
INSTRCR: Lightweight instrumentation optimization based on coverage-guided

fuzz testing

Cao Zhang

State Key Laboratory of Mathematical

Engineering and Advanced Computing

Zhengzhou, China

e-mail: 271038091@qq.com

Wei Yu Dong, Yu Zhu Ren

State Key Laboratory of Mathematical

Engineering and Advanced Computing

Zhengzhou, China

Abstract—In Fuzzing facing binary coverage, the main role of

instrumentation is feedback code coverage (in the case of Fuzz

for binary, instrumentation can provide coverage information,

which plays an important role in guiding the operation of seeds

in Fuzz) . The current instrumentation optimization technique

mainly relies on the control flow graph (CFG) to select key

basic blocks at the basic block level, but the accuracy of this

method is not high enough. Considering that the actual path in

the actual operation of the binary may be different from the

CFG generated in advance, this paper is based on the indirect

jump that cannot be accurately analyzed in the CFG, and some

of the basic blocks that can be optimized for high-frequency

interpolation. According to the algorithm proposed in this

paper, The combination of static analysis and dynamic analysis

is used to continuously adjust and select key basic block nodes

for instrumentation. It is verified by experiments that this kind

of instrumentation method can effectively improve the

coverage rate and reduce the overhead, and provide effective

guidance for Fuzzing, which can effectively reduce the

Fuzzer’s false negatives.

Keywords-instrumentation; binary; fuzzing; control flow

graph

I. INTRODUCTION

Fuzz testing based on coverage feedback has been
considered an effective and important branch of fuzz testing
technology in recent years. It usually performs
instrumentation on the target program to obtain path
coverage information. If a new path is found, the current test
case is added to the seed pool as a seed for subsequent
fuzzing, otherwise it is thrown away. Because of the
feedback of coverage, fuzz testing can continuously improve
the coverage of the path, which greatly increases the
probability of triggering bugs[1][2][3]. The process is shown
in Figure 1.

Feedback on coverage is therefore critical for such
Fuzzers. In general, coverage feedback is by inserting
detection code into the target program so that Fuzzer can
know where the input is running in the program and know
which program paths have been executed and which paths
have not been executed. However, the behavior of the
instrumentation is not perfect. It provides us with coverage
feedback information, which brings additional overhead and
inevitably reduces the speed of the Fuzzer. Because the
program instrumentation will need to run additional
instrumentation detection code than the program without the

instrumentation, and the more instrumentation points, the
more the instrumentation code, the greater the overhead cost.

Therefore, reducing the overhead of instrumentation
while improving coverage information is an unavoidable
contradiction. Most existing techniques for reducing the cost
of instrumentation either rely on simple heuristics or become
inefficient when applied directly to overlay-guided
fuzzing[4][5][6].INSTRIM applies a CFG-sensitive
instrumentation algorithm, which can reduce the overhead
cost by selecting some basic blocks for instrumentation
while improving the acceleration for fuzzing [7]. But this
method is based on the assumption that the CFG is 100%
identical to the actual path of the program, that is, it ignores
the fact that the CFG may not match the real path of the
program.

Therefore, we have studied how to select key
instrumentation points more accurately and less accurately,
taking into account the impact of the inaccuracy of existing
CFG recovery techniques on the accuracy of instrumentation.
We designed and implemented CFG sensitive
instrumentation optimization algorithm and dynamic
adjustment mark algorithm.

Priority

Queue of

Seeds
Seed mutation

Instrumented

program

Fuzzing

Bugs

Coverage

Checker
Execution logAdd the input to the seed pool if

It find a new path of the program

Figure 1. Instrumentation and Fuzzing process.

