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Massive software applications possess complex data structures or parse complex data structures; in such cases, vulnerabilities

in the software become inevitable. The vulnerabilities are the source of cyber-security threats, and discovering this before

the software deployment is challenging. Fuzzing is a vulnerability discovery solution that resonates with random-mutation,

feedback-driven, coverage-guided, constraint-guided, seed-scheduling, and target-oriented strategies. Each technique is

wrapped beneath the black-, white-, and grey-box fuzzers to uncover diverse vulnerabilities. It consists of methods such as

identifying structural information about the test cases to detect security vulnerabilities, symbolic and concrete program states

to explore the unexplored locations, and full semantics of code coverage to create new test cases. We methodically examine

each kind of fuzzers and contemporary fuzzers with a profound observation that addresses various research questions and

systematically reviews and analyze the gaps and their solutions. Our survey comprised the recent related works on fuzzing

techniques to demystify the fuzzing methods concerning the application domains and the target that, in turn, achieves higher

code coverage and sound vulnerability detection.

CCS Concepts: · Security and privacy→ Software security engineering; Software reverse engineering; Distributed

systems security; Information low control; · Software and its engineering→ Distributed programming languages; Parsers.

Additional Key Words and Phrases: automated testing, fuzzing, code inspection, vulnerability discovery

1 INTRODUCTION

Software vulnerabilities or bugs are always critical and have widespread attention that attackers can exploit. It

can become the root cause of the company’s inancial loss and reputation damageÐfor example, the WannaCry

ransomware attack [144]. The attack startled the global economy by hitting its impact on around 230K-300K

computers in about 150 countries, leading to an estimated substantial inancial impact of US $4-$8 billion

worldwide [96]. The attack happened because the users had not updated their system with the security patch

released for the Microsoft Windows operating system. This patch removed the vulnerability that EternalBlue [6]

exploited to infect computers with WannaCry ransomware.

Another example is the Heartbleed vulnerability in OpenSSL [157]. 17% of SSL servers worldwide, around

500K servers, were vulnerable to Heartbleed vulnerability [157]. The current version of OpenSSL does not have

Heartbleed exposure. However, it still exists in many servers and systems since some could not upgrade the

patched version of OpenSSL. The root cause of any such attacks is vulnerable code designs. Therefore, it is

necessary to use some techniques to discover vulnerabilities well before releasing the software. Fuzzing is one

of the most promising practices that discover security vulnerabilities by repeatedly testing the software with

altered or fuzzed inputs [104].
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Most topline companies and organizations utilize fuzzing to ensure quality control and cybersecurity operations.

For example, Google uses fuzzing to verify and ensure that the millions of LOC in Google Chrome are bug-free

[67]. It was challenging to admit that Google could ind 20K vulnerabilities in Chrome using fuzz testing [67].

The dominant software from Microsoft has to pass the fuzz test stage in the software development cycle to ensure

no code vulnerability and that the stability is conirmed [136]. The DoD Enterprise DevSecOps Reference Design

document [40] from the United States has mentioned that continuous testing across the software development

cycle is necessary for the test tools support. Therefore it is essential to use fuzzing to discover Distributed Denial

of Service (DDOS) attacks and malware exploit possibilities, validate system security, and reduce the risk of

system degradation [40]. Cisco concentrates on searching and identifying vulnerabilities in network applications.

They use a network fuzzer that performs replaying the network traic, and Cisco uses the support of a mutational

fuzzer [84]. Adobe Reader from Adobe surpassed the bugs or vulnerabilities in every version release; hence, Yoav

Alon et al. [176] have tried using WinAFL. WinAFL, a fork of American Fuzzy Lop (AFL) [122] for Windows, was

a game-changer for Adobe to discover efective ile format bugs, especially in compressed binary formatsśimages,

videos, and archives. Google and Adobe had announced the importance of continuous fuzzing integration in the

software development cycle and had released new open-source security tools [47].

