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Abstract—In Fuzzing facing binary coverage, the main role of 

instrumentation is feedback code coverage (in the case of Fuzz 

for binary, instrumentation can provide coverage information, 

which plays an important role in guiding the operation of seeds 

in Fuzz) . The current instrumentation optimization technique 

mainly relies on the control flow graph (CFG) to select key 

basic blocks at the basic block level, but the accuracy of this 

method is not high enough. Considering that the actual path in 

the actual operation of the binary may be different from the 

CFG generated in advance, this paper is based on the indirect 

jump that cannot be accurately analyzed in the CFG, and some 

of the basic blocks that can be optimized for high-frequency 

interpolation. According to the algorithm proposed in this 

paper, The combination of static analysis and dynamic analysis 

is used to continuously adjust and select key basic block nodes 

for instrumentation. It is verified by experiments that this kind 

of instrumentation method can effectively improve the 

coverage rate and reduce the overhead, and provide effective 

guidance for Fuzzing, which can effectively reduce the 

Fuzzer’s false negatives. 

Keywords-instrumentation; binary; fuzzing; control flow 

graph 

I.  INTRODUCTION 

Fuzz testing based on coverage feedback has been 
considered an effective and important branch of fuzz testing 
technology in recent years. It usually performs 
instrumentation on the target program to obtain path 
coverage information. If a new path is found, the current test 
case is added to the seed pool as a seed for subsequent 
fuzzing, otherwise it is thrown away. Because of the 
feedback of coverage, fuzz testing can continuously improve 
the coverage of the path, which greatly increases the 
probability of triggering bugs[1][2][3]. The process is shown 
in Figure 1. 

Feedback on coverage is therefore critical for such 
Fuzzers. In general, coverage feedback is by inserting 
detection code into the target program so that Fuzzer can 
know where the input is running in the program and know 
which program paths have been executed and which paths 
have not been executed. However, the behavior of the 
instrumentation is not perfect. It provides us with coverage 
feedback information, which brings additional overhead and 
inevitably reduces the speed of the Fuzzer. Because the 
program instrumentation will need to run additional 
instrumentation detection code than the program without the 

instrumentation, and the more instrumentation points, the 
more the instrumentation code, the greater the overhead cost. 

Therefore, reducing the overhead of instrumentation 
while improving coverage information is an unavoidable 
contradiction. Most existing techniques for reducing the cost 
of instrumentation either rely on simple heuristics or become 
inefficient when applied directly to overlay-guided 
fuzzing[4][5][6].INSTRIM applies a CFG-sensitive 
instrumentation algorithm, which can reduce the overhead 
cost by selecting some basic blocks for instrumentation 
while improving the acceleration for fuzzing [7]. But this 
method is based on the assumption that the CFG is 100% 
identical to the actual path of the program, that is, it ignores 
the fact that the CFG may not match the real path of the 
program. 

Therefore, we have studied how to select key 
instrumentation points more accurately and less accurately, 
taking into account the impact of the inaccuracy of existing 
CFG recovery techniques on the accuracy of instrumentation. 
We designed and implemented CFG sensitive 
instrumentation optimization algorithm and dynamic 
adjustment mark algorithm. 
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Figure 1. Instrumentation and Fuzzing process. 

 

II. BACKGROUND AND RELATED WORK 

A. Coverage-guided fuzzing test 

The fuzzing test technique based on coverage feedback is 
usually a gray box fuzzing test, which performs 
instrumentation on the target program to obtain useful 
information such as path, code, edge, and the like. If it finds 
that a seed has acquired a new path, edge, or overwrites more 
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code on the run, or it may have been running for a longer 
period of time, the current test case is considered to be likely 
to trigger a bug. The seed will be added to the seed pool as a 
seed for subsequent fuzzing, otherwise the next seed test will 
be taken directly. Because of the constant feedback of useful 
information such as coverage, such fuzzing can detect bugs 
more effectively than fuzzing techniques that do not use this 
strategy. The fuzzing test based on coverage feedback has 
Randoop [8] in the early days. It does not aim to discover 
vulnerabilities, but its method is similar to the method we 
introduced today. The more popular tool is AFL [9] , AFL 
The instrumentation strategy used is full instrumentation and 
random instrumentation. The cost is high in the case of full 
instrumentation, and sufficient code coverage information 
cannot be guaranteed in the case of random instrumentation. 

