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Communication protocols form the bedrock of our interconnected world, yet vulnerabilities within their
implementations pose significant security threats. Recent developments have seen a surge in fuzzing-based
research dedicated to uncovering these vulnerabilities within protocol implementations. However, there
still lacks a systematic overview of protocol fuzzing for answering the essential questions such as what the
unique challenges are, how existing works solve them, etc. To bridge this gap, we conducted a comprehensive
investigation of related works from both academia and industry. Our study includes a detailed summary of
the specific challenges in protocol fuzzing, and provides a systematic categorization and overview of existing
research efforts. Furthermore, we explore and discuss potential future research directions in protocol fuzzing.
This survey serves as a foundational guideline for researchers and practitioners in the field.
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1 INTRODUCTION
Communication protocols, such as TCP (Transmission Control Protocol) [16], TLS (Transport Layer
Security) [40], Bluetooth [139], etc., serve as the cornerstone of communication by defining the rules
for message exchange between parties. As these protocols underpin publicly accessible services,
their security is paramount and the vulnerabilities contained can lead to severe consequences. A
stark illustration of this is the Heartbleed vulnerability in OpenSSL, an implementation of the
TLS protocol. Upon its disclosure, Heartbleed was found to affect over 17% of servers worldwide
[105, 119, 155], demonstrating the extensive impact a single vulnerability can have. Moreover,
recent statistical analyses signal an upward trend in high-risk software vulnerabilities within
network services [62], underscoring the increasing risks to network security. Given this context, the
development of automated methods to detect vulnerabilities in network protocol implementations
is not just beneficial but essential for the safeguarding of modern network services.
Fuzzing, as a software testing technique, was brought to the forefront by an empirical study

conducted by Miller et al. in 1990 [103]. This method involves the generation of a large number
of random, mutated testcases aimed at triggering abnormal runtime behaviors within a software
program. Due to its simplicity and scalability, fuzzing has proven to be highly effective at uncovering
a wide array of bugs, leading to its widespread adoption [41, 82–85, 94, 176–179, 182, 184]. However,
fuzzing protocol implementations, as opposed to general software like command-line tools [97,
117, 161], introduces additional challenges. These complexities are largely due to the peculiarities
associated with effectively testing the intricate communication logic that protocols entail, ranging
from methodological considerations to tool-specific requirements. In response to these challenges,
there is a notable trend towards creating advanced fuzzing methods tailored explicitly for protocol
testing [15, 18, 39, 53, 55, 89, 100, 116, 142]. Despite this progress, there still remains a significant
gap in research dedicated to systematically examining the distinctive challenges inherent to this
field, thoroughly summarizing the existing solutions and discussing future directions. To fill this
gap, we extensively discussed and analyzed protocol fuzzing specifics in the following content of
this article.

1.1 Motivation
The main motivations for this survey are as follows:

• Protocols are the essential rules that dictate how our devices and applications communicate,
making them both pervasive and critically important. Because these protocols are everywhere,
ensuring they are secure against potential threats is of utmost importance. Fuzzing plays a
key role in finding and fixing security issues within these systems. In light of this, building
the first end-to-end guide covering the overview and specifics of protocol fuzzing is highly
valuable for both researchers and those in the tech industry.

• Protocol fuzzing presents unique challenges that set it apart from general application fuzzing,
grounded in the intricacies of the communication protocols themselves. Firstly, there’s
the need to adhere to strict rules that dictate not just the structure of the messages but
also the strict sequence and context in which these messages are sent and received [1,
2, 40, 126]. This makes the testing process complex as it requires an in-depth grasp of
how these communication protocols operate and change over time. Secondly, protocols are
built to address various attributes beyond simple message exchange. They must account
for factors like timing and how multiple messages or actions can happen simultaneously,
which introduces more variables into the mix when testing for security issues [68, 73, 75].
Thirdly, the widespread use of protocols across different technology levels and systems
adds another layer of complexity. They are embedded everywhere, from hardware up to
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Table 1. Selected influential conferences and journals

Research Area Type Name

Cyber Security
Conferences ACSAC, CCS, CODASPY, DSN, ICDCS, ICICS, NDSS, SP, USENIX, WiSec, Blackhat*, DEFCON*, RSA*
Journals TDSC, TIFS

System Architecture
Conferences ASPLOS, ATC, DAC, Eurosys, Mobisys, OSDI
Journals TC

Communication
Conferences INFOCOM, MobiCOM, NSDI, SIGCOMM
Journals TMC, TNSM, TON

Software Engineering
Conferences ASE, FSE, ICSE, ICST, ISSTA
Journals TOSEM, TSE

*: industrial conferences.

Preliminary
Reading

Publication
Searching

[535	papers]

Publication
Filtering

[78	papers]

Snowballing
[84	papers]

Industrial
Talks	&	Tools

[21	works]

Keyword	
Selection

[12	Combinations]

("fuzzer"	OR	"fuzzing"	OR	"fuzz"	
								("protocol"	OR	"network"	OR	"stateful"	
								OR	"state-aware")	
)	

Fig. 1. Search criteria.
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Fig. 2. Distribution of papers along publication years.

the software applications we interact with daily, leading to diverse testing scenarios and
discovering potential vulnerabilities in every layer [46, 53, 55, 56, 91, 130, 165]. Given these
realities, it becomes imperative to establish a comprehensive understanding of protocol-
specific challenges.

• Many protocol fuzzing works have been completed but no systematic review on protocol
fuzzing has been conducted thus far. Although some survey articles [85, 94, 185] about
traditional software fuzzing are available, they cannot provide a systematic overview of
the current status and future directions based on existing works solving protocol-specific
challenges.

1.2 ResearchQuestions
This survey aims to provide an overview of the protocol-specific challenges, the corresponding
solutions, and the future directions. Specifically, this survey answers the following questions:

• RQ1:What are the differences between traditional fuzzing and protocol fuzzing?
• RQ2: How do existing works address the challenges in protocol fuzzing?
• RQ3:What are the potential future directions?

In Section 3, we provide an in-depth examination of the distinctive differences between protocols
and traditional fuzzing targets to answer RQ1. Then, in Sections 4 to 6, we detail the techniques
used in existing protocol fuzzers to answer RQ2. Lastly, RQ3 are discussed in Section 7.

1.3 Collection Strategy
In this survey, we focus on stateful network protocols and the various techniques that are directly
related to the fuzz testing of their implementations. To collect the relevant publications, we followed
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the procedures depicted in Fig. 1. First, we performed a preliminary reading and summarized 12
different keyword combinations that can be used to search related works. Then, searching these
keyword combinations in Google Scholar, we collected 535 publications published from 2013 to
2023. After that, we manually filtered out the papers irrelevant to protocol fuzzing or not published
in the influential publications listed in Table 1. At this time, the number of papers was reduced to
78. Note that all preprint papers were kept to remove publication bias [169]. And a paper is relevant
if its key contribution is in the scope of protocol fuzzing or that paper is a bug detection tool and
has picked at least one protocol implementation as its evaluation target. The latter criteria is based
on the heuristic that likely a bug detection tool have proposed protocol specific techniques if it uses
protocol implementations as its evaluation targets. Next, we performed snowballing and inverse
snowballing to obtain a more comprehensive view. Six more papers were added in this procedure.
Finally, we applied the above collection process to the released talks of several mainstream industrial
security conferences such as BlackHat. 21 industrial works were added, including 18 related talks
and three open-source protocol fuzzers with more than 50 stars on Github. The ascending trajectory
of publications, as illustrated in Fig. 2, underscores the burgeoning research interest in protocol
fuzz testing, affirming its emergence as a focal point within the field.
The rest of the paper is organized as follows. Section 2 introduces the background knowledge

of protocol fuzzing. Section 3 introduces the main differences between general fuzzing targets
and protocols, then summarize the major enhancements of existing protocol fuzzers. The next
three sections detail the existing techniques for each key component of protocol fuzzing. Section
4 discusses the progress in input generator component. Section 5 introduces the techniques for
improving the executor component. Section 6 manifests the taxonomy of oracles used in the bug
detector component. Section 7 offers future directions.

2 BACKGROUND
2.1 Communication Protocols
A communication protocol is a set of rules that enables the exchange of information between two
or more entities within a communication system, utilizing any form of physical quantity variation.
The implementation of a communication protocol generally involves multiple phases [35]. First,
the protocol is conceptually designed, which includes defining the rules, behaviors, and functions it
will perform based on the protocol’s needs, taking into account factors such as efficiency, reliability,
scalability, and security. The outcome of the design phase is a specifications. Then, during the
development phase, the protocol design is translated into concrete implementations. This can be
in the form of software, hardware or a combination of both. Once developed, the protocol undergoes
rigorous testing to confirm that it adheres to the protocol specifications and meets performance
and reliability requirements. Among them, fuzzing, which this paper focuses on, is a commonly
used technology for testing protocol implementations. Eventually, the protocol implementation
will be deployed in a real-world environment.

In addition to the fundamental task of data exchange, protocols encompass a myriad of other
functionalities critical to communication, introducing new layers of complexity [96]. This includes
tasks such as routing, detection of transmission errors, managing timeouts and retries, confirmations,
flow control, and sequence control. As a typical example, TCP (Transmission Control Protocol)
[16] contains the following functionalities for guaranteeing optimal communication:

• Acknowledgment: Acknowledgment is a mechanism to confirm the receipt of data packets.
This process is crucial for ensuring the reliability of data transmission, as it allows the sender
to know whether the data has reached its intended destination. In TCP, when a data packet
is received, the recipient sends back an acknowledgment to the sender to confirm receipt.
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Types	of	Protocols

Based	on	functionalities Based	on	availability	of
specification Based	on	statefulness Based	on	OSI	reference	model

Security	protocols

Rounting	protocols

Application	protocols

Open	protocols

Proprietary	protocols

Stateful	protocols

Stateless	protocols

Application	layer	protocols

Presentation	layer	protocols

Session	layer	protocols

Transport	layer	protocols

Network	layer	protocols

Data	link	layer	protocols

Physical	layer	protocols......

e.g.,	TLS,	SSL,	DTLS,	HTTPS,	...

e.g.,	TLS,	DTLS,	TCP,	Bluetooth,	...

e.g.,	iMessage,	RDP,	SMB,	Skype,	...

e.g.,	HTTP,	SMTP,	FTP,	DNS,	...

e.g.,	BGP,	OSPF,	RIP,	IGRP,	... e.g.,	TCP,	Telnet,	Zigbee,	...

e.g.,	UDP,	HTTP,	DNS,	... e.g.,	Ethernet,	PLC,	Wi-Fi,	...

e.g.,	Wi-Fi,	PPP,	MAC,	...

e.g.,	IP,	IPSEC,	ICMP,	...

e.g.,	TCP,	UDP,	QUIC,	...

e.g.,	TLS,	DTLS,	SOCKS,		...

e.g.,	TLS,	DTLS,	...

e.g.,	HTTP,	FTP,	DNS,	...

Fig. 3. Types of protocols.

• Sequence control: Sequence control ensures that data packets are received and processed
in the order they were sent. TCP segments are sequenced with a sequence number.

