A Heuristic Framework to Detect Concurrency Vulnerabilities

Changming Liu, Deqing Zou*
Peng Luo
Service Comp. Tech. and System Lab,
Cluster and Grid Computing Lab,
School of Computer Sci. and Tech.,
Huazhong Univ. of Sci. and Tech.
Wuhan, China

ABSTRACT

With a growing demand of concurrent software to exploit multi-
core hardware capability, concurrency vulnerabilities have become
an inevitable threat to the security of today’s IT industry. Existing
concurrent program detection schemes focus mainly on detecting
concurrency errors such as data races, atomicity violation, etc.,
with little attention paid to detect concurrency vulnerabilities that
may be exploited to infringe security. In this paper, we propose a
heuristic framework that combines both static analysis and fuzz
testing to detect targeted concurrency vulnerabilities such as con-
currency buffer overflow, double free, and use-after-free. The static
analysis locates sensitive concurrent operations in a concurrent pro-
gram, categorizes each finding into a potential type of concurrency
vulnerability, and determines the execution order of the sensitive
operations in each finding that would trigger the suspected concur-
rency vulnerability. The results are then plugged into the fuzzer
with the execution order fixed by the static analysis in order to
trigger the suspected concurrency vulnerabilities.

In order to introduce more variance which increases possibility
that the concurrency errors can be triggered, we also propose ma-
nipulation of thread scheduling priority to enable a fuzzer such as
AFL to effectively explore thread interleavings in testing a concur-
rent program. To the best of our knowledge, this is the first fuzzer
that is capable of effectively exploring concurrency errors.

In evaluating the proposed heuristic framework with a bench-
mark suit of six real-world concurrent C programs, the framework
detected two concurrency vulnerabilities for the proposed con-
currency vulnerability detection, both being confirmed to be true
positives, and produced three new crashes for the proposed inter-
leaving exploring fuzzer that existing fuzzers could not produce.
These results demonstrate the power and effectiveness of the pro-
posed heuristic framework in detecting concurrency errors and
vulnerabilities.

*Corresponding author: Deqing Zou (deqingzou@hust.edu.cn). This work was sup-
ported by the National 973 Fundamental Basic Research Program under grant No.
2014CB340600.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC 18, December 3-7, 2018, San Juan, PR, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6569-7/18/12...$15.00
https://doi.org/10.1145/3274694.3274718

Bin B. Zhu
Microsoft Research Asia
Beijing, China
binzhu@microsoft.com

529

Hai Jin
Service Comp. Tech. and System Lab,
Cluster and Grid Computing Lab,
School of Computer Sci. and Tech.,
Huazhong Univ. of Sci. and Tech.
Wuhan, China

CCS CONCEPTS

« Security and privacy — Software security engineering;

KEYWORDS

Concurrency Vulnerabilities, Fuzzing Test, Thread Schedule.

ACM Reference Format:

Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin. 2018.
A Heuristic Framework to Detect Concurrency Vulnerabilities. In 2018
Annual Computer Security Applications Conference (ACSAC °18), December
3-7, 2018, San Juan, PR, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3274694.3274718

1 INTRODUCTION

Concurrent programs can provide significantly more computing
power than sequential programs and have been applied in many
demanding applications, e.g. cloud services. However, concurrent
programs are prone to concurrency vulnerabilities that may cause
severe consequences, e.g. dirty copy on write[31], a well-known
concurrency vulnerability found in the Linux kernel, and attacks
specifically targeting at concurrent programs to disrupt confidential-
ity, integrity or availability of the system [33]. It is a great challenge
to detect concurrency bugs and vulnerabilities since there are too
many interleavings in a typical concurrent program.

thread 1
1030

1
[]

1050

1051

1052 rr->length-=n;

1053 rr->offt+=n;

1054 if (rr->length == 0)

1055 {

1056

1057

1058

1059

1060 }

1061 }

1062 return(n);

1063 }

if (!peek)
{

s->rstate=SSL_ST READ HEADER;

rr->0ff=0;

if (s->mode & SSL_MODE_RELEASE BUFFERS)
ssl3_release_read_buffer(s);

thread 2

124 int ss13_read_n(SSL *s, int n, int max, int extend)
125 {

[.]
b = &(s->s3->rbuf);
if (rb->buf == NULL)

if (!ss13_setup_read_buffer(s))

return -1;

140
141
142
143

Figure 1: CVE-2010-5298 in s3_pkt.c of OpenSSL

if (type == rr->type) /* SSL3_RT_APPLICATION_DATA or SSL3_RT _HANDSHAKE */
s

https://doi.org/10.1145/3274694.3274718
https://doi.org/10.1145/3274694.3274718
https://doi.org/10.1145/3274694.3274718

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Fig. 1 shows a real-world concurrency use-after-free vulnerabil-
ity found in s3_pkt.c of OpenSSL. This vulnerability is triggered
at line 143 where thread 2 sets up a buffer s for later usage, and
before the buffer is used, another thread, thread 1, releases this same
piece of memory s at line 1059. This would allow remote attackers
to inject data across sessions or cause denial of service [17]. The
patch to this vulnerability is simply to add a condition inside the
if-condition clause at line 1058 to check if there is still unprocessed
data left in s before releasing it at line 1059 [18].

Detecting concurrency errors has been extensively studied, mainly
focusing on detecting data races, i.e. multiple simultaneous accesses
to shared memory with at least one write. Both static and dynamic
approaches have been used. However, methods aiming at detect-
ing data races in concurrent programs are generally inadequate in
detecting real-world concurrency vulnerabilities that can happen
even when a concurrent program is race-free. For example, in the
case shown in Fig. 1, making the two threads’ accesses to the shared
buffer s, i.e. lines 142 and 1059, race-free would not prevent the
aforementioned vulnerability from happening.

The concurrency vulnerability shown in Fig. 1 is similar to the
order violation described in [21, 36], wherein multiple concurrent
accesses, protected by a lock respectively, to shared memory can
cause crashes of the program. If the free operation at line 1059
is executed after finishing using the buffer, the vulnerability will
never occur. On the other hand, if their execution order is reversed,
the vulnerability will occur. In a concurrent program, the execution
order of threads may be uncontrollable, and a wrong execution order
may occur, leading to a vulnerability that may be exploited to inject
data across sessions or cause denial of service. Existing methods
[21, 36] of detecting order violation are all based on monitoring
memory accesses, e.g. read/write, and the order violations they can
detect are likely to cause concurrency errors instead of concurrency
vulnerabilities that this paper focuses on. This limitation has been
lifted in our approach.

In this paper, we propose a heuristic framework that combines
both static analysis and fuzz testing to detect concurrency vulnera-
bilities, particularly concurrency buffer overflows, double-free, the
two most common concurrency vulnerabilities as reported in the
National Vulnerability Database [16], and the aforementioned con-
currency use-after-free. A concurrency buffer overflow typically
occurs when two threads access shared memory and one of them
modifies the shared memory, possibly with maliciously crafted con-
tent, before the other passes the shared memory to a memcpy-like
function. A real-world concurrency buffer overflow example will
be presented in Section 3. Concurrency double-free is intuitive: two
concurrent free operations on the same memory, and this can result
in undefined behaviors. In addition, we also propose an interleaving
exploring strategy in the heuristic framework to enable fuzz test-
ing to explore thread interleavings effectively so that it can detect
concurrency errors in concurrent programs more efficiently.

Our framework consists of the following three main techniques
we have developed:

e Static Analysis for Concurrent Operations. In this paper,
we use static analysis to detect sensitive concurrent opera-
tions that are likely to lead to concurrency vulnerabilities.

530

Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin

More specifically, we collect a set of sensitive concurrent op-
erations and distill distinct operation patterns for each type
of concurrency vulnerability by studying the characteristics
of real-world concurrency vulnerabilities, and leverage static
analysis to locate sensitive concurrent operations, whether
protected by mutex or not, in a program. We compare each
finding against the operation patterns of each type of con-
currency vulnerability, and categorize it to a certain type of
vulnerability, e.g. a concurrency buffer overflow, double-free,
or use-after-free that we have chosen as an example to study
the proposed heuristic framework in this paper. We should
point out that our framework can be readily extended to
detect other types of concurrency vulnerabilities.

¢ Exploring Thread Interleavings in Fuzz Testing. Fuzz
testing is criticized for being inadequate to detect concur-
rency errors. One major reason is that, although very capa-
ble of exploring new branches at conditional jumps, current
state-of-the-art fuzzers such as AFL [13] are unaware of
thread scheduling and thus cannot explore enormous inter-
leavings as capable as they are in exploring path changes.
To enable a fuzzer to explore thread interleavings as effec-
tively as it explores path changes, we develop a thread-aware
fuzzer that randomizes priorities of forked threads to explore
thread interleavings to cover as many interleavings as pos-
sible, i.e., in each iteration of fuzz testing, we select one or
more threads to manipulate their priorities towards untested
interleavings. This ensures that more interleavings are likely
to be explored with increasing iterations of fuzz testing. We
have found several new crashes using this approach. To the
best of our knowledge, we are the first to design a fuzzer to ef-
fectively explore thread interleavings to detect concurrency
errors/vulnerabilities.

e Targeting Scheduling for Sensitive Concurrent Opera-
tions. Like order violation mentioned in [21, 36], the exe-
cution order of concurrent operations is typically critical
in triggering concurrency vulnerabilities. For example, the
vulnerability shown in Fig. 1 can be triggered only if the
free operation is called before the shared memory is used.
Unlike order violation detection schemes in [21, 36] that
detect order violation patterns in run time, we first apply
static analysis to locate sensitive concurrent operations and
identify the potential concurrency vulnerabilities they may
lead to as well as the specific execution order to trigger each
potential vulnerability. The information enables us to in-
sert priority adjusting code to force the sensitive concurrent
operations of a potential concurrency vulnerability to be exe-
cuted in the specific order in fuzz testing so that the potential
vulnerability has a high chance to be triggered.

This paper has the following major contributions by proposing:

e A novel approach to effectively detect concurrency vulner-
abilities: locating sensitive concurrent operations that may
lead to a potential concurrency vulnerability and forcing a
specific execution order of threads to trigger the potential
concurrency vulnerability in fuzz testing. By studying the
characteristics of some common real-world concurrency vul-
nerabilities, we have found that each type of concurrency

A Heuristic Framework to Detect Concurrency Vulnerabilities

vulnerability has a few sensitive concurrent operations and
distinct operation patterns. This allows us to apply static
analysis to locate sensitive concurrent operations that po-
tentially lead to a concurrency vulnerability and to use the
operation patterns to identify the potential type of concur-
rency vulnerability along with the specific execution order to
trigger it. This enhances the opportunity to trigger the con-
currency vulnerability in fuzz testing by adjusting thread’s
priorities to force the program to be executed in the desig-
nated execution order.

o An effective method to explore thread interleavings of con-
current programs in fuzz testing: randomizing priorities of
threads to explore as many interleavings as possible. This
can be achieved by injecting code to adjust threads’ priorities,
forcing threads to sleep for a random or specific time, etc.,
towards untested interleavings. This empowers a fuzzer to
explore effectively not only code paths but also concurrent
interleavings and can significantly improve the effectiveness
of fuzz testing on testing concurrent programs.

This paper is organized as follows. We present the related work
in Section 2 and study real-world examples of concurrency vulner-
abilities in Section 3. Our static analysis is described in Section 4,
and the fuzzing strategies for concurrent programs are described in
Section 5. Our implementation of the proposed heuristic framework
is described in Section 6, and the evaluation results are presented in
Section 7. Limitations of the current implementation of the heuris-
tic framework and the future work are described in Section 8. The
paper concludes with Section 9.

2 RELATED WORK

2.1 Static Analysis to Detect Concurrency
Problems

Many static approaches have been proposed to handle concurrency
problems, such as [23, 28, 29]. Context-sensitive correlation analysis
is proposed in [23] to check if every memory location in a program
is consistently correlated with a lock, and its detection is proved
to be accurate. Aiming at the same, the method in [28] employs
a concept of relative lockset to gain significant scalability. As we
mentioned before, existing static analysis focuses mainly on data
races, which are quite different from concurrency vulnerabilities we
focus on. A static method specifically for double-fetch situations is
proposed in [29] which designates certain static patterns for double-
fetch situations and detects double-fetch situations by matching
these patterns. This method is scalable and can find many double-
fetch vulnerabilities, yet it is hard to extend to detect other types
of concurrency vulnerabilities.

2.2 Concurrency Error Detection

Existing concurrency error detection techniques can be classified
into two categories: heuristic techniques and test techniques. Heuris-
tic techniques [19-21] detect concurrency errors based on error
patterns or characteristics. These methods construct heuristic rules
and statically scan the whole program to find violation of these
rules. These heuristic rules may not catch all running situations, es-
pecially for concurrent programs. To tackle this problem, dynamic

531

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

analysis has been developed. For example, CTrigger [19] uses a
dynamic method to detect atomicity violations by analyzing in-
terleaving characteristics of synchronization events in concurrent
programs.

Test techniques detect concurrency errors by running target pro-
grams with system scheduling or designated tests to trigger concur-
rency errors. They typically aim at covering as many interleavings
as possible by generating either tests [7, 26, 27] or schedules [3, 34]
to detect concurrency errors. Compared with heuristic techniques,
a test technique usually suffers from low efficiency and thus needs
significant amount of time to test. These concurrency error detec-
tors focus mainly on access interleavings of shared memory, with
expensive analysis and complex test or scheduler generation, and
are often used for unit tests instead of system tests due to their
complexity. As a comparison, our interleaving exploring method
for fuzz testing applies a lightweight method to adjust threads’ pri-
orities to explore thread interleavings rather than memory access
interleavings, and is thus scalable to test much larger concurrent
programs.

