRPoisoned instance fetches the CPIR from the shared memory
and compares the accessed memory addresses and contents. It
repeats this process until the shared memory is exhausted. Then it
notifies the RRNormal instance to continue the execution and pauses
itself.

Once a difference is found, our system logs the detailed context
information. In this paper, we name the checking point with differ-
ences as differential point. The context information, along with
the poisoning history will be used to identify the exact location
where the uninitialized data was allocated (Section 5).
Continuation after the differential point After identifying
one differential point, our system needs to continue the execu-
tion to find more. If an uninitialized variable does not affect the
control flow of a program, it is straightforward to continue the
replay. However, uninitialized variables may influence the control
flow. For instance, the control flow of a program may depend on
a comparing operation of the variable with a constant or another
variable. Since the variable has been poisoned, it will lead to a
change in the control flow compared to the original (recorded) one.
This may confuse the replay functionality of the PANDA due to the

misalignment of instruction count number. In this case, we need to
find a solution to fix these side effects to let PANDA continue the
replay process of the program.

Specifically, if we know which conditional branch instruction
would use the uninitialized variable, we can dynamically feed the
instruction at differential point with the data in RRNormal re-
play instance, instead of the data from the RRPoisoned. We can
transparently do this since the execution of the RRNormal is before
the RRPoisoned, and they are synchronized using the shared mem-
ory. Hence, we directly copy the data from the RRNormal instance
and use it in the RRPoisoned instance.
Parallel replay The differential replay will incur high perfor-
mance overhead, since we need to compare the program state at
each checking point. To speed up this process, we introduce the
concept of parallel replay in our system, based on the scissors
plugin of PANDA. Our parallel replay works in the following way.
It first performs a normal replay, but saves multiple snapshots (N1,
N2 and etc.) and non-deterministic events (S1, S2 and etc.) with
numbers of instruction count C1, C2 and etc. After that, we can
replay the saved snapshots (along with the saved non-deterministic
events) in parallel, with each one as a normal replay instance (Sec-
tion 2 illustrates the background information of record and replay
of PANDA.)

The parallel replay may lead to false negatives in theory. For in-
stance, if an instruction in one piece of the snapshot uses a variable
which was allocated from a preceding piece, it will be missed by
our parallel replay, since the poisoning states in different pieces are
separated. Although this problem could be mitigated with a trace
slicing mechanism, which carefully chooses the points where vari-
ables would not be split, our system takes a more straightforward
workaround. When splitting the whole snapshot into pieces, we
expand the range of each piece so that it overlaps with adjacent
ones. Though this mechanism cannot totally solve the problem, it
reduces chances of occurrence. We will show the evaluation result
of parallel replay in Section 6.3.

5 KEY TECHNIQUE II: SYMBOLIC TAINT
ANALYSIS

When a differential point is detected, we need to further de-
termine the source of the uninitialized variable, i.e., the location
where the variable was allocated. The second key technique of our
system, i.e., symbolic taint analysis, aims to fulfill this requirement.

5.1 Preparing Traces and Contexts for Taint
Analysis

Our taint analysis applies to the trace of a program’s execution.
However, for performance concern, our system does not actively
collect the context of the execution trace during the process of
differential replay. Instead, when a differential point is detected, we
look backward a number of instructions (this number is determined
adaptively), and replay the execution from there to the differential
point. We then collect the traces with detailed context information
of each executed instruction accordingly.

We implemented a PANDA plugin to collect the context of exe-
cution traces. Specifically, for each instruction, our system logs the
value of the program counter (PC), the stack pointer, and values of

Session 8D: Language Security CCS ’19, November 11–15, 2019, London, United Kingdom

1888

 Operation Taint
Source

Taint
Destination

Taint
Expression Instruction Note

1 Taint
Memory

/
[0x9e12fc44:
0x9e12fcbf]

<BV992
TAINT_S_0_992>

0x83c6f838
sub esp, eax

A new kernel stack frame is allocated. The taint expression is
applied to the stack frame (992 bits)

……

2 UnTaint
Memory

/
[0x9e12fca4:
0x9e12fca4]

<BV8 1>
0x83e24116
mov byte ptr [ebp-0x2c], cl

The taint tag is removed from the memory range
[0x9e12fca4: 0x9e12fca4] since a constant value (one
byte) 0x1 is written into the memory.

3 Taint
Memory

[0x9e12fca4:
0x9e12fca7]

[0x9e12fc28:
0x9e12fc2b]

<BV32
TAINT_S_0_992[
672:695]..1#8>

0x83e24218
push dword ptr [ebp-0x2c]

The taint tag from [0x9e12fca4: 0x9e12fca7] is
propagated to [0x9e12fc28: 0x9e12fc2b]. After that, the
taint expression of the destination memory region comprises
of three tainted bytes and one constant byte (valued 0x1).

……

4 Taint
Register

[0x9e12fc60:
0x9e12fc63]

ecx
<BV32
TAINT_S_0_992[
256:287] >

0x83e244fe
mov ecx, dword ptr [ebp-0x70]

The taint tag from [0x9e12fc60: 0x9e12fc63] is
propagated to ecx register.

5 Taint
Memory

ecx
[0x21afad8:
0x21afadb]

<BV32
TAINT_S_0_992[
256:287] >

0x83e24501
mov dword ptr [eax+4], ecx

The taint tag is propagated from ecx to user-space memory
[0x21afad8: 0x21afadb]. The source of the uninitialized
variable is located (on kernel stack) and the exact position is
also obtained (from bit 256 to bit 289).

Figure 5: One example of the symbolic taint analysis. The taint expression (the fifth column) in the table will be applied to the
taint destination (the fourth column), i.e., the register or the memory region.

general purpose registers, the instruction sequence count, accessed
memory addresses, etc. During this process, the semantics of each
instruction is needed to guarantee that only the used operands (ex-
plicit and implicit) are inspected and logged. This is implemented
with aids of Intel XED[23] and Capstone[51] for x86 and ARM re-
spectively. Our system also supports the extension instruction sets,
e.g., x87/MMX/SSE/AVX for x86.

However, how to set the code location where the trace starts, i.e.
how far do we need to look backward, needs a further consideration.
If the location is too far from the differential point, then it will take
a long time to replay from that address and the size of the log file
will be big. In contrast, if the location is too close, we could miss
the location where the uninitialized variable was allocated.

In this paper, we propose a mechanism similar to the sliding
window protocol. Specifically, we define the number of the stack
frame as the window size, and set an initial value of the window size.
Then we adaptively increase the size if the instructions inside the
window do not cover the location where the variable is allocated.
We continue this process until we successfully locate the allocation
point, or when the window size reaches a threshold.

5.2 Symbolic Taint Analysis
After obtaining the trace and context information, we will perform
the symbolic taint analysis. In our system, we define the memory
regions that have been poisoned as taint sources (and assign cor-
responding symbolic expressions), while addresses and contents
of the memory operands of the instruction at the differential
point as taint sinks. After that, symbolic execution is carried out
so that the taint expressions (tags) are propagated along the trace.
Expressions are split or simplified if needed along the execution. In
the following, we will use an example to elaborate this process.

Figure 5 illustrates the taint tag propagation process where an
uninitialized variable gets leaked from the kernel stack into a user-
space program (see the motivating example in Section 2.2). The
main operation is adding or removing taint tags to or from memory
regions and registers. Specifically, in the first line of the figure, a
new kernel stack frame is allocated. Our system assigns a new taint
tag to the whole stack frame memory region, with an expression
<BV992 TAINT_S_0_992>. The symbol TAINT_S_0_992 denotes this
is a tainted stack with index 0 and the length of the tainted memory
is 992 bits (124 bytes). Since we will have multiple stack frames
during program execution, our system maintains a mapping table
between the stack index to the concrete memory address. The
second line of the operation is to remove the taint tag from the
memory region [0x9e12fca4: 0x9e12fca4] (1-byte long) because
the 1-byte constant value has been written into that memory. We
continue this process until the fourth instruction in the figure that
propagates the taint tag from memory into ecx register, and the
fifth instruction that propagates the taint tag from ecx register to
memory. It turns out that the destination memory address belongs
to user space, whichmeans a taintedmemory value (an uninitialized
variable) has been leaked to a user program.Moreover, with the taint
expression, we can further locate the stack where the variable was
allocated, and the length (32 bits) of the leaked data. In our system,
the symbolic taint analysis is implemented by using SimuVEX [59]
library with the symbolic execution engine on top of the VEX IR.
Note that our system does not need to solve the expression.