• Error handling: Error handling involves detecting and correcting errors that occur during
data transmission. TCP includes error-checking features. Every TCP segment contains a
checksum field, which is used to check for data integrity. If a segment is found to be cor-
rupted (i.e., the data does not match the checksum), it is discarded, and TCP will handle
retransmission.

Each of these functionalities embodies a set of strategies and implementations that collectively
ensure the efficacy and reliability of communication protocols. The intricate integration of these
functions demonstrates the sophisticated nature of protocol design and its pivotal role in modern
communication systems.

2.2 Types of Protocols
Protocols can be classified from various perspectives, such as functionality, the accessibility of their
specifications, and their alignment with the layers of the OSI network reference model.
From a functional standpoint, protocols exhibit a broad spectrum of varieties, each tailored to

fulfill unique operational objectives. For instance, security protocols are primarily designed to ensure
the integrity and confidentiality of data, exemplified by TLS [40] and DTLS (Datagram Transport
Layer Security) [126]. Routing protocols, such as BGP (Border Gateway Protocol), are dedicated
to efficiently managing the routes that data packets traverse across the network. Furthermore,
application protocols, like HTTP (Hypertext Transfer Protocol) for web services and SMTP (Simple
Mail Transfer Protocol) for email, are specialized to enable specific functionalities at the application
layer.

When considering the availability of protocol specifications, a distinction is drawn between open
protocols and proprietary protocols. Open protocols, like TCP, have publicly accessible specifications,
allowing for widespread scrutiny and implementation. In contrast, proprietary protocols such
as Microsoft’s RDP (Remote Desktop Protocol) [102], are governed by individual entities, with
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Table 2. Comparison between traditional fuzzing target and protocol

General Fuzzing Targets Protocol Implementations

Communication Complexity Low High
Testing Environment Unconstrained Constrained

specifications that are not fully public. The availability of protocol specifications is crucial for
various stages of fuzzing, such as crafting inputs, constructing state machines, and detecting bugs.
It is important to clarify that the classification into open and proprietary pertains solely to the
availability of specifications, and is independent of the accessibility of source codes for protocol
implementations.

Regarding the statefulness, protocols are bifurcated into stateful and stateless categories. Stateful
protocols, such as TLS [39, 142] and TCP [69], necessitate multiple interaction rounds. Stateless
protocols, like UDP and HTTP, do not maintain state information across requests.

Based on the OSI network reference model, protocols can be classified into seven distinct layers:
physical, data link, network, transport, session, presentation, and application. The protocol layers
each solve a distinct class of communication problems. Among them, the lower-level protocols
have higher coupling with physical hardware. It is pertinent to note that not every protocol aligns
precisely with a single layer in the OSI model. For example, TLS/DTLS contains the functionality
of the session and representation layers; the Wi-Fi protocol contains the main functionality of the
physical and data link layers [2, 28]. Given varying interpretations of protocol layering in numerous
sources, we categorize these protocols based on their primary functions.

3 PROTOCOL FUZZING OVERVIEW
3.1 Differences between protocol fuzzing and traditional fuzzing
In this subsection, we delve into the unique challenges associated with protocol fuzzing as identified
in the literature, addressing RQ1. Table 2 encapsulates two primary distinctions between protocol
implementations and general fuzzing targets. These differences not only highlight the specificities
of protocol fuzzing but also correspond to a set of inherent challenges.

3.1.1 High communication complexity. The high complexity of communication can be discussed in
the following two aspects.

Respecting Semantic Constraints In Communication. Protocols serve as the backbone for
facilitating communication between different systems by providing a standardized set of rules
for message exchange. This communication is inherently complex, often involving a multi-round
process where multiple steps must be sequentially executed for the exchange to be successful. Such
protocols inherently demand implementations that are stateful, with each stage of communication
building upon the previous one [1, 2, 40, 126]. In testing scenarios, this means that deeper layers
of the protocol implementation cannot be tested until the earlier constraints are satisfactorily
met – these are the strict semantic constraints inherent in communication protocols. Semantic
constraints come in two primary forms: intra-message and inter-message constraints. Intra-message
constraints pertain to the structure and content of individual messages, ensuring that data fields are
syntactically correct and semantically meaningful within the context of that message. Taking TCP
as an example, in a TCP segment, there are several critical fields such as the source port, destination
port, sequence number, acknowledgment number, data offset, and control flags (like SYN, ACK)
[96]. Each of these fields must adhere to specific formats and rules. Inter-message constraints, on
the other hand, govern the relationship and sequence of multiple messages, requiring that they
adhere to the established protocol sequence and context for the conversation to progress [35]. For
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instance, the establishment of a TCP connection involves a “three-way handshake" process: the
client first sends a SYN message, followed by the server responding with a SYN-ACK message, and
finally, the client sends an ACK message to complete the connection. Violations of either type of
constraints during communication can result in the fuzzing nonprogressive [69, 116, 142, 158, 187].

Testing Different Properties of Communication Process. Besides basic message exchange
functionality, protocols need to guarantee a series of extra features that forming a more se-
cure or reliable communication such as timing requirements, authentication, confidentiality, and
concurrency[68, 73, 75]. Effectively testing these attributes in the implementation requires a
more complex form of testing that goes beyond typical application fuzzing which mainly fo-
cuses on altering structured inputs to find issues [94, 185]. Each attribute may require the sig-
nificant modification or even redesign of the fuzzing framework, including the developments
of specialized input generator, feedback mechanisms, and oracles to facilitate effective testing
[31, 56, 66, 72, 92, 99, 138, 142, 158, 187]. For instance, in the context of crafting a fuzzer aiming at
detecting traffic amplification attacks within protocol implementations [78], an oracle is needed to
identify disproportional request-to-response data volume ratios, indicative of an amplification fac-
tor. Concurrently, input generator needs to be adeptly redesigned to generate specific variations of
protocol messages that can maximize the potential amplification factor. Moreover, the amplification
factor can be used as a feedback to further enhance the search performance of fuzzing.

3.1.2 Constrained Testing Environment. Protocol fuzzing usually faces a constrained testing envi-
ronment due to the tight coupling between protocols and the hardware. Firstly, numerous protocols
are designed either for communications between low-level physical devices or for communications
happened in specialized sectors, such as the protocols reside in the lower layers of the OSI refernce
model, i.e., the physical and data link layers [1, 2, 5, 28, 139], or protocols designed for specific
sectors like automotive [14, 109, 189], industial control system (ICS) [21, 181], eletricity grids, and
aviation systems. In these cases, the testing throughput will be limited by the hardware dependen-
cies, such as the lack of auotmation [113, 145], the bottleneck for scalable fuzzing [21, 130], etc.
Besides, these physical dependencies also limit the application of advanced fuzzing techniques. This
is because many advanced fuzzing techniques require greybox or whitebox testing information
from the test target, which cannot be satisfied due to the lack of program analysis frameworks on
these specific hardware [133, 188, 189].

3.2 Summary of Existing Protocol Fuzzers
We have analyzed current protocol fuzzing research and encapsulated these efforts into a technical
framework for protocol fuzzers, as depicted in Fig. 4. Note that the existing fuzzing works still
follow the high-level concepts of general fuzzing but propose specific enhancements in these
subcomponents to solve protocol-specific challenges. We first discuss the general concepts and
functionalities of these components in this section, and then detail the specific enhancements
existing works made in following sections (Sections 4 to 6).
A general fuzzer consists three basic components, namely input generator, executor and bug

collector. In one iteration of fuzzing, input generator first produces a testing input to executor.
Then executor executes the PUT with the given input and collects runtime information for the
other two components. Finally the bug collector checks the runtime information to determine
whether the input has triggered a bug.

Input generator. Ideally, this component is responsible for generating inputs to expose vulnera-
bilities inside PUTs as effective as possible. To realize this, protocol fuzzers usually implement input
generator with three main subphases including communication model construction, scheduling
and testcase construction. Communication model construction phase is responsible for learning the
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Executor	(§5)

Scheduling	(§4.2) Testcase	
Construction	(§4.3)

Input(s) Output(s)

Testcase Feedback

Fe
ed

ba
ck

Runtime	Info

Input	Generator	(§4)

Memory	safety	bug
detection	(§6.1)

Non-memory-safety
bug	detection	(§6.2)

Bug	Collector	(§6)

Efficient	Execution	(§5.1) Runtime	Information	Extraction	(§5.2) BugsProgram	Under	
Test	(PUT)

Seeds	or	
Input	Model	

Communication	Model
Construction	(§4.1)

Fig. 4. Summarized Workflow of Existing Protocol Fuzzers.

semantic constraints of the protocol to provide knowledge for the other phases. With protocol
domain specific knowledge, scheduling phase decides all the scheduling configurations used in the
next iteration of input generation, with an intention to expose more bugs. Testcase construction
phase is responsible for producing testcase according to the scheduler’s instructions.
Executor. In pursuit of an ideal executor for protocol fuzzing, contemporary research has

concentrated on two critical aspects: Efficient Execution and Runtime Information Extraction. The
former explores the development of an efficient, automated, and scalable testing environment,
enhancing the execution of protocol testing. The latter focuses on creating an analysis environment
that extracts essential runtime information, thereby informing and improving the input generation
and bug detection processes.
Bug collector. The primary objective of the bug collector component is to enhance both the

variety of detected bug types and the accuracy of these detections. The component is finely tuned
to meticulously identify a broad spectrum of vulnerabilities, ranging from memory-safety bugs
like buffer overflows to more subtle non-memory-safety bugs such as logic errors and specification
violation.

4 INPUT GENERATOR
In this section, we will introduce in detail how the existing works improve the input generator
to solving the unique challenges in protocol fuzzing. As shown in Table 3, we summarize the
techniques used by existing works in designing the three key phases in input generator. The
covered works are selected from our paper set as long as their main techniques are directly related
to the input generator. Besides the statistics of the mentioned three phases for these works, the
table also lists their feedback information. According to Fig. 4, the feedback information can be
provided by the executor or the bug collector. We only discuss how feedback information is used in
input generator but leave the feedback collection related details for Section 5.2.

Table 3. Protocol fuzzers and their optimization solutions used in input generator.