Since concurrency vulnerabilities are caused by concurrency
errors, a natural thought would be to apply concurrency error de-
tectors to detect concurrency vulnerabilities. This approach does
not work well in general for detecting concurrency vulnerabilities
since these concurrency error detectors focus mainly on detecting
three types of concurrency errors: data races, atomicity violations,
and order violations. As we mentioned in Section 1, concurrency
vulnerabilities may occur even when all the types of concurrency
errors these detectors focus on have been cleared off. Triggering
a concurrency vulnerability normally needs to meet two require-
ments: a specific input and a specific scheduling. These concurrency
error detectors aim at exploring bug-triggering interleavings and
typically will not meet the required input and the required schedul-
ing simultaneously to trigger a concurrency vulnerability.

Our method to detect concurrency vulnerabilities borrows some
ideas from the order violation detection proposed in [21, 36] and
the active testing proposed in [4, 11, 35]. The former focuses on
detecting wrong execution orders that lead to concurrency errors
in a concurrent program. The latter targets at specific bug types
such as data races by applying a static detector to predict buggy
thread interleavings and then executing a suspected buggy thread
interleaving in a real execution to try to trigger the bug. These
methods focus on detecting concurrency errors rather than con-
currency vulnerabilities and, as just mentioned, unlikely effective
in detecting concurrency vulnerabilities. We have extended these
ideas to detect concurrency vulnerabilities.

An interesting yet loosely related work [37] has been proposed
recently to detect concurrency attacks by relying on an attack in-
ference model that models behaviors of concurrency attacks in the
three stages of their life-cycle in launching an attack: a concurrency
bug is first triggered to corrupt shared memory, then the corrupted
memory propagates across functions and threads, which may go
across memory boundaries (e.g., buffer overflows) during propaga-
tion, and finally the corrupted memory flows to vulnerable sites
(e.g., eval() and setuid()) to complete an attack. The method has
produced some sound results: it has detected 5 new concurrency
attacks and eliminated 94.1% of the reports generated by existing
concurrency bug detectors as false positive.

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

2.3 Logic-Based Methods

A logic-based approach applies model-checking to detect concur-
rency errors. It adopts a constraint solver to check if there is an
error. Logic-based methods such as [9, 24] can produce sound repro-
ducible results, but they have to apply methods such as approxima-
tion, pruning etc. to deal with path explosion and heavy workload
in constraint solving, and thus are not scalable to a large amount
of interleavings. As a comparison, our proposed scheme is light-
weighted and thus is scalable to a large amount of interleavings.

2.4 Fuzz Testing

Fuzz testing has been widely used to detect software vulnerabilities
over the past twenty-some years since Miller et al. [15] introduced
it to test the robustness of UNIX utilities in 1990. Due to its effec-
tiveness in detecting software bugs and vulnerabilities, fuzz testing
has gained popularity since its introduction. The basic idea in fuzz
testing is to feed test programs with many mutated or random
inputs to produce irregular behaviors or to trigger vulnerabilities.
Fuzz testing can be divided into three types in general: black-box
fuzzing, white-box fuzzing, and gray-box fuzzing.

Black-box fuzzing requires neither knowing internal logics of
tested programs nor source code. As a result, many generated test
inputs may be uninteresting or cannot explore any deep path in
program semantics. Many methods [25, 30] have been proposed to
generate effective test inputs and explore deeper paths with the aid
of domain knowledge. To compare effectiveness of different black-
box fuzzing methods, Maverick et al. [32] proposed an analytic
framework to evaluate existing black-box fuzzing algorithms by
using a mathematic mutation model.

White-box fuzzing requires complete knowledge of the source
code and behaviors of targeted programs. Generally, it applies heavy
analysis techniques, such as dynamic symbolic execution, to gen-
erate test inputs and explore as many paths as possible. It is very
efficient at exploring new program paths in order to trigger more
bugs and vulnerabilities. A great challenge white-box fuzzing faces
is scalability: it is hard to scale to large programs due to path ex-
plosion [5]. An example of white-box fuzzing methods is presented
in [10].

AFL [13] is a popular gray-box fuzzer to detect software bugs. It
instruments a targeted program at every conditional jump instruc-
tion in compiling time, and then it keeps mutating an input and
running the program in order to explore new branches to find more
bugs. AFL is well-known to be explore sophisticated programs in a
shallow manner. Recently proposed gray-box fuzzers [6, 14] have
focused on addressing this low code coverage problem.

All existing fuzz testing methods have focused on exploring
more paths. They are unaware of thread scheduling and thus can-
not explore enormous concurrent interleavings as capable as they
explore path changes. As a result, they are ineffective in detecting
concurrency errors and vulnerabilities.

3 CASE STUDY OF CONCURRENCY
VULNERABILITIES

In this section, we study examples of real-world concurrency vul-
nerabilities selected from the National Vulnerability Database [16].

532

Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin

The study leads to finding sensitive concurrent operations and dis-
tinct operation patterns for each type of concurrency vulnerability
we study in this paper. We will use these in our static analysis which
is to be described in detail in Section 4.

3.1 Real-World Concurrency Vulnerabilities

We have shown a real-world concurrency use-after-free vulnera-
bility in Section 1. Fig. 2 shows another real-world concurrency
vulnerability, a concurrency buffer overflow, which is triggered
after computing how many escape characters contained in a NULL-
ended string s with the for-loop in lines 1921-1925 and its length
(including the ending NULL) at line 1928. The string and its length
are then passed to function apr_pmemdup. Meanwhile, if another
thread is allowed to modify the same piece of memory to make s
longer than length bytes, execution of line 119 in apr_pmemdup
will make NULL-ended string res not contain proper ending NULL.
String res is returned at line 120 and again at line 1932 for more
processing. When the content of the string is subsequently used,
such as in a memcpy-like function, the content beyond the allo-
cated memory will be included since the proper NULL ending of
the NULL-ended string has been overwritten by another thread,
resulting in a buffer overflow. This may lead to information leakage
or even getting total control over the CPU that happened in the
real world [12].

The above concurrency buffer overflow can be a data race prob-
lem wherein two threads access string str simultaneously and can
be prevented by applying a mutex to lock operations from line
1921 to 1933 to prevent other threads from accessing str during
execution of these lines. However, if a finer lock is applied, such
as the calling function and the called function in Fig. 2 being sepa-
rately locked, i.e., a mutex is used to lock accessing str in the calling
function, i.e., from line 1921 to line 1929, and the mutex is used
to lock accessing str (i.e., m) in function apr_pmemdup to prevent
other threads from accessing str simultaneously, then the program
is race-free, yet the concurrency buffer overflow can still happen
when another thread modifies the content of str after line 1928 has
been executed but before function apr_pmemdup starts to execute.
There are more real-world concurrency vulnerabilities, such as
CVE-2011-0990, CVE-2010-3864, etc. in the National Vulnerability
Database [16], that can still occur even when a program is race-free.

3.2 Characteristics of Concurrency
Vulnerabilities

Let us study the characteristics of concurrency buffer overflows.
A buffer overflow is triggered when the input data exceeds the
buffer’s boundary and overwrites adjacent memory locations. It
usually occurs in memory replication. Fig. 3 shows an example
of for-loop memory replication. In a concurrent program, source,
dest, or length might be modified in another thread after the correct
values of these three variables have been determined and before
the memory replication process has completed. This may trigger a
concurrency buffer overflow. Thus concurrency buffer overflows
have the following characteristics:

e Memory replication is required. Memory replication may
manifest in several ways: calling memory replication func-
tions such as memcpy and strcpy, using memory replication

A Heuristic Framework to Detect Concurrency Vulnerabilities

112: APR_DECLARE(void *) apr_pmemdup(apr_pool_t *a, const void *m, apr_size_t n)
113: {

114: void *res;

115:

116: if (m == NULL)

117: return NULL;

118: res = apr-palloc(a, n);

119: memcpy (res, m, n);

120: return res;

121}

1919: /* Compute how many characters need to be escaped */
1920: s = (const unsigned char *)str;

1921: for (; *s; ++s) {

1922: if (TEST_CHAR(*s, T_.ESCAPE_LOGITEM)) {
1923: escapes++;

1924: }

1925: }

1926:

1927: /* Compute the length of the input string, including NULL*/
1928: length = s - (const unsigned char *)str + 1;

1929:

1930: /* Fast path: nothing to escape */

1931: if (escapes == 0) {

1932: return apr_pmemdup(p, str, length);

1933: }

Figure 2: An example of concurrency buffer overflow in
server/util.c in Apache

1: for(i=0; i<length; i++)
2: dest[i]=sourceli];

Figure 3: An example of memory replication using for-loop

statements such as the for-loop shown in Fig. 3 or a while-
loop.

o At least one of source, dest, or length is a shared variable and
can be modified by other threads.

e The execution order is important to trigger a concurrency
buffer overflow: modification by another thread must be
executed before the memory replication completes.

Concurrency double-free and concurrency use-after-free can
also be characterized in a similar manner, for example, a shared
variable that can be accessed concurrently, and there are at least two
concurrent free operations on this shared variable for the former
or one free operation on the shared variable in one thread and
accessing the shared variable in another thread that may occur
after the free operation for the latter.

From the above concurrency vulnerabilities we can observe the
following common essential requirements to trigger one of these
concurrency vulnerabilities:

e Concurrent Access to Shared Memory. There must be at
least one shared variable that can be concurrently accessed
from multiple threads.

e Sensitive Concurrent Operations on Shared Memory.
Among concurrent accesses to the shared variable, there
is at least one sensitive operation that is vital to trigger a
concurrency vulnerability. Different concurrency vulnerabil-
ity has different sensitive operations. For example, sensitive
concurrent operations for a concurrency buffer overflow

533

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

are memory replication and content modification on shared
memory; two free operations on shared memory for con-
currency double-free; and one free operation and another
memory access on shared memory for concurrency use-after-
free.

e Execution in Right Order. A certain execution order of the
sensitive concurrent operations is typically critical in trig-
gering a concurrency vulnerability. For example, the mem-
ory modification must occur before (or during) the memory
replication for a concurrency buffer overflow, and the free
operation must happen before accessing the shared memory
for concurrency use-after-free. There is no ordering for con-
currency double-free since the two free operations play an
identical operation.

The above sensitive concurrent operations, operation patterns,
and execution orders to trigger concurrency vulnerabilities will be
used in our heuristic framework to detect concurrency vulnerabili-
ties in concurrent programs, as described in detail in the subsequent
two sections.

4 STATIC ANALYSIS

Our heuristic framework consists of static analysis and thread-
aware fuzzing. The static analysis is described in this section, while
the thread-aware fuzzing is described in the next section.

In our framework, static analysis aims at locating sensitive con-
current operations and categorizing each finding into a potential
type of concurrency vulnerability so that the thread-aware fuzzing
would adjust threads’ running priorities to enhance the chance to
trigger the potential concurrency vulnerability in fuzz testing.

Our static analysis consists of four steps: discovering shared
memory, marking sensitive operations, merging data flows, and
categorizing potential concurrency vulnerability type. Fig. 4 shows
the whole procedure of state analysis for concurrency double-free
at line 4 and line 9 in the code shown on the left-most side of the
figure.

4.1 Shared Memory Discovery

As described in Section 3.2, shared variables that can be concur-
rently accessed are essential in triggering a concurrency vulner-
ability. The first step focuses on finding shared memory that is
passed as a pointer when forking a new thread: whenever a new
thread is forked, we record the pointers that are passed through
pthread_create and potentially point to shared memory that can be
concurrently accessed.

Additionally, global variable access is another major source of
concurrent access. We handle this by recording all pointers that
point to a global variable in following three different places:

(1) A parent thread before a fork;
(2) A child thread;
(3) A parent thread after a fork.

Note that pointers that are passed through assignments such as
p2 = pI; p3 = p2; ..., are merely for data propagation rather than
genuine modification. These pointers point to the same memory
and thus should be treated as if an identical pointer. We apply a
filter on pointers to identify redundant pointers that essentially
point to the same piece of memory.

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

1 static void * fl(void * a)
24

3 int*al =(int *)a;

4 free(al);
5
6

7

atic void * f2(void * b) for fork f1:

8 int*bl=(int *)b;
9 free(bl);

13 int * target = (int *)malloc(5 * sizeof(int));
14 pthread_create(..., fl, (void *)target);

15 pthread_create(.., f2, (void *)target);

16}

‘ Come D Come D
1 parent thread before fork:
shared variable) Ly
dincoyery 2. child thread:
10} a,al
11 int main() 3. parent thread after fork:

Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin

categ orization
and double free
output ©.4)

Figure 4: The whole procedure of static analysis for concurrency double-free vulnerability

Table 1: Sensitive operations and their meaning for a shared
variable

Operation The shared variable is
memcpy passed to a memcpy()-like function.
read normally read.
memset passed to a memset()-like function.
free passed to a free()-like function.
null assigned to NULL.
set set as left operand of an assign operation.

4.2 Sensitive Operation Marking

After locating shared variables in a concurrent program, we ex-
amine operations on these shared variables to collect all sensitive
concurrent operations on shared memory in a concurrent program.
More specifically, we first construct a data-flow graph with the
following connections among a parent thread and its child thread
in a fork operation:

e A connection from the parent thread before the fork to its
child thread;

e A connection from the parent thread before the fork to the
parent thread after the fork.

Fig. 5 shows the above connections in constructing a data-flow
graph. We then mark sensitive operations on the data-flow graph.
Table 1 lists common sensitive operations on a shared variable. In
this table, the left column lists the name of a sensitive operation we
refer to in this paper, and the right column explains the meaning of
corresponding sensitive operation. For example, sensitive operation
memcpy denotes that the share variable is passed as an argument to
system function memcpy() or memcpy-like functions or code blocks
defined by users.