5.3 Optimizations
Our system introduces two optimizations, i.e., selective execution
and symbolic expression packing, to improve the performance of
symbolic taint tracking.

Session 8D: Language Security CCS ’19, November 11–15, 2019, London, United Kingdom

1889

(a) The code snippet that propagates taint expression. Instructions in bold
denote the ones that affect the register ECX.

(b) The symbolic expression of the register ECX after
win32k!GreGetCharABCWidthsW+1AD

Figure 6: The real example of a complicated symbolic expres-
sion that should be packed.

Selective execution Our system does not always use the sym-
bolic execution engine to execute each instruction. If an instruction
does not operate on the tainted memory or register, there is no
necessary to symbolically execute it and we can safely skip it.

Specifically, we first parse the generated trace and translate each
machine instruction into a VEX IR, if and only if the instruction
is operating on the tainted memory or register. Otherwise, the in-
struction is unchanged. All the translated VEX IR and the native
instructions are maintained inside a memory region, using a bit
for each instruction (instruction mode bit) to denote the execution
mode (symbolic or native). When we find a mode switch from the
symbolic execution to the native execution, we can safely skip all
the following native instructions and directly jump to the next
symbolic instruction that operates the tainted value. Since the con-
crete context information of the instruction has been saved, we can
restore the context and symbolically execute the following ones
from there.

Symbolic expression packing With the growth of the complex-
ity of symbolic expression, the time and space overhead to manipu-
late the new expression is also growing. Our system uses another
optimization, i.e., expression packing, for better performance.

Specifically, we evaluate the complexity of each symbolic expres-
sion before propagating it. If the expression is too complex, we will
split a new symbol as an alias to replace the old one. In our sys-
tem, the complexity of an expression is measured by its length and
depth. The length of the expression refers to the number of atomic
symbols in the expression, while the depth means the number of
steps to generate the expression. In practice, we set 1, 024 as the
threshold for the length and 6 as the threshold for the depth. These

Table 1: The test cases used in the evaluation. We ran these
programs in Windows with our system. User (remote) login
means we record the process of (remote) user login (through
the Microsoft remote desktop protocol.)

Name Version Name Version
ReactOS Test Suite 0.4.9 Youku 7.6.8.12071

Firefox 64.0.2 Chrome 64 bits 70.0.3533.110
Chrome 32 bits 71.0.3571.98 User Login -

IE 11.0.9600.19080IS User Remote Login -

threshold values are obtained through the experiments of multiple
benchmark programs.

Figure 6 shows a real example taken from the taint analysis in
the latest version of Windows 7 kernel. In this example, we firstly
set the kernel stack frame ([0xb1dab99c:0xb1dab9df]) as the taint
source tagged <BV544 TAINT_544>. Then, after three copy instruc-
tions (rep movs/push/mov), 4 bytes from kernel stack are passed
to edx register and remain uninitialized. After multiple arithmetic
and bit-wise operations (Addition, Subtraction, Multiplication, Sign
Extend, Bit Shift, etc.), the complexity of this symbolic expression
will exceed the threshold. Our system packs the expression accord-
ingly and generates a new simple expression used in the subsequent
calculation. To preserve the taint information, our system records
the relationship between the new expression and the original one.

6 EVALUATION
In the following, we present the evaluation result of our system.
Our evaluation aims to answer the following questions.
Q1 - effectiveness: Can TimePlayer detect new vulnerabilities,
and perform better than the state-of-the-art tool?
Q2 - efficiency: Can TimePlayer quickly detect the vulnerabilities?
Q3 - performance overhead: What is the performance overhead
of the key techniques used by TimePlayer and whether proposed
optimizations improve the performance of our system?

During the evaluation, all experiments were performed on a
server with an Intel I7-7700K Quad-core 4.20 GHz processor and
32G bytes RAM, running the Ubuntu 14.04.1 system. TimePlayer is
based on the full-system emulator, i.e., PANDA. Thus all operating
systems evaluated are running as guest OSes, with 2G bytes RAM
allocated to each one.

6.1 Effectiveness
We applied our system to multiple Windows 7 and 10 versions
(both 32 and 64 bits) in a period of seven months (from July 2018 to
January 2019). Specifically, we leveraged 8 test cases and ran them
in windows 7 and 10 systems with the latest patches at that time,
and used our system to record and replay the execution to detect
the information leak from kernel space to user space. The test cases
used in our evaluation are shown in Table 1. During the test, we
poison the kernel memory data using the byte-level granularity.
New vulnerabilities: Table 2 shows the result of newly detected
issues and vulnerabilities 3, and their detailed information. In to-
tal, our system identified 34 cases of kernel information leak in
3In this paper, we use issues to denote findings that have not been confirmed by
Microsoft, and vulnerabilities to denote the ones that have been confirmed.

Session 8D: Language Security CCS ’19, November 11–15, 2019, London, United Kingdom

1890

Table 2: The detected kernel information leaks inWindows operating systems. In total, our system detected 34 new issues, and
17 of them have been confirmed by Microsoft. We mask out part of the component name for the purpose of anonymity, since
some of these issues have not been fixed.

Component System stack/heap Status Discovery Date Brief description
1 nt!Iop***File win7/win10 32/64bit stack CVE-2018-8408 2018-07 0x04 bytes disclosure with IoStatusBlock
2 nt!Nt***Error win7/win10 32/64bit stack CVE-2018-8477 2018-09 0x04 bytes disclosure with Response
3 nt!Nt***File win7 32/64bit stack CVE-2018-8621 2018-08 0x04 bytes disclosure with IoStatusBlock
4 nt!Nt***Memory win7 32/64bit stack CVE-2018-8622 2018-08 0x04 bytes disclosure with OldProtect
5 Ntfs!Nt***Journal win7/win10 32/64bit heap CVE-2019-0569 2018-09 0x01-0x03 bytes disclosure with USN_RECORD structure
6 nt!Nt***Token win7/win10 32bit stack CVE-2019-0621 2018-10 0x04 bytes disclosure with ReturnLength
7 nt!Nt***Memory#2 win7/win10 32/64bit stack CVE-2019-0767 2018-11 0x04 bytes disclosure with ReturnLength
8 nt!Nt***Port win7 64bit stack CVE-2019-0775 2018-11 0x04 bytes disclosure with REMOTE_PORT_VIEW
9 nt!Alpc***Port win7 64bit stack CVE-2019-0782 2018-11 0x04 bytes disclosure with REMOTE_PORT_VIEW
10 nt!Alpc***Attributes win7/win10 64bit stack CVE-2019-0702 2018-11 0x10 bytes disclosure with ALPC message
11 nt!Alpc***Message win10 64bit stack CVE-2019-0840 2018-12 0x04 bytes disclosure with ALPC message
12 nt!Nt***FileEx win7/win10 64bit stack CVE-2019-0844 2018-12 0x04 bytes disclosure with IoStatusBlock
13 win32k!xxx***MsgEx win7/win10 32bit heap CVE-2019-0628 2018-10 0x04 bytes disclosure with lpdwResult
14 nt!Nt***Control win7 32bit heap CVE-2019-0661 2018-11 0x2140 bytes disclosure with OutputBuffer argument
15 nt!Nt***Information win7 32bit heap CVE-2019-0663 2018-11 0x7f bytes disclosure with SystemInformation argument
16 win32kbase!RIM***Input win10 64bit stack CVE-2019-0776 2019-01 0x04 bytes disclosure with input pointer
17 tcpip!Udp***Indication win10 64bit heap CVE-2019-1039 2019-02 0x04 bytes disclosure with OutputBuffer argument
18 win32k!xxx***Terminal win7/win10 32bit stack Discussion 2018-08 0x50 bytes disclosure
19 nt!Nt***Error#2 win7 32bit stack Discussion 2018-09 0x18 bytes disclosure
20 nt!Rtl***X86 win7 32bit stack Discussion 2018-09 0x04 bytes disclosure
21 nt!Ki***Apc win7 32bit stack Discussion 2018-10 0x04 bytes disclosure
22 nt!Nt***Process win7/win10 32bit stack Discussion 2018-10 0x04 bytes disclosure
23 mrxsmb!MRx***Transports win7 32bit stack Discussion 2018-11 0x0a bytes disclosure
24 Ntfs!Ntfs***Extend win10 64bit stack Discussion 2018-12 0x02 bytes disclosure
25 win32kbase!Check***Pointer win10 64bit stack Discussion 2018-12 0x20 bytes disclosure
26 nt!Etwp***Space win10 64bit stack Discussion 2019-01 0x04 bytes disclosure
27 nt!Pop***CleanUp win7/win10 32bit heap Discussion 2018-10 0x1c bytes disclosure
28 nt!Pop***State win7/win10 32bit heap Discussion 2018-11 0x04 bytes disclosure
29 nt!Exp***Info win7 32bit heap Discussion 2018-11 0x01 byte disclosure
30 nt!Nt***Objects win7 32bit heap Discussion 2018-11 0x02 bytes disclosure
31 nt!Etwp***Buffer win7/win10 32bit heap Discussion 2018-11 0x04 bytes disclosure
32 nt!Iop***Request win7 32bit heap Discussion 2018-11 0x01f0 bytes disclosure
33 nt!Etwp***Item win7 32bit heap Discussion 2018-11 0x04 bytes disclosure
34 mpsdrv!Send***Notification win7 32/64bit heap Discussion 2018-12 0x0f85 bytes disclosure