B. Instrumentation for Coverage-guided Fuzz Testing 

The Dyninst API uses the properties of the dominating 
tree and a heuristic algorithm to select node instrumentation: 
all leaf nodes and some non-leaf nodes, but this method 
basically selects all the basic blocks, resulting in low 
efficiency [5]. Ohmann et al. proved that determining the 
optimal coverage pull detection problem is an NP-hard 
( non-deterministic polynomial ), and proposed a solution 
based on mixed integer linear programming and two 
approximation methods, but this method needs to scan the 
program in order to know all execution paths [6] in advance 
for static analysis. INSTRIM uses the incoming edge 
knowledge to distinguish different paths by distinguishing 
the marked basic blocks by storing the node labels of the last 
marked basic block in the thread local storage and recording 
the path segment pairs (the last node label on the overlay 
map, And the corresponding incoming edge label) to record 
the code coverage, but it can only instrument the source code, 
andIt is based on the fact that the CFG is exactly the same as 
the real runtime path of the program. 

C. Control flow graph recovery 

Many program analysis work relies on CFG [10], which 
is the basis of much work. At present, the mainstream CFG 
recovery technologies are IDA pro and Angr. The CFG 
recovery technology disassembly strategy in IDA pro is 
conservative, and its code coverage needs to be improved 
[11]. Angr computes the CFG by simulating each basic block, 
but encounters a basic block with different representations in 
different contexts, although setting the context sensitivity 
parameter to set the caller of the function caller saved in the 
call stack The number can make the recovered CFG 
relatively more accurate, but the larger the value, the more 
the time cost will increase exponentially. On the whole, CFG 
recovery technology is still not completely accurate, that is, 
it is completely consistent with the possible real path. 

This is because: First of all, for a simple program, it is 
relatively easy to accurately restore the control flow graph. 
But for complex, large-scale software, even a software 
developer can't do it to complete a complete and accurate 
control flow graph. Because there may be some errors in the 
developer, although this situation may be rare, we must 
consider this situation, because the purpose of our Fuzzing is 

to finally find out the developer's mistakes. Secondly, in the 
absence of source code, the use of disassembly techniques 
for large programs to recover control flow graphs involves 
recovering complex indirect jumps, which have multiple 
types: Computed, Context-sensitive, and Object-sensitive, 
these types of indirect jumps, it is difficult to solve all of 
them effectively. The most advanced control flow graph 
recovery technologies, such as IDA pro and Angr, have also 
confirmed our views [11]. 
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def  mark (G, t , s，BLj ) : 

  blocks={} 

  blocks=binary.identify() 

  G=binary.Angr.Emulate() 

  Lj=binary.Angr.Emulate.Lj() 

  for x in Lj 

     for (i=0,i<=size(blocks),i++) 

        if x in blocks{i} 

           marked+=blocks(i) 

    return marked 

  G = G. cut_off_subgraph (s , t ) 

  marked = {v for ( u , v )  in  G.E.backedges } 

  G.E erases out backedges 

  # G becomes DAG 

  T = topolog(G) 

  for x in T : 

     need_marked = False 

     P( x ) ={} 

     for u in G.E.to ( x ) : 

       P( x ) = P( x )  P( u ) 

       for v in G.E.to ( x ) : 

       if u == v : continue 

       if size (common_point ( P(u), P(v))) > 0 : 

       need_marked = True 

     if need_marked or x in marked : 

       marked += x 

       P(x) = {x} 

   return marked 

def  main (G) : # G := control flow graph 

  marked ={} 

  D = dominator_tree (G) 

  #D. idom ( v ) := immediate dominator of v 

  current _state = G.final_state 

  while current _state != G.initial_state : 

     marked += mark (G, current_state , D. idom ( current_state ) ) 

    current _state = D. idom (current _state ) 

  return marked 

 

Listing 1: Psecudocode of INSTRCR 
 
Therefore, when we use the control flow diagram for 

instrumentation, we must fully consider the premise that the 
control flow graph is not accurate. However, the existing 
instrumentation technique for coverage-guided fuzz testing 
does not take into account the premise that CFG is inaccurate. 
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In addition, based on some high-frequency interchangeable 
plug-in nodes in the program structure (see Section 2, Part 2 
for details), We mainly optimize the existing instrumentation 
technology in two aspects. First, based on the inaccurate 
CFG, how to accurately select the instrumentation point 
statically, and secondly, dynamically adjust the 
instrumentation point in real time. 

 

III. ALGORITHM 

Marking the instrumented nodes on the CFG is 
summarized as distinguishing between different path 
problems, and distinguishing different paths can be 
represented by marking the least points with different paths. 

Our optimization algorithm utilizes general program 
structure knowledge [7]. Before applying our optimization 
algorithm, we need to do the following work: firstly, static 
analysis of the program generates CFG, then establish the 
dominant relationship of CFG basic blocks, mark the basic 
blocks with back edges, erase the edges, and integrate CFG 
and The dominant relationship between the basic blocks 
divides the CFG into subgraphs, and performs topological 
sorting on all the basic blocks in the subgraph. The basic 
blocks sorted by the topology are sequentially used to 
calculate whether the node needs to be marked. 

