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ABSTRACT Coverage-guided graybox fuzzing is one of the most popular and effective techniques for
discovering vulnerabilities due to its nature of high speed and scalability. However, the existing techniques
generally focus on code coverage but not on vulnerable code. These techniques aim to cover as many paths
as possible rather than to explore paths that are more likely to be vulnerable. When selecting the seeds
to test, the existing fuzzers usually treat all seed inputs equally, ignoring the fact that paths exercised by
different seed inputs are not equally vulnerable. This results in wasting time testing uninteresting paths
rather than vulnerable paths, thus reducing the efficiency of vulnerability detection. In this paper, we present
a solution, NeuFuzz, using the deep neural network to guide intelligent seed selection during graybox fuzzing
to alleviate the aforementioned limitation. In particular, the deep neural network is used to learn the hidden
vulnerability pattern from a large number of vulnerable and clean program paths to train a prediction model
to classify whether paths are vulnerable. The fuzzer then prioritizes seed inputs that are capable of covering
the likely to be vulnerable paths and assigns more mutation energy (i.e., the number of inputs to be generated)
to these seeds. We implemented a prototype of NeuFuzz based on an existing fuzzer PTfuzz and evaluated it
on two different test suites: LAVA-M and nine real-world applications. The experimental results showed that
NeuFuzz can find more vulnerabilities than the existing fuzzers in less time. We have found 28 new security
bugs in these applications, 21 of which have been assigned as CVE IDs.

INDEX TERMS Fuzzing, vulnerability detection, deep neural network, seed selection, software security.

I. INTRODUCTION
Security vulnerabilities hidden in programs can lead to sys-
tem compromise, information leakage or denial of service.
As we have seen frommany recent high-profile exploits, such
as Heartbleed attacks [1] and WannaCry ransomware [2],
these vulnerabilities can often cause disastrous effects, both
financially and societally. Therefore, security vulnerabili-
ties in programs must be identified before being found by
attackers and eliminated to avoid potential attacks. Since its
introduction in the early 1990s [3], fuzzing has become one
of the most effective and scalable testing techniques to find
vulnerabilities, bugs or crashes in commercial software. It has
also been widely used by mainstream software companies,
such as Google [4] and Microsoft [5], to ensure the quality of
their software products.

The key idea of fuzzing is to feed the program under
test (PUT) with a large amount of crafted inputs to triglger

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongbin Chen.

unintended program behavior, such as crashes or hangs.
Based on the understanding of the structural knowledge
inside the PUT, fuzzers can be classified as whitebox, black-
box and graybox. A whitebox fuzzer (e.g., [6], [7]) usually
has access to the source code or intermediate representation
of the PUT. They usually use heavy weight program analy-
sis methods, such as symbolic execution together with path
traversal, to guide fuzzing and thus have scalability issues.
A blackbox fuzzer (e.g., [8], [9]) is completely unaware of
the internal structure of the program and usually performs
random testing blindly and is thus extremely inefficient.
A graybox fuzzer (e.g., [10]–[12]) aims for a compro-
mise, employing lightweight program analysis methods (e.g.,
instrumentation) to obtain feedback from the program to
guide fuzzing, which is generally more effective than a black-
box fuzzer and more scalable than a whitebox fuzzer.

In recent years, coverage-guided graybox fuzzing (CGF),
which uses code coverage as feedback to guide fuzzing, has
become one of the most successful vulnerability discovery
solutions. This type of fuzzer gradually increases the code
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coverage and amplifies the probability of finding vulnera-
bilities. AFL [10], libFuzzer [11] and honggfuzz [12], state-
of-the-art graybox fuzzers, have drawn attention from both
industry and academia and have discovered hundreds of high-
profile vulnerabilities [13]. In general, these methods instru-
ment the PUT with lightweight analysis to extract coverage
information for each executed test case. If a test case exercises
a new branch, the case is marked as interesting; otherwise,
the case is marked useless. In the following fuzzing iterations,
interesting test cases are reused as seeds to mutate and
generate new test cases for fuzz testing.

Despite its considerable success in vulnerability discovery,
we figured out that CGF fuzzers (e.g., AFL) have a critical
limitation. The current fuzzers aim to cover as many paths as
possible rather than to explore paths that are more likely to
be vulnerable. They select seeds from the seed queue in the
order they are added, and the testing energy is spent equally
on all program paths. However, different paths have differ-
ent probabilities of being vulnerable. As reported in [14],
the bug distribution in programs is often unbalanced, i.e.,
approximately 80% of bugs are located in approximately 20%
of program code. As a result, existing CGF fuzzers waste
considerable time testing uninteresting (i.e., not vulnerable)
paths, thereby reducing the efficiency of fuzzing. Intuitively,
test cases that exercise more bug-prone program paths are
more likely to trigger bugs, so we should spend most of the
fuzzing effort on these paths to increase the probability of
triggering vulnerability during testing.

In this paper, we propose a novel path-sensitive graybox
fuzzing solution, NeuFuzz, to alleviate the aforementioned
limitation. It applies a new seed selection strategy that pri-
oritizes seeds that are more likely to exercise vulnerable
paths and accordingly assigns higher testing energy (e.g., the
number of inputs to be generated) to these seeds to improve
the efficiency of vulnerability detection. The core challenge
is how to determine whether a path is likely to be vulnerable.
Inspired by the substantial success in image and speech
recognition, we use a deep neural network to learn the hidden
pattern of vulnerable program paths and to identify vulnera-
ble paths to guide seed selection. Specifically, a prediction
model is learned from a large number of vulnerable and
clean program paths and is then used to classify whether
a vulnerability exists in the exercised path during fuzzing.
The fuzzer therefore prioritizes seeds that exercise vulnerable
paths, which are determined by the neural network, and
assigns more mutation energy to these seeds to maximize the
bug discovery efficiency.

