SlowFuzz: Automated Domain-Independent Detection

of Algorithmic Complexity Vulnerabilities

Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana

Columbia University

o , oo
v .
-

ACM Conference on Computer and Communications Security (CCS) 2017, Dallas, Texas

COMPLEXITY VULNERABILITIES

» Difference between average and worst-case complexity
- CPU, memory, space etc.
- User-controlled
- Exploitability & Denial of Service (DoS)

» Several instances seen in the wild

&
8-

Difference between average and worst-case complexity
CPU, memory, space etc.
User-controlled
Exploitability & Denial of Service (DoS)

Several instances seen in the wild

Stack Exchange Network
Status

Here we'll post updates on outages and maintenance windows for the Stack
Exchange Network. You can also get status updates by following
@StackStatus

Outage Postmortem - July 20, 2016

Difference between average and worst-case complexity
CPU, memory, space etc.
User-controlled
Exploitability & Denial of Service (DoS)

Several instances seen in the wild

Stack Exchange Network il
Status

Here we'll post updates on outages and maintenance windows for the Stack
Exchange Network. You can also get status updates by following
@StackStatus

Outage Postmortem - July 20, 2016 anprlnnnlgs‘i Home Exploits Shellcode Papers Google Hacking Database Sub

w4 PHP Hash Table Collision - Denial of Service (PoC)

Difference between average and worst-case complexity
CPU, memory, space etc.
User-controlled
Exploitability & Denial of Service (DoS)

Several instances seen in the wild

2009 30th IEEE Symposium on Security and Privacy

Stack Exchange Network

Status

Here we'll post updates on outages and maintenance windows for the Stack

Exchange Network. You can also get status updates by following Exploiting Unix File-System Races via Algorithmic Complexity Attacks

@StackStatus

Outage Postmortem - July 20, 2016 nATABAs E Home Exploits Shellcode Papers Google Hacking Database Sub

w4 PHP Hash Table Collision - Denial of Service (PoC)

Difference between average and worst-case complexity
CPU, memory, space etc.
User-controlled
Exploitability & Denial of Service (DoS)

Jk CVE-2017-15010 Detail
Several instances seen in the wild

2009 30th IEEE Symposium on Security and Privacy

Current Description

A ReDoS (regular expression denial of service) flaw was found in the tough-cookie
Node.js. An attacker that is able to make an HTTP request using a specially craftec

StaCK EXChange Network application to consume an excessive amount of CPU.

StatUS Source: MITRE Last Modified: 10/03/2017 = View Analysis Description

Here we'll post updates on outages and maintenance windows for the Stack

Exchange Network. You can also get status updates by following Exploiting Unix File-System Races via Algorithmic Complexity Attacks
@StackStatus I m pa Ct

Exp l n lT ‘ CVSS Severity (version 3.0):

Outage Postmortem - July 20, 2016 n AT AB ASE Home Exploits Shellcode Papers Google CVSS v3 Base Score: 7.5 High

w4 PHP Hash Table Collision - Denial of Service (PoC)

DOMAIN INDEPENDENT DETECTION OF COMPLEXITY VULNERABILITIES

» Heavily dependent on application logic

» Algorithmic worst-case vs implementation worst-case
- Minor changes often drastically change complexity
(e.qg., pivot selection in quicksort)

» Reasoning about the problem in the generic case is hard:
- Theoretical analysis is often non-trivial
- Implementation varies

- Domain-specific tools predominantly require expert knowledge

EXAMPLE: QUICKSORT

» Average O(nlogn) vs worst-case O(nz) complexity
» Implementation largely affects performance
» How do we reason on the effectiveness of a given implementation?

» How to test in a domain-agnostic manner?

EVOLUTIONARY TESTING

» Domain-independent test input generation
» Known to perform well in grey-box settings

» Very effective in modern fuzzers targeting crash/memory corruption bugs
- No expert knowledge

- Production tools compete with domain-specific engines

EVOLUTIONARY TESTING

» Can we steer evolutionary testing
towards complexity bugs?