/* LocalResponse: uninitialized kernel stack
* Response: user space memory
*/
Status = ExpRaiseHardError (ErrorStatus, NumberOfParameters,

UnicodeStringParameterMask, CapturedParameters,
ValidResponseOptions, &LocalResponse);

try {
*Response = LocalResponse; -> where the leak occurs

} except (EXCEPTION_EXECUTE_HANDLER) {
NOTHING;

}

Listing 1: The code snippet of the function NtRaiseHardError

multiple Windows kernel components. We reported our findings
to the Microsoft Security Response Center. Among them, 17 have
been confirmed as vulnerabilities with assigned CVE numbers. For
the rest ones, we are still in the process of communicating with
Microsoft to evaluate potential security consequences, at the time
of writing this paper (August 2019).
Case study: CVE-2018-8477 In the following, we will use one
case study to demonstrate how our system detects the new vul-
nerability in the latest Windows kernel. This vulnerability exists

Figure 7: The comparison of our system with Bochspwn to
detect known vulnerabilities. Our system can locate 85 vul-
nerabilities, while Bochspwn can detect 67 of them.

in the nt!NtRaiseHardError module of the Windows 10 kernel.
Part of the code snippet of the vulnerable module can be found in
WRK(Windows Research Kernel) v1.2 project (Listing 1). This vul-
nerability is triggered by setting the value ValidResponseOptions
to OptionShutdownSystem. In this case, the return value of the
function ExpRaiseHardError will be STATUS_PRIVILEGE_NOT_HELD

Session 8D: Language Security CCS ’19, November 11–15, 2019, London, United Kingdom

1891

Table 3: The result to detect vulnerabilities in old versions of Windows kernels. These vulnerabilities (67 in total) can be
detected by both our system and Bochspwn.

