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COMPLEXITY VULNERABILITIES

» Difference between average and worst-case complexity
- CPU, memory, space etc.
- User-controlled
- Exploitability & Denial of Service (DoS)

» Several instances seen in the wild
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Difference between average and worst-case complexity
CPU, memory, space etc.
User-controlled
Exploitability & Denial of Service (DoS)

Jk CVE-2017-15010 Detail
Several instances seen in the wild

2009 30th IEEE Symposium on Security and Privacy

Current Description

A ReDoS (regular expression denial of service) flaw was found in the tough-cookie
Node.js. An attacker that is able to make an HTTP request using a specially craftec

StaCK EXChange Network application to consume an excessive amount of CPU.

StatUS Source: MITRE Last Modified: 10/03/2017 = View Analysis Description

Here we'll post updates on outages and maintenance windows for the Stack

Exchange Network. You can also get status updates by following Exploiting Unix File-System Races via Algorithmic Complexity Attacks
@StackStatus I m pa Ct

Exp l n lT ‘ CVSS Severity (version 3.0):

Outage Postmortem - July 20, 2016 n AT AB ASE Home  Exploits  Shellcode  Papers  Google CVSS v3 Base Score: 7.5 High

w4 PHP Hash Table Collision - Denial of Service (PoC)



DOMAIN INDEPENDENT DETECTION OF COMPLEXITY VULNERABILITIES

» Heavily dependent on application logic

» Algorithmic worst-case vs implementation worst-case
- Minor changes often drastically change complexity
(e.qg., pivot selection in quicksort)

» Reasoning about the problem in the generic case is hard:
- Theoretical analysis is often non-trivial
- Implementation varies

- Domain-specific tools predominantly require expert knowledge



EXAMPLE: QUICKSORT

» Average O(nlogn) vs worst-case O(nz) complexity
» Implementation largely affects performance
» How do we reason on the effectiveness of a given implementation?

» How to test in a domain-agnostic manner?



EVOLUTIONARY TESTING

» Domain-independent test input generation
» Known to perform well in grey-box settings

» Very effective in modern fuzzers targeting crash/memory corruption bugs
- No expert knowledge

- Production tools compete with domain-specific engines



EVOLUTIONARY TESTING

» Can we steer evolutionary testing
towards complexity bugs?

» Coverage is irrelevant in this scenario

v

add rsp, 0x20 {__saved_rbp}

» Re-use fuzzing infrastructure PP rbp




SLOWFUZZ PROTOTYPE

» SlowFuzz prototype

» Maintain and evolve an input corpus towards slower executions
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SLOWFUZZ PROTOTYPE

» Maintain and evolve an input corpus towards slower executions
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SLOWFUZZ PROTOTYPE

» Maintain and evolve an input corpus towards slower executions
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SLOWFUZZ PROTOTYPE

» Maintain and evolve an input corpus towards slower executions
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SLOWFUZZ KEY IDEAS

» Three key controls:
- Instrumentation, Fitness Function, Mutations

» Fitness Function should favor inputs that
introduce slowdowns

» Mutation operations with locality in mind

» Avoid getting stuck!
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SLOWFUZZ KEY IDEAS

» Three key controls:
- Instrumentation, Fitness Function, Mutations

» Fitness Function should favor inputs that
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» Mutation operations with locality in mind
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SLOWFUZZ KEY IDEAS

» Three key controls:
- Instrumentation, Fitness Function, Mutations

» Fitness Function should favor inputs that
introduce slowdowns

» Mutation operations with locality in mind

» Avoid getting stuck!