II. BACKGROUND AND RELATED WORK

A. Coverage-guided fuzzing test

The fuzzing test technique based on coverage feedback is
usually a gray box fuzzing test, which performs
instrumentation on the target program to obtain useful
information such as path, code, edge, and the like. If it finds
that a seed has acquired a new path, edge, or overwrites more

74

2019 IEEE 2nd International Conference on Computer and Communication Engineering Technology-CCET

978-1-7281-2871-9/19/$31.00 ©2019 IEEE

code on the run, or it may have been running for a longer
period of time, the current test case is considered to be likely
to trigger a bug. The seed will be added to the seed pool as a
seed for subsequent fuzzing, otherwise the next seed test will
be taken directly. Because of the constant feedback of useful
information such as coverage, such fuzzing can detect bugs
more effectively than fuzzing techniques that do not use this
strategy. The fuzzing test based on coverage feedback has
Randoop [8] in the early days. It does not aim to discover
vulnerabilities, but its method is similar to the method we
introduced today. The more popular tool is AFL [9] , AFL
The instrumentation strategy used is full instrumentation and
random instrumentation. The cost is high in the case of full
instrumentation, and sufficient code coverage information
cannot be guaranteed in the case of random instrumentation.

B. Instrumentation for Coverage-guided Fuzz Testing

The Dyninst API uses the properties of the dominating
tree and a heuristic algorithm to select node instrumentation:
all leaf nodes and some non-leaf nodes, but this method
basically selects all the basic blocks, resulting in low
efficiency [5]. Ohmann et al. proved that determining the
optimal coverage pull detection problem is an NP-hard
(non-deterministic polynomial), and proposed a solution
based on mixed integer linear programming and two
approximation methods, but this method needs to scan the
program in order to know all execution paths [6] in advance
for static analysis. INSTRIM uses the incoming edge
knowledge to distinguish different paths by distinguishing
the marked basic blocks by storing the node labels of the last
marked basic block in the thread local storage and recording
the path segment pairs (the last node label on the overlay
map, And the corresponding incoming edge label) to record
the code coverage, but it can only instrument the source code,
andIt is based on the fact that the CFG is exactly the same as
the real runtime path of the program.

C. Control flow graph recovery

Many program analysis work relies on CFG [10], which
is the basis of much work. At present, the mainstream CFG
recovery technologies are IDA pro and Angr. The CFG
recovery technology disassembly strategy in IDA pro is
conservative, and its code coverage needs to be improved
[11]. Angr computes the CFG by simulating each basic block,
but encounters a basic block with different representations in
different contexts, although setting the context sensitivity
parameter to set the caller of the function caller saved in the
call stack The number can make the recovered CFG
relatively more accurate, but the larger the value, the more
the time cost will increase exponentially. On the whole, CFG
recovery technology is still not completely accurate, that is,
it is completely consistent with the possible real path.

This is because: First of all, for a simple program, it is
relatively easy to accurately restore the control flow graph.
But for complex, large-scale software, even a software
developer can't do it to complete a complete and accurate
control flow graph. Because there may be some errors in the
developer, although this situation may be rare, we must
consider this situation, because the purpose of our Fuzzing is

to finally find out the developer's mistakes. Secondly, in the
absence of source code, the use of disassembly techniques
for large programs to recover control flow graphs involves
recovering complex indirect jumps, which have multiple
types: Computed, Context-sensitive, and Object-sensitive,
these types of indirect jumps, it is difficult to solve all of
them effectively. The most advanced control flow graph
recovery technologies, such as IDA pro and Angr, have also
confirmed our views [11].

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

def mark (G, t , s，BLj) :

 blocks={}

 blocks=binary.identify()

 G=binary.Angr.Emulate()

 Lj=binary.Angr.Emulate.Lj()

 for x in Lj

 for (i=0,i<=size(blocks),i++)

 if x in blocks{i}

 marked+=blocks(i)

 return marked

 G = G. cut_off_subgraph (s , t)

 marked = {v for (u , v) in G.E.backedges }

 G.E erases out backedges

 # G becomes DAG

 T = topolog(G)

 for x in T :

 need_marked = False

 P(x) ={}

 for u in G.E.to (x) :

 P(x) = P(x) P(u)

 for v in G.E.to (x) :

 if u == v : continue

 if size (common_point (P(u), P(v))) > 0 :

 need_marked = True

 if need_marked or x in marked :

 marked += x

 P(x) = {x}

 return marked

def main (G) : # G := control flow graph

 marked ={}

 D = dominator_tree (G)

 #D. idom (v) := immediate dominator of v

 current _state = G.final_state

 while current _state != G.initial_state :

 marked += mark (G, current_state , D. idom (current_state))

 current _state = D. idom (current _state)

 return marked

Listing 1: Psecudocode of INSTRCR

Therefore, when we use the control flow diagram for

instrumentation, we must fully consider the premise that the
control flow graph is not accurate. However, the existing
instrumentation technique for coverage-guided fuzz testing
does not take into account the premise that CFG is inaccurate.