Component System stack/heap Status Brief description
1 win32kfull!SfnINLPUAHDRAWMENUITEM win7/win10 32/64bit stack Historical CVE-2017-0167, 0x14 bytes disclosure (rep movsd)
2 win32k!xxxClientLpkDrawTextEx win7 32/64bit stack Historical CVE-2017-0245, 0x04 bytes disclosure (rep movsd)
3 nt!NtQueryInformationWorkerFactory win7/win10 32/64bit stack Historical CVE-2017-0300, 0x05 bytes disclosure (rep movsd)
4 win32k!xxxSendMenuSelect win7/win10 32/64bit stack Historical CVE-2017-11853, 0x0c bytes disclosure (rep movsd)
5 nt!NtGdiExtGetObjectW win7/win10 32/64bit stack Historical CVE-2017-8470, 0x04 bytes disclosure (memove)
6 win32k!NtGdiGetOutlineTextMetricsInternalW win7/win10 32/64bit stack Historical CVE-2017-8471, 0x04 bytes disclosure (movsd)
7 nt!NtGdiGetTextMetricsW win7 32/64bit stack Historical CVE-2017-8472, 0x07 bytes disclosure (rep movsd)
8 win32k!NtGdiGetRealizationInfo win7/win10 32/64bit stack Historical CVE-2017-8473, 0x08 bytes disclosure (rep movsd)
9 win32k!ClientPrinterThunk win7/win10 32/64bit stack Historical CVE-2017-8475, 0x14 bytes disclosure (rep movsd)
10 nt!NtQueryInformationProcess win7/win10 32/64bit stack Historical CVE-2017-8476, 0x04 bytes disclosure (rep movsd)
11 win32k!NtGdiMakeFontDir win7/win10 32/64bit stack Historical CVE-2017-8477, 0x68 bytes disclosure (rep movsd)
12 nt!NtQueryInformationJobObject win7/win10 32/64bit stack Historical CVE-2017-8478, 0x04 bytes disclosure (memove)
13 nt!NtQueryInformationJobObject#2 win7/win10 32/64bit stack Historical CVE-2017-8479, 0x10 bytes disclosure (memove)
14 nt!NtQueryInformationTransaction win7/win10 32/64bit stack Historical CVE-2017-8480, 0x06 bytes disclosure (rep movsd)
15 nt!NtQueryInformationResourceManager win7/win10 32/64bit stack Historical CVE-2017-8481, 0x02 bytes disclosure (rep movsd)
16 nt!KiDispatchException win7/win10 32/64bit stack Historical CVE-2017-8482, 0x20 bytes disclosure (rep movsd)
17 nt!NtQueryInformationJobObject#3 win7/win10 32/64bit stack Historical CVE-2017-8485, 0x04 bytes disclosure (rep movsd)
18 win32k!NtGdiGetPhysicalMonitorDescription win7/win10 32/64bit stack Historical CVE-2017-8681, 0x0100 bytes disclosure (rep movsd)
19 win32k!NtGdiGetFontResourceInfoInternalW win7 32/64bit stack Historical CVE-2017-8684, 0x50 bytes disclosure (memove)
20 win32k!NtGdiEngCreatePalette win7 32/64bit stack Historical CVE-2017-8685, 0x034c bytes disclosure (rep movsd)
21 win32k!NtGdiDoBanding win7/win10 32/64bit stack Historical CVE-2017-8687, 0x08 bytes disclosure (rep movsd)
22 nt!NtQueryInformationProcess#2 win10 32/64bit stack Historical CVE-2018-0745, 0x04 bytes disclosure (rep movsd)
23 win32k!fnHkINLPMSLLHOOKSTRUCT win7 32/64bit stack Historical CVE-2018-0810, 0x04 bytes disclosure (rep movsd)
24 nt!RtlpCopyLegacyContextAmd64 win10 32/64bit stack Historical CVE-2018-0832, 0x04 bytes disclosure (rep movsd)
25 nt!KiDispatchException#2 win7/win10 32/64bit stack Historical CVE-2018-0897, 0x78 bytes disclosure (rep movsd)
26 nt!NtWaitForDebugEvent win7/win10 32/64bit stack Historical CVE-2018-0901, 0x04 bytes disclosure (rep movsd)
27 nt!NtQueryVirtualMemory win10 32/64bit stack Historical CVE-2018-0968, 0x04 bytes disclosure (memove)
28 nt!NtQueryAttributesFile win7/win10 32/64bit stack Historical CVE-2018-0969, 0x04 bytes disclosure (rep movsd)
29 nt!NtQuerySystemInformation win7/win10 32/64bit stack Historical CVE-2018-0971, 0x04 bytes disclosure (rep movsd)
30 nt!NtQueryVirtualMemory#2 win7/win10 32/64bit stack Historical CVE-2018-0974, 0x08 bytes disclosure (rep movsd)
31 nt!NtQueryFullAttributesFile win7/win10 32/64bit stack Historical CVE-2018-0975, 0x38 bytes disclosure (rep movsd)
32 nt!NtQueryInformationToken win7/win10 32/64bit heap Historical CVE-2017-0258, 0x08 bytes disclosure (memove)
33 nt!NtTraceControl win7/win10 32/64bit heap Historical CVE-2017-0259, 0x3c bytes disclosure (memove)
34 nt!NtNotifyChangeDirectoryFile win7/win10 32/64bit heap Historical CVE-2017-0299, 0x02 bytes disclosure (rep movsd)
35 nt!NtQueryObject win7/win10 32/64bit heap Historical CVE-2017-11785, 0x37 bytes disclosure (rep movsd)
36 nt!NtQueryDirectoryFile win7/win10 32/64bit heap Historical CVE-2017-11831, 0x19 bytes disclosure (rep movsd)
37 nt!NtDeviceIoControlFile win7 32/64bit heap Historical CVE-2017-8469, 0x01e4 bytes disclosure (rep movsd)
38 win32k!NtGdiGetOutlineTextMetricsInternalW#2 win7/win10 32/64bit heap Historical CVE-2017-8484, 0x05 bytes disclosure (rep movsd)
39 nt!NtDeviceIoControlFile#2 win7 32/64bit heap Historical CVE-2017-8488, 0x1a bytes disclosure (rep movsd)
40 nt!WmipIoControl win7/win10 32/64bit heap Historical CVE-2017-8489, 0x48 bytes disclosure (rep movsd)
41 win32k!NtGdiEnumFonts win7/win10 32/64bit heap Historical CVE-2017-8490, 0x47 bytes disclosure (rep movsd)
42 nt!NtDeviceIoControlFile#3 win7/win10 32/64bit heap Historical CVE-2017-8491, 0x08 bytes disclosure (rep movsd)
43 nt!IopXxxControlFile win7/win10 32/64bit heap Historical CVE-2017-8492, 0x04 bytes disclosure (memove)
44 NSI!NsiGetParameter win7/win10 32/64bit heap Historical CVE-2017-8564, 0x0d bytes disclosure (memove)
45 nt!NtGdiGetGlyphOutline win7/win10 32/64bit heap Historical CVE-2017-8680, arbitrary number of bytes (rep movsd)
46 nt!NtQuerySystemInformation#2 win10 32/64bit heap Historical CVE-2018-0746, 0x0c bytes disclosure (memove)
47 nt!NtQueryVirtualMemory#3 win7/win10 32/64bit heap Historical CVE-2018-0894, 0x04 bytes disclosure (rep movsd)
48 nt!NtQueryInformationThread win7/win10 32/64bit heap Historical CVE-2018-0895, 0x04 bytess disclosure (rep movsd)
49 nt!NtQuerySystemInformation#3 win7/win10 32/64bit heap Historical CVE-2018-0973, 0x04 bytes disclosure (rep movsd)
50 win32k!NtUserGetSystemMenu win7 32bit stack Historical 0x0c bytes disclosure (rep movsd)
51 win32k!NtUserCreateWindowEx win7 32bit stack Historical 0x0c bytes disclosure (rep movsd)
52 win32k!SfnINLPCREATESTRUCT win7 32bit stack Historical 0x0c bytes disclosure (rep movsd)
53 win32k!NtUserRealInternalGetMessage win7 32bit stack Historical 0x10 bytes disclosure (rep movsd)
54 win32k!xxxClientLoadMenu win7 32bit stack Historical 0x02 bytes disclosure (rep movsd)
55 win32k!xxxMNGetBitmapSize win7 32bit stack Historical 0x14 bytes disclosure (rep movsd)
56 nt!NtCallbackReturn win7 32bit stack Historical 0x14 bytes disclosure (rep movsd)
57 win32k!NtUserBeginPaint win7 32bit stack Historical 0x20 bytes disclosure (rep movsd)
58 win32k!TraceGreReleaseSemaphore win7 64bit stack Historical 0x24 bytes disclosure (memove)
59 win32k!xxxWindowEvent win7 32bit stack Historical 0x04 bytes disclosure (rep movsd)
60 win32k!NtUserGetScrollBarInfo win7 32bit stack Historical 0x04 bytes disclosure (rep movsd)
61 win32k!NtUserGetMenuBarInfo win7 32bit stack Historical 0x06 bytes disclosure (rep movsd)
62 win32k!ClientLoadLibrary win7 32bit stack Historical 0x06 bytes disclosure (rep movsd)
63 win32k!NtUserBeginPaint#2 win7 32bit stack Historical 0x08 bytes disclosure (rep movsd)
64 nt!NtTraceEvent win7 32bit heap Historical 0x04 bytes disclosure (rep movsd)
65 csc!CscDclpInitializeFsctlBufferContext win7 32bit heap Historical 0x05 bytes disclosure (rep movsd)
66 nt!PfSnBuildDumpFromTrace win7 32bit heap Historical 0x0260 bytes disclosure (rep movsd)
67 nt!PfSnGetCompletedTrace win7 32bit heap Historical 0x44 bytes disclosure (rep movsd)

Session 8D: Language Security CCS ’19, November 11–15, 2019, London, United Kingdom

1892

Table 4: The result to detect vulnerabilities in old versions of Windows kernels. These vulnerabilities (18 in total) can be
detected by our system, but missed by Bochspwn.

Component System stack/heap Status Brief description
1 win32k!NtQueryCompositionSurfaceBinding win7/win10 32/64bit stack Historical CVE-2017-8678, 0x04 bytes disclosure (xmm0 to memory)
2 nt!NtQueryVolumeInformationFile win7/win10 32/64bit stack Historical CVE-2018-0970, 0x10 bytes disclosure (xmm0 to memory)
3 nt!NtQueryVolumeInformationFile#2 win7/win10 32/64bit heap Historical CVE-2017-8462, 0x01 byte disclosure (eax to memory)
4 nt!NtSetIoCompletion/NtRemoveIoCompletion win7/win10 32/64bit heap Historical CVE-2017-8708, 0x04 bytes disclosure (rax to memory)
5 nt!NtQueryInformationTransactionManager win7/win10 32/64bit heap Historical CVE-2018-0972, 0x08 bytes disclosure (ecx to memory)
6 msrpc!MesEncodeIncrementalHandleCreate win7/win10 32/64bit heap Historical CVE-2018-8407, 0x10 bytes disclosure (xmm0 to memory)
7 nt!PspWow64GetContextThreadOnAmd64 win7 64bit stack Historical 0x02 bytes disclosure (r10 to memory)
8 win32k!NtUserToUnicodeEx win7 32bit stack Historical 0x04 bytes disclosure (eax to memory)
9 win32k!NtUserCallNoParam win7 32bit stack Historical 0x04 bytes disclosure (eax to memory)
10 nt!CommonDispatchException win7 32bit stack Historical 0x04 bytes disclosure (ecx to memory)
11 win32k!SfnDWORD win7 64bit stack Historical 0x04 bytes disclosure (r10 to memory)
12 nt!ExpReleaseResourceForThreadLite win7 64bit stack Historical 0x04 bytes disclosure (r10 to memory)
13 win32k!DEVLOCKBLTOBJ::bMapTrgSurfaceView win7 64bit stack Historical 0x04 bytes disclosure (r10 to memory)
14 nt!NtWriteFile win10 64bit stack Historical 0x04 bytes disclosure (xmm0 to memory)
15 win32k!PopThreadGuardedObject win7 64bit stack Historical 0x08 bytes disclosure (rax to memory)
16 win32k!NtUserPeekMessage win7 64bit stack Historical 0x08 bytes disclosure (rax to memory)
17 nt!NtLockFile win10 64bit stack Historical 0x08 bytes disclosure (xmm0 to memory)
18 nt!NtUnlockFile win10 64bit stack Historical 0x08 bytes disclosure (xmm0 to memory)

(c0000061), and four bytes in the kernel stack (LocalResponse) will
be leaked to the user space memory Response.