NeuFuzz’s intelligent seed selection based on deep neural
networks is more efficient than that of state-of-the-art fuzzers.
We implemented a prototype of NeuFuzz based on a specific
extension of AFL, i.e., PTfuzz [15]. We evaluated NeuFuzz
on two different test suites. The first is the LAVA-M [16]
benchmark, which contains four Linux programs with man-
ually injected vulnerabilities; the other is a set of real-
world applications (i.e., libtiff, binutils, libav, podofo, bento4,
libsndfile, audilfile, nasm) with different complexity and

functionalities, which are often used as third-party libraries
by some widely used programs. The experimental results
indicate that NeuFuzz can find more vulnerabilities than
PTfuzz and QAFL [17] in less time.

In summary, we make the following contributions:
• We propose a new seed selection strategy that prioritizes
seeds exercising vulnerable paths to improve the effi-
ciency of vulnerability discovery.

• We propose a novel deep neural network solution to
predict which program paths are vulnerable.

• We implement the NeuFuzz prototype to fuzz binary
programs and evaluate it with crafted benchmark and
real-world applications, showing that this solution is
effective.

• We find 21 CVEs and 7 unknown security bugs in some
widely used real-world applications and help to improve
the security of the vendors’ products.

The rest part of this paper is organized as follows.
Section 2 presents the background and relatedwork. Section 3
describes the overview of NeuFuzz. Section 4 details the
technical details of NeuFuzz. Section 5 describes the imple-
mentation and experimental evaluation results of NeuFuzz.
Section 6 concludes the paper.

II. BACKGROUND AND RELATED WORK
Recent studies have implemented many boosting techniques,
such as program analysis and machine learning, to improve
the efficiency and effectiveness of CGF from different
aspects, including coverage tracking, seed selection, and seed
mutation.

A. FUZZING WITH HARDWARE FEEDBACK
PTfuzz is a graybox fuzzer with hardware feedback and is
also based on AFL. It uses the CPU hardware mechanism
Intel PT (Intel Process Tracer) [18] to collect branch infor-
mation instead of compile-time instrumentation (e.g., the one
used by AFL’s gcc mode) or runtime instrumentation (e.g.,
the one used by AFL’s QEMU mode, denoted as QAFL).
Intel PT is an extension of Intel Architecture that is capable
of accurately tracing program control flow information with
minimal performance overhead. Therefore, the fuzzer does
not rely on the source code and achieves higher performance
compared to QAFL without loss of coverage tracking accu-
racy. Another recent study KAFL [19] is also implemented
based on AFL and Intel PT, which can support kernel fuzzing
in ring0. Our prototype is implemented based on PTfuzz,
because our test target is binary programs in ring3.

B. SEED SELECTION STRATEGY
The seed selection strategy is critical for graybox fuzzing.
A good seed selection strategy can improve the ability of path
traversal and vulnerability detection. AFL takes a simple seed
selection strategy, i.e., preferring smaller and faster seeds,
to generate and test more test cases in a given amount of time.
Rawat et al. [20] prioritize seeds that exercise deeper paths,
deprioritizes seeds exercising error-handling blocks and
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high-frequency paths, and thus it is likely that hard-to-reach
paths could be tested and useless error-handling paths will
be avoided. AFLFast [21] prioritizes seeds exercising low-
frequency paths and being selected fewer, and thus it is likely
that cold paths could be tested thoroughly and fewer energy
will be wasted on hot paths. AFLGo [22] prioritizes seeds that
are closer to the predetermined target location, thus achieving
the purpose of directed fuzzing. CollAFL [23] uses three new
seed selection policies to drive the fuzzer directly towards
non-explored paths and improve code coverage more quickly.
Angora [24] prioritizes seeds whose paths contain conditional
statements with unexplored branches, which enables focus on
low-frequency paths after exploring high-frequency paths.

The existing seed selection strategies focus mainly on exe-
cution speed, path frequency, path depth and path branches
that are not traversed. In essence, they focus on code coverage
rather than guiding the fuzzer to test bug-prone paths or code.
As a result, the current seed selection strategies waste con-
siderable time testing uninteresting paths, which reduces the
efficiency of fuzzing. We focus on solving this problem in
this paper.

C. SEED MUTATION STRATEGY
AFL sees the input as a sequence of consecutive binary
bytes because the structure of the input cannot be perceived.
This random mutation strategy makes it possible to find new
paths or branches entirely by luck. To this end, researchers
have proposed many improvements based on a variety of
program analysis methods. Stephens et al. [25] combines
the strengths of fuzzing and symbolic execution to detect
vulnerabilities. Specifically, when the fuzzer is stuck in
some complex comparison branches (e.g., magic bytes),
concolic execution is used to generate test input that can
drive the execution past the check, but it is limited to the
poor scalability of symbol execution, thus, the fuzzer is
difficult to apply to real-world applications. Li et al. [26] uses
a lightweight runtime instrumentation method to monitor
comparison instructions or functions and guide the mutation
according to the progress feedback information to generate
input bytes that can pass the branch. T-fuzz [27] removes
some complex branch checks (e.g., magic bytes, checksum,
and hash) by directly modifying the binary program. When
a crash is found, the symbol execution technique is used
to remove the false positives and reproduce the bug in the
original program. Rawat et al. [20] uses static analysis to infer
interesting values and then uses taint analysis to determine the
input offset for compare instructions so that these offsets are
mutated by inferred values to pass some complex conditions.
Chen and Chen [24] uses the gradient descent algorithm
instead of symbolic execution to guide the mutation to
achieve coverage improvement.