4.3 Data-flow Merging

Since a data-flow graph represents only sequential relations among
marked sensitive operations, we need to further construct a data
structure to reflect concurrent relations among these sensitive op-
erations. This is done by

o Merging all data-flows that share a common ancestor since a
shared common ancestor for different data-flows means dif-
ferent concurrent modifications to the same piece of shared
memory,

shared variable in
parent thread before
fork

data-flow

pthread_create()

data-flow

shared variable in
child thread

shared variable in
parent thread after
fork

Figure 5: Data-flow graph construction

o Fine-tuning marked sensitive operations via a control-flow
graph to make sure that each operation pair we come up
with is indeed concurrent.

For the three types of concurrency vulnerabilities we use as
an example to study the detection performance of our heuristic
framework, sensitive concurrent operations of each type of con-
currency vulnerability form a pair. Fig. 4 shows a pair of sensitive
concurrent operations (at line 4 and line 9 of the code shown on the
left-most side of the figure) our static analysis finds out for concur-
rency double-free. This pair is a candidate to trigger a concurrency
double-free vulnerability.

4.4 Vulnerability Categorization

After obtaining pairs of sensitive concurrent operation in the last
step, we need to categorize each pair into a potential type of concur-
rency vulnerability based on each type’s operation patterns that we
have distilled in Section 3.2. This categorization is necessary since
a different type of concurrency vulnerability requires a different
pair of sensitive concurrent operations and a different execution
order of the sensitive concurrent operations in order to trigger the
concurrency vulnerability.

Table 2 provides exemplary pairs of sensitive concurrent oper-
ations for each type of concurrency vulnerability studied in this
paper. For a pair (A, B) of sensitive concurrent operations A and B
in Table 2, the sensitive operation on the left side, i.e., A, must be
executed before the sensitive operation on the right side, i.e., B, to
trigger the corresponding concurrency vulnerability unless both

A Heuristic Framework to Detect Concurrency Vulnerabilities

Table 2: Exemplary pairs of sensitive concurrent operations
for each type of concurrency vulnerability

Concurrency Vulnerability

Double-Free

Operation Pair

(free, free)
(memset, memcpy)
(set, memcpy)

BOF

(free, read)

Use-After-Free (null, read)

sensitive concurrent operations play an identical operation, i.e.,
A = B. When the two sensitive operations in a pair are identical,
e.g., (free, free), any execution order between the two sensitive
operations is equivalent. We note that the two sensitive operations
in a pair must be concurrent, i.e., executed in different threads, to
trigger the corresponding concurrency vulnerability.

In Table 2, the pair of sensitive concurrent operations for concur-
rency double-free is self-explained. The exemplary pairs of sensitive
concurrent operations for concurrency use-after-free are also intu-
itive: the shared memory is freed or set to null in one thread and
then accessed such as read, (free, read) or (null, read), in another
thread. For concurrency buffer-overflows, when shared memory
is passed to a memcpy-like function as either the source buffer or
the length to be copied, and is modified concurrently in another
thread, e.g. the length is changed from 10 to 20, or, as shown in Fig. 2
and discussed in Section 3.1, a NULL-ended string is overwritten
with the proper NULL ending being removed, a concurrency buffer-
overflow would likely occur. When the shared memory is passed
to a memcpy-like function as the destination buffer, a concurrency
buffer-overflow would likely occur if its memory address is con-
currently modified in another thread, e.g. the pointer is assigned
with another pointer. Each of the above buffer-overflow cases can
be described with a pair of sensitive concurrent operations, with
the first sensitive operation modifying shared memory followed
by the second sensitive operation to pass the shared memory to a
memcpy-like function, such as (memset, memcpy) and (set, mem-
cpy) shown in Table 2. Listing 1 shows an exemplary output of this
stage: a pair of sensitive concurrent operations (null, read) for a
potential concurrency use-after-free vulnerability.

Listing 1: Static analysis output

Concurrency use—after —free

Location
example2.c:78
examplel.c:101

Type:
Operation Statement
printf("%s",str);
str = NULL;

read:
null:

4.5 Semantic Checking

In our static analysis, we have used both a data-flow graph and a
control-flow graph to find pairs of sensitive concurrent operations.
A data-flow graph focuses mainly on dependency relations among
different data, while a control-flow graph is about execution paths.
They do not explore semantics of the statements around the two

535

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

sensitive operations in a found pair to determine if the pair could
possibly lead to the suspected concurrency vulnerability or not.

For example, for the reported pair shown in Listing 1, if there
is a condition to check if string str is NULL or not before calling
function printf for the first sensitive operation of the pair, then
the suspected concurrency use-after-free vulnerability will never
occur. Sending this pair to fuzz testing is simply a waste of time.
For a found pair of sensitive operations of concurrency use-after-
free, if we can determine that the associated variable is properly
set when shared memory is freed for the left (i.e., first) sensitive
operation in the pair, and there is a proper check to see if the
shared memory is freed before being used for the right (i.e., second)
sensitive operation in the pair, then the pair of sensitive concurrent
operations cannot lead to the suspected concurrency use-after-free
and should be deleted. Similar semantic checking should also be
applied to reported pairs of other concurrency vulnerabilities. This
would significantly reduce the set of candidate pairs to be tested by
fuzz testing.

Semantic checking can be realized in several ways. We have
adopted a simple approach by checking preceding conditions re-
lated to shared memory for a sensitive operation to determine if
the condition that would trigger the suspected concurrency vul-
nerability would never be met. For example, if we determine that
printf in Listing 1 is called only when str is not NULL, then we can
conclude that the condition to trigger the suspected concurrency
use-after-free reported by the pair shown in Listing 1 would never
be met. This approach is similar to the path exploration of symbolic
execution but much simpler since we focus on determining if a
certain condition, i.e., the condition to trigger the suspected con-
currency vulnerability, will be met or not. If we cannot determine
easily, we can always resort to fuzz testing to further test it, with a
possible adverse impact on the workload of fuzz testing.

5 THREAD-AWARE FUZZING

A key issue in applying fuzz testing to effectively detect concurrency
vulnerabilities is how to make a fuzzer explore as many thread
interleavings as possible [34]. The more thread interleavings a
fuzzer explores, the more likely a concurrency error or vulnerability
is triggered. However, existing fuzzers are designed to explore as
many code paths as possible and thus perform poorly in exploring
thread interleavings. To the best of our knowledge, there is no
existing fuzzer that can explore deep thread interleavings well.

In realizing the above limitation of existing fuzzers, we advocate
using a thread-scheduling fuzzing strategy to effectively explore
thread interleavings of concurrent programs. The core idea in this
strategy is to adjust execution orders of threads, either randomly or
in a targeted manner, to generate as many thread interleavings as
possible or specific thread interleavings, depending on the fuzzer’s
targeted applications. There are a few ways to adjust or influence
execution orders of threads, such as adjusting a thread’s priority,
forcing a thread sleep for a certain or random time, etc.

In this section, we describe a simple thread scheduling scheme
by adjusting threads’ priorities. For simplicity, we assume that fuzz
testing of a concurrent program is bound to one CPU core as a fuzzer
would normally do. This enables us to set the thread scheduling
of a concurrent program to strict First-In-First-Out (FIFO), which

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

makes manipulating thread scheduling much easier. This scheme
manifests in two forms, aiming at performing different tasks. They
are described in detail in the following two subsections.

5.1 Interleaving Exploring Priority

Our thread scheduling in this form, called interleaving exploring
priority, aims at exploring as many thread interleavings as possible
in fuzz-testing a concurrent program. This is achieved by inserting
assembly code after a new thread is forked, i.e. pthread_create is
called, to manipulate the priority of the thread that executes this
inserted code. The assembly code, if ever reached, will adjust the
priority of the thread the assembly code resides in to a certain level
such as the highest or the lowest level of priority. For each thread
interleaving, the concurrent program will be tested for a fixed num-
ber of times in different iterations of fuzz testing. When a thread
interleaving has completed testing, a new, untested interleaving
is generated and tested. This process is repeated until all thread
interleavings have been tested. If the fuzzer still runs by then, the
whole process is repeated to test different interleavings again un-
til the fuzz testing is stopped. In doing so, we hope to cover as
many thread interleavings as possible, and each thread interleaving
is sufficiently tested. Our experimental results indicate that this
approach is very effective in finding concurrency crashes.

5.2 Targeted Priority

As we have mentioned, execution orders are critical in general in
triggering concurrency vulnerabilities. The interleaving exploring
priority described above, although effective in exploring thread in-
terleavings, is ineffective in triggering concurrency vulnerabilities
since, as we mentioned in Section 2.2, triggering a concurrency
vulnerability normally requires meeting two requirements simul-
taneously: a specific input and a specific scheduling. By aiming at
exploring as many interleavings as possible, it is difficult for the
interleaving exploring priority to meet both requirements at the
same time to trigger a concurrency vulnerability. To improve the
chance to trigger concurrency vulnerabilities, we have developed
another thread scheduling scheme, called targeted priority, to aim at
exploring concurrency-vulnerability-dependent interleavings that
would likely trigger targeted concurrency vulnerabilities.

Since each concurrency vulnerability candidate consists of a pair
of sensitive concurrent operations, and a specific execution order
of the two concurrent operations is required to trigger the potential
concurrency vulnerability, we can instrument the priority-adjusting
assembly code at the two sensitive operations to adjust the priorities
of the two threads that run the two sensitive concurrent operations
respectively so that the two threads would likely be executed in
the specific order that would trigger the potential concurrency
vulnerability.

More specifically, suppose there is a pair, (A, B), of sensitive con-
current operations A and B, where operation A must be executed
before operation B to trigger the suspected concurrency vulnerabil-
ity!. The inserted priority-adjusting assembly code would do the
following:

If sensitive operations A and B are identical, such as in a pair (free, free) for a con-
currency double-free vulnerability, the reverse execution order can also trigger the
suspected vulnerability. In this case, there is no need to force any specific execution
order.

536

Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin

o Ifthe inserted priority-adjusting assembly code that sensitive
operation Bresides in is executed first, the priority-adjusting
assembly code will set the thread that runs it and B to the
lowest priority. This thread’s original priority will be restored
only after sensitive operation A has been executed.

o If execution hits the inserted priority-adjusting assembly
code that sensitive operation A resides in first, nothing will
be scheduled.

The above process is illustrated in Algorithm 1 (see Section 5.3 for
definition of some terms used in the algorithm). In this way, fuzz
testing likely executes sensitive operations A and B in the desirable
order: A is executed before B, and thus likely trigger the potential
concurrency vulnerability.

ALGORITHM 1: Algorithm to schedule a pair of sensitive concurrent
operations in a scheduling unit

Input: A pair (A, B) of sensitive concurrent operations to schedule, where
A # B, the counter of this unit, Counter, which is initialized to 0,
and a threshold © for all counters.

if Counter > 6 then
return

end
if hit A then
execute A;
if B’s priority has been modified then
restore B’s original priority;
end
Counter++;
end
if hit B then
if A has not been executed then
set B’s priority to the lowest;
end
end

5.3 Load Balance

In a concurrent program, there are usually a set of pairs of sensitive
concurrent operations that need to be tested in fuzz testing. Each
pair is associated with the instruction code described in Section 5.2
to adjust the two relevant threads’ priorities to make the two threads
executed in a desirable order in order to trigger the suspected
concurrency vulnerability. The instrumentation code for a pair is
referred to as a scheduling unit.

In fuzz testing, a program will be executed many times. It would
be beneficial if each pair of sensitive concurrent operations is tested
with equal probability, i.e., each scheduling unit is executed with
the same number of times. To achieve this goal, we use a counter in
each scheduling unit to count the number of times the scheduling
unit has been executed, as shown in Algorithm 1. Whenever a
scheduling unit is executed in fuzz testing, the counter is increased
by 1. If a counter exceeds a preset threshold, this corresponding
scheduling unit will not be scheduled, i.e. the two threads would
execute as if there were no scheduling unit. When counters of all
scheduling units have exceeded the threshold, we will boost the
threshold by a certain amount so that all scheduling units will be
scheduled again.

A Heuristic Framework to Detect Concurrency Vulnerabilities

6 IMPLEMENTATION

We have implemented the proposed heuristic framework to ex-
plore thread interleavings in fuzz testing and to detect concurrency
vulnerabilities for concurrent programs written in C with POSIX
multi-thread functions. The implementation details are described
in this section.

6.1 Implementation of Static Analysis

To implement the static analysis described in Section 4, we lever-
aged an existing concurrent static analysis tool in order to reduce
our implementation workload. Such a tool should be open source
so that we could modify its code to implement the desired function-
alities. It should also be able to work on concurrent C programs so
that we could apply it in our evaluation (see Section 7.1 for details).
Among available concurrent static analysis tools meeting our re-
quirements, LOCKSMITH [23] was selected since it was easy to use
and modify. It is a static analysis tool that uses a constraint-based
technique to automatically detect data races in concurrent C pro-
grams. We used it to discover shared variables for the functionality
described in Section 4.1, construct data-flow graphs and control-
flow graphs, and obtain information of locked areas. We modified
LOCKSMITH’s code to mark sensitive concurrent operations on the
data-flow graph to fulfill the functionality described in Section 4.2,
and mark preceding operations on the data-flow graph for each
one in a pair of sensitive operations and examine these operations
on both the data-flow graph and the control-flow graph to fulfill
the functionality described in Section 4.5.

To implement the functionaries described in Sections 4.3 and 4.4,
we wrote a program in Python using NetworkX module to process
results from LOCKSMITH for merging data-flows and categorizing
each pair of concurrent sensitive operations into a specific type of
vulnerability.

Listing 2: Instrumentation assembly flags in source code

// in thread 1

T1:1: asm ("#con_afl_48\n\t");

T1:2: str = NULL;

T1:3: asm ("#con_priority_afl_48\n\t");
// in thread 2

T2:1: asm ("#con_afl_49\n\t");

T2:2: printf("%s",str);

6.2 Implementation of Thread-Aware Fuzzing

Our two thread fuzzing priorities were implemented based on AFL
[13]. We inserted instrumentation code to adjust thread priorities
to designated interleavings. This was done before and during AFL-
compiling the source code of a program, as described in detail next.
As a result, the source code is needed for our heuristic framework
to detect concurrency errors and vulnerabilities in a concurrent
program.