Google has developed the ClusterFuzz-based continuous fuzzing solution known as the ClusterFuzzLite [68]. It

runs as part of Continuous Integration (CI) worklows to help users uncover vulnerabilities before committing to

the source code. Adobe has released the Living-of-the-land (LotL) fuzzer to detect living-of-the-land attacks

where malicious code leverage legitimate software to avoid detection [1]. ClusterFuzzLite ofered the same

feature as ClusterFuzz [33], such as test corpus management, sanitization, integrated and continuous fuzzing,

and adequate coverage reports regarding the crash and hangs. Apart from that, ClusterFuzzLite provides ease of

use for the end-users. Clusterfuzz identiies more than 6.5K vulnerabilities with 21K bugs from more than 500

open-source projects, and that was an eye-opener for most of the open-source development team. Despite that,

the LotL classiier from Adobe’s LotL project leverages Machine Learning (ML) abilities such as feature extraction

from various prospects to generate a series of labels based on patterns, binary paths, network paths, keywords,

and similarities from the logs.

1.1 The Fundamentals of Fuzzing

Fuzzing or fuzz testing is a software testing technique; alternatively, a fuzzer is a type of software that tests a

target software [104]. A fuzzing engine works with a few periodic steps (Figure 1).

1 System readiness is the primary step toward fuzzing (supplying initial seeds, setting iterations, memory allocation, etc.).

2 Automate the fuzzing process and instrument wherever required.

3 Generated test cases will take to the target software for performing an execution using the delivered test case.

4 Continue with new program states or check for potential crashes in the software while following the execution path.

5 Report all the fuzz progress (bugs/crashes/hangs/paths/edges) to the fuzz engine and the user.

6 User involvement/backtracking is optional to improve fuzzing and explore all the unvisited program control low paths.

All the steps ( 1 - 6 ) are essential in harnessing fuzzing software to become a successful bug/crash detection

software. The primary purpose of fuzzing techniques is not only to test the software functionalities but also

to explore and uncover software source code bugs and vulnerabilities such as coding errors, bufer overlow

vulnerabilities, the likelihood of DoS, and SIG errors (segmentation faults while accessing a memory location,

bugs due to dereferencing a null pointer, program termination with signal SIGSEGV, etc.) in the code by using

unpredictable, distorted, random data called as fuzz as program inputs. Therefore, fuzzing tries to crash the

software to expect the unexpected behavior of the software for various combinations and blends of inputs.
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Fig. 1. Steps to Automated Vulnerability Discovery & Optional User Involvement for Beter Fuzzing Progress

Upon selecting a fuzzing target, input data can be generated via dump or smart fuzzing [117]. Dump data

fuzzing involves generating, creating, or selecting random data to serve as input for the target. On the other hand,

in the case of smart fuzzing, existing valid input data or the speciic input data type accepted by the target is

employed. Subsequently, this data can undergo mutation to yield new inputs. As a result, dump fuzzing involves

analysis with a collection of malformed input data without an exhaustive understanding. In contrast, smart

fuzzing is conducted with a comprehension of the underlying data structure. It is better to utilize smart fuzzing

to get an immediate result on a potential security vulnerability in the target.

The selection of the input set is irrespective of whether the target is a source code, a binary, a kernel, a irmware,

or an instrumented one. This selection of valid input sets is based on observing the working of target software

or by examining its source code. Thus, we can divide this creation of a valid input set into generating a valid

mutation guidance model and use this model to produce the well-formed fuzzed data. The random generation of

inputs is time-consuming, especially for the targets that accept complex inputs, and there is no surety that it can

ind a potential vulnerability. For example, a target program that accepts a network packet with a typical Type of

Service (TOS) ield. In such a case, generating a packet with precisely the TOS ield the target program expects

may take time. In the worst case, it may not generate such a TOS ield.

Fuzzers are typically categorized into generation-, mutation-, or evolution-based depending on the target-

fuzzing methods.

(1) Generation fuzzers use random input data to a speciic format the target expects. So we take valid input data and do some transformations by
breaking those data into bits and bytes, then fuzzing each of these bits and bytes randomly. The input data structure is maintained but only to fuzz the
selected parts. Therefore, it follows a proper speciication or format of the input [137]. The input test cases get generated with the knowledge of
the ile formats or network protocols and pass the validation of programs without much diiculty. However, generation fuzzers require support to
generate realistic inputs that match the complexity of the target application to fuzz. It will lead to a combinatorial explosion, making it challenging to
achieve complete code coverage and limiting its efectiveness in testing sophisticated software systems.