We can see that all these methods are designed to improve
the code coverage by breaking through some of the com-
plex condition checks in the program. These methods are
orthogonal to the methods presented in our paper, and we can
integrate them into our tool.

D. LEARNING BASED VULNERABILITY DETECTION
Recently, researchers have begun to apply artificial
intelligence technology to aid vulnerability detection.
Learn&Fuzz [28] uses neural networks to learn the generation
model of the file input format for grammar-based fuzzing.
Augmented-AFL [29] uses neural networks to learn a func-
tion from past fuzzing to predict a good position in a seed file
for performing mutations. Böttinger et al. [30] used state-of-
the-art Q-learning algorithms to optimize rewards and learn to
select high-reward mutation operations for specific program
inputs. Li et al. [31] proposed VulDeePecker, a vulnerability
detection method based on deep learning, which eliminates
the need to manually define vulnerability features, but the
method requires source code and can detect vulnerabilities
related only to library functions. VDiscover [32] extracts the
dynamic and static API sequence of a program as a feature
and uses a traditional machine learning algorithm to train
the model to predict vulnerabilities in unknown programs.
However, because the API sequence does not represent the
vulnerability feature well, the accuracy is not high.

In summary, on the one hand, the current machine learning
methods for fuzzing are used mainly to guide seed gen-
eration and seed mutation to achieve high code coverage.
On the other hand, machine learning is directly applied to
vulnerability prediction, which is essentially a static analysis
method, and manual verification is required. Our work uses
the vulnerability prediction results to guide the seed selection
of the fuzzing process. To the best of our knowledge, we are
the first to use a deep neural network to learn interesting paths
covered by seed inputs during the fuzzing process.

III. OVERVIEW
In this section, we further explain the problems we need to
solve through a motivating example and describe an overview
of our approach.

A. MOTIVATING EXAMPLE
As mentioned above, the seed selection strategy of current
fuzzers greatly reduces the efficiency of vulnerability detec-
tion. To clearly illustrate how the seed selection strategy
makes it difficult for AFL to find vulnerabilities in the PUT,
consider the code in Fig. 1. Fig. 1 (a) is the source code,
and Fig. 1 (b) is the corresponding inter-process control flow
graph. An input string longer than 32 characters starting with
character ‘2’ will cause a stack overflow at the 9th line of
code. Note that this example is relatively simple, and for the
sake of convenience, we show it in the source code. In fact,
our method can be applied directly to binary programs.

Given the initial seed input ‘‘fuzz’’, AFL can quickly find
the other three paths as shown in the control flow graph of
Fig. 1(b), assuming that test cases that exercise these paths are
‘‘0aaa’’, ‘‘1bbb’’ and ‘‘2ccc’’. Then AFL will perform muta-
tion on each test case in the order they are added as shown
in Fig. 1(c). However, the three paths (denoted by the red,
yellow and black lines, respectively) that are exercised by the
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FIGURE 1. A motivating example. (a) Source code. (b) Control flow graph. (c) fuzzer seed queue.

seed inputs 0aaa, 1bbb and 3ddd are clearly unlikely to have
vulnerabilities; thus, the importance of fuzzing them is very
low, and the path (denoted by the blue line) exercised by seed
input 2ccc is vulnerable and more meaningful to fuzz. And
also in order to trigger the potential vulnerability in the path,
the seed should be fuzzed more times than others. In fact,
real-world programs are more complicated than this example
and generally contain more sanity checks and path branches.
Assuming that a program executes n (n > 1000) paths and
that only one path has a vulnerability, the advantage of our
method is clear: we can test the vulnerable path first to expose
the vulnerability early on rather than wasting considerable
time testing the other n-1 paths.

Our idea is to use a seed priority strategy to guarantee that
better seeds will be tested first and mutated with more muta-
tion energy, thus improving the efficiency and effectiveness
of the fuzzer. Therefore, we need to consider and address the
following three heuristic problems.

1: How to infer whether a seed input is better than
others?

The importance of a seed input depends on the degree
of interest in the path it exercises. For example, AFLFast
believes that seeds that trigger low frequency path are better
from the perspective of code coverage. However, in this paper
if its execution path is more interesting (i.e., the path is more
likely to be vulnerable), then we think this input is better
and more meaningful to be tested first. Clearly, focusing
on testing seeds that execute likely to be vulnerable paths

will increase the probability of triggering vulnerabilities. For
example, in the example shown in Fig. 1, the path covered by
seed 2ccc is vulnerable, so this seed should be fuzzed first and
tested more times. Notably, given one seed exercising a vul-
nerable path, there is no guarantee that the hidden vulnerabil-
ity in this path will be definitely triggered by mutations from
this seed. However, mutating from this seed will certainly
increase the probability of triggering the hidden vulnerability.

2: How to determine a path is of interest, that is, more
likely to be vulnerable?

We know that a buffer overflow vulnerability exists in the
blue path (2ccc) in the example, which calls the dangerous
strcpy function without any security check. The traditional
method of automatically discovering this vulnerability needs
to rely on feature database. However, in practice, the vul-
nerability condition is more complicated than we can model
directly. Extracting features to characterize vulnerabilities
is challenging; therefore, we do not rely on traditional vul-
nerability features based on expert experience to determine
whether a path has a vulnerability. Instead, we rely on a
deep neural network to automatically extract the features
of vulnerabilities, learn vulnerability patterns from a large
amount of training data, and identify other vulnerable paths
that are of interest.