The instrumentation code was inserted in two steps: the first step
inserted assembly flags in the source code before AFL-compiling to
mark locations where our instrumentation code should be inserted,
while in the second step each assembly flag was replaced with

537

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

scheduling assembly code at AFL-compiling time. Same as the
original instrumentation of AFL, replacing assembly flags with
scheduling assembly code was done on assembly code files (i.e.,
.s files) generated during AFL compiling. Since we had access to
source code, for simplicity, we used -00 optimization level to AFL-
compile all the tested programs.

For the interleaving exploring priority, the thread-priority adjust-
ing code was inserted right after a call of pthread_create function.
For the targeted priority, the thread-priority adjusting code was
inserted around each sensitive operation. Inserting thread-priority
adjusting code for the interleaving exploring priority is straightfor-
ward as compared with inserting thread-priority adjusting code for
the targeted priority. We shall focus on describing the latter in the
remaining part of this subsection.

Listing 2 shows an example of inserted assembly flags in a sched-
uling unit for the pair shown in Listing 1. In this listing, each
assembly flag is associated with a number, such as 48 and 49 in
Listing 2. These numbers indicate the execution order of the two
sensitive operations in a pair to trigger the suspected concurrency
vulnerability: the sensitive operation associated with a flag of a
smaller number in a pair should be executed before the sensitive
operation associated with a flag of a larger number in the same pair.
For example, in Listing 2, sensitive operation str = NULL should be
executed before sensitive operation printf("%s", str) to trigger the
suspected concurrency use-after-free since the former is associated
with 48 while the latter is associated with 49.

When the program was compiled by AFL, the assembly flags
in a pair were recognized and replaced with a scheduling unit of
scheduling assembly code. More specifically, assembly flags in the
generated s files during AFL compiling were first located, and each
assembly flag right before a sensitive operation, e.g. the assembly
flag at line T1:1 and that at line T2:1 in Listing 2, was replaced
with scheduling assembly code to adjust the two threads’ priorities
according to Algorithm 1, with the sensitive operation associated
with a smaller number being executed first as we mentioned above.
Each sensitive operation that should be executed first in a pair
is followed with an assembly flag, such as line T1:3 in Listing 2.
This assembly flag was replaced with assembly code to restore the
original priority of the other thread in the pair if the thread was
adjusted to the lowest priority level, as described in Algorithm 1.

During fuzz testing, we allocated a scheduling trace table to
record the execution information of instrumentation code, which
tells what interleaving was actually executed in a test run, and how
many times an interleaving was executed. We also recorded some
global information such as a global threshold. If any crash was
triggered in fuzz testing, the recorded information could identify
the input and the interleaving associated with the crash, which
would help us validate detected concurrent vulnerabilities.

7 EVALUATION

We have applied the implemented heuristic framework to a bench-
mark suite of six real-world C programs. Experiments were per-
formed on Intel Xeon CPU E5-2630 v3 @ 2.40GHz with 32 logic
cores and 64 GB of memory, running on Red Hat 4.4.7-17. The
version of AFL [13] we used was AFL v2.51b.

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin

Table 3: Experimental results (LOC = lines of code)

- Exploring Priorit Vulnerability Detected
Application | LOC Xp-OTing TTiotty unerabiily Jetecte Performance Overhead
. # found by # detected by
of new crashes | Time Vuln. type . . -
static analysis | targeted priority

boundedbuf | 0.4k 0 2.3s | Buffer Overflow 1 0 272%
swarm 2.2k 0 3.5s Double-Free 1 0 109%
bzip2smp | 6.3k 2 1500s Double-Free 3 1 51%
pfscan 1.1k 1 1.2s None 0 0 98%
ctrace 1.5k 0 2.9s Double-Free 3 1 59%
gsort 0.7k 0 0.5s | Buffer Overflow 2 0 104%

7.1 Benchmark Suite

Since there is no available benchmark suite for detecting concur-
rency vulnerabilities, to the best of our knowledge, we selected sev-
eral typical multi-thread C programs from previous works [8, 23, 33]
using the following selection criteria:

e Lines of code could not exceed tens of thousands. This is
because the static analysis tool we based on to implement
our own static analysis has adopted a very precise thus costly
method, which limits the tool to detect no more than tens
of thousands of lines of code [28]. This limitation excludes
many sophisticated but interesting software.

e Multi-thread programs written in C using POSIX multi-
thread functions.

e Do not interface with the network since AFL mutated a local
file that was fed into the program.

e Do not fork any new thread via a thread pool since a thread
pool would affect the accuracy of data-flow in the static
analysis, which would lead to too many false positives.

We collected six programs in the benchmark suite to evaluate our
heuristic framework. They were boundedbuff, a program that imple-
ments a multi-thread producer-consumer module; swarm, a parallel
programming framework for multi-core processors [1]; bzip2smp, a
parallel version of bzip2 compressing tool; pfscan, a multi-thread file
scanner; ctrace, a library for tracing the execution of multi-threaded
programs; and gsort, a multi-thread implementation of quick sort.

7.2 Experimental Results

Table 3 shows the detection results of our heuristic framework in
testing the benchmark suite described in Section 7.1. Our heuristic
framework contains actually two separated parts to perform two
different detection tasks. One is a modified AFL with the interleav-
ing exploring priority to enable AFL to explore thread interleavings
as effectively as possible to detect concurrency errors, while the
other consists of our static analysis and a modified AFL with the
targeted priority to detect targeted concurrency vulnerabilities such
as the three types of concurrency vulnerabilities studied in this
paper. The former will be referred to as the interleaving exploring
fuzzer while the latter as the vulnerability detection fuzzer. The
detection results for both fuzzers are included in Table 3. The detail
is described next.

In Table 3, the third column shows the number of new crashes
found with the interleaving exploring fuzzer, i.e., crashes found
with our modified AFL with the interleaving exploring priority

538

but not found by running the original AFL sufficiently long. The
remaining columns in the table except the last one show the de-
tection results of the vulnerability detection fuzzer: the execution
time in seconds of the static analysis in the fourth column; the type
and the number of suspected concurrency vulnerabilities reported
by the static analysis in the fifth and sixth columns, respectively;
and eventually in the seventh column the number of concurrency
vulnerabilities detected by the modified AFL with the targeted pri-
ority after sending each case reported by the static analysis to the
modified AFL for further testing. Thus the seventh column shows
the detection results of the vulnerability detection fuzzer. The last
column of able 3 shows the performance overhead of our modified
AFL against the original AFL for each tested program, which will
be described in detail later in this subsection.

Table 3 does not show any execution time taken by AFL fuzz test-
ing since the time spent in AFL fuzz testing was non-deterministic.
In most cases, it took about ten minutes or less for the interleaving
exploring fuzzer to produce the first crash. As a comparison, the
original AFL might not report any crash after running for several
days. For example, in testing bzip2smp, our interleaving exploring
fuzzer produced a crash after running in less than 10 minutes, while
the original AFL did not report any crash after running for 2 days.

As we described above, the crashes reported in the third column
of Table 3 were all new crashes found by the interleaving exploring
fuzzer. Since there was no report on crashes of the programs in the
benchmark suite by any existing fuzzer, we compared the detection
results of our interleaving exploring fuzzer with the results of the
original AFL. If a crash was reported by the interleaving exploring
fuzzer but not reported by the original AFL after running it suf-
ficiently long, the crash was considered new and reported in the
third column in Table 3.

We have also studied the impact of our thread scheduling on
the performance of AFL by comparing the total number of execu-
tions of a program to be tested in a fixed duration of time with our
modified AFL against that with the original AFL. The last column
in Table 3 shows the performance overhead of our modified AFL
against the original AFL for each tested program, which is defined
as the difference of the average execution time in running a tested
program with our modified AFL, including both using the interleav-
ing exploring priority and using the targeted priority, and with the
original AFL, normalized by the original AFL’s average execution
time. The performance overhead ranged from 51% to 272% for the
benchmark suite.

A Heuristic Framework to Detect Concurrency Vulnerabilities

7.3 Validation of Detected Concurrency
Vulnerabilities

For each concurrency vulnerability detected by the vulnerability
detection fuzzer, we need to verify if it is a true positive or a false
positive. We used the following manual validation process to verify
the two concurrency vulnerabilities reported in Table 3: a concur-
rency double-free for each of bzip2smp and ctrace.

When a crash was reported, our modified AFL recorded its input
and the thread interleaving setting in the crash file. With the crash
report, we manually inserted the scheduling code in the source to
set the thread interleaving the same as the crash interleaving and
inserted assertive code before the sensitive operations to assert the
condition that would trigger the detected concurrency vulnerability.
Then we repeatedly ran the tested program fed with the crash input
in order to hit the assertive code. If the assertive code was hit, we
concluded that the detected concurrency vulnerability was a true
positive. If the assertive code was not hit after running the tested
program many times, we concluded that the detected concurrency
vulnerability was highly likely a false positive.

Using this manual validation process, the two concurrency double-
free vulnerabilities detected by the vulnerability detection fuzzer
and reported in Table 3 were confirmed to be true positives.

7.4 Analysis of Static Analysis Results

The goal of the static analysis is to locate potential concurrency
vulnerabilities and obtain their information to provide the modified
AFL with the targeted priority to test. False positives in the static
analysis would increase the workload of fuzz testing. The semantic
checking in the static analysis aims at avoiding wasting time on
testing obvious false positives in fuzz testing instead of at accurately
detecting concurrency vulnerabilities. As a result, we had used a
simple method in the semantic checking to eliminate cases that
could be easily determined to be false positives, i.e., the condition
that would trigger a suspected concurrency vulnerability could be
easily determined to never be met.

Nevertheless, a more accurate semantic checking would help
reduce the workload of fuzz testing. To analyze the performance of
the static analysis, we investigated the cases reported by the static
analysis but not detected by the modified AFL with the targeted
priority. There were 8 such cases in total, as we can see from Table 3.
By examining and debug-testing the code, we could determine
that 4 cases out of the total 8, the one in boundedbuf, the two in
gsort, and one in ctrace, were false positives, thanks partially to
the small code base of these programs. The other 4 cases in larger
programs could not be determined in our investigation: they looked
like true positives as reported by the static analysis in our manual
examination but we could not trigger them in our fuzz testing. As
a result, we were unable to determine if they were true positives
or not. As we shall describe in Section 8, AFL might have failed to
execute the sensitive operations in a pair or insufficiently tested
such a pair that had failed to trigger the concurrency vulnerability.
Both would lead to false negatives.

7.5 Abnormal Time Cost of Static Analysis

From Table 3, we can see an extreme time cost, 1500 seconds, of the
static analysis on bzip2smp, while the time cost for other programs

539

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

in the benchmark suite are all 3.5 seconds or less. This observation
led us to investigate the root cause of the outlier.

By examining the code of bzip2smp, we found a macro that was
repeatedly called many times in bzip2smp. Listing 3 shows the piece
of code. It contains a macro BZ_ITAH, which is called literally 50
times. This would cause the static analysis to generate at least 50
branches in both the data-flow and the control-flow graph, resulting
in a long execution time for the static analysis. When we replaced
the 50 calls of the macro with a for-loop, for (i=0; i<=49; i++), the
semantics and functionality of the piece of code remain intact, but
the complexity of the data-flow and the control-flow graph in the
static analysis is significantly reduced: the time cost reduced to 13
seconds from the original 1500 seconds.

Listing 3: Macro used in bzip2smp

#define BZ_ITAH(nn)

mtfv_i mtfv[gs+(nn)];
bsW(s,s_len_sel_selCtr [mtfv_i],
s_code_sel_selCtr[mtfv_i])
BZ_ITAH(0); BZ_ITAH(1);
BZ_ITAH(3); BZ ITAH(4);

BZ_ITAH(2);

BZ_ITAH (45); BZ_ITAH(46); BZ ITAH(47);
BZ ITAH (48); BZ ITAH(49);

8 LIMITATIONS AND FUTURE WORK

As reported in Section 7.2, our interleaving exploring fuzzer found
three new crashes that the original AFL did not find, and typically
produced the first crash within 10 minutes of running while the
original AFL might not report any crash after running for several
days. This indicates that the original AFL is ineffective in exploring
thread interleavings in testing a concurrent program, and the same
fuzzer, when combined with our interleaving exploring priority, can
explore thread interleavings very effectively. This is because our
interleaving exploring priority aims at exploring as many thread
interleavings as possible. Our interleaving exploring priority em-
powers a fuzzer to effectively detect concurrency errors, a great
enhancement to existing fuzzers.

In addition, our vulnerability detection fuzzer could detect two
concurrency vulnerabilities, and both vulnerabilities were con-
firmed to be true positives, as reported in Section 7.2. This demon-
strates the power and effectiveness of our vulnerability detection
fuzzer in detecting targeted concurrency vulnerabilities.

Nevertheless, there are several limitations for the current im-
plementation of the heuristic framework, mainly due to the tools
we based on to implement the framework. These limitations are
discussed in the following subsections. We are actively working on
improving the heuristic framework to address some of these issues.

8.1 Scalability of Static Analysis

LOCKSMITH [23], the static analysis tool we based on to implement
our static analysis, is precise but complex, which prevents it from
working on programs exceeding tens of thousands of lines of code
[28]. This was the main reason to choose small utility programs
instead of more interesting ones in our evaluation experiments. It
is desirable to choose a more scalable open-source static analysis

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

tool to implement our static analysis so that larger and commonly
used concurrent programs can also be tested with the heuristic
framework.

In addition, the semantic checking can be improved to reduce
false positives to avoid wasting time on testing false positive in our
fuzz testing.