INSTRCR mainly consists of two parts: 

A. CFG-aware Instrumentation Optimization Algorithm 

We used Angr's CFG.Emulate technique when 
refactoring CFG. An indirect jump list Lj, Lj in 
CFG.Emulate terminates runtime maintenance saves 
unresolved indirect jumps. We believe that these unresolved 
indirect jumps are easily overlooked and valuable. Based on 
this, the first point optimization is generated: firstly, the basic 
blocks containing the unresolved indirect jumps are 
recovered by using Angr, and then the basic blocks are 
initially marked(line 3 - 10). Shown. Then, the sub-picture is 
divided into the CFGs that have been initially marked (line 
29 - 37), and the sub-pictures are finally marked (line 11 - 
28). 

The pseudo code is shown in Listing 1. 

B. Real-time dynamic adjustment mark algorithm 

By calculating the execution frequency of the runtime 
basic block, the basic block with high execution frequency is 
replaced in the alternative case with the basic block with low 
execution frequency, so that we can optimize the selection of 
the marked basic block. Based on this, we made a second 
improvement, as shown in the pseudo code list 2. 

The structure shown in Figure 2 is a common branch 
structure in the general program. After the CFG split 
subgraph, if the subgraph with the structure shown in Fig. 2 
is detected, we will monitor the Seed through the B2 path 
through our previous marker points. After the frequency of 
the B2 path, the marker point adjustment is performed 
according to the comparison of the Seed through the B2 and 
B3 frequencies. 

 

 
Figure 2. A common program structure 
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If ( P=PB2/PB3 >X) 

  If (B2 in marked) 

     marked=Marked.delete(B2) 

     marked=marked.add(B3) 

else 

continue 

Listing 2 
 
Taking Figure 2 as an example, suppose that the 

instrumentation node we originally selected is B2. By 
marking B2, we can identify two different paths: the path of 
B1-B2-B4 is represented by {B2}, the path of B1-B3-B4 is 
represented by { } (empty set). For example, in the Fuzzing 
process, if there are 99 seeds in 100 seeds passing through 
B2 and only one seed path passing B3, then we will consider 
B2 to be a high-frequency instrumentation trigger basic 
block. There will be a significant overhead in B2 
instrumentation, because in 100 runs, there will be 99 runs 
running the instrumentation code here. At this point, 
changing the instrumented node to B3 will greatly reduce the 
cost of the instrumentation. Since the instrumentation node is 
changed to B3, in the same 100 runs, only one Fuzzing will 
run the detection code of this instrumentation node. 

Although in theory, depending on the seed, the execution 
path may be different, and the execution frequency of each 
basic block is unstable. However, the results of our 
experiments show little difference. 

Assume that PB2 is the probability that the seed passes 

through B2, and PB3 is the probability that the seed passes B3. 

Our dynamic adjustment labeling algorithm will adjust the 
basic block mark after P=PB2/PB3 is certain after the program 

runs X times. 
 

 
 
The cost reduction efficiency can be derived from （PB2 -

PB3）/ PB2 with a minimum cost reduction of 3.9% and a 

maximum of 100%. 
We set the program running times X and P as adjustable 

according to the requirements, that is, every X times, it is 
dynamically adjusted according to the probability of each 
marked point until it is optimal. 
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IV. IMPLEMENT 

Under the Linux system, combined with QEMU and 
Angr, on the Fuzz framework made by our team, we 
implemented the INSTRCR instrumentation algorithm with 
python. 

A. Fuzz framework 

Fuzzer is written by Python and is mainly used to test 
binary. The code coverage rate is used to select a high-level 
test sample to trigger the vulnerability. It maintains a pool of 
test cases, also known as a seed pool. Each time you select a 
file from the pool, it will be mutated a lot, then use the 
mutated file as the input to run the detected program, and 
finally see if the running result will cause the target to crash, 
according to the instrumentation collection path information 
to see if it finds new Paths, etc., if any, treat such seeds as 
valuable and continue to put them into the seed pool for the 
next round of variation and testing. Variations on the seed 
include: (1) bitflip; (2) arithmetic; (3) interest; (4) dictionary; 
(5) havoc; (6) splice. 

B. Mark basic Block 

GDB is a program debugging tool under UNIX. It can 
identify the target architecture, set the size and end, and 
implement basic block markup by setting breakpoints with 
GDB. Breakpoints are divided into two types: temporary 
breakpoints and permanent breakpoints. Permanent 
breakpoints are pre-marked basic blocks with unrecognized 
indirect jumps and basic blocks with back edges. Temporary 
breakpoints are other basic blocks. 