Quicksort Inputs
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SLOWFUZZ KEY IDEAS

Number
Quicksort Inputs of
» Three key controls: Instructions
- Instrumentation, Fitness Function, Mutations g = 3 7 9 1000
» Fitness Function should favor inputs that Y
introduce slowdowns 1 5 3 - 9 1500
» Mutation operations with locality in mind l
» Avoid getting stuck!
1 5 @ / 9 4000
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SLOWFUZZ KEY IDEAS

» Fitness function maximizes CPU instructions

» Mutation Strategies:
- Random
- Offset Priority
- Mutation Priority

- Hybrid
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Normalized slowdown over best performing input

Insertion sort & quicksort implementations SlowFuzz
Brute-force
Quadratic worst-case performance - Theoretical Worst

: 200000 400000 600000 800000 1000000
How close do we get to the theoretical

worst slowdown?
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Apple:3.34x
OpenBSD: 3.3x
GNU: 26.36%

NetBSD: 8.7%
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ENGINE PROPERTIES

» Fitness function:
- CPU instructions vs Code Coverage vs Time-based tracing

» Mutation Strategies:
- Random
- Offset Priority
- Mutation Priority

- Hybrid
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Evolutionary testing for complexity bugs is promising

Testcases: common instances of complexity vulnerabilities
Hashtables
Regular Expression Parsers

Compression/decompression routines

27



Hash used for string keys in PHP
Known worst-case performance
Has been exploited in the wild

For ‘ab’, ‘cd’ to collide it must hold

c=a+tnAad=b-385*xn,necs

If if two equal-length strings A and B
collide, then strings xAy, xBy also collide

/ *

* @arKey 1s the array key to be hashed

*x @nKeyLenth 1is the length of arKey

*/

static 1nline ulong

zend_inline_hash_func(const char =*xarKey, uint
nKeyLength)

register ulong hash = 5381;

for (uint 1 = 0; 1 < nKeyLength; ++1) {
hash = ((hash << 5) + hash) + arKeyl[il];

return hash;
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64 hashtable entries & 64 insertions

Slowfuzz generated inputs causing
monotonically increasing collisions

No knowledge of the internals of the
hash function
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USECASE: REGEX PARSERS

4

4

4

4

Multiple instances of ReDoS in the wild
Backtracking can be catastrophic

Handling of both regexes and inputs
- Evil Regexes

- Slowdowns on given inputs

Identifying evil regexes is a hard problem
- Widely varying complexity: linear to exponential

- Focus on super-linear & exponential matching

regex_match(regex,

)
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USECASE: REGEX PARSERS / pere

» Can SlowFuzz find evil regexes given a fixed input?

31



USECASE: REGEX PARSERS / pere

b

» Can SlowFuzz find evil regexes given a fixed input?

- Yes! Without any knowledge of the regex logic
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USECASE: REGEX PARSERS / pere

b

» Can SlowFuzz find evil regexes given a fixed input?

- Yes! Without any knowledge of the regex logic

Super-linear | Exponential

c*ca*b*a*b (b+)+c
a+b+b+b+a+ | c*(b+b)+c
c*c+ccbe+ a(ala™)+a
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USECASE: REGEX PARSERS / pere

» Can SlowFuzz find evil regexes given a fixed input?

- Yes! Without any knowledge of the regex logic

Super-linear | Exponential

c*ca*b*a*b (b+)+c
a+b+b+b+a+ | c*(b+b)+c
c*c+ccbe+ a(ala™)+a

» Example: (b+)+c
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100 runs / 1 million generation each
Regexes of 10 characters or less

At least 31 regexes causing a slowdown
with 20% probability

At least 2 regexes with super-linear
matching with 0% probability

At least 1 regex with exponential
matching with 45.45% probability
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Can SlowFuzz find inputs causing a slowdown on a fixed regex?

Normalized slowdown over best performing input

Regexes from production WAFs

8 - 25% slowdowns
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USECASE: DECOMPRESSION / szip

» bzip2
» 250-byte inputs

» 300x slowdown on fixed input size

Slowdown
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341x

Hour 3
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SlowFuzz: automated detection of complexity bugs through fuzzing

Found non-trivial issues involving high performant code
PHP’s hashtable implementation

PCRE regular expression library
bzip2

Evolutionary fuzzing as a generic means of code exploration
Different objectives for different bug types
Beyond code coverage maximization
Objective vs Controls: Instrumentation, Fitness Functions, Mutations
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