8.2 Capacity of AFL in Exploring Paths

We have adopted AFL to implement our interleaving exploring
fuzzer and our vulnerability detection fuzzer. It is well-known that
AFL explores sophisticated programs in a shallow manner, and this
problem has been addressed recently in [6, 14]. It is desirable to use
a more sophisticated fuzzer that can explore code paths deeply or
guide testing towards executing the sensitive operations reported
by the static analysis such as that presented in [2].

8.3 Restrictions of Manual Validation

The manual validation described in Section 7.3 to validate detected
concurrency vulnerabilities is a labor-intensive work. Based on
a crash report by our vulnerability detection fuzzer, we need to
manually insert scheduling code into the source to ensure that the
same interleaving that caused the crash in the fuzz testing would
be used in validation, then examine the program code to determine
the root cause of a reported concurrency vulnerability in order to
decide the condition to confirm the concurrency vulnerability. Next
we need to insert assertive code around the sensitive operations to
determine if the condition is really hit in validation, and then run
the program fed with the crash input repeatedly in order to hit the
assertive code.

We need to run the tested program repeatedly in the validation
process since the crash report is insufficient to replay the crash.
According to [22], it requires to record the information of eight
factors to deterministically replay a concurrency error, which is far
more than the information recorded by AFL.

Among all these limitations, the insertion of scheduling code into
the source during validation can be automated in a way similar to
ConMem-v in [36]. Writing such automatic tool is of lower priority
since the number of cases to be validated is small by now. Although
taking some time, running a program to be tested repeatedly in the
validation phase has a high chance to repeat the crash.

The most challenging task in our manual validation is actually
the comprehension of the code in order to identify the root cause
of a reported concurrency vulnerability so that we can determine a
condition to place into inserted assertive code such that triggering
the assertive condition confirms the reported concurrency vulnera-
bility. This assertive condition differs from the condition for a pair
of sensitive operations that the static analysis finds and the fuzz
testing uses to trigger a suspected concurrency vulnerability. The
latter is the execution order of the two sensitive operations in a
pair that would trigger the its potential concurrency vulnerability.
It is coarse, at the thread level. The former, on the other hand, is
fine-grained and requires understanding the root cause of the con-
currency vulnerability. It needs to guarantee confirmation of the
suspected concurrency vulnerability once triggered. Obtaining this
assertive condition in our validation typically requires thorough
understanding of the relevant code written by others, which is

540

Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin

labor-intensive and time-consuming, especially for concurrency
buffer overflows. Due to its complexity, there is a chance that the
derived assertive condition is incomplete, which may lead to failure
to confirm a true positive. As a result, a false positive determined by
our manual validation is probabilistic instead of deterministic. On
the other hand, a true positive determined by our manual validation
is always deterministic.

8.4 Additional Limitations

In addition to the above limitations, there are some additional lim-
itations in our implementation of the heuristic framework. The
heuristic framework currently works only with concurrent pro-
grams written in C using POSIX multi-thread functions requires
the source code to detect concurrency errors and vulnerabilities in
a concurrent program. It is desirable to extend the heuristic frame-
work to cover programs written in other languages and using other
multi-thread functions, and to cover binary programs without using
source code. The ideas presented in this paper work for the these
extensions, but it requires a great effort to realize them.

9 CONCLUSION

In this paper, we proposed a heuristic framework to detect concur-
rency errors and vulnerabilities in concurrent programs. It includes
two separate fuzzers. One fuzzer, the interleaving exploring fuzzer,
explores interleavings effectively to test as many interleavings as
possible. It can detect concurrency errors effectively and efficiently.
The other fuzzer, the vulnerability detection fuzzer, first applies
static analysis to locate sensitive concurrent operations, categorize
each finding to a potential concurrency vulnerability, and determine
the execution order of the sensitive operations in each finding that
would trigger the potential concurrency vulnerability; and then
directs fuzz testing to explore the specific execution order of each
finding in order to trigger the potential concurrency vulnerability.

We used three types of common concurrency vulnerabilities,
i.e,, concurrency buffer overflow, double-free, and use-after-free to
evaluate the proposed heuristic framework with a benchmark suite
of six real-world programs. In our experimental evaluation, the
interleaving exploring fuzzer reported three new crashes that were
not reported by the existing fuzzer, AFL, that our fuzzer was based
on. The interleaving exploring fuzzer typically produced the first
crash within 10 minutes of running while the original AFL might not
report any crash after running for several days. These experimental
results indicate that our interleaving exploring fuzzer can effectively
explore interleavings in detecting concurrency errors while the
original AFL cannot. Additionally, the vulnerability detection fuzzer
detected two concurrency vulnerabilities, and both vulnerabilities
were confirmed to be true positives. This demonstrates the power
and effectiveness of the vulnerability detection fuzzer in detecting
targeted concurrency vulnerabilities.

REFERENCES

[1] D. A. Bader, V. Kanade, and K. Madduri. 2007. SWARM: A Parallel Programming
Framework for Multicore Processors. 1-8 pages. https://doi.org/10.1109/IPDPS.
2007.370681

[2] Marcel Bohme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’17). ACM, New York,
NY, USA, 2329-2344. https://doi.org/10.1145/3133956.3134020

https://doi.org/10.1109/IPDPS.2007.370681
https://doi.org/10.1109/IPDPS.2007.370681
https://doi.org/10.1145/3133956.3134020

A Heuristic Framework to Detect Concurrency Vulnerabilities

(3]

Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-
garakatte. 2010. A Randomized Scheduler with Probabilistic Guarantees of
Finding Bugs. In Proceedings of the Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems (ASPLOS XV). ACM,
New York, NY, USA, 167-178. https://doi.org/10.1145/1736020.1736040

[4] Jacob Burnim, Koushik Sen, and Christos Stergiou. 2011. Testing Concurrent

[9

=

[10]

[11

[12]

(13
[14]

[20

[21

[22]

Programs on Relaxed Memory Models. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis (ISSTA ’11). ACM, New York, NY,
USA, 122-132. https://doi.org/10.1145/2001420.2001436

Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM 56, 2 (Feb. 2013), 82-90. https://doi.org/10.
1145/2408776.2408795

Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
CoRR abs/1803.01307 (2018). arXiv:1803.01307 http://arxiv.org/abs/1803.01307
Ankit Choudhary, Shan Lu, and Michael Pradel. 2017. Efficient Detection of
Thread Safety Violations via Coverage-guided Generation of Concurrent Tests. In
Proceedings of the 39th International Conference on Software Engineering (ICSE ’17).
IEEE Press, Piscataway, NJ, USA, 266-277. https://doi.org/10.1109/ICSE.2017.32
Tayfun Elmas, Jacob Burnim, George Necula, and Koushik Sen. 2013. CONCUR-
RIT: a domain specific language for reproducing concurrency bugs. Acm Sigplan
Notices 48, 6 (2013), 153-164.

Azadeh Farzan, P. Madhusudan, Niloofar Razavi, and Francesco Sorrentino. 2012.
Predicting null-pointer dereferences in concurrent programs. In Proceedings of
ACM Sigsoft International Symposium on the Foundations of Software Engineering.
1-11.

Patrice Godefroid, Michael Y. Levin, and David Molnar. 2008. Automated White-
box Fuzz Testing. In Proceedings of the 16th Network and Distributed System
Security Symposium, Vol. 8. 151-166.

Pallavi Joshi, Mayur Naik, Chang Seo Park, and Koushik Sen. 2009. CalFuzzer: An
Extensible Active Testing Framework for Concurrent Programs. In Proceedings
of Computer Aided Verification. Berlin, Heidelberg, 675-681.

Marek Kroemeke. 2014. Apache 2.4.7 mod_status - Scoreboard Handling Race
Condition. https://www.exploit-db.com/exploits/34133/.

Lcamtuf. 2018. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.

Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: Program-state Based Binary Fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2017). ACM, New York, NY, USA, 627-637. https://doi.org/10.1145/3106237.
3106295

Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM 32, 12 (1990), 32-44.

NIST. 2018. National Vulnerability Database. https://nvd.nist.gov/.

NVD. 2018. CVE-2010-5298 Detail. https://nvd.nist.gov/vuln/detail/
CVE-2010-5298.

OpenBSD. 2014. OpenBSD 5.4 errata 8. https://ftp.openbsd.org/pub/OpenBSD/
patches/5.4/common/008_openssl.patch.

Soyeon Park, Shan Lu, and Yuanyuan Zhou. 2009. CTrigger: Exposing Atomicity
Violation Bugs from Their Hiding Places. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XIV). ACM, New York, NY, USA, 25-36. https://doi.org/10.
1145/1508244.1508249

Sangmin Park, Richard Vuduc, and Mary Jean Harrold. 2015. UNICORN: a
unified approach for localizing non-deadlock concurrency bugs. Software Testing,
Verification and Reliability 25, 3 (2015), 167-190. https://doi.org/10.1002/stvr.1523
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1523

Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. 2010. Falcon: Fault
Localization in Concurrent Programs. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1 (ICSE '10). ACM, New
York, NY, USA, 245-254. https://doi.org/10.1145/1806799.1806838

Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
2010. PinPlay: A Framework for Deterministic Replay and Reproducible Analysis
of Parallel Programs. In Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO ’10). ACM, New York,

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

NY, USA, 2-11. https://doi.org/10.1145/1772954.1772958

Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. 2006. LOCKSMITH:
Context-sensitive correlation analysis for race detection. Acm Sigplan Notices 41,
6 (2006), 320-331.

Nishant Sinha and Chao Wang. 2010. Staged Concurrent Program Analysis. In
Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE ’10). ACM, New York, NY, USA, 47-56.
https://doi.org/10.1145/1882291.1882301

Sherri Sparks, Shawn Embleton, Ryan K Cunningham, and Cliff Changchun Zou.
2007. Automated Vulnerability Analysis: Leveraging Control Flow for Evolu-
tionary Input Crafting. In Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007). 477-486.

Sebastian Steenbuck and Gordon Fraser. 2013. Generating unit tests for concur-
rent classes. In IEEE Sixth International Conference on Software Testing, Verification
and Validation (ICST). IEEE, 144-153.

Valerio Terragni and Shing-Chi Cheung. 2016. Coverage-driven Test Code Gen-
eration for Concurrent Classes. In Proceedings of the 38th International Confer-
ence on Software Engineering (ICSE '16). ACM, New York, NY, USA, 1121-1132.
https://doi.org/10.1145/2884781.2884876

Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: Static Race Detection
on Millions of Lines of Code. In Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering (ESEC-FSE *07). ACM, New York, NY,
USA, 205-214. https://doi.org/10.1145/1287624.1287654

Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve Dodier-Lazaro. 2017. How
Double-fetch Situations Turn into Double-fetch Vulnerabilities: A Study of Double
Fetches in the Linux Kernel. In Proceedings of the 26th USENIX Conference on
Security Symposium (SEC’17). USENIX Association, Berkeley, CA, USA, 1-16.
http://dl.acm.org/citation.cfm?id=3241189.3241191

Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A Checksum-
Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detection. In
Proceedings of the 2010 IEEE Symposium on Security and Privacy (SP '10). IEEE
Computer Society, Washington, DC, USA, 497-512. https://doi.org/10.1109/SP.
2010.37

Wikipedia. 2018. Dirty COW. https://en.wikipedia.org/wiki/Dirty COW.
Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.
Scheduling Black-box Mutational Fuzzing. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security (CCS '13). ACM, New York,
NY, USA, 511-522. https://doi.org/10.1145/2508859.2516736

Junfeng Yang, Ang Cui, Sal Stolfo, and Simha Sethumadhavan. 2012. Concurrency
Attacks. In Proceedings of the 4th USENIX Conference on Hot Topics in Parallelism
(HotPar’12). USENIX Association, Berkeley, CA, USA, 15-15. http://dl.acm.org/
citation.cfm?id=2342788.2342803

Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. 2012. Maple:
A Coverage-driven Testing Tool for Multithreaded Programs. In Proceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA ’12). ACM, New York, NY, USA, 485-502.
https://doi.org/10.1145/2384616.2384651

Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guoliang Jin, Shan
Lu, and Thomas Reps. 2011. ConSeq: Detecting Concurrency Bugs Through
Sequential Errors. In Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
XVI). ACM, New York, NY, USA, 251-264. https://doi.org/10.1145/1950365.
1950395

Wei Zhang, Chong Sun, and Shan Lu. 2010. ConMem: Detecting Severe Con-
currency Bugs Through an Effect-oriented Approach. In Proceedings of the
Fifteenth Edition of ASPLOS on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS XV). ACM, New York, NY, USA, 179-192.
https://doi.org/10.1145/1736020.1736041

Shixiong Zhao, Rui Gu, Haoran Qiu, Tsz On Li, Yuexuan Wang, Heming Cui, and
Junfeng Yang. 2018. OWL: Understanding and Detecting Concurrency Attacks.
In Proceedings of IEEE/IFIP International Conference on Dependable Systems and
Networks. 219-230.

https://doi.org/10.1145/1736020.1736040
https://doi.org/10.1145/2001420.2001436
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
http://arxiv.org/abs/1803.01307
http://arxiv.org/abs/1803.01307
https://doi.org/10.1109/ICSE.2017.32
https://www.exploit-db.com/exploits/34133/
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/3106237.3106295
https://doi.org/10.1145/3106237.3106295
https://nvd.nist.gov/
https://nvd.nist.gov/vuln/detail/CVE-2010-5298
https://nvd.nist.gov/vuln/detail/CVE-2010-5298
https://ftp.openbsd.org/pub/OpenBSD/patches/5.4/common/008_openssl.patch
https://ftp.openbsd.org/pub/OpenBSD/patches/5.4/common/008_openssl.patch
https://doi.org/10.1145/1508244.1508249
https://doi.org/10.1145/1508244.1508249
https://doi.org/10.1002/stvr.1523
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1523
https://doi.org/10.1145/1806799.1806838
https://doi.org/10.1145/1772954.1772958
https://doi.org/10.1145/1882291.1882301
https://doi.org/10.1145/2884781.2884876
https://doi.org/10.1145/1287624.1287654
http://dl.acm.org/citation.cfm?id=3241189.3241191
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1109/SP.2010.37
https://en.wikipedia.org/wiki/Dirty_COW
https://doi.org/10.1145/2508859.2516736
http://dl.acm.org/citation.cfm?id=2342788.2342803
http://dl.acm.org/citation.cfm?id=2342788.2342803
https://doi.org/10.1145/2384616.2384651
https://doi.org/10.1145/1950365.1950395
https://doi.org/10.1145/1950365.1950395
https://doi.org/10.1145/1736020.1736041

	i01-1-mishra
	i01-2-kouwe
	Abstract
	1 Introduction
	2 Background
	2.1 Use-after-free
	2.2 Uninitialized reads
	2.3 Type safety