Our system locates this vulnerability when replaying the in-
stanceswith the poisoned kernel stack. After executing 5.3 billion
instructions, a differential point is encountered at PC 0x819e6147
(nt!NtRaiseHardError+0x175). The instruction in the differential
point is mov dword ptr [ebx], eax, where four bytes of 0xaa (i.e.
the poison value) in eax have been moved into a user space memory
region pointed by ebx. Then we go back 500 stack frames ahead of
the differential point, and start the forward symbolic taint analysis.
When reaching the differential point, the taint symbolic expres-
sion of eax is TAINT_FunctionID_896[224:255], denoting that the
uninitialized value comes from NtRaiseHardError at stack offset
0x1C-0x1F. The expression clearly reflects the relationship between
the uninitialized kernel stack and information leaked to user space
memory. This shows the capability of our system to detect the use
of uninitialized variables. Moreover, it demonstrates that the sym-
bolic expression can help an analyst to understand which part of
the memory has been leaked.

Comparison with Bochspwn: Since Bochspwn is the state-of-art
tool to detect kernel memory leak, we would like to compare our
tool with it. To this end, we used the proof-of-concept (PoC) exploits
publicly released by Bochspwn and ran them in old versions of
Windows systems (Windows 7 Service Pack 1 6.1.7601.17514 32/64
bits, Windows 10 pro 1703 10.0.15063.674 32 bits and Windows 10
pro 1607 10.0.14393.0 64 bits). We use these old versions because
they contain vulnerabilities that have been fixed in the latest version.
In total, we collected 52 public exploits from Bochspwn and used
them in our evaluation.

The result is encouraging. Our system detected 85 vulnerabilities,
while Bochspwn can only detect 67 of them. The result is shown in
Figure 7 (Table 3 and 4 show the details.) After carefully inspect-
ing all the findings and cross-checking with the CVE information
of Microsoft from 2016 and 2018, we found that 55 of them have
CVE numbers. For the other 30, they do not have CVE numbers,

0 0.5 1 1.5 2 2.5
·105

0

10

20

30

time elapsed in the experiment (seconds)

ac
cu
m
ul
at
ed

nu
m
be
ro

fd
et
ec
te
d
is
su
es Differential Replay

Taint Analysis

Figure 8: Time used to detect new vulnerabilities in Table 2
by differential replay and dynamic taint analysis. We find
that differential replay can detect all of them in less than
170,000 second (47 hours), while dynamic taint analysis can
only detect 7 of them in 240,000 seconds (66 hours).

and are not publicly known. However, our manual analysis con-
firmed they are indeed kernel information leaks. We believe they
are vulnerabilities detected and patched internally by Microsoft.
This demonstrated the effectiveness of our system.

Summary TimePlayer can detect new vulnerabilities that affected
the latest versions of Windows systems. Using the same test cases,
all the vulnerabilities reported by Bochspwn could also be detected
by our system, and our system reported 18 more vulnerabilities.

Session 8D: Language Security CCS ’19, November 11–15, 2019, London, United Kingdom

1893

Table 5: Overhead of differential replay. The second column
shows the time consumed in vanilla replay, and the third
column shows the time consumed in replay with memory
poisoning and differences checking, the fourth and fifth
columns is the number of issues found in corresponding test
case.

Test Case Vanilla Replay
Replay with

Poisoning & Checking
of

Instructions
Issues:

stack/heap
ReactOS_a 222.85s 5,063.25s 14,311,248,868 4/2
Chrome 837.32s 18,962.72s 61,142,430,613 5/3

cp 1507.04s 37,503.84s 113,650,380,756 3/2
Chrome64 1110.92s 24,885.625s 77,569,624,726 6/3

6.2 Efficiency
One advantage of our system is leveraging the differential replay
to quickly detect the use of uninitialized variables, instead of using
taint analysis to track the data flow. In the following, we will com-
pare the efficiency of the differential replay with the taint analysis,
from the perspective of tracking uninitialized variables.

To this end, we implement a system to track the data flow using
the taint analysis (this one is called reference system). Specifically,
we use PANDA to log the execution trace, and then perform the
offline taint analysis on the trace to detect whether the variable in
the kernel space has been leaked to user space. We feed same test
cases (Table 1) to the reference system and TimePlayer one by one,
and log the time when each vulnerability was detected.

The result is shown in Figure 8. The x axis means the time elapsed
in the experiment and the y axis denotes the accumulated number
of detected vulnerabilities. TimePlayer consumed 165, 102 seconds
to detect all 34 issues, and analyzed 553, 385, 983, 467 instructions
in total. The average speed is around 3, 351, 775 instructions per
second. However, for the system using taint analysis, it consumed
more than 240, 000 seconds (66 hours) and only detected 7 of them
within that time period. This is due to high performance overhead
introduced by taint analysis on the whole system trace.

Note that, our system also leverages taint analysis to locate the
sources of variables. However, we only need to apply taint analysis
to a small part of the whole system trace, and this process usually
finishes in less than one minute (Section 6.3).
Summary The key technique, i.e., differential replay, is more ef-
ficient to detect the use of uninitialized variables than the taint
analysis.

6.3 Performance
In the following, we will show the evaluation result of the perfor-
mance of two key techniques, i.e., differential replay and symbolic
taint analysis, respectively.
Differential replay Table 5 shows the overhead of differential
replay. ReactOS_a is one test case inside the ReactOS test suits used
in our evaluation. We also used Chrome to visit multiple web pages,
and cp operation to copy and paste 1, 226 files (total size is around
40M bytes) inside the guest Windows operating system. The result
shows that, differential replay is around 22-24x slower, compared
with the vanilla replay. Note that, though the absolute speed is
slow, it’s still more efficient than dynamic taint analysis to detect
vulnerabilities (Section 6.2).

Table 6: Overhead of differential replay in parallel (four in-
stances).

Test Case Replay
Replay with

Poisoning & Checking # of Instructions

ReactOS_a 222.85s 5,063.25s 14,311,248,868
ReactOS_a_1 59.66s 1,312.15s 3,577,812,223
ReactOS_a_2 62.38s 1,318.15s 3,577,812,214
ReactOS_a_3 61.81s 1,354.33s 3,577,812,215
ReactOS_a_4 64.24s 1,313.71s 3,577,812,189

Chrome64 1,110.92s 24,885.63s 77,569,624,726
Chrome64_1 292.12s 7,542.66s 19,392,406,183
Chrome64_2 214.56s 5,824.78s 19,392,406,181
Chrome64_3 246.94s 6,608.77s 19,392,406,179
Chrome64_4 221.52s 6,131.71s 19,392,406,157

Table 7: Overhead of symbolic taint analysis. The second and
third columns show the time used to generate the trace, and
the trace size, respectively. The last column shows the time
used to perform the taint analysis.

Test Case
Trace
Time

Trace
Size

of
Instructions

Taint
Analysis Time

CVE-2018-8408 30s 7.2GB 91.22M 5.842s
CVE-2018-8477 16s 3.2GB 40.15M 1.145s

win32k!xxxInitTerminal 15s 3.4GB 42.87M 4.871s
CVE-2019-0569 16s 3.2GB 40.12M 1.925s

win32k!xxxInterSendMsgEx 10s 2.6GB 32.24M 37.645s

Our system leverages an optimization strategy to replay multi-
ple instances in parallel (Section 4.3). In the following, we evaluate
the effectiveness of this optimization. We use the same test case
ReactOS_a and Chrome as in the previous experiment. Since the
number of CPU cores on the machine is four, we split recorded
traces into four instances, which are poisoned and replayed in par-
allel. The result is shown in Table 6. We can see that, the time
consumed depends on the slowest instance, i.e., the instance that
runs 1, 354.33 seconds. Compared with the reported 5, 063.25 sec-
onds without parallel replay, this optimization speeds up nearly
4x.