» Coverage is irrelevant in this scenario

v

add rsp, 0x20 {__saved_rbp}

» Re-use fuzzing infrastructure PP rbp

SLOWFUZZ PROTOTYPE

» SlowFuzz prototype

» Maintain and evolve an input corpus towards slower executions

11

SLOWFUZZ PROTOTYPE

» Maintain and evolve an input corpus towards slower executions

\
. &
8

12

SLOWFUZZ PROTOTYPE

» Maintain and evolve an input corpus towards slower executions

ouN R
Active Corpus

Initial
Seeds

SLOWFUZZ PROTOTYPE

» Maintain and evolve an input corpus towards slower executions

——

[|
: Application :
: Address Space |
I
e R :
NN) : |
Active Corpus , |
2 Input Mutation |
| |
I ? |
Initial : | |
Seeds e . '
; Corpus Refinement |
\ J : |
I
\

\—-————-——--—-——--—————_—————————-—————-—,

SLOWFUZZ PROTOTYPE

» Maintain and evolve an input corpus towards slower executions

__

T v

Corpus Refinement [<— Guidance Engines

Initial
Seeds le

/ |

| . . k
Application !
| Resource Usage Info |
: Address Space ° !
' |
e Y |
a9 A \ |
Active Corpus , |
S Input Mutation |
: :
' |
I I
' |
: |
| :
' |
' |

|\

\--—-——--—--—-——-——-—--——-—-———-—--——-—-——

SLOWFUZZ PROTOTYPE

» Maintain and evolve an input corpus towards slower executions

——

I v

Corpus Refinement [<— Guidance Engines

Initial
Seeds le

(|
' . . I
: Application Resource Usage Info |
| Address Space .
| I
s Al
(. N |
Active Corpus | |
> Input Mutation :
i |
| I
| I
' I
! I
! |
' I
' I
\

\-——-——-——--—-——-——-—-———-—-———-—--————-—*

SLOWFUZZ KEY IDEAS

» Three key controls:
- Instrumentation, Fitness Function, Mutations

» Fitness Function should favor inputs that
introduce slowdowns

» Mutation operations with locality in mind

» Avoid getting stuck!

17

SLOWFUZZ KEY IDEAS

» Three key controls:
- Instrumentation, Fitness Function, Mutations

» Fitness Function should favor inputs that
introduce slowdowns

» Mutation operations with locality in mind

» Avoid getting stuck!

Quicksort Inputs

Number
of
Instructions

1000

18

SLOWFUZZ KEY IDEAS

» Three key controls:
- Instrumentation, Fitness Function, Mutations

» Fitness Function should favor inputs that
introduce slowdowns

» Mutation operations with locality in mind

» Avoid getting stuck!

Quicksort Inputs

O 3 /
y
® 3 /

Number
of
Instructions

1000

1500

19

SLOWFUZZ KEY IDEAS

Number
Quicksort Inputs of
» Three key controls: Instructions
- Instrumentation, Fitness Function, Mutations g = 3 7 9 1000
» Fitness Function should favor inputs that Y
introduce slowdowns 1 5 3 - 9 1500
» Mutation operations with locality in mind l
» Avoid getting stuck!
1 5 @ / 9 4000

A\ 20

SLOWFUZZ KEY IDEAS

» Fitness function maximizes CPU instructions

» Mutation Strategies:
- Random
- Offset Priority
- Mutation Priority

- Hybrid

21

Normalized slowdown over best performing input

Insertion sort & quicksort implementations SlowFuzz
Brute-force
Quadratic worst-case performance - Theoretical Worst

: 200000 400000 600000 800000 1000000
How close do we get to the theoretical

worst slowdown?

6

()]

Slowdowns of 84.97% and 83.74% of
theoretical worst-case

SlowFuzz
Brute-force
Theoretical Worst

=
S
(7))
)
§4
3

3
<
O
D

1500 2000 2500
Generation

Apple:3.34x
OpenBSD: 3.3x
GNU: 26.36%

NetBSD: 8.7%

-
=
O
ke,
=
O
/)

Normalized slowdown over best performing input

—— Apple
OpenBSD

200000 400000 600000 800000 1000000
Generation

ENGINE PROPERTIES

» Fitness function:
- CPU instructions vs Code Coverage vs Time-based tracing

» Mutation Strategies:
- Random
- Offset Priority
- Mutation Priority

- Hybrid

24

C
3
o
e,
=
O
0p)