	3 Threat Model
	4 Overview
	5 Heap
	5.1 Typed memory allocations
	5.2 Wrapper detection and inlining

	6 Stack
	6.1 Guaranteed initialization on the safe stack
	6.2 Typed unsafe stacks

	7 Implementation
	8 Evaluation
	8.1 Security
	8.2 Type detection
	8.3 Wrapper detection and inlining
	8.4 Memory overhead
	8.5 Run-time overhead
	8.6 Firefox case study

	9 Limitations
	10 Related Work
	11 Conclusion
	References

	i01-3-farkhani
	Abstract
	1 Introduction
	2 Background and Problem Definition
	2.1 Control Flow Integrity (CFI)
	2.2 Runtime Type Checking
	2.3 Arity Checking
	2.4 Reuse Attack Protector (RAP)
	2.5 Type Collisions
	2.6 Research Questions

	3 Attack Overview
	3.1 Threat Model
	3.2 Attack Preliminaries
	3.3 Finding Gadgets
	3.4 Constraint Solving

	4 Proof-of-Concept Exploits
	4.1 Nginx Exploit
	4.2 Exim Exploit
	4.3 Summary

	5 Evaluation
	5.1 Type Collisions
	5.2 Gadget Distribution
	5.3 Libc
	5.4 Type Checking vs. Points-to Analysis

	6 Discussion
	6.1 Type Diversification
	6.2 Separate Compilation
	6.3 Mismatch types
	6.4 Support for Assembly Code

	7 Related work
	8 Conclusion
	References

	i01-4-ahmadvand
	Abstract
	1 Introduction
	2 Background & Related work
	2.1 Software integrity protection
	2.2 Nondeterministic code detection

	3 Design
	3.1 Segregation of input data/control-flow dependent instructions
	3.2 Short Range Oblivious Hashing (SROH)
	3.3 Data-Dependent Instructions (DDIs)
	3.4 Intertwined protection

	4 Implementation
	4.1 Protection process
	4.2 Input dependency detection
	4.3 Oblivious hashing (OH)
	4.4 Short Range Oblivious Hashing (SROH)
	4.5 Self-checksumming (SC)
	4.6 Response mechanism

	5 Evaluation
	5.1 Dataset
	5.2 Preparation
	5.3 Coverage
	5.4 Performance analysis
	5.5 Security analysis

	6 Discussion
	6.1 Coverage
	6.2 Implicit protection with OH/SROH
	6.3 Performance

	7 Conclusions
	References
	A A full example of OH+SROH utilization

	i02-1-liu
	Abstract
	1 Introduction
	2 Assumptions and Goals
	3 Related Work
	3.1 Traditional 2FA
	3.2 2FA with Less User-Phone Interactions

	4 Typing-Proof
	4.1 Enrollment and Login
	4.2 Similarity Score
	4.3 Usability Analysis
	4.4 Cost Analysis

	5 Evaluation
	5.1 Data Collection
	5.2 Parameters Configuration
	5.3 False Rejection Rate
	5.4 False Acceptance Rate

	6 Security Analysis
	7 User Study
	7.1 Procedure
	7.2 Usability

	8 Discussion
	9 Conclusion
	References
	A Quantitative Usability Analysis Framework
	B Prototype Implementation
	C System Usability Scale
	D Post-test Questionnaire
	E Comparison Results

	i02-2-mccully
	Abstract
	1 Introduction
	2 Related Work
	2.1 Keystroke dynamics
	2.2 Collaborative editing
	2.3 Identification vs. Authentication

	3 Study: User Identification in Collaboration Services
	3.1 The UB Data Set
	3.2 Log replay data set (LRDS)
	3.3 Feature engineering
	3.4 Random forest classification
	3.5 Model improvements
	3.6 Results

	4 Indirect Typing Biometric Attack
	4.1 Authentication service
	4.2 Forgery attack scenario
	4.3 Creating a forgery
	4.4 TypingDNA Forgery Attack

	5 Discussion
	5.1 Generalizability
	5.2 Practical implications
	5.3 Broader implications

	6 Conclusions
	References

	i02-4-lu
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Online Password Guessing Attacks
	2.2 Defenses against Online Password Attacks
	2.3 Offline Password Attacks

	3 Methodology
	3.1 Modeling Lockout Threshold and Counting Mechanism
	3.2 Black-box Tests

	4 A Measurement Study of Rate Limiting Implementations
	4.1 Experiment Setup
	4.2 Data Collection

	5 Evaluation and Analysis
	5.1 Data Analysis
	5.2 Security Analysis
	5.3 Interesting Observations
	5.4 Recommendations

	6 Limitations and Discussion
	7 Conclusion
	Acknowledgments
	References

	i03-1-copty
	Abstract
	1 Introduction
	2 An extremely abstract OS
	2.1 Implementation details
	2.2 Multiple paths

	3 Malware classification
	3.1 Features
	3.2 Experimental setup
	3.3 Experimental Results

	4 Related work
	4.1 Extreme abstraction
	4.2 Lightweight symbols
	4.3 Malware classification

	5 Future work
	6 Conclusion
	Acknowledgments
	References

	i03-2-machiry
	Abstract
	1 Introduction
	2 Threat Model
	3 Approach Overview
	3.1 Why Loops?
	3.2 Loop Characterization
	3.3 Application Classification

	4 Resilience to Feature-unaware Perturbations
	4.1 Application Transformations
	4.2 CFG Obfuscation
	4.3 Reflection
	4.4 Loop Perturbations

	5 Classification Evaluation
	5.1 Datasets
	5.2 Iterative Pruning Performance
	5.3 Malware Classification Results
	5.4 Importance of Loops and Semantic Labels
	5.5 Resilience to Feature-unaware Perturbations

	6 Discussion
	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

	i03-3-oprea
	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Enterprise Perimeter Defenses
	2.2 Problem definition and adversarial model
	2.3 System Overview
	2.4 Comparison with previous work
	2.5 Ethical considerations

	3 MADE Training
	3.1 Data Filtering and Labeling
	3.2 Feature Extraction
	3.3 Feature Selection
	3.4 Model Selection

	4 Testing and Evaluation
	4.1 MADE Testing
	4.2 Evaluation, Analysis, and Feedback
	4.3 Discussion and Limitations

	5 Related Work
	6 Conclusion
	References

	i03-4-echeverria
	Abstract
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Bot Datasets
	3.2 Aggregated Bot Dataset
	3.3 User Dataset
	3.4 Botometer Scores

	4 Methodology - The LOBO test
	5 Features for Classification
	5.1 User Features
	5.2 Tweet Features

	6 Experiments
	6.1 Subsampling
	6.2 General Classifiers
	6.3 LOBO Test I - C30K
	6.4 LOBO Test II - C500

	7 Beyond the LOBO test
	7.1 Relatively Stable Results
	7.2 Learning Rate
	7.3 TSNE plot

	8 Discussion
	8.1 Accuracy and Generalization
	8.2 Improvements with small data additions
	8.3 Scalability

	9 Conclusion
	References

	i04-1-tuveri
	Abstract
	1 Introduction
	2 Background
	2.1 SM2: Chinese Cryptography Standards
	2.2 Remote Timing Attacks
	2.3 Cache Timing Attacks
	2.4 EM Analysis
	2.5 SM2 Implementation Attacks: Previous Work

	3 SM2 in OpenSSL
	4 SM2DSA: Remote Timings
	5 SM2DSA: Cache Timings
	5.1 Scalar Multiplication
	5.2 Modular Inversion

	6 SM2PKE: EM Analysis
	7 SCA Mitigations
	7.1 Scalar Multiplication: SCA Mitigations
	7.2 Modular Inversion: SCA Mitigations
	7.3 SCA Mitigations: Evaluation

	8 Conclusion
	Acknowledgments
	References
	A Remote Timings SCA Evaluation: ECDSA

	i04-2-wichelmann
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Analysis Setup and Targeted Software

	2 Background
	2.1 Dynamic Binary Instrumentation
	2.2 Microarchitectural Leakage
	2.3 Mutual Information Analysis
	2.4 Signing Algorithms

	3 MicroWalk Analysis Technique
	3.1 Leakage Analysis Model
	3.2 Capturing Internal States
	3.3 Preparing State Variables
	3.4 Leakage Analysis
	3.5 Interpretation of MI Score

	4 MicroWalk Framework
	4.1 Investigated Binary
	4.2 Input Generation
	4.3 Trace Generation
	4.4 Trace Preprocessing
	4.5 Leakage Analysis
	4.6 Manual Inspection and Visualization

	5 Case Study I: Intel IPP
	5.1 Applying MicroWalk MI Analysis to IPP
	5.2 Discovered leakages in Intel IPP

	6 Case Study II: Microsoft CNG
	6.1 Applying MicroWalk MI Analysis to CNG
	6.2 Discovered leakages in Microsoft CNG

	7 Related Work
	8 Conclusion
	8.1 Future Work

	References

	i04-3-zhang
	Abstract
	1 Introduction
	2 Background
	2.1 Cache Side-channel Attacks
	2.2 Cache Side-channel Defenses
	2.3 Deep Neural Networks

	3 Methodology Overview
	4 Dataset Construction
	4.1 An Abstract Model
	4.2 Modeling Specific Attacks
	4.3 Modeling Defense Solutions

	5 DNN Training and Inference
	5.1 Dataset Processing
	5.2 Training
	5.3 Inference

	6 Evaluation
	6.1 Attack Strategies
	6.2 Defense Strategies

	7 Methodology Validation
	8 Related Work
	9 Conclusion
	References

	i04-4-liang
	Abstract
	1 Introduction
	2 Problem
	2.1 Side-Channel Attack over Memory Accesses
	2.2 Burdensome Obfuscation of Access Pattern
	2.3 Toward Practically Efficient Obfuscation

	3 Overview
	3.1 Motivation
	3.2 Challenge
	3.3 Methodology

	4 Design
	4.1 Architecture
	4.2 Position Map Compression
	4.3 Position Map Update

	5 Implementation
	6 Evaluation
	6.1 Memory Access Randomness
	6.2 Execution Time
	6.3 Memory Usage

	7 Discussion
	8 Conclusion
	References

	i05-1-junaid
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivating Example
	2.3 Challenges

	3 StateDroid Overview
	3.1 Architecture
	3.2 Advance Over State-of-the-Art Work

	4 API Call Detector
	4.1 Reengineering Lifecycle Models
	4.2 Deriving Event & Callback Sequences
	4.3 Detecting API Call Sequences

	5 Action Detector
	5.1 Object State Machines
	5.2 API & Action Formalization
	5.3 Generating API Call Sequences
	5.4 Constructing Object State Machines

	6 Attack Detector
	6.1 Action-Effect & Attack Formalization
	6.2 Frame Axioms

	7 Evaluation
	7.1 RQ1: Accuracy of Action Detector
	7.2 RQ2: Accuracy of Attack Detector
	7.3 RQ3: Comparison with Existing Tools
	7.4 RQ4: StateDroid's Performance

	8 Related Work
	9 Discussion
	10 Conclusion
	11 Acknowledgments
	References

	i05-2-allen
	Abstract
	1 Introduction
	2 Rethinking Contextual Awareness
	2.1 Less Effective Contextual Information
	2.2 Case Study: Identifying Informative Context Factors
	2.3 Calling for Lightweight Context Dependencies

	3 PikaDroid
	3.1 Overview
	3.2 Static Analysis Module
	3.3 Learning Module

	4 Implementation
	5 Dataset
	6 Evaluation
	6.1 Effectiveness
	6.2 Comparison with Prior Work
	6.3 Robustness
	6.4 Classification Models
	6.5 Performance

	7 Related work
	8 Conclusion
	9 Acknowledgments
	References

	i05-3-wermke
	Abstract
	1 Introduction
	2 Android Obfuscation Techniques
	3 Detecting ProGuard Obfuscation
	4 Large Scale Obfuscation Analysis
	4.1 Obfuscation Trends

	5 Developer Survey
	5.1 Results and Takeaways

	6 Obfuscation Experiment
	6.1 Results and Takeaways

	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Conclusion
	References
	A Ethical Considerations
	B Online Survey
	B.1 ProGuard Study - Exit Survey

	i05-4-chau
	Abstract
	1 Introduction
	2 Scope
	2.1 Attack Surfaces
	2.2 Platform and Test Setup
	2.3 Threat Model
	2.4 App Selection

	3 App Weaknesses & Network Attacks
	3.1 Raw Content Transfer In Clear
	3.2 Bootstrap Information Transfer in Clear
	3.3 Raw Content Transfer over TLS
	3.4 Bootstrap Information Transfer over TLS
	3.5 Threats to User Security and Privacy

	4 App Weaknesses & Local Attacks
	4.1 Log File Leakage
	4.2 Raw Content on External Storage
	4.3 Raw Encryption Key on External Storage
	4.4 Raw Content on Internal Storage
	4.5 Raw Encryption Key on Internal Storage
	4.6 Direct Content Source on Internal Storage
	4.7 Client-Side Authorization
	4.8 Raw Encryption Key in Memory