Years Work T Target CMC Scheduling
Construction

Level Feedback

2013 BED[137]  General Manual Sequential P State
2013 Tsankov et al. [157]  General Manual - P & S -
2014 Peach[42]  General Manual Sequential P State
2015 Pulsar[57]  General TAPL SCHS P State
2015 Beurdouche et al.[18]  TLS Manual Random S State
2015 Ruiter et al.[39]  TLS TAAL Random S State
2016 TLS-Attacker[142]  TLS Manual Random P & S -
2016 Driller[147] # General - SPMS P Code Cov
2017 Fan et al.[45]  General TAPL - P & S -
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Table 3 Protocol fuzzers and their optimization solutions used in input generator. (Continued)

Years Work T Target CMC Scheduling
Construction

Level Feedback

2017 WiFuzz[158]  Wi-Fi Manual Sequential P & S -
2018 TCPWN[69]  TCP Manual Sequential P & S State
2018 IoTFuzzer[27]  IoT [107] - - P -
2018 Danial et al.[38]  OpenVPN Manual Random S -
2018 DELTA[79]  OpenFlow Manual - P & S -
2019 SeqFuzzer[181]  ICS TAPL - P State
2019 Polar[90] G# ICS - SPMS P Code Cov
2019 IoTHunter [171] G# IoT TAAL Sequential P Code Cov
2019 MoSSOT [138]  SSO[60] Manual Sequential P & GUI Ops -
2019 Chen et al. [30] G# General - SPHS P State & Code Cov
2019 Fuzzowski[128] G# General Manual - P State & Code Cov
2020 Walz et al.[159]  TLS - Random P -
2020 DTLS-Fuzzer[48, 49]  DTLS TAAL Random S State
2020 AFLNET [116] G# General TAAL SRHS P State & Code Cov
2020 SweynTooth [56]  BLE[139] Manual SPHS P & S State & #Bugs
2020 Frankenstein [130] G# Bluetooth Manual Random P & S State & Code Cov
2020 Peach* [91] G# ICS - - P Code Cov
2020 aBBRate [115]  TCP Manual Sequential S State
2020 IJON [12] # General PAL Random P State & Code Cov
2020 FuSeBMC [6] # General - Sequential P Code Cov
2020 DPIFuzz [124]  QUIC[67] Manual Random P & S -
2020 Zou et al.[186]  General - - P -
2021 ICS3Fuzzer [46]  ICS [36, 43] PAL SCHS P & GUI Ops State
2021 StateAFL [106] G# General PAL SPHS &

SRHS
P State & Code Cov

& # of Bugs
2021 TCP-Fuzz [187] G# TCP Manual Random P & S & Syscall State Transition
2021 Snipuzz[47]  IoT - - P -
2021 Z-Fuzzer[125] G# Zigbee - - P & Interrupt Code Cov
2021 PAVFuzz[189] G# AV [14] Manual Sequential P Code Cov
2021 Aichernig et al.[4]  IoT TAAL - P -
2017 Owfuzz[22]  Wi-Fi Manual - P State
2022 Meng et al.[99] G# General Manual PG P State
2022 Greyhound[55] G# Wi-Fi Manual SPHS P & S State & # of Bugs
2022 SGFuzz[15] G# General PAL SRMS P State & Code Cov
2022 Braktooth[53] G# Bluetooth TAAL SPHS P State Transition
2022 L2Fuzz[113]  Bluetooth Manual Sequential P State Cov
2022 AmpFuzz[78] G# UDP - - P BAF
2022 FUME[114]  MQTT[107] - - P Response Fresh-

ness
2022 Garbelini et al.[54]  4G/5G TAPL - P & S -
2023 FeildFuzz[21]  Codesys - - P Code Cov
2023 BLEEM[89]  General TAAL SRHS P & S State
2023 Tyr[32] G# Blockchain Manual SRHS P State & Code Cov
2023 CHATAFL[100] G# General LLM LLM P State & Code Cov
2023 EmNetTest[8] G# General Manual Sequential P & S State
2023 DYFuzzing[7] G# General Manual SPMS P & S Code Cov & # of

Bugs
2023 FuzzBD[76]  USBPD Manual - P State
2023 Mallory[101] G# DS TAAL SPMS P & S Event Trace
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#: Whitebox Fuzzer;  : Blackbox Fuzzer; G#: Greybox Fuzzer; T: Taxonomy; CMC: Communication Model Construction;
General: The fuzzer is not designed for a specific type of protocol; DS: Distributed System; PAL: Program-Analysis-
assisted Learning; TAAL: Traffic-Analysis-based Active Learning; TAPL: Traffic-Analysis-based Passive Learning; SRMS:
State Rarity-preferred Monolithic Scheduling; SPHS: State Performance-preferred Hierarchical Scheduling; SCHS: State
Complexity-preferred Hierarchical Scheduling; SPMS: State Performance-preferred Monolithic Scheduling; SRHS: State
Rarity-preferred Hierarchical Scheduling; PG: Property-Guided; -: Not implemented; GUI Ops: GUI Operations; BAF:
Bandwidth Amplification Factor; P: Packet level construction; S: Sequence level construction.

4.1 Communication Model Construction
To empower a traditional fuzzer with semantic constraint knowledge, most existing works model
the communication as state machines or their variants to guide fuzzing. A state machine is a data
structure that describes the internal state transitions of a protocol implementation. State machines
are intrinsically the supergraphs of directed graphs, such as Deterministic Finite Automaton (DFA)
or Mealy machine [39, 48, 55, 56, 125, 130, 142, 160]. The nodes and edges in the state machine
represent the internal state of the entity and the transitions caused by receiving or sending amessage,
respectively. By referring to the state machine, protocol fuzzers can be aware of the current target
state, and can generate testcases according to the message types that are acceptable in the current
state, thereby improving the effectiveness of testcases. Note that a protocol implementation may
have multiple communication models, as it may behave differently depending on its working mode
or configurations. For example, a Wi-Fi device can be configured to run in AP-mode, STA-mode,
or P2P-mode [22, 166] and a SIP implementation can be configured as a client, server, or proxy
[110], each of them react differently to requests, thus having a different communication model.
Most existing works treat these implementations running in different configurations as different
targets: they construct one communication model for one given configuration.
In this section, we provide a taxonomy of the existing works based on their communication

model construction methods. As shown in Fig 5, they are divided into two categories: (i) top-down
approaches, and (ii) bottom-up approaches.

Bottom-up	Approaches

Comm	Model	Construction

Top-down	Approaches

Manual Automatic Traffic-based Program	analysis-assisted

Fig. 5. Taxonomy of communication model construction techniques.

4.1.1 Top-Down Approaches. Top-down approaches construct the communication model of the
protocol by learning from the textual description of the protocol, such as the specifications or
documents. Top-down approaches require protocol specifications as input, thus mostly used by open
protocols. Benefiting from global protocol knowledge of the specifications as well as the precisely
defined states and transitions, communication models constructed by top-down approaches are
relatively complete and accurate. It is worth noting that the constructed communication model
may still differ from the implementation’s. This is because developers may customize or extend the
design described in the specification according to the practical situation. Such a difference may
affect the final fuzzing performance. Methodologically, there are manual and automatic ways to
construct a communication model from protocol documents.

Manual Construction (labeled as “manual” in Table 3 column 4): Most existing works construct
a communication model manually with considerable domain expertise [7, 8, 18, 55, 56, 63, 69, 70, 77,
113, 115, 128, 130, 138, 142, 187]. For example, Garbelini et al. [56] and GREYHOUND [55] construct
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a holistic state machine of Bluetooth Low Energy (BLE) and Wi-Fi by referring to the core design
of protocol specifications [1, 2, 28, 139] to guide fuzzing. Though manually constructing a state
machine is an error-prone and labor-intensive task, the benefit here is that human experts can
flexibly customize (tailor or extend) the state machine to maximize its effect toward the work’s
goal. For example, to detect the state machine bugs caused by incorrect multiplexing between
different protocol modes, e.g., different protocol versions, extensions, authentication modes, or key
exchange methods, Beurdouche et al. [18] manually construct a composite state machine including
all valid state transitions across protocol modes. That composite state machine is then used to
generate deviant traces as testcases to discover invalid state transitions. Similarly, FuzzBD [76] is
meticulously designed to accommodate the unique dual-role characteristic inherent in the USB
Power Delivery (USBPD) protocol, where each device simultaneously functions as both a power
source and a power sink. By integrating the state machines of these two roles, FuzzBD is capable of
supporting seamless on-the-fly power role switching during the fuzzing process. Different from
the above-discussed works, some works choose to learn partial information of a state machine
for guidance. Zou et al. propose TCP-Fuzz, a novel approach that incorporates 15 dependency
rules manually extracted from RFC documents. These rules encompass various dependencies,
including packet-to-packet, syscall-to-packet, and syscall-to-syscall interactions. Utilizing these
rules, TCP-Fuzz adeptly generates testcases by concurrently producing the interdependent packets
and syscalls. A further exemplar is L2Fuzz [113]. The authors construct a map delineating the valid
commands pertinent to each of the 19 states identified in the protocol. This mapping facilitates the
generation of testcases that are specifically tailored to produce commands acceptable in the current
state, thereby enhancing the relevance and effectiveness of the testing process. There are also
some works addressing the problem that the communication models between the specification and
implementation are not completely equal. Using heterogeneous Single-Sign-On (SSO) platforms as
an example, MoSSOT [138] constructs a state machine of a regular SSO process first, then analyzes
the practical SSO network traffics of different SSO platforms to learn the implementation details
such as key parameters in each action. These implementation details refine the state transition
conditions in the state machines of different SSO platforms.

Automatic Construction: To automate the error-prone and labor-intensive process of manual
communication model construction, some works automatically retrieve semantic constraint from
protocol specification [13, 111]. For example, RESTler [13] learns the message dependency rela-
tionships based on the return types from Swagger specification, which is a structural specification
format describing the RESTful API endpoints, methods, parameters and return types. Pacheco et al.
propose to use Natural Language Processing (NLP) to extract a finite state machine (FSM) from
the protocol specifications [111]. Note that these two papers are not listed in Table 3 since these
works are not building stateful protocol fuzzers. Another work that uses automatic state machine
construction is CHATAFL [100], which leverage the emerging technology large language model to
infer the current state of the target and generating suitable state transfer packets.

4.1.2 Bottom-Up Approaches. Bottom-Up approaches provide another solution for communication
model reconstruction. These approaches utilize the observable information of a protocol implemen-
tation to reconstruct the communication model. Since they do not rely on textual documentation
or specifications, they are suitable for proprietary protocols. Different from top-down approaches
which have clear definitions of protocol states in the documents, the definitions of states in bottom-
up approaches are purpose-specific and may vary among use cases, methods, and implementations.
For example, AFLNET [116] determines a protocol state according to the status code of the PUT’s
response. Another example is StateAFL [106], which clusters the memory layout of long-lived
memory as different states. From the learning source’s point of view, these methods can be divided
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into two categories, namely traffic-analysis-based approaches and program-analysis-assisted
approaches.
Traffic-Analysis-Based approaches: The traffic-analysis-based methods focus on recon-

structing the protocol communication model purely from the observed network traffic traces
[39, 48, 90, 116, 162, 181]. This kind of approach is easy to operate and works well in cases that
the program execution cannot be traced, e.g., cannot obtain the firmware containing the target
program. The traffic-analysis-based communication model construction approaches can be passive
or active.

• Passive learning (labeled as “TAPL” in Table 3 column 4) methods mainly rely on a set of
pre-collected network traces of the PUT with other entities to infer the communication
model [45, 57, 172, 181]. The learning algorithms proposed by existing works can be divided
into two categories: statistics-based and neural-network-based algorithms. For the former
category, Pulsar [57] builds a second-order Markov Model by computing the probability of
the occurrence of the adjacent messages in the network trace corpus and then minimizes
this Markov model into a DFA. After a message has been received, Pulsar matches it to
one of the states in the inferred DFA to select a valid response template for building a new
testcase. For the latter category, Fan et al. [45] and SeqFuzzer[181] use LSTM to learn the
grammar and temporal features of stateful protocols. Specifically, they employ LSTM as the
encoder and decoder of the sequence-to-sequence (seq2seq) model [154]. Seq2seq model is
an encoder-decoder model structure that can handle input and output sequences of different
lengths. The encoder LSTM model learns the features of the protocol via captured network
traces, while the decoder LSTM model is used to generate fuzzing inputs. Passive network
trace-based state machine learning methods are easy to operate and fast-running. However,
the quality of the constructed state machine depends on the coverage of captured traffics. In
practice, it is hard to capture a comprehensive set of message types and sequences, causing
the constructed communication model lacking part of uncaptured states or state transitions.