75

In addition, based on some high-frequency interchangeable
plug-in nodes in the program structure (see Section 2, Part 2
for details), We mainly optimize the existing instrumentation
technology in two aspects. First, based on the inaccurate
CFG, how to accurately select the instrumentation point
statically, and secondly, dynamically adjust the
instrumentation point in real time.

III. ALGORITHM

Marking the instrumented nodes on the CFG is
summarized as distinguishing between different path
problems, and distinguishing different paths can be
represented by marking the least points with different paths.

Our optimization algorithm utilizes general program
structure knowledge [7]. Before applying our optimization
algorithm, we need to do the following work: firstly, static
analysis of the program generates CFG, then establish the
dominant relationship of CFG basic blocks, mark the basic
blocks with back edges, erase the edges, and integrate CFG
and The dominant relationship between the basic blocks
divides the CFG into subgraphs, and performs topological
sorting on all the basic blocks in the subgraph. The basic
blocks sorted by the topology are sequentially used to
calculate whether the node needs to be marked.

INSTRCR mainly consists of two parts:

A. CFG-aware Instrumentation Optimization Algorithm

We used Angr's CFG.Emulate technique when
refactoring CFG. An indirect jump list Lj, Lj in
CFG.Emulate terminates runtime maintenance saves
unresolved indirect jumps. We believe that these unresolved
indirect jumps are easily overlooked and valuable. Based on
this, the first point optimization is generated: firstly, the basic
blocks containing the unresolved indirect jumps are
recovered by using Angr, and then the basic blocks are
initially marked(line 3 - 10). Shown. Then, the sub-picture is
divided into the CFGs that have been initially marked (line
29 - 37), and the sub-pictures are finally marked (line 11 -
28).

The pseudo code is shown in Listing 1.

B. Real-time dynamic adjustment mark algorithm

By calculating the execution frequency of the runtime
basic block, the basic block with high execution frequency is
replaced in the alternative case with the basic block with low
execution frequency, so that we can optimize the selection of
the marked basic block. Based on this, we made a second
improvement, as shown in the pseudo code list 2.

The structure shown in Figure 2 is a common branch
structure in the general program. After the CFG split
subgraph, if the subgraph with the structure shown in Fig. 2
is detected, we will monitor the Seed through the B2 path
through our previous marker points. After the frequency of
the B2 path, the marker point adjustment is performed
according to the comparison of the Seed through the B2 and
B3 frequencies.

Figure 2. A common program structure

1

2

3

4

5

6

If (P=PB2/PB3 >X)

 If (B2 in marked)

 marked=Marked.delete(B2)

 marked=marked.add(B3)

else

continue

Listing 2

Taking Figure 2 as an example, suppose that the

instrumentation node we originally selected is B2. By
marking B2, we can identify two different paths: the path of
B1-B2-B4 is represented by {B2}, the path of B1-B3-B4 is
represented by { } (empty set). For example, in the Fuzzing
process, if there are 99 seeds in 100 seeds passing through
B2 and only one seed path passing B3, then we will consider
B2 to be a high-frequency instrumentation trigger basic
block. There will be a significant overhead in B2
instrumentation, because in 100 runs, there will be 99 runs
running the instrumentation code here. At this point,
changing the instrumented node to B3 will greatly reduce the
cost of the instrumentation. Since the instrumentation node is
changed to B3, in the same 100 runs, only one Fuzzing will
run the detection code of this instrumentation node.

Although in theory, depending on the seed, the execution
path may be different, and the execution frequency of each
basic block is unstable. However, the results of our
experiments show little difference.

Assume that PB2 is the probability that the seed passes

through B2, and PB3 is the probability that the seed passes B3.

Our dynamic adjustment labeling algorithm will adjust the
basic block mark after P=PB2/PB3 is certain after the program

runs X times.