200000

—— Random

400000 600000
Generation

Mutation Priority
Offset Priority

800000

1000000

25

-
=
O
S
=
O
)

Normalized slowdown over best performing input

Time
Coverage Edge
Counters

200000 400000 600000 800000 1000000
(Generation

26

Evolutionary testing for complexity bugs is promising

Testcases: common instances of complexity vulnerabilities
Hashtables
Regular Expression Parsers

Compression/decompression routines

27

Hash used for string keys in PHP
Known worst-case performance
Has been exploited in the wild

For ‘ab’, ‘cd’ to collide it must hold

c=a+tnAad=b-385*xn,necs

If if two equal-length strings A and B
collide, then strings xAy, xBy also collide

/ *

* @arKey 1s the array key to be hashed

*x @nKeyLenth 1is the length of arKey

*/

static 1nline ulong

zend_inline_hash_func(const char =*xarKey, uint
nKeyLength)

register ulong hash = 5381;

for (uint 1 = 0; 1 < nKeyLength; ++1) {
hash = ((hash << 5) + hash) + arKeyl[il];

return hash;

28

64 hashtable entries & 64 insertions

Slowfuzz generated inputs causing
monotonically increasing collisions

No knowledge of the internals of the
hash function

N
-
O
D
Q
o
—
@
-
)
@)
=
-
Z

Number of collisions found by SlowFuzz

15 20 25
Fuzzing time (hours)

29

USECASE: REGEX PARSERS

4

4

4

4

Multiple instances of ReDoS in the wild
Backtracking can be catastrophic

Handling of both regexes and inputs
- Evil Regexes

- Slowdowns on given inputs

Identifying evil regexes is a hard problem
- Widely varying complexity: linear to exponential

- Focus on super-linear & exponential matching

regex_match(regex,

)

30

USECASE: REGEX PARSERS / pere

» Can SlowFuzz find evil regexes given a fixed input?

31

USECASE: REGEX PARSERS / pere

b

» Can SlowFuzz find evil regexes given a fixed input?

- Yes! Without any knowledge of the regex logic

-
8-

USECASE: REGEX PARSERS / pere

b

» Can SlowFuzz find evil regexes given a fixed input?

- Yes! Without any knowledge of the regex logic

Super-linear | Exponential

c*ca*b*a*b (b+)+c
a+b+b+b+a+ | c*(b+b)+c
c*c+ccbe+ a(ala™)+a

&
8-

USECASE: REGEX PARSERS / pere

» Can SlowFuzz find evil regexes given a fixed input?

- Yes! Without any knowledge of the regex logic

Super-linear | Exponential

c*ca*b*a*b (b+)+c
a+b+b+b+a+ | c*(b+b)+c
c*c+ccbe+ a(ala™)+a

» Example: (b+)+c

34

100 runs / 1 million generation each
Regexes of 10 characters or less

At least 31 regexes causing a slowdown
with 20% probability

At least 2 regexes with super-linear
matching with 0% probability

At least 1 regex with exponential
matching with 45.45% probability

>
b=
Q
©
Q
O
j -
ol

O
o

O
N

Probability of finding at least n units causing a slowdown

60
Number of instances

— Slow Unit

80

Super-linear
Exponential

35

Can SlowFuzz find inputs causing a slowdown on a fixed regex?

Normalized slowdown over best performing input

Regexes from production WAFs

8 - 25% slowdowns

-
=
@)
e,
=
O
0p

10000 20000 30000 40000
Generation

50000

36

USECASE: DECOMPRESSION / szip

» bzip2
» 250-byte inputs

» 300x slowdown on fixed input size

Slowdown

400

350

300

250

200

150

100

50

Average Slowdown per Fuzzing Hour

2X

Hour 1

281x

Hour 2

341x

Hour 3

37

SlowFuzz: automated detection of complexity bugs through fuzzing

Found non-trivial issues involving high performant code
PHP’s hashtable implementation

PCRE regular expression library
bzip2

Evolutionary fuzzing as a generic means of code exploration
Different objectives for different bug types
Beyond code coverage maximization
Objective vs Controls: Instrumentation, Fitness Functions, Mutations

38