3: How can we apply our method to the existing binary
fuzzer without losing the performance advantage?

We can guide the seed selection of graybox fuzzing based
on the learned neural network model. Because the appeal
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FIGURE 2. Overview of the proposed NeuFuzz approach. (a) offline model training. (b) online guided fuzzing.

of CGF is its speed, the introduction of performance over-
head to the fuzzer should be limited when implementing
this strategy. Therefore, we have considered several existing
fuzzers that support binary fuzzing, including AFL-PIN [33],
Vuzzer and PTfuzz, but the implementation of the former two
tools relies on the dynamic instrumentation Pin [34] which
could incur substantial cost, thus violating our principle.
As mentioned above, PTfuzz has been proven to have a large
performance improvement compared to QAFL, and it relies
on the Intel PT to support execution control flow tracing,
which helps to recover the program execution path as input
to the model without relying on expensive methods, such as
dynamic instrumentation. Therefore, we choose to implement
our approach based on PTfuzz.

B. APPROACH OVERVIEW
To address the limitation of the existing graybox fuzzers
mentioned above, we propose NeuFuzz, as shown in Fig. 2,
which consists of two phases, namely, offline model training
and online guided fuzzing, corresponding to Fig. 2(a) and
Fig. 2(b), respectively. Both phases require hardware support
from a CPUwith Intel PT. In the offline model training phase,
the input is a large number of binary programs, including vul-
nerable and non-vulnerable programs. A vulnerable program
means that it contains one or more known vulnerabilities,
and a non-vulnerable program means that a patch has been
applied to fix the vulnerability. The output is a learned pre-
diction model used to classify whether vulnerabilities exist
in unseen program paths. In the online guided fuzzing phase,
we integrate the prediction model into a graybox fuzzer to

determine the priority and mutation energy of the seed by
vulnerability prediction of its exercised path before adding
the seed to the seed queue. Then, the fuzzer selects seed inputs
from the seed queue according to their priority. This process
makes seed selection smarter.

Two points should be noted. First, we do not discard seeds
that do not cover the vulnerable paths identified by ourmodel.
We still add these seeds to the seed queue for two reasons: on
one hand, these seeds are still valuable from the perspective
of the code coverage of the fuzzer because fuzzing them can
discover new paths and on the hand our model prediction
accuracy is not guaranteed to be 100%, so we cannot miss
the opportunity to find these vulnerabilities, even if the prob-
ability is much lower. Second, although training the neural
network requires time, we need to train the network only
once before applying it to all applications. In addition, we add
path recovery and vulnerability prediction in themain fuzzing
loop, which of course can lead to extra overhead, but our
experiment indicated that the overhead of these two modules
is very low and acceptable.

IV. APPROACH
In this section, we describe the key technical details of
NeuFuzz, which is based on PTfuzz; our approach is
orthogonal to the method of improving code coverage pro-
posed by previous researchers.

A. OFFLINE MODEL TRAINING
As highlighted in Fig. 2(a), this phase has four steps.
First, we collect training programs, including the vulnerable
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version and the non-vulnerable version, for neural model
training. Second, proofs of concept (POCs) are used as the
inputs of these programs. With the ability of control flow
tracing of Intel PT, we can obtain two types of program paths:
vulnerable and clean. Third, these paths are transformed into
vector representations as input to the neural network before
training. Fourth, a predictionmodel for guiding seed selection
in the online guided fuzzing stage is produced based on the
feature learning ability of the neural network from a large
amount of training data.

1) COLLECTING TRAINING PROGRAMS
Given the complexity and variety of programs, a large number
of training examples are required to train machine learning
models to effectively learn the patterns of security vulnera-
bilities directly from code. In addition, because we need to
dynamically run the program to obtain the execution path,
we require a binary program that can be executed and the cor-
responding test case. However, to the best of our knowledge,
no publicly available complete binary program dataset exists.
Although VulDeePecker provides a dataset [35], only source
code is included, and no test cases are provided for program
execution.

We construct the first binary dataset derived from three
data sources: the NIST SARD project [36], GitHub [37]
and Exploit-DB [38]. The NIST SARD project contains
a number of synthetic programs, each of which has one
good (post-patch) and bad (pre-patch) program and covers
various type of CWEs (Common Weakness Enumeration),
we choose memory corruptions vulnerabilities such as stack
overflow (CWE121), heap overflow (CWE122), integer over-
flow (CWE190), UAF (CWE416) and so on. We eventually
collect 26,080 binary programs from SARD, each with a
pre-patch and post-patch version. However, the programs
in SARD are synthetic, so their vulnerabilities may differ
from the vulnerabilities in real-world applications, which can
limit the scalability of our model. Therefore, we also collect
real-world applications (such as ImageMagick, libtiff, and
bintuils) from GitHub and Exploit-DB. GitHub can track
changes to source files, and we can identify the pre-patch
and post-patch version for each bug by retrieving the commit
history of the master branch of the application and crawl
POCs from the public repositories, such as bugtracker and
GitHub issues, to verify and retain the test case that can
trigger the bug.We ended up collecting 560 applications from
Github. In addition, we collect 1039 vulnerable programs and
corresponding POCs from Exploit-DB.

As shown in Table 1, we collect a total of 28,475 vulnerable
binary programs and 27,436 non-vulnerable binary programs
in our dataset for neural network training and testing, as well
as test cases that can trigger vulnerable paths and clean paths.