The cost reduction efficiency can be derived from （PB2 -

PB3）/ PB2 with a minimum cost reduction of 3.9% and a

maximum of 100%.
We set the program running times X and P as adjustable

according to the requirements, that is, every X times, it is
dynamically adjusted according to the probability of each
marked point until it is optimal.

76

IV. IMPLEMENT

Under the Linux system, combined with QEMU and
Angr, on the Fuzz framework made by our team, we
implemented the INSTRCR instrumentation algorithm with
python.

A. Fuzz framework

Fuzzer is written by Python and is mainly used to test
binary. The code coverage rate is used to select a high-level
test sample to trigger the vulnerability. It maintains a pool of
test cases, also known as a seed pool. Each time you select a
file from the pool, it will be mutated a lot, then use the
mutated file as the input to run the detected program, and
finally see if the running result will cause the target to crash,
according to the instrumentation collection path information
to see if it finds new Paths, etc., if any, treat such seeds as
valuable and continue to put them into the seed pool for the
next round of variation and testing. Variations on the seed
include: (1) bitflip; (2) arithmetic; (3) interest; (4) dictionary;
(5) havoc; (6) splice.

B. Mark basic Block

GDB is a program debugging tool under UNIX. It can
identify the target architecture, set the size and end, and
implement basic block markup by setting breakpoints with
GDB. Breakpoints are divided into two types: temporary
breakpoints and permanent breakpoints. Permanent
breakpoints are pre-marked basic blocks with unrecognized
indirect jumps and basic blocks with back edges. Temporary
breakpoints are other basic blocks.

C. Determine the Basic Block where the Indirect Jump is

not Recognized

Angr.CFG.Emulate uses a variety of techniques in
generating CFG: (1)enforcement; (2)lightweight
backwardsing; (3) symbolic execution; (4) value set analysis.
The CFG is restored by these technologies. When
CFG.Emulate terminates the run, an indirect jump list Lj is
generated. At this time, Lj stores the indirect jumps that are
not parsed, by comparing each indirect in all basic blocks.
The jump instruction can determine the basic block where
these indirect jumps are located.

D. Coverage monitoring

Our method differs from AFL in that the paired
combination of source basic blocks and destination basic
blocks is used to record edges [12]. After we have calculated
the basic blocks that need to be instrumented for all the basic
blocks, we use GDB to set breakpoints. Our algorithm
ensures that all the path information on the CFG can be
recorded by the marked basic blocks.

V. EVALUATION

Our algorithm is designed to serve coverage-guided
ambiguity, so we selected execution time and labeled basic
block scale as indicators to evaluate our algorithm. In order
to compare with the previous algorithm, we chose 8 source
programs and the binary they generated.

A. Target programs

In order to be comparable with previous algorithms, we
compiled and generated binary for libfreetype, libxml2,
libcapstone, lame-silent-preset standard, objdump-dg,
libpypy, coreclr, and libwireshark.

B. Execution time

The execution time is the average value obtained by
testing 8 execution programs with AFL, INSTRIM, and
INSTRCR three times. It should be noted that AFL and
INSTRIM test the source code of 8 test cases, and INSTRCR
tests the binary corresponding to the source code. Although
this comparison does not seem to be very strict, we believe
that based on the same program (source code and its
corresponding binary), after applying different
instrumentation techniques, for our algorithm - INSTRCR
comparison, it Still has a certain meaning.

C. Proportion of marked basic blocks

Table 2 shows the proportions of the basic blocks of AFL,
INSTRIM, and INSTRCR markers. The data shows that the
number of basic blocks marked by INSTRCR in small
programs is not much different from that of INSTRIM. The
number of basic blocks marked in medium-sized programs is
slightly higher than that of INSTRIM. This is mainly
because, as the program code increases, complex indirect
jumps also occur. As a result, the basic blocks that we mark
are also increasing, which is the same as we expected. We
believe that the increase of the basic block of the mark does
not mean that the value of the instrumentation algorithm is
reduced, because reducing the overhead cost is only one
aspect of the value of the instrumentation algorithm, and on
the other hand, the code coverage. If the increase in the
number of marked basic blocks helps to discover new paths
or improve code coverage, we believe that such costs are
worthwhile.