(2) Inmutation fuzzers, it mutates the input data or seeds without understanding the format or structure of the data. Bit/byte lipping or appending
random bits to the input can be mutation fuzzers. The mutation model ensures that the input data structure supplied meets the target’s expectations.
For example, mutation Fuzzing on ile formats or network protocols saves the sampled inputs, then replays after mutation. Though it sounds skeptical,
Man in the Middle or Proxy in mutation fuzzing where the fuzzer is placed in the middle of two communicating parties, thus allowing the fuzzer
to intercept and alter the messages passed in the network [101]. In the security realm, fuzzing is an efective way to identify corner-case bugs and
vulnerabilities. Still, mutation fuzzers need help identifying corner cases or rare scenarios leading to bugs or vulnerabilities.

(3) In evolutionary fuzzers, genetic programming converges towards inding the potential security vulnerability in the target [46]. So it is a continuous
process of input set creation that depends on the fuzzing framework and the response from the target. Therefore, it uses metrics such as a score that
deines the goodness of the input data set, discarding the lowest-scored input data set, mutating the remaining good-scored input data sets, and
combining the input data sets with the highest score to achieve optimal code coverage. Nevertheless, there could be a considerable struggle while
generating the test cases since there are chances for generating test cases similar to previously generated inputs, leading to redundancy in testing.
Additionally, enhancing the ability to identify vulnerabilities or bugs requires more extensive program behavior exploration.

As a whole, fuzzing is an efective technique for identifying vulnerabilities or bugs in software. However, the

limitations must be considered when selecting a fuzzing process for a particular software system. We can also

classify fuzzers based on the degree of program analysis concerning the target and classiied as black-, white-,

and grey-box.
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(1) Black-box fuzzing randomly mutates well-formed input data and then supplies the modiied input data to the target [12]. We can transform input
data with the help of mutation or generation-based generators. A detailed log report during the process of execution stores the test cases used and the
corresponding behavior of the target application.

(2) White-box fuzzing also starts with well-formed input data and then symbolically executes the program dynamically [65]. The symbolic execution
technique is based on program analysis and constraint solvers to capture the control low path of the program. It uses Satisiability Modulo Theory
(SMT) [39][10] solvers (for example, the Z3 solver from Microsoft [38]) and quantiier-free irst-order logic formulas. Therefore, the quantiier-free,
ixed size, and bit-vector logic backed by SMT solvers directly support the accurate description of arithmetic at the assembly level. It helps to perform
direct translation from the instructions executed to the primitives provided by the SMT solvers. The SMT formulas represent the path condition
of the program under test. We gather all the constraints on the inputs from the conditional branches on the execution path. Later, we negate all
the constraints encountered during the execution path and solve those constraints using a constraint solver. All the new solutions obtained via the
constraint solver are considered as the new inputs, and expect those inputs to explore new paths unvisited so far. The seeds get generated to cover all
the constraint sets, including the unsatisied constraints obtained so far. Figure 2 shows an example of a constraint-guided fuzzing process. It captures
unsatisied constraints and branches not traversed during its execution and generates new seeds for further traversing of the source code.

Fig. 2. Constraint-guided Fuzzing Process

(3) Whereas grey-box fuzzing instruments the target program on a few control locations [141]. Instrumentation is performed during the compile-time
and provides an initial seed as a test case. The generated seeds intend to cover the code block on the appropriate control locations [122][66][109] and
are known as coverage-based fuzzing. Grey-box fuzzing claims more coverage on the program code, and the code can have basic blocks that form
the tree’s nodes, and edges are control paths that connect the block codes [141]. This kind of graph-based approach is well-suited for search-based
software testing. Furthermore, constraint-guided directed grey-box fuzzing also targets on few control locations. It generates a sequence of constraints
to traverse through each code block. Each constraint, coupled with certain data conditions, gets mapped to its target site. The input seeds generated
will cover all the constraint sets and the unsatisied constraints obtained during the execution.