• Active learning (labeled as “TAAL” in Table 3 column 4) methods involve learning the com-
munication model during the fuzzing process. These approaches can be categorized based on
whether the global state set is predefined. The first category does not define the global
state set in advance, i.e., meaning it does not predetermine the number and nature of possi-
ble states in the state machine. This approach employs automata active learning algorithms
to discern the state machine of the target. The learning algorithms rely on user-defined
input/output alphabets and mappers between alphabets and concrete messages. Starting
from an empty state machine, these algorithms iteratively propose and refine the model by
interacting with the target protocol implementation, ceasing only when no counterexamples
to the learned state machine are found. Most works in this category [4, 38, 39, 48, 49, 98, 131]
utilize Angluin’s 𝐿∗ algorithm, defining input alphabets based on protocol specifications and
translating these into actual messages using message templates. Conversely, the second
category predefines the complete state set to circumvent the complexities of automata
learning algorithms. Typically, this approach defines the state set through a rule-basedmethod,
learning transitions between states by mutating known messages. In essence, the potential
states (nodes) of the state machine are predetermined, and the focus is on discovering and
incorporating state transitions (edges). For example, AFLNET [116] uses response message
status codes to determine the current protocol state, mutating real message sequences to
uncover transitions. Bleem [89] utilizes the Scapy library to parse messages and abstracts
them into various message types by retaining all fields of the enumeration type. This strat-
egy is based on empirical observations from over 50 protocols supported by Scapy, where
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different enumeration field values typically signify distinct packet or frame types. Bleem
then uses these abstracted message traces to construct a guiding graph for fuzzing. Another
instance is Braktooth [53], which defines eight rules mapping messages to states based on
message characteristics. It operates as a proxy between the PUT and a standard protocol
stack, mutating communications to explore additional state transitions. Similarly, Garbelini
et al.[54] establish mapping rules to identify states and learn the state machine using capture
traces (i.e., pcap files).

Program-Analysis-Assisted Approaches (labeled as “PAL” in Table 3 column 4): Compared
with traffic-analysis-based approaches, program-analysis-assisted approaches additionally use
internal execution information to construct the communication model. In general, the internal
execution information includes the results of static and dynamic program analysis, which requires
not only the access to the program but also the availability of analysis frameworks such as program
instrumentation tools. Based on the type of the used internal execution information, existing works
can be divided into execution-trace-based and state-variable-based. Execution-Trace-Based approaches
recognize different internal execution states according to the execution trace of the target. For
example, ICS3Fuzzer[46] dynamically instruments the target supervisory software to collect the
trace. By comparing the identity of execution traces, ICS3Fuzzer can distinguish whether the PUT is
in a different state. The state-variable-based approaches detect protocol state transitions by tracking
the value changes of state variables during input processing [15, 106, 120, 148]. These approaches
are based on a simple observation that most protocol implementations use certain variables to store
the current state. Therefore, they identify these variables as state variables and use their values
to distinguish different states. For example, StateAFL [106] identifies possible state variables by
identifying long-lived data structures in memory snapshots. Similarly, STATEINSPECTOR [148]
identifies state variables by locating memory regions in heap memory that kept the same values
in the execution of each message sequence. Differently, SGFuzz [15] identifies state variables
through regular expressions by automatically extracting all enum type variables that are assigned
at least once. The insight behind this approach is based on the investigation that most protocol
implementations use enum-type state variables.

4.2 Task Scheduling
In the realm of recent protocol fuzzing research, the scheduling phase has been distinctly categorized
based on themethodology employed for handling state-related complexities. This classification leads
to two primary categories: Hierarchical Approaches and Monolithic Approaches. Hierarchical
approaches decompose the scheduling process into two discrete phases: intra-state scheduling,
which focuses on testing within a single state, and inter-state scheduling, which manages the
transition between states. These phases are implemented separately, allowing for nuanced control
over the fuzzing process. In contrast, monolithic approaches employ a single, unified scheduling
phase, which integrates state-related information as a coefficient within the scheduling algorithm.
Besides state-related information, many works utilize other categories of information for scheduling
purposes. However, the scheduling algorithms based on these categories of information are generally
universal and have been well-discussed in the literature [94, 185]. Therefore, we did not delve into
detailed discussions about them.
Hierarchical Approaches. In this paradigm, the scheduler employs a two-step algorithm: (1)

selection of a state for fuzzing using a state scheduling algorithm, followed by (2) application of
a general scheduling algorithm to optimize fuzzing within that state. The heuristics used by the
scheduling process mainly fall into three categories, namely rarity-preferred (SRHS in Table 3
column 5), performance-preferred (SPHS in Table 3 column 5), and complexity-preferred (SCHS
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Table 4. Categories of scheduling related information

Scheduling Type Infomation Hierarchical Monolithic
Rarity-preferred State exercised times [106, 116, 152] [15]
Performance-preferred Contribution to new code coverage, Contribution to new state coverage, Contribution to new bugs [30, 55, 56, 106, 116] -
Complexity-preferred Count of connected basic blocks, Depth of state, Mutation opportunities [46, 57] -
Others Distance from the key statement - [99]

in Table 3 column 5), as detailed in Table 4. Rarity-preferred heuristics allocate more resources to
seldomly exercised states, hypothesizing that these states harbor more undiscovered adjacent states
or code logics [19, 106, 116, 152]. Performance-preferred heuristics prioritize states demonstrating
higher code coverage or bug discovery rates [30, 55, 56, 106, 116]. Additionally, some works utilize
complexity-preferred heuristics, favoring states with greater complexity (i.e., connected to more
basic blocks) or deeper states (i.e., further from the initial state) [46, 57]. For example, ICS3Fuzzer
[46] inclines to choose the deeper states and those states that exercise more basic blocks. As a
generation-based fuzzer, Pulsar [57] calculates the weight of all states that are reachable from the
current state, and then selects the state that has the max weight to be tested next. In detail, the
weight of a state is calculated as the sum of all mutable fields in a fixed number of transitions.
However, as all these state selection algorithms are implemented and evaluated separately on
different platforms and targets, it is hard to make a fair comparison and achieve conclusive findings.
Liu et al. [87] evaluate the three existing state selection algorithms of AFLNet [116] including
a rarity-preferred algorithm, an algorithm that randomly selects states, and a sequential state
selection algorithm. They find that these algorithms achieved very similar results in terms of
code coverage. They attribute the reasons to the coarse-grained state abstraction of AFLNET and
the inaccurate estimation of the state productivity. Therefore, they propose the AFLNETLEGION
algorithm [87] to address these issues, which is based on a variant of the Monte Carlo tree search
algorithm [86].

Monolithic Approaches. In a monolithic manner, state-related information is calculated as a
coefficient of the original scheduling algorithm used in the seed scheduling. For example, SGFuzz
[15] divides the states into rare states and normal states according to the exercised times. When
assigning energy to seeds, it calculates the proportion of the rare states that are exercised by each
seed and adds this proportion as one of the parameters on the basis of the original power scheduling
algorithm. In a similar way, SGFuzz assigns more energy to the seeds containing state transitions
that correspond to the expected protocol behaviors. This is because SGFuzz expects that these valid
state transitions are easier to be mutated to other invalid state transitions, thus incurring error
handling logic. Similarly, LTL-Fuzzer [99] also schedules the entire seed. It prioritizes the seeds
that are closer to the target code locations during the execution.

4.3 Testcase Construction
The construction strategy used in the protocol fuzzing can be categorized into packet-level and
sequence-level.

4.3.1 Packet-Level Construction Strategy (labeled as “Packet" in Table 3 column 6). Packet-Level
construction strategies of protocol fuzzers basically inherit the strategies of general fuzzers, such as
bit flip, set zero, etc. In this paragraph, more consideration is given to the construction strategies that
leverage protocol-specific characteristics for reducing input space or improving the effectiveness of
triggering bugs. For the former purpose (i.e., reducing input space), SPIDER[80] leverages the domain-
specific insight that most of the Openflow messages trigger new system events in existing SDN
controllers that affect state computation and resource footprints. Based on the insight, SPIDER can
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directly generate event sequences rather than generating Openflow messages, which significantly
narrows down the input space. Also, L2Fuzz [113] divides the L2CAP packet format into the
field that can be mutated and keeps the other fields unchanged to generate testcases that are
less likely to be rejected. IPSpex [183] combines network traffic and execution traces of network
packet construction to extract ICS protocol message field semantics. The strategies targeting the
later purpose (i.e., improving the effectiveness of triggering bugs) are mostly heuristics summarized
from practices. For example, EmNetTest [8] systematically generates validly constructed packets
with invalid header fields or truncated headers. The insight behind this strategy is gained from a
comprehensive study of 61 reported vulnerabilities in Embedded Network Stacks (ENS). Similar
strategies are mentioned in many industry conference works. BadMesher [121] adopts several
domain-specific strategies such as setting the length field to margin values, and randomly deleting
some fields, to improve the effectiveness of triggering bugs in Wi-Fi mesh devices. Yen et al. [170]
find that some strategies such as mutating the ID field to a non-existing ID, changing to port
number or length field to a boundary value (e.g., 0xFF/0x00), and changing IP to some random
addresses, can be quite effective in fuzzing Data Distribution Service (DDS) protocol. Similarly,
BrokenMesh [167] adopts some strategies like mutating the packet count or the length field in
fuzzing the Bluetooth Mesh protocol.

4.3.2 Sequence-Level Construction Strategy (labeled as “Sequence" in Table 3 column 6). Protocol
fuzzers may adopt some sequence-level construction strategies. These strategies proactively con-
struct message sequences that deviate from the regular protocol state machine, expecting to trigger
more non-memory-safety bugs of the PUT. Generation-based fuzzers and mutation-based
fuzzers operate differently in sequence-level construction.
(1) Generation-Based Fuzzers: These fuzzers construct message sequences leveraging estab-

lished protocol knowledge, such as standard state machines and inter-message dependency
relationships. Notable examples include works [18, 124, 142, 158] that generate aberrant
message traces by applying strategies like the addition or removal of random protocol mes-
sages to valid sequences derived from standard state machines. Projects like Sweyntooth
[56], Greyhound [55], and Braktooth [53] meticulously monitor state transitions of PUT and
strategically inject valid packets at incorrect states to elicit anomalies, in accordance with
the state machine model. Recent research by Fiterau-Brostean et al.[50] proposes a novel
method for detecting state machine bugs by inputting a catalogue of finite automatons which
indicate certain types of state machine bugs, as well as a model of the PUT’s. It can then
analyze the models and produces testcases that expose the bug.