D. Code Coverage

Our record code coverage is achieved by recording path
coverage. The path recorded by INSTRIM is the same as the
path when the AFL is fully instrumentation, so we only
compare it with the full AFL instrumentation. As shown in
Table 3, our algorithm INSTRCR found more paths than in
the case of AFL full instrumentation, which was mainly due
to the indirect jump basic block that we chose to mark out.

TABLE 1. THE EXECUTION TIME

Program

AFL INSTRIM INSTRCR

Time

(μs)
time speedup time speedup

libfreetype 343 281 1.22 283 1.21

libxml2 147 125 1.18 126 1.16

libcapstone 79 73 1.08 73 1.07

lame 2503 2361 1.06 2383 1.05

objdump 1367 1278 1.07 1289 1.06

libpypy 17141 10143 1.69 11427 1.5

coreclr 19602 13902 1.41 15078 1.3

libwireshark 1549 1192 1.3 1290 1.2

77

TABLE 2. PROPORTION OF MARKED BASIC BLOCKS

Program AFL INSTRCR

libfreetype 1 1.03

libxml2 1 1.02

libcapstone 1 1.01

lame 1 1.09

objdump 1 1.08

libpypy 1 1.09

coreclr 1 1.10

libwireshark 1 1.03

TABLE 3. PATH COVERAGE

VI. CONCLUSION

This paper explores the lightweight instrumentation
optimization for coverage-guided fuzz testing. This paper
starts from the application basis of general instrumentation -
the incompleteness of CFG and the problems in the middle
and late stages of instrumentation.

Our experimental results show that our algorithm can
shorten the execution time (relative to AFL) while improving
the coverage and finding more interesting seeds (relative to
INSTRIM) by fully considering the incompleteness of CFG
and adjusting the high-frequency basic blocks of the
instrumentation, effectively reduce the cost of Fuzz. The

contribution of this paper is mainly to provide a new idea for
optimizing the instrumentation technology. We hope that the
development of the instrumentation technology for coverage-
guided fuzzy will be more broad, thus providing better
service for coverage-guided fuzzy.

REFERENCES

[1] Klees G, Ruef A, Cooper B, et al. Evaluating fuzz
testing[C]//Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018: 2123-2138.

[2] Hongliang L , Xiaoxiao P , Xiaodong J , et al. Fuzzing: State of the
Art[J]. IEEE Transactions on Reliability, 2018:1-20.

[3] Manes V J M , Han H S , Han C , et al. Fuzzing: Art, Science, and
Engineering[J]. 2018.

[4] T. Ball and J. R. Larus, “Efficient Path Profiling,” in IEEE/ACM
International Symposium on Microarchitecture, 1996.

[5] Tikir M M, Hollingsworth J K. Efficient instrumentation for code
coverage testing[C]//ACM SIGSOFT Software Engineering Notes.
ACM, 2002, 27(4): 86-96.

[6] P. Ohmann, D. B. Brown, N. Neelakandan, J. Linderoth, and B.
Liblit,“Optimizing Customized Program Coverage,” in IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2016.

[7] Hsu C C, Wu C Y, Hsiao H C, et al. Instrim: Lightweight
instrumentation for coverage-guided fuzzing[C]//Symposium on
Network and Distributed System Security (NDSS), Workshop on
Binary Analysis Research. 2018.

[8] Pacheco C, Lahiri S K, Ernst M D, et al. Feedback-directed random
test generation[C]//Proceedings of the 29th international conference
on Software Engineering. IEEE Computer Society, 2007: 75-84.

[9] M. Zalewski, “American Fuzzy Lop,”http://lcamtuf.coredump.cx/afl/.

[10] Xu L, Sun F, Su Z. Constructing precise control flow graphs from
binaries[J]. University of California, Davis, Tech. Rep, 2009.

[11] Yan S, Kruegel C, Vigna G, et al. SOK: (State of) The Art of War:
Offensive Techniques in Binary Analysis[C]// Security & Privacy.
2016.

[12] Website. 2017. American Fuzzy Lop (AFL) Fuzzer.
http://lcamtuf.coredump.cx/
afl/technical_details.txt. (2017). Accessed: 2018-06-13

78