2) EXTRACTING EXECUTION PATH AND LABELING
GROUND TRUTH
With the constructed dataset and POCs, we can extract the
program execution paths by executing the programs in both

TABLE 1. Dataset for training and testing.

phases of our approach for training and predicting. The most
common method is using Pin dynamic instrumentation to
extract the execution path, but this approach can result in
high overhead and reduce the execution speed of the fuzzer,
especially during the online guided fuzzing phase. Therefore,
we use Intel PT technology to extract paths, which will be
explained in detail in the first part of Section B. Each instruc-
tion of the program execution path is recorded in bytecode
form, and we do not trace the instructions in the system
library function and retain the library function name (e.g.,
strcpy and memcpy) related to the vulnerability feature in
the process of path tracking, which reduces the number of
recorded instructions in the path and at the same time keeps
the vulnerability semantics as much as possible.

Next, we label the ground truth. VulDeePecker conserva-
tively believes that code is non-vulnerable as long as no vul-
nerability has been found in them; in reality, this assumption
does not hold. We assume that the code is non-vulnerable
after patching; thus, in comparison the ground truth is more
accurate. Vulnerable and non-vulnerable programs can be
executed with POCs as input to obtain vulnerable paths
(labeled as ‘‘1’’) and clean paths (labeled as ‘‘0’’). Finally,
a total of 27,820 vulnerable paths and 26,871 clean paths are
extracted from our constructed dataset, and 4/5 of them are
used for training, the remaining 1/5 are used for testing.

3) TRANSFORMING EXECUTION PATHS INTO VECTOR
REPRESENTATIONS
Before taking the program execution path consisting of the
instruction bytecode as input to the deep neural network,
the path needs to be converted into a vector representation
while retaining as much of the original semantic information
of the execution path as possible. We can learn via a text
processing method: one path can be seen as one sentence, and
each instruction in the path can be regarded as a word in the
sentence. Therefore, we must perform word embedding, for
which one-hot [39] and word2vec [40] are common methods.
One-hot represents the ith instruction as a vector with its
ith element set to 1 and the other elements set to 0. For
example, if there are 5 instructions, the vector of the second
instruction is represented as [0, 1, 0, 0, 0]. However, this
method does not contain any corpus information, and the
distance between all words is the same. Word2vec represents
the vector according to the context, and words with high
relevance have closer distances; therefore, word2vec is more
expressive in terms of the intrinsic characteristics of the
data. Therefore, we choose word2vec for word embedding.
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FIGURE 3. An example of vector representation.

FIGURE 4. Neural network architecture.

The hexadecimal bytecode of each instruction is treated as
a token, for example, 0x890424 represents mov [ebp], eax;
and then, the bytecode sequence is trained with word2vec.
The output is a vector representation of each instruction in
256-dimensional space. We can then transform the execution
path into a vector representation of each instruction, as shown
in Fig. 3.

It is obvious that the lengths of different paths are unequal
and highly variant. Such paths are difficult to feed into deep
neural network architectures. Therefore, we set the maximum
length of the path to be n. Paths shorter than n are padded with
0 from the back end of them. Whereas paths longer than n are
truncated from the front end of them, because new triggered
path branches are usually located at the end of the paths.
When padding to a fixed length of elements X1,X2, . . . ,Xn
(Xi is the vector representation of each instruction), the input
sequence of one path can be represented as X1 : n = X1 ⊕
X2⊕ . . .⊕ Xn, where ⊕ is the concatenator.

4) TRAINING THE NEURAL NETWORK MODEL
In this step, the hidden vulnerability pattern is learned from
training data containing a large number of vulnerable and
clean paths. We choose the long short-term memory (LSTM)
neural network for training to output a model that can be used
to classify unseen paths triggered during the fuzzing process.
On the one hand, LSTM is good at processing sequential data:
the program path is very similar to the statement in natural
language, and whether a piece of code is vulnerable depends
on the context. On the other hand, LSTM has a memory func-
tion that is suitable for handling long dependencies because
the code associated with the vulnerability may be located at
a relatively long distance in the path.

Our LSTM-based neural network consists of a total of
4 layers, as shown in Fig. 4. The first layer is the embedding
layer, which maps all the elements in the sequence to a
fixed-dimensional vector. The second and third layers are

stacked LSTM layers, each of which contains 64 LSTM
units in a bidirectional form, and the stacked LSTM model
can learn a higher-level time-domain feature representation.
Finally, we use a dense output layer with a single neuron and
a sigmoid activation function to make predictions for the two
classes in our task. Our loss function is binary_crossentropy,
the optimizer is adam, and because LSTM often suffers from
overfitting, we use dropout to overcome this problem. Our
model achieves the best results when the dropout rate is set
to 0.6.

B. ONLINE GUIDED FUZZING
Online guided fuzzing is implemented on the basis of
PTfuzz’s main fuzzing loop. When the fuzzer generates one
new input and achieves new branch coverage, it will be added
to the seed queue. To achieve our seed priority strategy,
we add an execution path recovery and vulnerability predic-
tion module before adding seeds to the seed queue, as high-
lighted in the gray boxes in Fig. 2(b). We can recover the
complete execution path of the program based on the control
flow information captured by Intel PT and the target binary
file. Then, we use our prediction model to determine whether
an unseen path is vulnerable. Seeds are marked according to
the prediction result (vulnerable seeds are marked as ‘‘1’’,
non-vulnerable seeds are marked as ‘‘0’’) and then added to
the seed queue. At last, vulnerable seeds will be prioritized
and assigned more mutation energy in the next seed selection
process and seed mutation process.