(2) Mutation-Based Fuzzers: These fuzzers predominantly employ simple yet effective strate-
gies to mutate the message sequences of seeds. This includes techniques such as packet
shuffling, random insertion, or deletion. For instance, AFLNET [116] constructs message
sequences by maintaining a pool of messages from network traces that can be integrated into
or substituted for existing seeds. AFLNET further employs a blend of byte-level and sequence-
level operators, including replacement, insertion, duplication, and deletion of messages, to
craft the message sequences. Similarly, DYFuzzing [8] mutates seeds and applies Dolev-Yao
(DY) attacker strategies. Frankenstein [130] reorganizes knownmessage sequences to enhance
code coverage. He et al. [63] propose a unique fuzzer for the 5G non-access-stratum (NAS)
protocol, which extracts packets from captures into a structured message table. This fuzzer
then applies differentiated mutation strategies to various key fields, thereby significantly
enhancing the intelligence and precision of the message mutation process. It is important to
note that mutation-based fuzzers must judiciously manage the correlation of specific fields
in message sequences, such as session numbers, counters, or timestamps. Indiscriminate
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Fig. 6. Detailed workflow of executors in protocol fuzzing.

mutations in these fields could render the input ineffective and lead to early rejection. To
address this challenge, AFLNET [116] modifies the code of the PUT to use a fixed session
number, thereby ensuring the effectiveness of the fuzzing process.

5 EXECUTOR
In this section, we will introduce the key improvements of protocol fuzzers on the executor in
detail. As shown in Fig. 6, an executor in protocol fuzzing normally includes four key processes.
First, the executor needs to prepare an executable execution environment for PUT (①. Execution
Environment Preparation), and then send input to PUT through the input feeding mechanism (②.
Input Feeding), extract runtime information during the input processing (③. Information Extraction),
and reset the execution state and environment state to a specific state after the execution of the
current iteration is completed (④. Execution Reset).

In Table. 5, we summarize the key techniques and improvements in efficient execution (including
①, ②, ④) and runtime information extraction (③) of the existing protocol fuzzing works. The works
in the table are selected from the collection of papers because they are directly related to the
executor.

5.1 Efficient Execution
In protocol fuzzing, there are commonly two directions to improve the fuzzing efficiency: 1)
establishing an execution environment that enables parallel testing (① in Fig. 6); 2) minimizing
the execution cost of each iteration of testing (② and ④ in Fig. 6).

5.1.1 Scalability Improvement. Scalable fuzzing, in this context, refers to the capacity to create
multiple testing environments for parallel fuzzing. This is crucial in protocol fuzzing, where many
fuzzing targets are closely bounded to hardware. The traditional approach for parallel testing of
purchasing multiple physical devices can be economically burdensome and inefficient. For protocol
fuzzing, since many fuzzing targets depend on specialized execution environments, concurrent
testing of these targets can only be carried out by purchasing multiple physical devices, which
leads to high economic costs and waste.

Emulation emerges as a key solution for scalable fuzzing. It offers a virtual execution environment
for the PUT, reducing the dependency on specialized hardware and facilitating the creation of
numerous parallel testing instances. This capability significantly enhances scalability, allowing for
extensive fuzzing operations across multiple environments. Some of the protocol fuzzers leverage
the existing emulation solutions to scale the fuzzing process (labeled as “CUVM" in Table. 5 column
4)[69, 115, 134, 138, 152].
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Table 5. Protocol fuzzers and their optimization of executor.

Year Work T Target Efficient Execution Runtime Info Extraction

Env Prep Input Feeding Execution
State Reset

Execution
Env Reset Runtime Info Monitoring

Method
2014 Gorenc et al.[58]  SMS/MMS[44] HIL OTA VMSR DR - -
2017 WiFuzz[158]  Wi-Fi HIL OTA RM - State Resp
2018 TCPWN[69]  TCP CUVM Socket (MiTM) - - State Resp
2019 SeqFuzzer[181]  ICS HIL Socket (P2P) - - - -
2019 MoSSOT[138]  SSO CUVM Socket (MiTM) VMSR VMSR State Resp
2019 Chen et al.[30] G# General - File PSR - State & Code Cov SSI
2019 Fw-Fuzz[52] G# General - Socket (P2P) ProcR - Code Cov SDI
2019 Park et al.[112] G# RDP[102] - Virtual Channels - - Code Cov SDI
2020 Exploiting Dissent[160]  TLS - Socket (P2P) ProcR - State Resp
2020 DTLS-Fuzzer[48]  DTLS - Socket (P2P) MR - State Resp
2020 AFLNET[116] G# General - Socket (P2P) MR UPSR State & Code Cov Resp & SSI
2020 SweynTooth[56]  BLE HIL OTA ProcR - State Resp
2020 Frankenstein[130] G# Bluetooth SE Shared memory VMSR - Code Cov SDI
2020 Peach*[91] G# ICS - Socket (P2P) ProcR UPSR Code Cov SSI
2020 aBBRate[115]  TCP CUVM Socket (MiTM) - - State Resp
2020 BaseSAFE[93] G# LTE SE Shared-Memory PSR - Code Cov SDI
2020 ToothPicker[64] G# Bluetooth HIL FHPI ThrdR - Code Cov SDI
2021 ICS3Fuzzer[46]  ICS - Socket (P2P) ProcR - Exec Traces SDI
2021 StateAFL[106] G# General - Socket (P2P) PSR UPSR State & Code Cov SSI
2021 TCP-Fuzz[187] G# TCP - Socket (P2P) - - Branch Cov SSI
2021 Snipuzz[47]  IoT HIL Socket (P2P) MR & PhyR - Code Cov Resp
2021 Z-Fuzzer[125] G# Zigbee SE Socket (P2P) ProcR - Code Cov SDI
2021 PAVFuzz[189] G# AV - Socket (P2P) ProcR UPSR Code Cov SSI
2021 Schepers et al.[133]  Wi-Fi - Virtual Interface - - Code Cov SSI
2021 Wu et al.[164]  EV Fast Charging HIL CAN Bus (MiTM) - - - -
2022 Meng et al.[99] G# General - Socket (P2P) PSR - Property-Guided SSI
2022 Greyhound[55] G# Wi-Fi HIL OTA ProcR - State Resp
2022 SGFuzz[15] G# General - Shared-Memory - - State & Code Cov SSI
2022 Braktooth[53] G# Bluetooth HIL OTA ProcR - State Resp
2022 SNPSFuzzer[81] G# General - Socket (P2P) PSR UPSR Code Cov SSI
2022 Nyx-net[134] G# General CUVM File VMSR VMSR Code Cov HA/SSI
2022 SnapFuzz[9] G# General - UDS PSR IMFR Code Cov SSI
2022 AmpFuzz[78] G# UDP - Socket (P2P) - - BAF & Code Cov Resp & SSI
2022 L2Fuzz[113]  Bluetooth L2CAP HIL OTA - - State Resp
2022 Song et al.[145]  SOME/IP[14] HIL CAN Bus - - State Resp
2022 Charon[188] G# ICS - Socket (MiTM) - - State & Code Cov Resp & SSI
2023 FieldFuzz[21]  Codesys v3 CUVM Socket RM - Code Cov Resp
2023 BLEEM[89]  General - Socket (MiTM) RM - State Resp
2023 NS-Fuzz[120] G# General - Socket (P2P) PSR UPSR State & Code Cov SSI
2023 HNPFuzzer[51] G# General - Shared-Memory PSR UPSR State & Code Cov Resp & SSI

#: Whitebox Fuzzer;  : Blackbox Fuzzer; G#: Greybox Fuzzer; T: Taxonomy; HIL: Hardware-In-the-Loop; General: The fuzzer is not designed for
a specific type of protocol; CUVM: Commonly Used Virtual Machine; SE: Specialized Emulation; OTA: Over-the-air; UDS: Unix Domain Socket;
MiTM: Man-in-The-Middle-based packet injection; VMSR: Virtual Machine-level Snapshot and Recovery mechanism; ProcR: Process Restart;
PhyR: Physical Reset; ThrdR: Thread Restart; DR: Database Reset; PSR: Process-level Snapshot and Recovery mechanism; UPSR: User-Provided
Script Reset; HA: Hardware-Assisted mechanism; EOB: Externally-Observable-Behavior-based method; SDI: Software Dynamic Instrumentation;
SSI: Software Static Instrumentation; BAF: Bandwidth Amplification Factor; -: Not implemented; RM: Reset Message; IMFR: In-Memory Filesystem
Reset; Resp: Responses.

However, two difficulties hinder the usage of emulation in protocol fuzzing. The first is the
availability of the protocol implementation binary as many firmware images are not publicly
available. Second, compared to the diversity of hardware, existing emulators can only support
a small fraction of them. These difficulties lead to a lot of work still performing fuzzing in a
hardware-in-the-loop way (labeled as “HIL" in Table. 5 column 4) [47, 55, 56, 58, 90, 113].
There are also some works addressing these issues according to the characteristics of different

devices (labeled as “SE" in Table. 5 column 4). For the first challenge, the existing works obtain
the target binaries by intercepting Over-The-Air (OTA) firmware updates, or extracting using
vendor-specific command or debugging ports. For example, Frankenstein [130] leverages the
Patchram mechanism, a Broadcom vendor-specific command that can be used to temporarily patch
breakpoints to the ROM, to take the memory snapshot of a physical Bluetooth chip and emulate it
in an unmodified version of QEMU. To address the second question, the existing work often uses
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an approach called rehosting to partially emulate the functionality of the physical hardware. For
example, BaseSafe [93] selectively rehosts several parser functions of signaling messages leveraging
Unicorn engine, which is a popular CPU emulator [122].

5.1.2 Execution Cost Reduction. Another direction to improve fuzzing efficiency is to optimize the
intermediate execution steps in each iteration. Below we present the progress of existing works
toward this direction, which mainly focus on three sub-procedures: input feeding (② in Fig. 6)
and execution reset (④ in Fig. 6), specifically.
Input Feeding. Input feeding mechanism acts as a pipeline between the input generator and

the PUT to pass the testcase to the PUT for parsing and execution. According to the Inter-Process
Communication (IPC) mechanisms that the communication between Fuzzer and PUT rely on, the
existing approaches can be roughly divided into four categories, namely OTA-based, socket-based,
shared-memory-based, and file-based approaches. OTA- and socket-based approaches are mostly
used when the fuzzer and PUT cannot be deployed on the same physical device. The latter two
approaches can be used to speed up input feeding when PUT and the fuzzer can be deployed on
the same device.

• OTA-Based Input Feeding (labeled as “OTA" in Table. 5 column 5). In general, OTA-based
input feeding mechanisms are mostly used in the scenario of fuzzing the implementations of
protocols that are typically closed in nature and tightly integrated with hardware components,
such as Wi-Fi [55, 141, 158], Bluetooth (including classic Bluetooth and BLE) [53, 56, 113],
LTE [93], 4G/5G [54, 63] and SMS/MMS protocols [58]. In this approach, PUT and the fuzzer
need to be deployed in adjacent physical spaces and communicate with each other on specific
frequency bands. Thus, OTA-based fuzzers require the use of radio-frequency transceiver
devices with receive and transmit functions, such as a Software-Defined Radio (SDR), to
handle signals over a wide tuning range. OTA-based fuzzing provides the capability of testing
the entire protocol stack including the physical layer. However, OTA-based approaches are
the slowest among the above-mentioned approaches. Therefore, many wireless protocol
fuzzers try to use other input feeding mechanisms to have a better performance, which will
be introduced in the following.