	5 Discussions
	5.1 Responsible Disclosure and Aftermath
	5.2 Possible Countermeasures and Challenges

	6 Related Work
	7 Conclusion
	References
	A APPENDIX
	A.1 Legal and Ethical Matters
	A.2 Table of Apps and CWEs

	i06-1-mani
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology & Experimental Setup
	5 Proxy Availability & Performance
	5.1 Performance
	5.2 Expected vs. Unexpected Content
	5.3 Anonymity

	6 HTML Manipulation
	7 File Manipulation
	7.1 Detailed Findings
	7.2 Network Diversity and Consistency of Malicious Proxies

	8 SSL/TLS Analysis
	9 Comparison With Tor
	10 Ethical considerations
	11 Conclusion
	Acknowledgments
	References
	A Examples of HTTP Proxy Protocols
	B Client locations
	C File Manipulation Infections

	i06-2-ramanathan
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Volumetric Attacks
	2.2 Related Work
	2.3 SENSS vs First-ISP vs Clouds

	3 SENSS
	3.1 Challenges
	3.2 SENSS Architecture
	3.3 ISP Implementation
	3.4 Client Programs
	3.5 Security and Robustness

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 2016 attack on Dyn
	4.3 Effectiveness in Sparse Deployment
	4.4 Comparison of SENSS and Cloud Defenses
	4.5 Delay, Traffic and Message Cost
	4.6 Scalability within an ISP

	5 Conclusion
	6 Acknowledgement
	References

	i06-3-baek
	Abstract
	1 Introduction
	2 Wi-Fi Calling
	2.1 Wi-Fi Calling Architecture
	2.2 Wi-Fi Calling Handshakes

	3 Security in Wi-Fi Calling
	3.1 Privacy of Users
	3.2 Availability of Services
	3.3 Attacks Originating From Victim's UE and Attacker's AP

	4 IMSI Privacy Attack
	4.1 Attack Scenario
	4.2 Attack Setup
	4.3 Results of Attacks
	4.4 Impact and Applicability

	5 DoS Attacks
	5.1 Attack Scenarios
	5.2 Attack Setup
	5.3 Results of Attacks
	5.4 Impact and Applicability

	6 Countermeasures
	6.1 IMSI Privacy Attack Countermeasures
	6.2 DoS Countermeasures

	7 Discussion
	7.1 Trade-off Between Security and Usability
	7.2 Trade-off Between Security and Deployment

	8 Related work
	9 Conclusion
	References

	i06-4-sy
	Abstract
	1 Introduction
	2 Background
	2.1 Session ID Resumption
	2.2 Session Ticket Resumption
	2.3 Session Resumption via Pre-Shared Keys
	2.4 Comparison of Session Resumption Mechanisms

	3 Privacy Problems with TLS Session Resumption
	3.1 Lifetime of Session Resumption Mechanisms
	3.2 Third-Party Tracking via Session Resumption

	4 Data Collection
	4.1 Alexa Top Million Data Set
	4.2 Browser Measurements
	4.3 DNS Data Set

	5 Evaluation
	5.1 Evaluation of Server Configurations
	5.2 Evaluation of Browser Configurations
	5.3 Evaluation of Real-World User Traffic

	6 Countermeasures
	7 Related Work
	8 Conclusion
	References

	i07-1-garmany
	Abstract
	1 Introduction
	2 Model and Assumptions
	2.1 Modern Vulnerability Exploitation

	3 Design
	3.1 Knowledge Base
	3.2 Propagating Control
	3.3 Finding Sinks
	3.4 Program Paths
	3.5 Triggering Input

	4 Implementation Details
	5 Evaluation
	5.1 Exploitation Primitive Trigger (EPT)
	5.2 Fine Tuning

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	Appendices
	A JavaScript Code Corresponding to Running Example
	B SSA-map

	i07-2-rodriguez
	Abstract
	1 Motivation
	2 Problem Statement
	3 Methodology
	3.1 Data Collection
	3.2 Labeling
	3.3 Feature Selection
	3.4 Learning

	4 Evaluation
	4.1 Detection
	4.2 Impact on the Page Loading Time

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References
	A Theoretical Upper Bound for False Positives and Negatives
	B Additional Plots and Tables

	i07-3-xu
	Abstract
	1 Introduction
	2 Problem Statement and Related Work
	2.1 Multi-tab Threat Model
	2.2 Related work

	3 Overview of Multi-tab Attacks
	4 Dynamic Page Split
	4.1 Challenges in Identifying True Split Points
	4.2 BalanceCascade-XGBoost Algorithm

	5 Chunk-Based Page Classification
	5.1 Feature Selection
	5.2 Classifier Design

	6 Experimental Results
	6.1 Experiment Setup
	6.2 Evaluation of Multi-tab] Attacks
	6.3 Evaluation of Page Split
	6.4 Evaluation of Chunk-Based Classification
	6.5 Evaluation with More Than Two Tabs

	7 Conclusion and Future Work
	References
	A The Rest Features in Feature Set
	B Feature Selection

	i07-4-acker
	Abstract
	1 Introduction
	2 Background
	3 Mechanism design
	3.1 Overview
	3.2 Configuration structure
	3.3 Client-side application
	3.4 Misconfiguration

	4 Policy comparison and combination
	4.1 for policy comparison
	4.2 and for policy combination

	5 Prototype implementations
	5.1 Client-side enforcement
	5.2 Server-side manifest handling
	5.3 Automated manifest generation from observed traffic
	5.4 Limitations and considerations

	6 Evaluation
	6.1 Functional evaluation
	6.2 Longitudinal study
	6.3 Performance measurement

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Statistical data

	i08-1-ziegeldorf
	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Scenario and Requirements
	2.2 Analysis of Related Work

	3 Cryptographic Building Blocks
	4 SHIELD Framework
	4.1 Overview of Supervised Classification
	4.2 Secure Building Blocks
	4.3 Implementation and Evaluation Setup

	5 Hyperplane Classifiers
	5.1 Evaluation

	6 Artificial Neural Networks
	6.1 Evaluation

	7 Naive Bayes
	7.1 Evaluation

	8 Hidden Markov Models
	8.1 Evaluation

	9 Outsourcing
	9.1 Evaluation of Outsourcing

	10 Conclusion
	References
	A Detailed Protocols for Secure Building Blocks
	A.1 Max and Argmax
	A.2 Scalar Products
	A.3 Polynomial Approximation of Arbitrary Functions
	A.4 OT-based Evaluation of Discrete Functions
	A.5 Evaluating Gaussians
	A.6 Backtracking

	B Security Discussion
	B.1 Security of the Building Blocks
	B.2 Security of the Classifier Designs

	C Evaluation of Outsourcing for the service provider

	i08-2-kesarwani
	Abstract
	1 Introduction
	2 related work
	3 Problem Framework
	4 Model Extraction Warning
	4.1 Strategy 1: Providing model extraction warnings using information gain metric
	4.2 Strategy 2: Providing model extraction warnings using coverage metric

	5 Experiments
	5.1 Model extraction status for source DT Models
	5.2 Model extraction status for source NN Models

	6 Conclusion and Future Work
	References

	i08-3-fang
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Collaborative Filtering
	2.2 Attacks to Recommender Systems

	3 Problem Formulation
	3.1 Threat Model
	3.2 Attacks as an Optimization Problem

	4 Our Poisoning Attacks
	4.1 Overview
	4.2 Approximating the Optimization Problem
	4.3 Solving the Optimization Problem
	4.4 Generating Rating Scores

	5 Experiments
	5.1 Experimental Setup
	5.2 Attacking Graph-based Systems
	5.3 Transferring to Other Systems

	6 Detecting Fake Users
	7 Conclusion and Future Work
	References

	i08-4-wei
	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Overview
	5 Power Extraction
	5.1 Interference Sources
	5.2 Extraction Methods

	6 Background Detection
	6.1 Intuition
	6.2 Attack Method
	6.3 Evaluation

	7 Image Reconstruction via Power Template
	7.1 Intuition
	7.2 Attack Method
	7.3 Evaluation

	8 Related Work
	9 Conclusion
	A Preliminaries
	A.1 Convolutional Neural Network
	A.2 CNN Accelerator Design
	A.3 Basics on Power Side Channel

	B Discussion and Future Work
	C Attack results on the MNIST dataset
	References

	i09-1-proskurin
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Exception Levels
	2.2 Guest Physical Memory Architecture
	2.3 Debug Exceptions
	2.4 Translation Lookaside Buffer
	2.5 Threat Model

	3 Guest Kernel Monitoring Primitives
	3.1 Implementing Kernel Tap Points
	3.2 Novel Single-Stepping Mechanism
	3.3 Xen altp2m on ARM
	3.4 Splitting the TLBs

	4 Evaluation
	4.1 System Setup
	4.2 DRAKVUF on ARM
	4.3 Performance
	4.4 Effectiveness

	5 Discussion
	5.1 Alternative Tracing Methods
	5.2 Limitations

	6 Related Work
	7 Conclusion
	References

	i09-2-lin
	Abstract
	1 Introduction
	2 Background
	2.1 Linux Container
	2.2 Linux Kernel Security Mechanisms
	2.3 CPU Protection Mechanisms

	3 Attack Dataset Description
	3.1 Exploit Collection
	3.2 Attack Taxonomy
	3.3 Exploit Dataset

	4 Security Evaluation of Container
	4.1 Experiment Setup
	4.2 Result Overview
	4.3 Analysis of Privilege Escalation Attacks
	4.4 A Brief Summary

	5 Defeating Kernel Privilege Escalation Attacks
	5.1 Kernel Privilege Escalation Attack Model
	5.2 Countermeasures
	5.3 Effectiveness and Performance

	6 Discussion on Limitation
	7 Related work
	7.1 Container Security
	7.2 Attack Taxonomy

	8 Conclusion
	Acknowledgments
	References

	i09-3-futagami
	Abstract
	1 Introduction
	2 Out-of-band Remote Management
	3 VSBypass
	3.1 Assumptions and Threat Model
	3.2 Architecture

	4 Implementation
	4.1 Proxy VM
	4.2 I/O Interception
	4.3 Redirection of Virtual Interrupts
	4.4 Sharing VRAM
	4.5 VM Migration

	5 Experiments
	5.1 Eavesdropping on I/O data
	5.2 Performance of a Virtual Serial Console
	5.3 Performance of GUI Remote Access

	6 Related Work
	7 Conclusion
	References

	i09-4-cho
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Architecture and TrustZone
	2.2 Legitimate Channels between the Normal and Secure Worlds
	2.3 ARM Cache Architecture
	2.4 Previous Cache Attacks

	3 Assumptions and Attack Model
	4 Cross-world Covert Channels
	4.1 Prime+Count Overview
	4.2 Prime the Cache
	4.3 Count Using Cache Refill Events
	4.4 A Simple Message Encoding Method
	4.5 Cross-Core Covert Channels

	5 Implementation
	6 Evaluation
	6.1 Effectiveness of Prime+Count
	6.2 Choosing Bucket Ranges
	6.3 Capacity Measurement
	6.4 Image Transfer

	7 Discussion
	7.1 Limitations of Prime+Count
	7.2 Cross-world Covert Channels without Normal World Kernel Privileges
	7.3 Limitations of Our Experiments

	8 Related Work
	9 Conclusion
	References

	i10-1-aviv
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Study Design and Materials
	3.2 Live Simulation Setup and Coordination
	3.3 Procedure
	3.4 Recruitment

	4 Realism and Limitations
	5 Results
	5.1 Comparing Attack Rates Across Video and Live Studies
	5.2 Post-Hoc Participant Feedback

	6 Implications
	7 Conclusions
	References
	A Survey Material
	A.1 Ante Hoc Demographic Questionnaire
	A.2 Post Hoc Participant Strategies Questionnaire Questions
	A.3 Observation Forms
	A.4 Guide/Script for Administering Study

	B Visualization of Authentication
	B.1 Patterns
	B.2 PINs

	i10-2-neupane
	i10-3-wiese
	Abstract
	1 Introduction
	2 Ethical considerations
	3 Threats and Opportunities
	4 Form Factor Survey
	4.1 Materials and Methods
	4.2 Results
	4.3 Discussion
	4.4 Limitations

	5 Field Study
	5.1 Methods
	5.2 Materials

	6 Field Study Results & Discussion
	6.1 Participants and Confidants
	6.2 Recovery Rate
	6.3 Task Durations
	6.4 Security and Trust
	6.5 Sentiments and Token Handling

	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A Form Factor Study Materials
	B Results of form factor survey
	C Questionnaire 1
	D Questionnaire 2
	E Questionnaire for Confidants

	i10-4-farhang
	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Upgrades
	2.2 Software Updates
	2.3 Purchasing New Devices

	3 Methodology
	3.1 Online Survey
	3.2 Measures
	3.3 Study Procedures
	3.4 Participants

	4 Results
	4.1 To Upgrade, or Not to Upgrade?
	4.2 Perceived Usefulness and Satisfaction
	4.3 Measuring Upgrade Cost
	4.4 Security Concerns
	4.5 Free Upgrade and Notification Approach
	4.6 Purchasing New Device

	5 End of Life (EOL) and Security after EOL
	5.1 Security after EOL

	6 Discussion
	6.1 Better Communication to Address Privacy Concerns
	6.2 Better Upgrade Messaging
	6.3 Security and the Need for a Roadmap after EOL
	6.4 Reduce Perceived Cost

	7 Limitations
	8 Conclusion
	References
	A Survey Instrument
	B Code-book
	B.1 Code-book: Not Upgrade
	B.2 Code-book: Upgrade

	i11-1-jain
	Abstract
	1 Introduction
	2 Motivation
	2.1 Evolutionary Fuzzing
	2.2 Motivating Example
	2.3 Lessons learned

	3 Overview
	3.1 Input Execution and Fitness Function
	3.2 DTA and Input Type Inference
	3.3 Type Based Mutation

	4 Input Type Inference
	4.1 In-memory Data Structure Identification for Input Offsets
	4.2 Basic Data Type Identification
	4.3 Array Detection
	4.4 Precise Data Type Identification