1) RECOVERING THE EXECUTION PATH
When fuzzing with PTfuzz, the execution control flow infor-
mation is collected in real time in the form of data packets
as shown in Table 2 (Intel PT specifies instructions that
can change program flow as Change of Flow Instructions
(COFI).) and stored in specified memory space. Bitmap
which represents the code branch coverage information is
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TABLE 2. PT packet type description.

updated by decoding these data packets. However, there is no
complete execution path information required by our model
input throughout this process. So before using our prediction
model, we must recover the execution path based on the
control flow packets and the target program binary file by
decoding the trace stored in the specific memory.

Algorithm 1 describes the process in detail. Specifically,
first, the binary program is loaded, and the instruction address
is obtained from the main entry function (lines 1,2). Then, the
next instruction is obtained according to the current instruc-
tion type, and its byte code is added to the path until the
last instruction of the trace (lines 4-8). If the instruction is a
conditional jump, the jump direction is determined according

Algorithm 1 Program Execution Path Recovery
function RecoverPath(program, trace)
1: image = LoadELF(program)
2: insaddr = GetEntryOffset(image)
3: path = []
4: while true do
5: insbyte = GetInsByte(insaddr)
6: add insbyte to path
7: if insaddr is last instruction then
8: break
9: instype = GetInsType(image, insaddr)
10: switch instype
11: case conditional jump instruction:
12: istaken = decodeTNT(trace, insaddr)
13: if istaken is true then
14: insaddr = GetTargetAddr(image, insaddr)
15: end if
16: else
17: insaddr = insaddr + size(image, insaddr)
18: end else
19: case indirect jump or transition instruction:
20: targetaddr = decodeTIP(trace, insaddr)
21: insaddr = targetaddr
22: case unconditional direct jump instruction:
23: insaddr = GetTargetAddr(image, insaddr)
24: default:
25: insaddr = insaddr + size(image, insaddr)
26:end while
end function

to the TNT package (lines 11-18). If the instruction is an
indirect jump or transfer, the jump target address is obtained
according to the TIP packet (lines 19-21). If the instruction
is an unconditional direct jump, the jump target address is
obtained from the instruction (lines 22,23). If the instruction
is not a jump, the next instruction is obtained based on the
size of the current instruction (lines 24,25). We decode the
PT trace information with the decoding library libipt [41]
provided by Intel.

2) GUIDING FUZZING WITH THE NEURAL NETWORK MODEL
Our final goal is to leverage the learned model to guide
the fuzzer to prioritize seeds that exercise vulnerable paths
to expose the vulnerability early on and assign them more
mutation energy but less energy to seeds exercise clean
paths to increase the probability of triggering vulnerabilities.
Therefore, we need to modify the original algorithm of
PTfuzz to integrate our trained model to the fuzzer.

score = fdepth
(
f time

(
fcov

(
fspeed(s)

))
(1)

forigEnergy(s) =

{
1600 if score ≥ 1600
score otherwise.

(2)

fnewEnergy(s) =

{
1600 if vul(s) = true
0.5 · forigEnergy(s) otherwise

(3)

Our NeuFuzz implementation is shown in Algorithm 2,
where the gray boxes indicate the differences between our
approach and the PTfuzz’s algorithm. Specifically, when a
mutated input triggers a new branch (line 14), the execution

path is recovered first according to the control flow infor-
mation captured by the PT and the binary program file
(line 15). Then, the model is used to classify whether the path
is vulnerable, and the seed is marked according to the predic-
tion results and added to the queue (line 16-20). When seeds
are taken from the queue, the first step is to checkwhether
there is a seed marked as vulnerable. If vulnerable seeds
exist, they are prioritized (line 5-9). Our implementation of
AssignEnergy (line 10) assigns the most mutation energy
(the default maximum value of PTfuzz is 1600) to vulnerable
seeds and less energy (50% of the original allocated energy)
to non-vulnerable seeds, as shown in equation (3), vul(s)
returns true if the seed is marked as vulnerable. Equation (2)
denotes the original energy computation method of PTfuzz,
which uses the execution time fspeed , block transition cover-
age fcov, creation time ftime, and path depth of the seed fdepth,
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Algorithm 2 NeuFuzz Fuzzing Loop With Learning
function Fuzz(program, seeds)
1: add seeds to Queue
2: pending_vul = 0
3: repeat
4: for seed in Queue do
5: if pending_vul is not 0 then
6: if seed is not vulnerable then
7: continue
8: end if
9: end if
10: energy = AssignEnergy(seed)
11: for i from 0 to energy do
12: newinput =MutateInput(seed)
13: trace = Execute(program, seed)
14: if HasNewCov(trace) then
15: path = RecoverPath(program, trace) //

Algorithm 1
16: if QueryModel(path) is True then
17: mark newinput as vulnerable
18: pending_vul++
19: end if
20: add newinput to Queue
21: end if
22: end for
23: end for
24: until timeout reached or abort signal
end function

as shown in equation (1). Notably, in an extreme situation,
no vulnerable paths may be discovered for a substantial
period of time. In this case, NeuFuzz follows the original
seed selection strategy of PTfuzz until one vulnerable path
is identified.

V. IMPLEMENTATION AND EVALUATION
Our model training, containing approximately 180 lines of
python code, is developed based on keras with TensorFlow as
the backend. The fuzzermodule is based on the PTfuzz imple-
mentation, which adds approximately 600 lines of C/C++
code, includingmodule implementation related to path recov-
ery, model prediction, seed selection, and energy allocation
and so on.

A. EVALUATION SETUP
To evaluate the effectiveness of our proposed method,
we conduct multiple experiments on different test suites for
comparison with current advanced tools.