C. Determine the Basic Block where the Indirect Jump is 

not Recognized 

Angr.CFG.Emulate uses a variety of techniques in 
generating CFG: (1)enforcement; (2)lightweight 
backwardsing; (3) symbolic execution; (4) value set analysis. 
The CFG is restored by these technologies. When 
CFG.Emulate terminates the run, an indirect jump list Lj is 
generated. At this time, Lj stores the indirect jumps that are 
not parsed, by comparing each indirect in all basic blocks. 
The jump instruction can determine the basic block where 
these indirect jumps are located. 

D. Coverage monitoring  

Our method differs from AFL in that the paired 
combination of source basic blocks and destination basic 
blocks is used to record edges [12]. After we have calculated 
the basic blocks that need to be instrumented for all the basic 
blocks, we use GDB to set breakpoints. Our algorithm 
ensures that all the path information on the CFG can be 
recorded by the marked basic blocks. 

V. EVALUATION 

Our algorithm is designed to serve coverage-guided 
ambiguity, so we selected execution time and labeled basic 
block scale as indicators to evaluate our algorithm. In order 
to compare with the previous algorithm, we chose 8 source 
programs and the binary they generated. 

A. Target programs 

In order to be comparable with previous algorithms, we 
compiled and generated binary for libfreetype, libxml2, 
libcapstone, lame-silent-preset standard, objdump-dg, 
libpypy, coreclr, and libwireshark. 

B. Execution time 

The execution time is the average value obtained by 
testing 8 execution programs with AFL, INSTRIM, and 
INSTRCR three times. It should be noted that AFL and 
INSTRIM test the source code of 8 test cases, and INSTRCR 
tests the binary corresponding to the source code. Although 
this comparison does not seem to be very strict, we believe 
that based on the same program (source code and its 
corresponding binary), after applying different 
instrumentation techniques, for our algorithm - INSTRCR 
comparison, it Still has a certain meaning. 

C. Proportion of marked basic blocks 

Table 2 shows the proportions of the basic blocks of AFL, 
INSTRIM, and INSTRCR markers. The data shows that the 
number of basic blocks marked by INSTRCR in small 
programs is not much different from that of INSTRIM. The 
number of basic blocks marked in medium-sized programs is 
slightly higher than that of INSTRIM. This is mainly 
because, as the program code increases, complex indirect 
jumps also occur. As a result, the basic blocks that we mark 
are also increasing, which is the same as we expected. We 
believe that the increase of the basic block of the mark does 
not mean that the value of the instrumentation algorithm is 
reduced, because reducing the overhead cost is only one 
aspect of the value of the instrumentation algorithm, and on 
the other hand, the code coverage. If the increase in the 
number of marked basic blocks helps to discover new paths 
or improve code coverage, we believe that such costs are 
worthwhile. 

D. Code Coverage 

Our record code coverage is achieved by recording path 
coverage. The path recorded by INSTRIM is the same as the 
path when the AFL is fully instrumentation, so we only 
compare it with the full AFL instrumentation. As shown in 
Table 3, our algorithm INSTRCR found more paths than in 
the case of AFL full instrumentation, which was mainly due 
to the indirect jump basic block that we chose to mark out. 

 
TABLE 1. THE EXECUTION TIME 

 

Program 

 

 

AFL INSTRIM INSTRCR 

Time 

(μs) 
time speedup time speedup 

libfreetype 343 281 1.22 283 1.21 

libxml2 147 125 1.18 126 1.16 

libcapstone 79 73 1.08 73 1.07 

lame 2503 2361 1.06 2383 1.05 

objdump 1367 1278 1.07 1289 1.06 

libpypy 17141 10143 1.69 11427 1.5 

coreclr 19602 13902 1.41 15078 1.3 

libwireshark 1549 1192 1.3 1290 1.2 
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TABLE 2. PROPORTION OF MARKED BASIC BLOCKS 

Program AFL INSTRCR 

libfreetype 1 1.03 

libxml2 1 1.02 

libcapstone 1 1.01 

lame 1 1.09 

objdump 1 1.08 

libpypy 1 1.09 

coreclr 1 1.10 

libwireshark 1 1.03 

 
TABLE 3. PATH COVERAGE 

VI. CONCLUSION 

This paper explores the lightweight instrumentation 
optimization for coverage-guided fuzz testing. This paper 
starts from the application basis of general instrumentation - 
the incompleteness of CFG and the problems in the middle 
and late stages of instrumentation. 

Our experimental results show that our algorithm can 
shorten the execution time (relative to AFL) while improving 
the coverage and finding more interesting seeds (relative to 
INSTRIM) by fully considering the incompleteness of CFG 
and adjusting the high-frequency basic blocks of the 
instrumentation, effectively reduce the cost of Fuzz. The 

contribution of this paper is mainly to provide a new idea for 
optimizing the instrumentation technology. We hope that the 
development of the instrumentation technology for coverage-
guided fuzzy will be more broad, thus providing better 
service for coverage-guided fuzzy.  
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