	5 Type Inference-assisted Mutation
	5.1 Coverage-oriented Mutation
	5.2 Bug-oriented Mutation

	6 Implementation
	7 Evaluation
	7.1 LAVA-M Dataset
	7.2 MA Dataset
	7.3 Crash Analysis

	8 Related Work
	8.1 Directed Fuzzing Approaches
	8.2 Input Grammar-Based Fuzzing Approaches
	8.3 Evolutionary Fuzzing Approaches

	9 Conclusions
	References
	9.1 Mutation Cycle Algorithm
	9.2 Howard Implementation Details
	9.3 Crash Analysis Details
	9.4 Results on MA dataset for 24hr Run

	i11-2-pang
	Abstract
	1 Introduction
	2 Background
	2.1 C++ Inheritance and Cast Operations
	2.2 Type Confusion
	2.3 Defenses against Type Confusion

	3 Threat Model
	4 Bitype Design and Implementation
	4.1 Overview
	4.2 Safe Encoding Scheme
	4.3 Object Tracing
	4.4 Typecasting Verification
	4.5 Optimization
	4.6 Implementation

	5 Evaluation
	5.1 Coverage
	5.2 Performance Overhead
	5.3 Memory Overhead
	5.4 Compilation Time Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	i11-3-liu
	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Analysis to Detect Concurrency Problems
	2.2 Concurrency Error Detection
	2.3 Logic-Based Methods
	2.4 Fuzz Testing

	3 Case Study of Concurrency Vulnerabilities
	3.1 Real-World Concurrency Vulnerabilities
	3.2 Characteristics of Concurrency Vulnerabilities

	4 Static Analysis
	4.1 Shared Memory Discovery
	4.2 Sensitive Operation Marking
	4.3 Data-flow Merging
	4.4 Vulnerability Categorization
	4.5 Semantic Checking

	5 Thread-Aware Fuzzing
	5.1 Interleaving Exploring Priority
	5.2 Targeted Priority
	5.3 Load Balance

	6 Implementation
	6.1 Implementation of Static Analysis
	6.2 Implementation of Thread-Aware Fuzzing

	7 Evaluation
	7.1 Benchmark Suite
	7.2 Experimental Results
	7.3 Validation of Detected Concurrency Vulnerabilities
	7.4 Analysis of Static Analysis Results
	7.5 Abnormal Time Cost of Static Analysis

	8 Limitations and Future Work
	8.1 Scalability of Static Analysis
	8.2 Capacity of AFL in Exploring Paths
	8.3 Restrictions of Manual Validation
	8.4 Additional Limitations

	9 Conclusion
	References

	i11-4-ye
	Abstract
	1 Introduction
	2 System Architecture
	3 Proposed Method
	3.1 Feature Extraction
	3.2 HIN Constructor
	3.3 snippet2vec: HIN Representation Learning
	3.4 Multi-view Fusion Classifier

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 snippet2vec based on Different Sets of Meta-path Schemes
	4.3 Comparisons with Different Network Representation Learning Models
	4.4 Comparisons with Traditional Machine Learning Methods
	4.5 Evaluation of Parameter Sensitivity, Scalability, and Stability
	4.6 Case Studies

	5 Related Work
	6 Conclusion
	References

	i12-1-etigowni
	Abstract
	1 Introduction
	2 Background
	2.1 Drone Flight Dynamics
	2.2 Offline Controller Code Verification
	2.3 Limitation of Existing Solutions

	3 Overview
	3.1 Threat Model
	3.2 Crystal Architecture
	3.3 Safety Requirement Definition
	3.4 Predictive Flight Modeling
	3.5 Just-Ahead-of-Time Verification

	4 Drone Physics Modeling
	4.1 Normal Operation Mode Physical Modeling
	4.2 Failure Mode Data-Driven Modeling
	4.3 Full Flight Operation mode

	5 Cyber-Physical Security Modeling
	6 JAT Verification and Recovery
	7 Evaluations
	7.1 Evaluation on 3DR Solo Quadcopter

	8 Related Work
	9 Conclusion
	A Global safety conditions
	B normal Operation Mode Physical Modeling
	Acknowledgments
	References

	i12-2-mujeeb
	i12-3-castellanos
	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Attack points and cyber-to-physical interfaces
	3.2 Attacker profile
	3.3 Modelling a CPS as a Data Flow Graph
	3.4 White-box analysis of controller's source code
	3.5 Extracting graphs from a controller's code
	3.6 Reachability analysis
	3.7 Shortest path analysis and attack diagrams

	4 Implementation
	4.1 The testbed
	4.2 PLC code parser

	5 Evaluation
	5.1 Interactions between attack points and Cy2Phy interfaces
	5.2 Choosing suitable attack points
	5.3 Testing attack points in a real scenario

	6 Discussion
	7 Related work
	8 Conclusions and future work
	References
	A List of components in SWaT
	B Shortest path distance between attack points and Cy2Phy interfaces

	i12-4-schilling
	Abstract
	1 Introduction
	2 State of the Art and Background
	2.1 Threat Model and Attack Vector
	2.2 Error Detection Codes
	2.3 ARM Pointer Authentication

	3 Pointer Protection with Residue Codes
	3.1 Overview
	3.2 Pointer Layout and Residue-Code Selection
	3.3 Pointer Operations

	4 Evolved Memory Access Protection
	4.1 Overview
	4.2 The Linking Approach
	4.3 Memory-Mapped I/O

	5 Architecture
	5.1 New Instructions
	5.2 Hardware
	5.3 Software

	6 Evaluation
	6.1 Future Work

	7 Conclusion
	8 Acknowledgment
	References

	i13-1-wang
	Abstract
	1 Introduction
	2 Motivating Example
	3 System Overview
	4 Design and Implementation
	4.1 Library Call Tracing
	4.2 Lprov Kernel Module
	4.3 Lprov Daemon Process and Log Analysis

	5 Evaluation
	5.1 Performance Overhead
	5.2 Case Study

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Kernel Event Tracing
	A.2 Log Analysis Algorithm
	A.3 Additional Performance Evaluation

	i13-2-deGoer
	Abstract
	1 Introduction
	2 Problem
	2.1 Statement
	2.2 Notations and definitions
	2.3 Scope

	3 Approach
	3.1 Overview
	3.2 Heuristics

	4 Implementation
	4.1 Ground-truth - oracle
	4.2 Naive implementations of call detection
	4.3 Implementation details of iCi

	5 Experiments
	5.1 Methodology
	5.2 Platform
	5.3 General results
	5.4 SPEC CPU2006
	5.5 Influence of the compiler
	5.6 Discussion

	6 Applications
	7 Conclusion
	References

	i13-3-im
	Abstract
	1 Introduction
	2 Background
	2.1 Android security architecture
	2.2 Example: Location services
	2.3 SEAndroid policy rules
	2.4 The complexity of SEAndroid policy

	3 Methodologies
	3.1 The ``box'' metric
	3.2 Git repository analysis
	3.3 Our measurement tool

	4 Measurement Results
	4.1 Boxes vs. rules
	4.2 Number of boxes in a rule
	4.3 Number of rules per box
	4.4 Ratio of rule vs. box changes
	4.5 Summary

	5 An Historical Analysis
	5.1 The ``age'' of rules
	5.2 The increasing policy complexity
	5.3 The effect of multiple branches
	5.4 Case study: Stagefright
	5.5 Contributor comparison

	6 Discussion
	6.1 SEAndroid vs. Smack
	6.2 Android Treble
	6.3 Android for Work

	7 Related work
	8 Conclusion
	9 Acknowledgment
	References

	i13-4-rahman
	Abstract
	1 Introduction
	2 Background
	3 Intent-driven Access Control
	3.1 Threat Model and Assumptions
	3.2 IAC via BCI

	4 Experiment Design
	4.1 Single App Experiment
	4.2 Multiple Apps Experiment
	4.3 Experimental Procedures

	5 Data Process and Analysis
	6 Feasibility Test
	6.1 Single App Analysis
	6.2 Cross-app Portability Analysis
	6.3 Results Analysis
	6.4 Authorization Accuracy

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgment
	References

	i14-1-nikolic
	Abstract
	1 Introduction
	2 Problem
	2.1 Ethereum Smart Contracts
	2.2 Contracts with Trace Vulnerabilities
	2.3 Our Approach

	3 Trace Vulnerabilities
	3.1 EVM Semantics and Traces
	3.2 Safety Violations
	3.3 Liveness Violations

	4 The Algorithm and the Tool
	4.1 Symbolic Analysis
	4.2 Concrete Validation

	5 Evaluation
	5.1 Results
	5.2 Case Studies: True Positives
	5.3 Case Studies: False Positives
	5.4 Summary and Observations

	6 Related Work
	7 Conclusion
	References

	i14-2-torres
	Abstract
	1 Introduction
	2 Background
	2.1 The Ethereum Virtual Machine
	2.2 The Solidity Programming Language
	2.3 Integer Bugs in Ethereum Smart Contracts

	3 Methodology
	3.1 Type Inference
	3.2 Finding Integer Bugs
	3.3 Taint Analysis
	3.4 Identifying Benign Integer Bugs

	4 Osiris
	4.1 Design Overview
	4.2 Implementation

	5 Evaluation
	5.1 Empirical Analysis
	5.2 Detection of Real-World Vulnerabilities

	6 Discussion
	6.1 Causes for Integer Bugs
	6.2 Ways Towards Safe Integer Handling

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Control Flow Graph Example
	B The DAO Hack

	i14-3-greubel
	Abstract
	1 Introduction
	2 Background
	2.1 Tor Bandwidth Measurements
	2.2 Trusted Execution Environments
	2.3 Blockchain and Smart Contracts

	3 System and Adversary Model
	4 Design
	4.1 Entity Communication
	4.2 Relay Registration
	4.3 Bandwidth Measurer Registration
	4.4 Join Measurement Process
	4.5 Bandwidth Measurements
	4.6 Reporting and Aggregating Results
	4.7 Malfunction Detection

	5 Security Analysis
	5.1 Group Compromise
	5.2 Attacks from a malicious Host
	5.3 Attacks from compromised TEEs
	5.4 Attacks on the SC

	6 Implementation
	6.1 Smart Contract
	6.2 Bandwidth Measurement Script
	6.3 Bandwidth Measurement Host

	7 Evaluation
	7.1 Measurement script
	7.2 Smart Contract

	8 Related Work
	9 Conclusion and Future Work
	References
	A Intel SGX Details
	B Tor Speedracer Measurements
	C Smart Contract Implementation
	D Measurement Data

	i14-4-tran
	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Preliminaries
	2.2 Threat Model
	2.3 Scope, Assumptions, and Limitations

	3 Obscuro
	3.1 Solution Overview
	3.2 Obscuro Protocol
	3.3 Indirect Participation Mechanism
	3.4 Detection of Malicious Blockchain Forks
	3.5 Collecting Deposits

	4 Security Analysis
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Discussion
	6.1 Recipient of the Mixing Fees
	6.2 Multiple Obscuro Instances

	7 Related Work
	7.1 Existing Bitcoin Mixer Solutions
	7.2 Privacy Improvements in other Cryptocurrencies
	7.3 TEE for Cryptocurrency Applications

	8 Conclusion
	9 Acknowledgments
	References
	A Structure of the Deposit Transaction

	i15-1-continella
	Abstract
	1 Introduction
	2 Background
	2.1 Amazon S3
	2.2 Threats

	3 Methodology
	3.1 Enumeration & Data Collection
	3.2 Security Analysis

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Enumeration & Data Collection
	4.3 Scanning Results
	4.4 Vulnerable Websites

	5 Mitigation
	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

	i15-2-demoulin
	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Strawman solutions
	2.2 DeDoS solution

	3 DeDoS Design
	3.1 Minimum splittable units
	3.2 Inter-MSU communication
	3.3 Routing tables
	3.4 DeDoS runtime API
	3.5 Support for existing applications

	4 Resource Allocation
	4.1 Machine-local scheduling
	4.2 Initial MSU assignment
	4.3 Cloning and merging

	5 Implementation
	5.1 Overview
	5.2 DeDoS local runtime

	6 Case Studies
	7 Evaluation
	7.1 Overheads
	7.2 Attack mitigation

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

	i16-1-blanchard
	Abstract
	1 Introduction
	2 Method
	2.1 Word choice
	2.2 Protocol
	2.3 Design choices

	3 Demographic information
	3.1 Participant selection
	3.2 Recruitment of volunteers
	3.3 Statistics

	4 Results
	4.1 Word selection
	4.2 Memorization
	4.3 Guessing

	5 Statistical modelling
	5.1 Strategies and entropy
	5.2 Semantic aspects

	6 Limitations
	6.1 Ecological validity
	6.2 Short-term and long-term memory
	6.3 Free choice of words

	7 Discussion
	8 Conclusion
	References

	i16-2-mayer
	Abstract
	1 Introduction
	2 Related Work
	3 Development of the Awareness-Raising Material
	3.1 First Iteration - Based on Literature
	3.2 Second Iteration - Incorporation of Structured Expert Feedback
	3.3 Third Iteration - Visual Elements and Lay-User Feedback

	4 User Study Methodology
	4.1 Hypotheses
	4.2 Procedure
	4.3 Questionnaires
	4.4 Analysis

	5 Results – Pre-Treatment and Post-Treatment Questionnaires
	5.1 Assessment of Scenarios
	5.2 Password Security Ratings
	5.3 Qualitative Results

	6 Results – Retention Questionnaires
	6.1 Assessment of Scenarios
	6.2 Password Security Ratings

	7 Discussion
	7.1 Improvements Derived from the User Study
	7.2 Limitations

	8 Conclusion
	References
	A.1 Introductory Sections
	A.2 Attacks
	A.3 Technologies to Protect User Credentials

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