Symbolic taint analysis As shown in Table 7, the symbolic taint
analysis is very efficient. When a differential point is detected,
our system looks back several stack frames and replay from there
to generate detailed system trace for further taint analysis. The
second, third and fourth columns show the time used to generate
the trace, the trace size and the number of instructions inside the
trace. After that, we apply the (offline) symbolic taint analysis on
the trace. In particular, TimePlayer propagates the taint tags and
generates the symbolic expression along the trace, until it reaches
the differential point. The time is reported in the last column.

Note that, during evaluation, we set the initial value of the win-
dow size as 500, and the threshold to 5, 000 (Section 5.1). In most
cases, our system can successfully locate the source with a window
size less than 1, 500. Since we only need to consider instructions in-
side the window, the taint analysis typically will end in one minute.

Summary The differential replay is around 22-24x slower than
the vanilla replay of PANDA. However, this process can be opti-
mized using parallel replaying. The symbolic taint analysis typically
finishes in one minute for real test cases.

Session 8D: Language Security CCS ’19, November 11–15, 2019, London, United Kingdom

1894

7 DISCUSSION AND LIMITATION

False positives Our system compares differences of program
states to determine the use of uninitialized variables. This operation
is performed at the checking point (Section 4.3). In our prototype
and evaluation, our system is leveraged to detect the kernel infor-
mation leak. It only considers a kernel information leak when a
memory write instruction is executed with the kernel privilege and
the destination address is in user-space area, while at the same time
there is a difference between two replay instances. This is a very con-
servative strategy, and will not introduce false positives. This has
been confirmed by our findings that all the reported leakage can be
manually confirmed (Table 2, Table 3 and Table 4).

False negatives Our systemmay have false negatives. Thatmeans
some vulnerabilities could be missed. This is due to the nature of
th dynamic system whose effectiveness depends on the code cov-
erage during this process. In our evaluation, we leverage ReactOS
test suits and popular programs (Table 1) to drive and record the
system’s execution. This leads to the discovery of 34 issues and
vulnerabilities. However, we did not leverage any path exploration
technique to actively trigger new paths. We believe the orthogonal
efforts on the code coverage improvement, e.g., the fuzzing testing
tools AFL [69] or KAFL [56] could be borrowed. Moreover, our sys-
tem may miss the kernel memory leak due to DMA requests. That’s
because our system does not check memory operations issued from
the DMA controller.

The value to poison memory needs to be selected carefully. That
is because in some cases, the differences caused by the poisoned
memory could be lost. For instance, if the uninitialized data (its
value is 0x0) is used to perform the bitwise-AND operation with a
constant value (0x1 for instance) and the poisoned word is 0xaa, it
will not cause any difference between the vanilla replay instance and
the poisoned replay instance, and the uninitialized variable will not
be detected. To solve this problem, we can run the programmultiple
times with different data for poisoning to reduce the possibilities
of false negatives.

Performance overhead and optimizations As shown in the
evaluation, the differential replay introduces 22x-24x slowdown
compared with the vanilla replay of PANDA. Note that this slow-
down does not affect the effectiveness of our system to detect vul-
nerabilities, as demonstrated by the new vulnerabilities reported by
our system. Also this overhead could be optimized by the parallel
replay. Specifically, we split traces into multiple ones, and replay
them in parallel according to the number of available CPU cores.
Our experiment showed an obvious speedup (Table 6). However,
the potential issue of the optimization is that it may cause false neg-
atives. If the use of uninitialized variables is across parallel replay
instances, then it will be missed by our system after applying this
optimization.

8 RELATEDWORK

Uninitialized variables detection Modern compilers such as
GCC [37], Clang [32] and Visual Studio [39] usually provide the
feature to detect uninitialized variables. However, most of them are
limited to a single function and fail to deal with arrays, pointers
and loops [53]. Some commercial products, such as CoBOT [2],

Coverity [4] and Code Sonar [3], also show their abilities to detect
the use of uninitialized variables. But they suffer from high false
positives, especially when analyzing arrays. R. Jiresal et al. [27] try
to reduce false positives by leveraging a summary based function
analysis and control flow analysis on COBOL. However, whether
its method is suitable for other languages like C or C++ is unknown.
These tools are mainly for analyzing source code, while TimePlayer
can analyze binaries without source code.

Some other tools [11, 58] employ dynamic analysis or hybrid
analysis [24, 25, 62, 66] to detect such vulnerabilities. For instance,
Memcheck [58] uses the Valgrind [45] binary translation system to
detect the use of uninitialized memory based on the shadow mem-
ory. MemorySanitizer [62] relies on compile time instrumentation
and bit-precise shadow memory. However, these systems are either
for user-level applications, or require the compiler-aided instrumen-
tation, which cannot be applied to privileged and closed-sourced
Windows kernels.

Digtool[48] uses a specific byte pattern to fill memory regions
during stack and heap/pool allocations, and searches for the pattern
in the transferred data from kernel to user space. It can detect
kernel information leaks, however, it cannot detect the case that
the leaked data has been modified during the transfer. Compared
to simple pattern matching used in Digtool, differential replay is
immune to data change during the transfer (since it could still cause
program state differences.) DieHard [9] performs differential syscall
fuzzing to discover the use of uninitialized variables in system
calls. The idea is close to our system. However, it only focuses on
system calls, while TimePlayer aims to detect uninitialized variable
vulnerabilities in the entire system.

Both UniSan [34] and SafeInit [40] intend to detect and fix unini-
tialized data leaks, using a compiler-based solution. Specifically,
UniSan uses static data-flow analysis to check whether the unini-
tialized data can reach some predefined sinks, e.g., copy_to_usr
and sock_sendmsg. If so, it fixes the vulnerable code with the help
of the LLVM compiler. SafeInit adds an initialization pass to the
LLVM compiler to initialize variables if they are not properly ini-
tialized. The main difference between our system and these two
is that they require the source and leverage a compiler to perform
the analysis, while our system works towards the binary code of
Windows kernels directly. Due to this difference, our system faces
different challenges, e.g., how to leverage differential replay to find
uninitialized variables (without the availability of the source code).

A recent system kMVX [70] uses the concept of multi-variant
execution (MVE) to detect the kernel information leaks in Linux.
However, kMVX needs to extensively change the source code of
target systems, thus it cannot be applied to Windows kernels. On
the contrast, TimePlayer is a non-intrusive system that can work to-
wards closed source systems, and its effectiveness has been demon-
strated by detecting zero-day vulnerabilities in both Windows 7
and Windows 10 kernels.

Differential testing Our system leverages the differential replay
to detect kernel information leaks. The idea of observing differences
in program states is also used in the area of differential testing. For
instance, differential testing was used to test the compiler of C
language [38, 52, 65], SSL/TLS implementations [10, 13, 49, 60] and
complex software systems [5, 12, 26, 29, 61]. These systems usually

Session 8D: Language Security CCS ’19, November 11–15, 2019, London, United Kingdom

1895

leverage the source code to do the test. On the contrast, our system
does not rely on the source code to be effective.

Record and replay Record-replay technique aims at providing
deterministic replay of programs in the presence of non-deterministic
events, which can be applied to fields like debugging and secu-
rity [19, 54, 55]. Usually non-deterministic events are the major
challenges in record and replay systems. Some of them rely on
customized hardware to handle non-deterministic events [22, 43,
44, 50, 64], while some others require a modified OS kernel [6, 8, 31].
SMP-ReVirt [20] is the first system that records and replays exe-
cution of the entire unmodified system within commodity multi-
processor hardware. It uses hardware page protection to detect the
interactions between different CPU cores. RR [47] is a lightweight,
practical user-space tool for record-replay. It runs only one thread
at a time to avoid non-deterministic events caused by interaction
between different cores. Our system uses PANDA [18] for a whole-
system deterministic record and replay. By doing so, we are able
to analyze Windows kernels with easy-to-use APIs to extend the
functionalities of PANDA.