• Socket-Based Input Feeding (labeled as “Socket" in Table. 5 column 5). Socket-based input
feeding mechanisms are mostly used in protocol implementations based on TCP/IP infras-
tructures. In common cases under these approaches, fuzzer and PUT communicate with each
other through IP addresses, via socket mechanisms including TCP socket and UDP socket.
The socket-based approaches include two deployment modes, one is point-to-point (P2P)
communication between the fuzzer and PUT [9, 27, 48, 81, 99, 106, 116, 159, 187]. The fuzzer
can play the role of a client or server depending on the role of the PUT. The other deployment
mode is Man-in-the-middle (MiTM), in which the fuzzer acts as a proxy between two com-
munication parties and performs mutation or injection to the normal communication traffic
[69, 115]. The MiTM-based input feeding is mostly used in the scenario where the protocol
involves certain contextual information (checksum, packet sequences, etc.) that cannot keep
valid by mutating static seeds. However, both modes need to address two challenges. First,
socket communication is quite heavy and involves lots of context switches. Existing works
improve the efficiency of the socket-based input feeding mechanisms by avoiding the use of
these expensive network functions. For example, SnapFuzz [9] replaces the original internet
socket with UNIX domain socket [34], a lightweight IPC mechanism that does not have the
routing, checksum calculation operations that IP sockets have. Second, it’s hard for the fuzzer
to determine whether the PUT has already finished processing the previous message and is
ready to receive the next message. The PUT may reject the messages coming too early when

, Vol. 1, No. 1, Article . Publication date: January 2024.



A Survey of Protocol Fuzzing 19

the target is not ready, thus causing the fuzzer to desynchronize from its state machine. To
solve this issue, Fiterau-Brostean et al. [48] and AFLNET [116] set static time intervals to wait
for the PUT to initialize, process requests, and send responses. However, static timers are too
coarse-grained and can waste a lot of time waiting for the timeout, thus slowing down the
fuzzing process. SnapFuzz [9] and AMPFuzz [78] develop a more fine-grained method to in-
spect the state of the socket. Specifically, they use the function call to related network system
calls such as 𝑟𝑒𝑐𝑣 (), 𝑟𝑒𝑐𝑣 𝑓 𝑟𝑜𝑚() as a sign of ready to receive the next message. They monitor
all these function calls through binary rewriting and compile-time code instrumentation, and
then notify the fuzzer to send the next iteration of input.

• File-Based Input Feeding (labeled as “File" in Table. 5 column 5). File-based input feeding
leverages static or dynamic instrumentation techniques to replace heavy network operations
with file operations to achieve a performance boost. For example, Yurong et al. [30] transform
socket communication to file operations using preloading customized libraries [175] under
the circumstance that the source code of target is not available. Similarly, Nyx-net [134]
injects a library into the target to hook the network functions of the target connection to
obtain their associated file descriptors and injected fuzzing input to the right place.

• Shared-Memory-Based Input Feeding (labeled as “Shared-Memory" in Table. 5 column 5).
Shared-Memory-Based input feedingwrites the fuzzing input to the address of sharedmemory
and hooks the related functions to read the testcase from shared memory [17, 51, 93, 130]. For
example, BaseSafe [93] executes each generated testcase in a forked copy of the target process,
and the input for each run is copied to the appropriate address in the corresponding child
process. Similarly, Frankenstein [130] creates a virtual modem to inject custom packets. The
fuzzed input are written to the receive buffer in RAM that is mapped to the hardware receive
buffer using direct memory access (DMA). Also, HNPFuzzer [51] emulate network functions
based on shared memory to short the time consumption due to message transmission between
fuzzer and PUT.

• Others. There are also works that rely on specialized communication channels to feed fuzzing
inputs. For example, to fuzz the client of the Remote Desktop Protocol (RDP), Park et al.
leverage the virtual channel, an abstraction layer in RDP that is used for transporting data,
to actively send fuzzing input from the server to the client [112]. Song et al. use a media
converter to convert the traffic between Automotive Ethernet and standard Gigabit Ethernet
and fuzz the SOME/IP protocol stack of the electronic control unit (ECU) [145], which is a
control communication protocol between ECUs.

Execution Reset. After each iteration of execution, it is necessary to reset the PUT to a
specified state and wait for the next iteration of fuzzing. This is because each testcase may affect
both the internal execution states of the PUT (e.g., global variables) or influence the execution
environment (e.g., file system, databases). Execution without reset makes the PUT behave more
non-deterministicly, making it harder to reproduce the bugs. For example, when fuzzing an FTP
server, a testcase may cause a file to be created under the shared folder. If the shared folder is not
reset, the FTP server will report an error if the following testcase tries to create a file with the same
name, which means that the same testcase results in different behavior of PUT.
The reset of execution includes three key steps, which are reset time selection, execution state

reset and execution environment reset. First of all, the executor needs to judge whether the current
iteration is over (1. reset time selection) before execution reset. After confirming that the current
iteration of execution has finished, the executor needs to separately reset the runtime state of
PUT (2. execution state reset) and its impact on the external execution environment such as the file

, Vol. 1, No. 1, Article . Publication date: January 2024.



20 To be filled, et al.

system and database (3. execution environment reset). Below we summarize the progress of existing
works in these three key steps separately.

1. Reset Time Selection. The reset time selection has a significant influence on the performance of
fuzzing. Early reset may cause the target to terminate when it is still doing some tasks that may
be vulnerable, and late reset may affect the efficiency of the test. A common approach is to set a
fixed time interval before resetting the execution. For example, AFLNET [116] allows the user to
manually configure the time delays before restarting the PUT. However, this approach is relatively
coarse-grained, and it is hard to determine an appropriate time interval. In order to precisely control
when to reset the execution, some works use program analysis to find the location that indicates
the end of the execution of an iteration, and instrument the target program to terminate at these
code locations [9, 78, 120, 134]. For example, AMPFuzz [78] performs static analysis and injects
termination calls to the code branches that do not contain message-sending APIs. In addition, some
works choose not to perform an execution reset after each fuzzing iteration for performance boost.
For example, Charon [188] leverage a program status inferring module to infer the time point
at which the PUT has finished processing the packet, thereby detecting the coverage of specific
inputs and avoid the need to repeatedly restart the PUT to collect feedback. Similarly, SGFuzz [15]
doesn’t restart the PUT in every iteration. However, it performs a post-analysis to eliminate the
uon-deterministic. Specifically, it collects all the inputs on which the PUT has been executed and
minimizes the input list to a minimal message sequence that can trigger the bug.
2. Execution State Reset. Execution state reset is responsible for resetting the context of the

running PUT process to a specified state, including the data in registers and memory, etc. Existing
execution state reset mechanisms can be divided into three categories, namely message-based reset,
process restart, and snapshot & recovery.

Message-based reset (labeled as “MR" in Table. 5 column 6) operates by dispatching a specific type
of message that compels the PUT to terminate the ongoing session and revert to its initial state
[21, 48, 158]. For instance, when fuzzing theWi-Fi Access Point (AP), WiFuzz use a deauthentication
message to reset its state [158]. Message-based reset is easy-to-use, but it only supports a limited
set of protocols as not every protocol is designed with a reset message. Moreover, it can only reset
the explicit protocol state of the PUT, but the implicit state of the test target, such as the global
variables, and the memory allocated but never freed, cannot be reset with this approach.

Another commonly used approach to reset the execution state is to kill the target process and
restart (labeled as “ProcR" in Table. 5 column 6) [27, 46, 91]. However, it is a relatively heavy
operation for fuzzing, as the restart of the program involves multiple expensive pre-processing
steps, such as loading the program into memory, dynamic linking etc., resulting in inefficiencies.
The snapshot & recovery mechanism has been integrated into fuzzing. This approach involves

checkpointing PUT at a specific runtime state and then resetting it back to that checkpoint after each
fuzzing iteration. This method effectively bypasses the repeated execution of resource-intensive
initialization operations, thereby enhancing fuzzing efficiency. Protocol fuzzing, in particular, de-
rives significant benefits from snapshot technology. Protocols are predominantly stateful, implying
that the input often comprises multiple prefix messages that guide the PUT to a designated state
before introducing the crafted message. It’s common for testcases to share the same prefix message
sequences, especially when a specific state requires repeated exploration. Implementing snapshot
technology in the protocol fuzzing process eliminates redundant executions associated with pars-
ing these shared packet sequences, thereby markedly boosting fuzzing efficiency. The snapshot
methodologies employed in current protocol fuzzing research can be broadly categorized into two
types: process-level snapshots and virtual machine-level snapshots.
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• Process-Level snapshot mechanisms (labeled as “PSR" in Table. 5 column 6) rely on system
call capabilities provided by the operating system to realize their functionality. Generally,
based on the APIs used, existing methods can be categorized into two types: fork-based
and ptrace-based. Fork-based snapshot mechanisms are widely used in several well-known
general-purpose fuzzers, including AFL[174]. Specifically, AFL inserts a piece of fork-server
code into the PUT program binary, which is executed before the𝑚𝑎𝑖𝑛() function. Following
a signal from the AFL fuzzing side, the fork-server generates a child process via the 𝑓 𝑜𝑟𝑘 ()
function, and this child process continues with the𝑚𝑎𝑖𝑛() function. Since the fork-server
has already loaded all kinds of resources, each child process only needs to execute the
main function’s code, thereby bypassing the costly pre-processing steps and enhancing
efficiency. This mechanism has been adopted by many protocol fuzzers for state resetting
[9, 51, 81, 90, 93, 106, 116, 120]. Additionally, some works have extended the original fork-
server mechanism in AFL to allow for conditional multiple initializations at different code
points, enabling the fuzzer to conveniently switch between various states of the protocol and
thus boosting the fuzzing process [9, 30]. ptrace-based snapshot mechanisms, such as CRIU
and DMTCP, leverage debugging API 𝑝𝑡𝑟𝑎𝑐𝑒 () to collect all the process context information
and save it as image files [81]. In the restoration process, these snapshot mechanisms read
the dumped image files and recreate the process using syscalls such as 𝑓 𝑜𝑟𝑘 () or 𝑐𝑙𝑜𝑛𝑒 ().
Unlike the fork-based snapshot, which requires predetermined snapshot conditions (i.e., the
location of the fork-server call) before execution, ptrace-based snapshots can checkpoint at
any state during runtime.

• Virtual-Machine-Level snapshot mechanisms (labeled as “VMSR" in Table. 5 column 6)
utilize the capabilities of virtual machine hypervisors to capture snapshots of the entire virtual
machine at a specific time point, typically facilitated through a hypercall [134, 138]. When hy-
percalls are invoked, the program runningwithin the virtual machine exits the VM context and
transfers control to the hypervisor. Although the hypervisor-based approach is user-friendly,
requiring no instrumentation, it is somewhat less efficient and more space-consuming due to
its large granularity. To enhance the practicality of using virtual machine-level snapshots in
protocol fuzzing, Nyx-net [134] implements an incremental snapshot approach to reduce the
overhead associated with creating and removing snapshots. Specifically, Nyx-net establishes
a root snapshot in a pristine state, and each execution iteration commences from this root
snapshot. In subsequent fuzzing iterations, Nyx-net generates incremental snapshots based
on the root snapshot following the execution of an input message. Consequently, Nyx-net
has a great performance boost on the testcases that share the same prefix message sequences.