We choose a common benchmark dataset, LAVA-M, which
contains four vulnerable Linux programs, namely, base64,
md5sum, uniq and who, and each application has been man-
ually injected with multiple bugs. In addition, to verify the
scalability and effectiveness of NeuFuzz for real software,
we choose nine widely used real-world applications for

testing, namely, libtiff, binutils, libav, podofo, bento4, libsnd-
file, audiofile and nasm which process multiple file formats,
including image, elf, document, video, audio and asm file.

We compare NeuFuzz with PTfuzz and QAFL, which
both support binary fuzzing without relying on source code.
We run all the experiments on a computer equipped with an
ubuntu16.04 system, 32 GB RAM, an Intel core i7 8700k
processor, and one Nvidia 1080Ti GPU. In all the comparison
experiments, we run only one fuzz instance with one CPU
core, and each instance runs for 24 hours. The experiments
are designed to answer the following three research questions.
• RQ 1. How effective is our learned neural network
model?

• RQ 2. How good is the vulnerability detection capability
of NeuFuzz?

• RQ3. How is the overhead of the NeuFuzz fuzzing loop?

B. RESULTS
1) EFFECTIVENESS OF NEURAL NETWORK MODEL (RQ 1)
The effectiveness of the model is critical to NeuFuzz because
seed selection is performed based on the model prediction
results. Therefore, in this section, we evaluate the results of
the trained model. As shown in Fig. 5, after 5 epochs of
training, the training accuracy of our model reached 91%,
and the training loss decreased to 22%. Currently, no tool
is publicly available for vulnerability prediction for binary
programs, and the most closely related work to our approach
is VDiscover, which extracts API sequences as features and
then trains them using traditional machine learning algo-
rithms. By contrast, we take the execution path as input
and use LSTM for training. To illustrate the advantages of
our method (referred to as PATH+LSTM), we implement
VDiscover’s method that extracts dynamic API sequences
and then trains with a random forest algorithm (referred to
as API+RF).

FIGURE 5. Training accuracy and loss of our model.

We consider the following widely used metrics in machine
learning to evaluate our method: false positive rate (FPR),
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TABLE 3. Performance of VDiscover and NeuFuzz on Test-Data and LAVA-M.

TABLE 4. Detected bugs on the LAVA-M dataset.

false negative rate (FNR), true positive rate (TPR) or recall,
precision (P), and F1-measure (F1). Let TP be the number
of samples with correctly detected vulnerabilities, FP be
the number of samples with falsely detected vulnerabilities,
FN be the number of samples with undetected true vulnera-
bilities, and TN be the number of samples with no undetected
vulnerabilities. The FPR = FP/(FP+TN ) is the ratio of false
positive vulnerabilities to the entire population of samples
that are not vulnerable. TheFNR = FN/(TP+FN )is the ratio
of false negative vulnerabilities to the entire population of
samples that are vulnerable. The TPR = TP/(TP+FN ) is the
ratio of true positive vulnerabilities to the entire population
of samples that are vulnerable. Precision P = TP/(TP +
FP) measures the correctness of the detected vulnerabilities.
F1 = 2 · P · TPR/(P+ TPR) accounts for both precision and
the TPR.

We evaluate our method on two datasets. The first is
part of the dataset that we constructed (referred to as Test-
Data), including 5,564 vulnerable paths and 5,356 clean
paths, accounting for 1/5 of all our extracted execution paths.
The other is the LAVA-M dataset. Although this dataset
provides vulnerable programs and inputs that trigger these
vulnerabilities, there are no patched versions of the programs,
so we consider only the TPR and FNR. The results are shown
in Table 3. We can see that the method of NeuFuzz outper-
forms VDiscover for both datasets, which can be explained
by the fact that the vulnerability is reflected not only in the
API call sequence but also in the constraints condition. For
example, calling strcpy with a complete security check may
be safe. In addition, although our model performs worse on
LAVA-M than on Test-Data in terms of FPR and TPR, it still
achieves a positive rate of 82.5%, i.e., it is very effective at
distinguishing vulnerable from non-vulnerable code.

2) VULNERABILITY DETECTION CAPABILITY (RQ 2)
The number of unique crashes is an important factor in
measuring the effectiveness of a fuzzer. Some crashes may
be caused by the same root cause (i.e., duplicated) or may
not be security-related; however, in general, the greater the
number of crashes found, the higher the probability that more

TABLE 5. Vulnerabilities found by NeuFuzz, including target programs, number of unique crashes, known and unknown vulnerabilities, unknown
vulnerabilities confirmed by CVE, vulnerability type(HO: heap overflow, SO: stack overflow, NP: null pointer deference, IA: invalid memory access, OOM:
out of memory) and time to expose the corresponding CVE.
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FIGURE 6. Number of unique crashes detected over time. (a) tiffcp + libtiff. (b) objdump + binutils. (c) nm + binutils. (d) avconv + libav.
(e) podofocolor + podofo. (f) mp42ts + bento4. (g) sndfile-deinterleave + libsndfile. (h) sfconvert + audiofile. (i) nasm.

vulnerabilities can be identified. We compare the results of
NeuFuzz, PTfuzz and QAFL on LAVA-M and real-world
applications in this section. Table 4 shows the number of bugs
found in LAVA-M with different fuzzers. The first column is
the target program name, the second column is the number
of known bugs in the target program, and the last three
columns are the numbers of bugs found by NeuFuzz, PTfuzz,
and QAFL, respectively. NeuFuzz found 19 bugs, exceeding
PTfuzz and QAFL. The md5sum experiment could not be
completed by NeuFuzz, PTfuzz, and QAFL because the
methods crashed on the first input and the same phenomenon
occurs in [15].