Dynamic taint analysis In the past decade, taint analysis has
been extensively used in the field of computer security, such as data
leakage tracking, vulnerability discovery, and etc. Some systems,
e.g., TaintCheck [46], Taintgrind [30], TaintPipe[42], TaintTrace[14],
are based on binary instrumentation to perform taint propagation.
These tools are usually designed to track data flow in a single binary,
not for the whole system data flow analysis.

Some other tools, such as TEMU [67], Panorama [68], Taint-
Droid [21], and OFFDTAN [63], use virtual machines to perform
the whole system taint tracking. Since taint tagging and tracking
consume huge amounts of resources, the efficiency of these tools
become their major weakness.

FlowWalker[15] is an offline dynamic taint analysis tool, sepa-
rating recording with analysis procedure. Such an architecture im-
proves the efficiency of taint analysis. Based on FlowWalker, other
techniques like in-memory fuzzing[16] and gray-box file formats
analysis[17], also achieved good experiment results. FlowWalker
builds taint analysis logic directly on the x86 assembly language,
makes it hard to extend to other architectures (like x86-64). In ad-
dition, it is difficult for FlowWalker to handle taint elimination
caused by bit shifts, logic operations, and arithmetic operations,
while symbolic taint analysis in TimePlayer can handle these is-
sues easily. StraightTaint[41] employs symbolic taint tagging and
offline analysis, which is similar to the symbolic taint analysis of
TimePlayer. However, StraightTaint leverages the user-level instru-
mentation tool PIN, which makes it unable to analyze operating
system kernels.

9 CONCLUSION
In this paper, we aim to detect kernel information leaks due to
the use of uninitialized variables. To this end, we propose two key
techniques, i.e., differential replay and symbolic taint analysis to
quickly find the use of uninitialized variables and locations where
variables were allocated. We developed a prototype system called
TimePlayer. The evaluation of applying our system on both Win-
dows 7 and Windows 10 kernels demonstrated its effectiveness,

with the discovery of 34 new issues (17 of which have been con-
firmed as vulnerabilities.)
Acknowledgements The authors would like to thank the anony-
mous reviewers for their insightful comments that helped improve
the presentation of this paper. This work was partially supported
by Alibaba-Zhejiang University Joint Research Institute of Frontier
Technologies, the National Natural Science Foundation of China
under Grant 61872438 and the Fundamental Research Funds for the
Central Universities. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors
and do not necessarily reflect the views of funding agencies.

REFERENCES
[1] 2015. Revisiting an Info Leak. https://blog.rapid7.com/2015/08/14/revisiting-an-

info-leak/.
[2] 2018. CoBOT Homepage. http://www.cobot.net.cn/
[3] 2018. Code Sonar Static Analysis Tool. http://www.grammatech.com/products/

codesonar/overview.html
[4] 2018. Coverity Static Analysis Data Sheet. http://www.coverity.com/library/

pdf/CoverityStaticAnalysis.pdf
[5] George Argyros, Ioannis Stais, Suman Jana, Angelos D Keromytis, and Aggelos

Kiayias. 2016. SFADiff: Automated Evasion Attacks and Fingerprinting Using
Black-box Differential Automata Learning. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security.

[6] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. 2012. Efficient
System-enforced Deterministic Parallelism. Commun. ACM (2012).

[7] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Pro-
ceedings of the 2005 USENIX Conference on Usenix Annual Technical Conference.

[8] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D Gribble. 2010. Deterministic
Process Groups in dOS. In Proceedings of the 9th USENIX conference on Operating
systems design and implementation.

[9] Emery D Berger and Benjamin G Zorn. 2006. DieHard: Probabilistic Memory
Safety for Unsafe Languages. In Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation.

[10] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly
Shmatikov. 2014. Using Frankencerts for Automated Adversarial Testing of
Certificate Validation in SSL/TLS Implementations. In Proceedings of the 2014
IEEE Symposium on Security and Privacy.

[11] Derek Bruening and Qin Zhao. 2011. Practical Memory Checking with Dr.
Memory. In Proceedings of the 9th Annual IEEE/ACM International Symposium on
Code Generation and Optimization.

[12] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed Differential Testing of JVM Implementations. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation.

[13] Yuting Chen and Zhendong Su. 2015. Guided Differential Testing of Certificate
Validation in SSL/TLS Implementations. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering.

[14] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. 2006. Tainttrace: Efficient
Flow Tracing with Dynamic Binary Rewriting. In Proceedings of the 11th IEEE
Symposium on Computers and Communications.

[15] Baojiang Cui, Fuwei Wang, Tao Guo, Guowei Dong, and Bing Zhao. 2013.
FlowWalker: A Fast and Precise Off-Line Taint Analysis Framework. In Pro-
ceedings of the 2013 Fourth International Conference on Emerging Intelligent Data
and Web Technologies.

[16] Baojiang Cui, Fuwei Wang, Yongle Hao, and Xiaofeng Chen. 2017. WhirlingFuz-
zwork: a Taint-analysis-based API in-memory Fuzzing Framework. In Joural of
Soft Computing.

[17] Baojiang Cui, Fuwei Wang, Yongle Hao, and Lingyu Wang. 2016. A Taint Based
Approach for Automatic Reverse Engineering of Gray-box File Formats. In Joural
of Soft Computing.

[18] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan Whelan.
2015. Repeatable Reverse Engineering with PANDA. In Proceedings of the 5th
Program Protection and Reverse Engineering Workshop.

[19] George W Dunlap, Samuel T King, Sukru Cinar, Murtaza A Basrai, and Peter M
Chen. 2002. ReVirt: Enabling Intrusion Analysis through Virtual-machine Log-
ging and Replay. ACM SIGOPS Operating Systems Review (2002).

[20] George W Dunlap, Dominic G Lucchetti, Michael A Fetterman, and Peter M
Chen. 2008. Execution Replay of Multiprocessor Virtual Machines. In Proceedings
of the 4th ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments.

[21] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth.

Session 8D: Language Security CCS ’19, November 11–15, 2019, London, United Kingdom

1896

http://www.cobot.net.cn/
http://www.grammatech.com/products/codesonar/overview.html
http://www.grammatech.com/products/codesonar/overview.html
http://www.coverity.com/library/pdf/CoverityStaticAnalysis.pdf
http://www.coverity.com/library/pdf/CoverityStaticAnalysis.pdf

2014. TaintDroid: an Information-flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In ACM Transactions on Computer Systems (TOCS).

[22] Derek RHower andMarkDHill. 2008. Rerun: Exploiting Episodes for Lightweight
Memory Race Recording. In ACM SIGARCH computer architecture news.

[23] Intel. 2018. Intel XED. https://intelxed.github.io
[24] François Irigoin, Pierre Jouvelot, and Rémi Triolet. 2014. Semantical Interpro-

cedural Parallelization: An overview of the PIPS project. In ACM International
Conference on Supercomputing 25th Anniversary Volume.

[25] Anushri Jana and Ravindra Naik. 2012. Precise Detection of Uninitialized Vari-
ables Using Dynamic Analysis-Extending to Aggregate and Vector Types. In
Proceedings of the 19th Working Conference on Reverse Engineering.

[26] Suman Jana and Vitaly Shmatikov. 2012. Abusing File Processing in Malware
Detectors for Fun and Profit. In Proceedings of the 2012 IEEE Symposium on Security
and Privacy.

[27] Rahul Jiresal, Adnan Contractor, and Ravindra Naik. 2011. Precise Detection
of Un-initialized Variables in Large, Real-life COBOL Programs in Presence of
Unrealizable Paths. (2011).

[28] Mateusz Jurczyk. 2017. Detecting Kernel Memory Disclosure with x86 Emulation
and Taint Tracking. (2017).

[29] Timotej Kapus and Cristian Cadar. 2017. Automatic Testing of Symbolic Execution
Engines via Program Generation and Differential Testing. In Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineering.

[30] Wei Ming Khoo. 2018. Taintgrind: a Valgrind Taint Analysis Tool.
[31] Oren Laadan, Nicolas Viennot, and Jason Nieh. 2010. Transparent, Lightweight

Application Execution Replay on Commodity Multiprocessor Operating Systems.
In ACM SIGMETRICS performance evaluation review.