3. Execution Environment Reset. The reset of the execution environment primarily involves
resetting the filesystem or database that may be affected by the PUT. Many fuzzers require users to
provide a cleanup script to revert all changes [51, 81, 106, 116, 120], necessitating substantial manual
effort to analyze the PUT’s potential impact on the external environment. To address this issue,
Snapfuzz [9] leverages a custom in-memory filesystem, wherein modifications are automatically
discarded after the completion of a fuzzing iteration. Furthermore, the hypervisor-based snapshot
mechanism. Besides, the hypervisor-based snapshot mechanism (VMSR in Table. 5 column 7) [134],
which captures the state of the entire virtual machine, can reset both the execution state and the
environment simultaneously.

5.2 Runtime Information Extraction
In general, the runtime information extraction methods used in existing works can be divided into
three categories according to their generality.
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Hardware-Assisted methods (labeled as “HA” in Table 5 column 9) capitalize on the unique
capabilities inherent to certain specialized hardware devices to glean runtime information. A prime
example of this method is demonstrated by Nyx-net [134], which employs Intel Processor Trace
(Intel PT). This feature, unique to certain high-end Intel CPUs, allows for the detailed recording of
software execution aspects, such as control flow paths, thus enabling the comprehensive collection
of in-depth coverage information.

Software-Based methods leverage the capability of the software execution environment, e.g.,
compiler, operating system, virtual machine hypervisor etc., to obtain the runtime information.
Instrumentation is the most commonly used method for realizing runtime information extraction,
which inserts information collection function calls into the program at specific code point. Program
instrumentation can be either static (labeled as “SSI” in Table 5 column 9) or dynamic (labeled
as “SDI” in Table 5 column 9) [46, 64, 112]. The former happens before the PUT runs, and can be
performed at compile-time [15, 81, 90, 91, 99, 106, 116, 125, 134, 187] or by directly rewriting the
binary [9]. The latter happens while the PUT is running, leveraging tools such as DynamoRIO [112]
or Frida [64] to inject hooking functions at specific code points to collect runtime information.

Externally-Observable-Behavior-Based methods are the most general class of methods, as
it doesn’t rely on any support of the execution environment and can be used in a blackbox manner.
There are various externally observable behaviors, such as the output of the program (labeled
as “Resp” in Table 5 column 9) and the side-channel information such as power consumption
and response time. The heuristics behind these observable behavior-based methods are that the
differences in these behaviors can represent the PUT is under different states or having gone
through different execution paths. Specifically, AFLNET [116] and Fieldfuzz [21] identify different
protocol states according to the status code in the response messages. Snipuzz [47] and FUME [114]
adopt a heuristic that different response messages mean different execution paths. Thus, they keep
the input that can cause a different response as a seed for subsequent mutation testing, expecting to
increase the coverage. Aafer et al. [3] use the execution logs of the Android system as a feedback to
refine the input generation grammars as the developers usually add log statements to indicate the
detailed information about the input validation. By observing the side channel information such as
the system status, power consumption, and response time, Flowfuzz [140] determines whether the
hardware switches have gone through different execution paths.

6 BUG COLLECTOR
To address the challenges in protocol fuzzing, existing works design both memory-safety bug
oracles and non-memory-safety bug oracles according to various information sources.

6.1 Memory-Safety Bug Oracles
Memory-Safety bugs include stack overflow, heap overflow, Use-After-Free (UAF) etc., which
can lead to crashes. Existing technologies mostly observe their running status through different
channels to determine whether a memory-safety bug is triggered. From the information source
point of view, there are five types of the commonly used oracles for detecting memory-safety
bugs, namely process fatal signals and sanitizers, crash logs and debug information, error-signaling
messages, timeout and liveness checks and abnormal physical behaviors.

6.1.1 Fatal Signals and Sanitizers. have been extensively utilized as a pivotal mechanism for
bug detection in a plethora of contemporary studies [15, 90, 91, 106, 118, 125, 130, 142, 187].
Predominantly, memory-safety bugs manifest through the overwriting of data or code pointers
with invalid values, leading to critical process disruptions such as segmentation faults or process
terminations, thereby generating fatal signals like SIGSEGV, SIGABRT, and others. Fuzzers can
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Fig. 7. Taxonomy of bug oracles in protocol fuzzing.

detect faults by checking whether the PUT process is dying from these signals. Addressing the
subset of memory-safety bugs that do not immediately precipitate program crashes, fuzzers employ
sanitizers. Sanitizers are bug detection tools, specifically engineered to identify and highlight unsafe
or undesirable memory access patterns. Upon identifying such anomalies, sanitizers are designed to
terminate the PUT, thereby signaling the presence of a potential bug [135, 136, 143, 146]. Sanitizers
can be enabled at compile-time[15, 90, 91, 106, 125, 130, 142, 187] or enabled dynamically at runtime
[93].

6.1.2 Crash Logs and Debug Information. Some works determine whether the PUTs are crashed
by analyzing the system logs or debug information [21, 46, 53, 56, 113, 121, 163]. These system logs
and debug information can be obtained by various channels. Specifically, ICS3Fuzzer leverages
the Windows EventLog Service to detect crash events on Windows systems [46]. Swentooth [56]
and Braktooth [53] propose to collect the startup messages or crash messages in the system logs
leveraging the debug ports exposed by respective Bluetooth development boards. Startup message
is an indicator of program crashes, as the Bluetooth devices have a watchdog program to reset
the Bluetooth SoC when finding it is unresponsive. Wang et al. [163] leverage NLP technology to
process the logs and detect unintended behavior of PUT. Differently, L2Fuzz [113] and FieldFuzz
[21] identify crashes by checking whether a crash dump was generated.

6.1.3 Error-Signaling Messages (labeled as “ESM” in Table 6 column 5). Many protocols use special
responses or status codes to indicate internal errors, therefore can be used for bug detection. For
example, L2Fuzz detects Bluetooth L2CAP vulnerabilities by checking whether the packet received
contains an error-signaling message such as Connection Failed, Connection Aborted, Connection
Reset, and Connection Refused [113]. These error messages indicate that the PUT may be crashed.
OWFuzz uses the Deauth/Disassoc frames, management frames of the Wi-Fi protocol to terminate
the communication, as an indicator of anomaly during fuzzing Wi-Fi protocol stacks [22].

6.1.4 Abnormal Physical Behaviors (labeled as “APB” in Table 6 column 5). The abnormal physical
behavior of the target device, e.g., startup sound, can also be used as a bug oracle. For example,
when fuzzing the Bluetooth sound device, Braktooth uses the event of repeated startup sound as a
bug oracle [53]. This is because Bluetooth devices will be restarted by the watchdog program when
an error occurs and a startup sound will be played during the booting process. Differently, PCFuzzer
[88] leverages an oscilloscope to collect the physical signal of the output module to monitor the
target’s status.
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Table 6. Protocol fuzzers and their oracles

Year Work T Target Bug Detector
Memory-Safety Bug Oracles Non-Memory-Safety Bug Oracles

2013 Tsankov et al.[157]  General Sanitizer -
2015 Doona[95]  General Fatal Signals -
2015 Pulsar[57]  General Timeout -
2015 Ruiter et al.[39] G# TLS - Manual
2015 Beurdouche et al.[18]  TLS Timeout Incorrect State Transitions
2016 TLS-Attacker[142]  TLS Sanitizer Incorrect State Transitions
2017 WiFuzz[158]  Wi-Fi Timeout Incorrect Content & State Transitions
2018 TCPWN[69]  TCP - Abnormal Performance Indicators
2018 IoTFuzzer[27]  IoT Liveness Check -
2019 SeqFuzzer[181]  ICS - Incorrect Content & State Transitions
2019 ACT[152] G# TCP - Abnormal Performance Indicators
2019 MoSSOT[138]  SSO Fatal Signals Incorrect State Transitions
2020 Exploiting Dissent[160]  TLS - DE
2020 SweynTooth[56]  BLE Crash Logs / Timeout Incorrect State Transition
2020 aBBRate[115]  TCP - Abnormal Performance Indicators
2020 DPIFuzz[124]  QUIC Sanitizer DE
2020 BaseSAFE[93] G# LTE Sanitizer -
2021 ICS3Fuzzer[46]  ICS Crash Logs -
2021 TCP-Fuzz[187] G# TCP Fatal Signals Inconsistency in Transmission & DE
2021 Snipuzz[47]  IoT Liveness Check -
2021 PAVFuzz[189] G# AV Fatal Signals -
2021 Aichernig et al.[4]  MQTT - DE
2021 Roitburd et al.[127]  AnyConnect[33] Liveness Check -
2021 Owfuzz[22]  Wi-Fi Liveness Check & ESM -
2021 BadMesher[121]  Wi-Fi Mesh Fatal Signals & Liveness Check -
2022 Meng et al.[99] G# General Fatal Signals Incorrect State Transitions
2022 Greyhound[55] G# Wi-Fi Fatal Signals / Timeout Incorrect State Transitions
2022 Braktooth[53] G# General Crash Logs & APB -
2022 L2Fuzz[113]  Bluetooth L2CAP Crash Logs & Liveness Check & ESM Incorrect State Transitions
2022 AmpFuzz[78] G# UDP - Abnormal Performance Indicators
2022 BrokenMesh[167]  BLE Mesh Timeout -
2022 PCFuzzer[88]  PLC Liveness Check & APB -
2023 FieldFuzz[21]  Codesys v3 ESM & Crash Logs & Timeout -
2023 Tyr[32] G# Blockchain - Incorrect State Transitions
2023 LOKI[92]  Blockchain Fatal Signals Incorrect State Transitions
2023 Wang et al.[163]  General Crash Logs -
2023 DYFuzzing[7] G# General Sanitizer Incorrect Content & State Transitions
2023 ResolFuzz[20] G# DNS - DE

#: Whitebox Fuzzer;  : Blackbox Fuzzer; G#: Greybox Fuzzer; T: Taxonomy; General: The fuzzer is not designed for a specific type of protocol; -:
Not detectable; ESM: Error-Signaling Messages; APB: Abnormal Physical Behaviors; DE: Differences in Execution.

6.1.5 Timeout and Liveness Checks. As most memory-safety bugs result in process crashes, fuzzers
can detect these bugs by liveness detection. A common way to check the liveness of a target is to set
a static timeout for a response [22, 27, 47, 55, 57, 121, 145]. If the response message from the target
is not received by the time, it is determined that the target process is dead. This method is suitable
for environments with limited debugging techniques, such as unable to obtain process signals or
debug logs. However, setting a fixed timeout is a relatively coarse-grained method, which may
introduce false positives due to network fluctuations or excessive load on the target. Some works
propose several active liveness checks to mitigate the false positive issues. For example, Snipuzz
[47] resends input sequences for multiple times to reduce false positives. IoTFuzzer [27], OWFuzz
[22], and BadMesher [121] use heartbeat messages (e.g., ICMP messages) to infer the status of the
PUT.
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6.2 Non-Memory-Safety Bug Oracles
Non-Memory-Safety bugs are bugs that are caused by non-memory access reasons and violate
some expected properties, such as logical bugs, RFC violations, or performance influential bugs.
Non-Memory-Safety bugs are challenging to be identified because they have no uniform observable
behavior. Detecting non-memory-safety bugs usually requires the user to define the oracle according
to the properties destroyed by the target. Depending on the properties that are checked, these oracles
can be roughly divided into four categories, namely incorrect message content & state transitions,
inconsistency in transmission, abnormal performance indicators, and differences in execution. We will
describe these techniques in detail in the following subsections. It should be noted that although
there are various ways to identify possible non-memory-safety bugs, most of these methods can
only report suspicious behaviors of the PUT, which still require experts’ manual verification to
determine impact and exploitability.