The results for real-world applications are shown
in Table 5. These applications were all the latest versions
at the time of testing. NeuFuzz can find more crashes than
PTfuzz and QAFL, so NeuFuzz has a higher probability of
finding vulnerabilities. A total of 1290 crashes are discovered
after testing these programs for 24 hours. Then, we use
AddressSanitizer [42] to perform deduplication and further
identify 42 vulnerabilities. 14 of these vulnerabilities were
previously discovered and disclosed by other researchers,
but the vendors have not released patches. The other 28 are

unknown, 21 of which are confirmed byCVE. The discovered
vulnerabilities include mainly buffer overflow, UAF, null
pointer dereference, divide by zero, invalid memory access
and other memory corruption problems. In addition, the last
column of the table shows that NeuFuzz can find all CVEs
within 24 hours, much faster than PTfuzz and QAFL. PTfuzz
and QAFL miss some vulnerabilities, and ‘‘N’’ indicates that
the tool does not find the corresponding CVE.

Fig. 6 shows the growth of unique crashes of different
fuzzers on nine real-world applications within 24 hours. From
the growth trend, we can see that the number of unique
crashes found by NeuFuzz grows faster than that of PTfuzz
and QAFL, and more crashes are found by NeuFuzz. For
example, when fuzzing the sndfile-deinterleave program of
the libsndfile library, NeuFuzz found 5 crashes, whereas
PTfuzz and QAFL found none. Further analysis indicates
that this is a stack overflow vulnerability. In addition, QAFL
performs the worst of the three fuzzers, because it is based
on QEMU and much more inefficient in terms of execution
speed than PTfuzz, which is based on hardware implemen-
tation. In short, NeuFuzz performs better in terms of both
efficiency and effectiveness of vulnerability detection.
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3) OVERHEAD OF NeuFuzz (RQ 3)
The effectiveness of a graybox fuzzer is strongly dependent
on its execution speed, which, for the most part, is limited
only by the time required to execute one test case. There-
fore, we need to ensure that our method does not lead to
large performance overhead, reducing the fuzzing efficiency.
Wemeasure the execution speed of each fuzzer by the number
of test cases executed per second (exe/s) to demonstrate the
fuzzing overhead. As shown in Fig. 7, the execution speed
of NeuFuzz is approximately 2.5 times faster than that of
QAFL but approximately 8% slower than that of PTfuzz
because NeuFuzz requires additional time for path recovery
and vulnerability prediction. In fact, we find that the time
overhead originates mainly from path recovery, which is
proportional to the length of the execution path. The time
complexity of predicting the result in a simple neural network
is only O(n1 · n2 + n2 · n3 + . . .) [43]. Thus, when the
number of nodes is within a small range, as in our model,
the predicting process requires much less time than actually
running the target program once. In short, the overhead is
relatively acceptable for fuzzing tasks. Furthermore, although
training the neural network model requires some time, the
training process is performed offline, and we have to train
the model only once for all subsequent tests; thus, we do not
consider the time spent on model training.

FIGURE 7. The number of executions on real-world programs.

C. DISCUSSION
The evaluation results show that NeuFuzz achieves better vul-
nerability detection than the current state-of-the-art fuzzers
at a reasonable cost, but some remaining limitations deserve
further research.

First, NeuFuzz requires the support of a specific hardware
and operating system because our method is based on PTfuzz.
PTfuzz uses Intel PT, which is a new feature of 5th generation
Intel CPUs, and PTfuzz can run only on the Linux platform
with a Linux kernel version of at least 4.1.x.

Second, NeuFuzz cannot handle some program paths
longer than our threshold when we use the execution paths as
input to train the model, which limits the ability of our model.
In the future, we will consider other methods to represent
the path, such as dynamic program slicing. Furthermore,
we should consider applying other neural network models to
learn the vulnerability pattern.

Third, NeuFuzz cannot find vulnerabilities hidden behind
complex sanity checks, such as magic bytes, because the
neural network model can predict only the exercised path
to guide seed selection. This problem is a popular topic
for improving code coverage, and we can integrate some of
the current advanced methods into our tools to enhance the
vulnerability detection capability.

Fourth, even if a seed is found to trigger a new path
during fuzzing and the learned model accurately identifies
this path, NeuFuzz still may not trigger the vulnerability. This
is due to the randomness of fuzzing, because new seed gen-
erated by mutating may fail to trigger the original vulnerable
path. Farifuzz is proposed to solve this problem by dynamic
instrumentation. In the future, we can consider applying deep
reinforcement learning to guarantee the specified path to be
tested as much as possible so that further improve the fuzzing
capability.

VI. CONCLUSION
The current graybox fuzzing technologies mainly focus on
how to improve code coverage but ignore the distribution of
vulnerable code in the program; that is, they attempt to cover
as many program paths as possible rather than to explore
likely to be vulnerable paths. In this paper, we propose a new
seed selection strategy based on a deep neural network and
implement a path-sensitive binary fuzzing tool, NeuFuzz. We
construct a large dataset to train our neural network model
to learn the hidden vulnerability patterns and then use the
produced model to predict the new path triggered during the
fuzzing process. Finally, we prioritize the seeds that exercise
the vulnerable path and accordingly assign these seeds more
mutation energy according to the prediction results. We con-
ducted experiments on both crafted benchmark and real-
world applications. Results showed that our proposed method
is both effective and efficient in terms of crash finding and
vulnerability detection. Compared with PTfuzz and QAFL,
NeuFuzz can find more vulnerabilities in less time. We have
found 28 new security bugs in nine widely used real-world
applications, and 21 of them are confirmed by CVE.
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