[32] Chris Lattner. 2018. Clang: a C language Family Frontend for LLVM. http:
//clang.llvm.org/index.html

[33] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwarting
Memory Disclosure with Efficient Hypervisor-enforced Intra-domain Isolation. In
Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security.

[34] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2016. UniSan: Proactive
Kernel Memory Initialization to Eliminate Data Leakages. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security.

[35] Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Nürnberger, Wenke Lee,
and Michael Backes. 2017. Unleashing Use-before-initialization Vulnerabilities
in the Linux Kernel Using Targeted Stack Spraying. In Proceedings of the 2017
Annual Network and Distributed System Security Symposium (NDSS).

[36] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation.

[37] Manuel López-Ibáñez. 2007. Better Uninitialized Warnings. http://gcc.gnu.org/
wiki/BetterUninitializedWarnings

[38] William M McKeeman. 1998. Differential Testing for Software. Digital Technical
Journal (1998).

[39] Microsoft. 2018. Visual Studio.
[40] Alyssa Milburn, Herbert Bos, and Cristiano Giuffrida. 2017. Safeinit: Comprehen-

sive and Practical Mitigation of Uninitialized Read Vulnerabilities. In Proceedings
of the 2017 Annual Network and Distributed System Security Symposium.

[41] Jiang Ming, Dinghao Wu, Jun Wang, Gaoyao Xiao, and Peng Liu. 2016. Straight-
Taint: Decoupled Offline Symbolic Taint Analysis. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering.

[42] Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu. 2015. TaintPipe:
Pipelined Symbolic Taint Analysis. In Proceedings of the 24th USENIX Security
Symposium.

[43] Pablo Montesinos, Luis Ceze, and Josep Torrellas. 2008. Delorean: Recording
and Deterministically Replaying Shared-memory Multiprocessor Execution Effi-
ciently. In ACM SIGARCH Computer Architecture News.

[44] Satish Narayanasamy, Cristiano Pereira, and Brad Calder. 2006. Recording Shared
Memory Dependencies using Strata. ACM SIGARCH Computer Architecture News
(2006).

[45] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a Framework for Heavy-
weight Dynamic Binary Instrumentation. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation.

[46] James Newsome and Dawn Song. 2005. Dynamic Taint Analysis: Automatic
Detection, Analysis, and Signature Generation of Exploit Attacks on Commodity
Software. In Proceedings of the 12th Network and Distributed Systems Security
Symposium.

[47] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and
Nimrod Partush. 2017. Engineering Record and Replay for Deployability. In
Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference.

[48] Jianfeng Pan, Guanglu Yan, and Xiaocao Fan. 2017. Digtool: A virtualization-
based Framework for Detecting Kernel Vulnerabilities. In Proceedings of the 26th
USENIX Security Symposium.

[49] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D Keromytis, and
Suman Jana. 2017. Nezha: Efficient Domain-independent Differential Testing. In
Proceedings of the 2017 IEEE Symposium on Security and Privacy.

[50] Gilles Pokam, Klaus Danne, Cristiano Pereira, Rolf Kassa, Tim Kranich, Shiliang
Hu, Justin Gottschlich, Nima Honarmand, Nathan Dautenhahn, Samuel T King,
et al. 2013. QuickRec: Prototyping an Intel Architecture Extension for Record
and Replay of Multithreaded Programs. ACM SIGARCH Computer Architecture
News (2013).

[51] Nguyen Anh Quynh. 2014. Capstone: The Ultimate Disassembler.
[52] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun

Yang. 2012. Test-case Reduction for C Compiler Bugs. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementation.

[53] Prof. John Regehr. 2011. Uninitialized Variables. http://blog.regehr.org/archives/
519

[54] Michiel Ronsse and Koen De Bosschere. 1999. RecPlay: a Fully Integrated Practical
Record/replay System. ACM Transactions on Computer Systems (TOCS) (1999).

[55] Yasushi Saito. 2005. Jockey: a User-space Library for Record-replay Debugging.
In Proceedings of the 6th international symposium on Automated analysis-driven
debugging.

[56] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. KAFL: Hardware-assisted Feedback Fuzzing for OS Kernels.
In Proceedings of the 26th USENIX Security Symposium.

[57] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You
Ever Wanted to Know About Dynamic Taint Analysis and Forward Symbolic
Execution (but might have been afraid to ask). In Proceedings of the 2010 IEEE
Symposium on Security and Privacy.

[58] Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to Detect Undefined
Value Errors with Bit-Precision.. In Proceedings of the annual conference on USENIX
Annual Technical Conference.

[59] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice - Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. In Proceedings of the 22nd Annual Network
and Distributed System Security Symposium.

[60] Suphannee Sivakorn, George Argyros, Kexin Pei, Angelos D Keromytis, and
Suman Jana. 2017. HVLearn: Automated Black-box Analysis of Hostname Verifi-
cation in SSL/TLS Implementations. In Proceedings of the 2017 IEEE Symposium
on Security and Privacy.

[61] Varun Srivastava, Michael D Bond, Kathryn S McKinley, and Vitaly Shmatikov.
2011. A Security Policy Oracle: Detecting Security Holes Using Multiple API
Implementations. In Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation.

[62] Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: Fast
Detector of Uninitialized Memory Use in C++. In Proceedings of the 13th Annual
IEEE/ACM International Symposium on Code Generation and Optimization.

[63] Xiajing Wang, Rui Ma, Bowen Dou, Zefeng Jian, and Hongzhou Chen. 2018.
OFFDTAN: A New Approach of Offline Dynamic Taint Analysis for Binaries. In
Joural of Security and Communication Networks.

[64] Min Xu, Rastislav Bodik, and Mark D Hill. 2003. A Flight Data Recorder for
Enabling Full-system Multiprocessor Deterministic Replay. In ACM SIGARCH
Computer Architecture News.

[65] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation.

[66] Ding Ye, Yulei Sui, and Jingling Xue. 2014. Accelerating Dynamic Detection
of Uses of Undefined Values with Static Value-flow Analysis. In Proceedings of
Annual IEEE/ACM International Symposium on Code Generation and Optimization.

[67] Heng Yin and Dawn Song. 2010. Temu: Binary Code Analysis via Whole-system
Layered Annotative Execution. EECS Department, University of California, Berke-
ley, Tech. Rep. UCB/EECS-2010-3 (2010).

[68] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
2007. Panorama: Capturing System-wide Information Flow for Malware Detec-
tion and Analysis. In Proceedings of the 14th ACM conference on Computer and
communications security.

[69] Michal Zalewski. 2018. American Fuzzy Lop: a Security-oriented Fuzzer. http:
//lcamtuf.coredump.cx/afl/

[70] Sebastian Österlund, Koen Koning, Pierre Olivier, Antonio Barbalace, Herbert Bos,
and Cristiano Giuffrida. 2019. kMVX: Detecting Kernel Information Leaks with
Multi-variant Execution. In Proceedings of the 24th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems.

Session 8D: Language Security CCS ’19, November 11–15, 2019, London, United Kingdom

1897

https://intelxed.github.io
http://clang.llvm.org/index.html
http://clang.llvm.org/index.html
http://gcc.gnu.org/wiki/Better Uninitialized Warnings
http://gcc.gnu.org/wiki/Better Uninitialized Warnings
http://blog.regehr.org/archives/519
http://blog.regehr.org/archives/519
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Background and a Motivating Example
	2.1 Background
	2.2 A Motivating Example

	3 System Overview
	4 Key Technique I: Differential Replay
	4.1 Recording Program Execution
	4.2 Poisoning Memory
	4.3 Comparing Replay Instances

	5 Key Technique II: Symbolic Taint Analysis
	5.1 Preparing Traces and Contexts for Taint Analysis
	5.2 Symbolic Taint Analysis
	5.3 Optimizations

	6 Evaluation
	6.1 Effectiveness
	6.2 Efficiency
	6.3 Performance

	7 Discussion and Limitation
	8 Related Work
	9 Conclusion
	References