6.2.1 Incorrect Message Content & State Transitions. Incorrect Message Content checks whether
the content of the responses violate some semantic constraints. Incorrect State Transitions verifies
whether the state transitions are valid or allowed. In most cases, these rules are extracted from
protocol specifications or designed with expert knowledge. These rules can be in different forms,
such as canonical state machines [18, 142], linear-temporal properties [99], constraints of response
messages [55, 56, 92], etc. For example, Beurdouche et al. [18] manually construct a standard state
machine from the specification and then use this state machine as a ground truth to identify deviant
behaviors of the PUT. Utilizing this method, a logical bug was identified in a TLS implementation
JSSE[18]. This flaw permitted attackers to bypass all messages pertaining to key exchange and
authentication, subsequently enabling them to initiate unencrypted communication. Given a linear-
time temporal logic property that a protocol implementation needs to satisfy, LTL-Fuzzer [99]
leverages directed greybox fuzzing to direct the fuzzing towards specific location that can affect
the property, and checks whether the property is held during each execution iteration. Besides,
Sweyntooth [56] and Greyhound [55] check whether the received response packet is in the expected
type set of the current protocol state. Any mismatched message types are labeled as anomaly. Loki
[92] extracts rules from the PBFT consensus protocol paper [24], which are used as oracles to detect
non-memory-safety bugs in blockchain implementations. For example, Loki identified a bug in
Hyperledger Fabric [10] that can be used to confirm illegal transactions.

6.2.2 Message Inconsistency in Transmission. Some works check whether there are non-memory-
safety bugs that can lead to integrity break of the protocol. Specifically, as the correct data transfer
is one of the basic properties of TCP protocol, TCP-Fuzz [187] designed a data checker on both the
sender-side and receiver-side to check the violation of this property. Whenever a message is sent or
received, the data checker checks whether the sent message and the received message are identical.

6.2.3 Abnormal Performance Indicators. Some works aim to find network attack strategies that
can affect the performance of the PUT, and these works judge the effectiveness of attack strategies
by monitoring whether some performance indicators of PUT are beyond the normal range. For
example, to find the amplification DDoS attack strategies in UDP services, AMPFuzz [78] uses the
bandwidth amplification factor (BAF) [129] of each request and response pairs, which is the ratio of
the sum of the lengths of all response messages to the length of the attack request, as an indicator
to find the message that can maximize the consumption of throughput. TCPWN [69] and ABBrate
[115] aim to find the attack strategies against the implementations of TCP congestion control that
can increase or decrease the congestion window in a model-guided approach. To detect whether
the inputs indeed influence the congestion control mechanism, TCPWN obtains the window size
from system logs and compares it with an expected baseline.
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6.2.4 Differences in Execution (labeled as “DE” in Table 6 column 6). Differential testing involves
comparing the execution behaviors of different implementations of the same protocol to investigate
potential security impacts. This method is scalable due to its independence from code instrumen-
tation. For instance, TCP-Fuzz [187] contrasts the outputs of multiple TCP implementations to
identify discrepancies. Yang et al. [168] employ differential testing to uncover consensus bugs
in Ethereum that could lead to fork attacks. They generate a sequence of transactions as inputs
and observe the responses of two Ethereum clients, specifically implemented in Golang and Rust.
However, a significant challenge in this domain is ascertaining which implementation diverges
from the protocol’s expected behavior, and determining whether observed behavioral differences
stem from errors or under-specifications in the protocol’s RFC. As such, most works adopting
differential testing [20, 168, 187] integrate a subsequent manual inspection phase to differentiate
actual vulnerabilities from innocuous discrepancies.
To augment the bug-finding efficiency, some studies compare the PUT with an already well-

tested or formally verified implementation, referred to as a ‘reference stack’ [187]. For instance,
TCP-Fuzz [187] employs classical and extensively tested kernel-level TCP stacks, such as Linux
TCP or FreeBSD TCP, as a reference to test newer TCP stacks. In such scenarios, if inconsistencies
are reported, it strongly suggests the presence of bugs in the newer protocol implementations. This
methodology not only identifies discrepancies but also provides a framework for evaluating the
correctness of various protocol implementations.

6.2.5 Timeout and Liveness Checks. Timeout and liveness checks can also be used to detect infinite
loops [22, 27, 47, 55, 57, 121, 145]. The detection methods are similar to those introduced in Section
6.1.5.

7 DIRECTIONS OF FUTURE RESEARCH
So far, we have discussed state-of-the-art protocol fuzzers. In this section, we will answer RQ3 by
discussing the research trends and current challenges of fuzzing techniques based on what we have
surveyed.

7.1 Towards Perfect Communication Model Construction
The current methods for constructing communication models are far from perfect, often resulting
in either incomplete or inaccurate knowledge acquisition, or requiring extensive manual effort.
Specifically, as introduced in Section 4, existing methodologies for constructing communication
models can be broadly categorized into top-down and bottom-up approaches. Bottom-up methods
are proposed to learn the communication models specific to particular protocol implementations
[15, 39, 46, 48, 90, 106, 116, 120, 148, 162, 181], rather than the canonical communication model
of the protocols themselves. However, for top-down approaches, the majority of existing works
still rely heavily on manual processes to construct state machines from protocol specifications
[18, 55, 56, 63, 69, 70, 77, 113, 115, 128, 130, 138, 142, 187]. This manual construction is not only
labor-intensive but also prone to errors.

Existing research [71, 111] has embarked on exploring the automatic extraction of partial FSMs
from protocol specifications using NLP techniques. This exploration has preliminarily validated the
feasibility of automating the extraction of protocol communication models. However, this method
currently falls short of extracting canonical communication model from protocol specifications due
to ambiguities and unspecified behaviors in specifications, thus precluding a complete one-to-one
translation between the text and the communication model.
To resolve this, machine learning model based approaches can be explored for better model

construction. Considering the recent remarkable progress of LLM (Large Language Model) [29],
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one promising direction is to develop LLM-based solution for more precise model construction.
Another possible direction is to combine the other information sources (such as the code of protocol
implementations, code commit or comment information during development, program analysis
results, etc.) to help understand the content of the specification better.

7.2 Towards Multi-Dimension Testing Perspectives
Existing research focuses more on changing the content of packets or the order of packet sequences.
This approach, while effective to a certain extent, overlooked the fact that protocols have mul-
tidimensional testing perspective, e.g., variables such as message latency [68], cache state [73],
configurations [37, 180], and concurrency level [75], as highlighted in Section 3.1. These attributes
play a crucial role in deciding the behavior of the target system. To effectively test these attributes
within protocol implementations, it is necessary to create detailed models that accurately represent
each attribute, including message latency, cache state, configuration parameters, and concurrency
levels. Additionally, specific oracles and mutators can be designed to evaluate the correctness of the
protocol behavior under various scenarios that encompass these multidimensional aspects. This
direction is interesting and can help establish a more comprehensive evaluation of the protocol’s
resilience and robustness.

7.3 Fuzzing Characterized Protocol Targets
A significant and under-explored future research direction is the fuzzing of characterized protocol
targets. Current research has not comprehensively covered various protocols, especially for those
with distinct characteristics and importance. The following three areas are particularly noteworthy:

1. Domain-Specific Protocols. Proprietary domain protocols, such as those used in satellite
communication [153], unmanned aerial vehicle (UAV) communication [61], and Robot Operating
System (ROS) [108], typically possess a high knowledge threshold and a relatively closed nature.
These protocols play a crucial role in many infrastructures, making their security research para-
mount. Presently, fuzzing research for these protocols is relatively scarce, presenting an opportunity
for the academic community to improve testing effectiveness and security through the development
of new fuzzing techniques and tools.

2. Hardware-Implemented Protocols. Another direction is hardware protocol which designs
fuzzers for testing protocols implemented on hardware such as FPGAs [156]. These hardware
implementations often exhibit different error characteristics compared to those at the software
level, necessitating the development of new approaches to more effectively identify and exploit
potential vulnerabilities.
3. Multi-Party Protocols. Another possible direction of protocol fuzzing is to support multi-

party protocols. In general, protocols have many communication mode, such as peer-to-peer mode
[69, 115, 159], server-client (master-slave) mode [27, 46, 158], and multi-party mode [149]. Existing
protocol fuzzers focus more on the first two modes by acting as a client/server to test the other
[27, 46, 158], or playing a role as a peer node to test the PUT [69, 115, 159]. The multi-party protocols
have not been studied. For example, a node can play a role as the computing node, consensus node
or management node in a blockchain network [10], each of which is responsible for a different task.
The correct execution of a smart contract protocol requires the cooperation of these roles. How to
efficiently test these multi-party protocols is a interesting but challenging question.

7.4 Combining with Other Vulnerability-Finding Techniques
Beyond fuzzing, there exists a plethora of vulnerability-finding techniques, such as symbolic
execution [11, 26, 132, 144, 150, 151] and model checking [25, 59, 65, 74, 104]. While the combination
of these techniques with fuzzing has been explored in general contexts [147, 173], their applications
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in protocol fuzzing remains relatively under-explored [144]. This presents a promising future
research direction, especially considering the fact that the combined approaches still faces the
unique testing challenges for complex communications defined in protocols. Intuitively, future
research can improve existing vulnerability-finding techniques to better solve protocol-specific
challenges. Moreover, many protocols are accompanied by high-quality learning sources, such
as detailed specifications. Future research can explore ways to effectively utilize these valuable
sources to inform and enhance the combined approaches.

7.5 Shift-Left Protocol Fuzzing
Though there are certain research efforts focusing on the integration of general-purpose fuzzing
techniques into the development cycle – such as with tools like libFuzzer, OSS-Fuzz, and research
into fuzzing within CI/CD integration testing [123] – few studies have specifically dedicated
themselves to bridging the gaps between protocol fuzzing and the development process. Protocol
fuzzing is distinct from general software fuzzing; it entails rigorously testing the various proto-
cols that allow for communication and data exchange between different software systems and
components. Protocol targets generally have a more complex development workflow than that of
general software targets. This complexity arises from their need to precisely follow set standards
and specifications to ensure interoperability across diverse systems, leading to unique challenges
in integration and testing. These challenges necessitate a tailored approach to fuzzing that under-
stands and adapts to the intricacies of protocol development. Therefore, a shift-left approach to
protocol fuzzing is needed, which would integrate protocol-specific fuzzing techniques earlier in
the software development lifecycle. This can involve the exploration of designing techniques from
the developer’s perspective and HCI (Human-Computer Interaction) [23] techniques can also be
considered if necessary. By doing so, it can surface vulnerabilities and issues at an earlier stage
where they can be addressed more easily and cost-effectively, ensuring a more robust and secure
software ecosystem for protocol implementations.
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