The generation and selection of suitable test cases are critical in fuzzing. The selection of the best test cases has

received much attention nowadays, and generating test cases has many shortcomings. For example, suppose the

generation of test cases uses a random approach; then recycling interesting test cases is not happening. Recycling

interesting test cases must reuse the previously generated test cases identiied as interesting to improve the fuzzing

process’s efectiveness. It involves the selection of suitable test cases that have triggered interesting behavior,

such as crashes or hangs, and using them as starting points for subsequent fuzzing iterations. Even if we use

sequence strategy, that is, generating a sequence of test cases with variations in input values or data structures

related to the initial interesting test case, recycling of interesting test cases is not occurring though it tests each

test case. However, the challenge in identifying the most promising interesting test cases to use as starting points

and generating and selecting related test cases is time-consuming and resource-intensive. Additionally, there is

a risk of overitting to speciic sequences of input values or data structures, which can limit the ability of the

fuzzing process to explore the complete scope of application behavior. The test case generation for a fuzzer could

be random or grammar-based.
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(1) Random test case generation [104][109][114][59][169] is a prevalent technique used for testing an application by injecting random and unpredictable
inputs to determine vulnerabilities and bugs. It helps to generate new test cases that have yet to be explored during the evolution or testing phase of
the code. Nevertheless, the boundary is restricted in its ability to generate test cases that surpass the capacity of its mutation capabilities. Therefore, it
can only generate test cases that are within the boundary of the existing seed corpus. Suppose the seed corpus does not contain a speciic input pattern
or data structure. In that case, it will not be able to generate test cases that can explore the behavior of an application under those speciic conditions.
However, mutation-based techniques such as block-based mutation can manipulate input data at a higher level of abstraction. It can generate new test
cases by transforming the input data structure (addition/removal) instead randomly changing individual bytes. Furthermore, fuzzers [114][89][24] also
give prevalence to construct test cases based on the scheduling behavior of an application that implies real-time related features like scheduling,
timing, and priority. The Application Under Test (AUT) gets analyzed to apprehend its scheduling behavior, such as resource allocation and task/event
scheduling, thread scheduling, interrupt handling, time-slicing, locking, and synchronization. For instance, PrIntFuzz [115] generates test cases that
intrigue to interrupt handler code bugs in device driver and kernel code. A state-aware task generation fuzzer Rtkaller [153] initializes tasks as test
cases to identify bugs linked with code concurrency intensity, shared memory synchronization, resource allocation, and task/event scheduling in
RTOS. AutoInter [99] identiies the concurrency bugs, likely referring to the systematic control of thread interleavings during the execution. UltraFuzz
[186], a centralized dynamic scheduling-scheme fuzzer, evaluate seeds and dispatch tasks in a centralized manner and checks for bugs related to
resource allocation. It also applies smart scheduling that prioritizes fuzzing tasks based on factors like code coverage, crash severity, or the likelihood
of inding bugs. Undoubtedly such fuzzers are used to fuzz operating systems, including RTOS, device drivers, and network or security protocols since
all these software or applications have complex and challenging scheduling behavior. It can efectively generate test cases speciically tailored to
schedule the behavior of AUT. However, it can also be challenging and computationally resource-intensive, as it requires signiicant knowledge of the
scheduling behavior of the AUT and hence demands the utilization of resources intensely to generate the test cases.

(2) An extended thought was to provide a better capability for generation and mutation-based fuzzer using grammar-based test case generation
[64][116][3][154][164][46]. The grammar speciies the rules for valid and invalid inputs, such as the structure of input iles, the type of characters
allowed, and the length of inputs. The parse grammars usage into the fuzzer models helps evolve various test cases. Therefore, the critical point is to
generate syntactically correct new test cases from the parsed grammar. A syntactically correctly generated test case can help the fuzzer explore the
target’s less-visited paths; however, it can contain unexpected or malicious content. Since the grammar of the input language is used to generate the set
of rules that deine the valid syntax and structure of the input, and hence the rules can be used to generate new test cases by randomly selecting valid
sequences of tokens that adhere to the grammar. Moreover, inlining code snippets into grammatical structures helps explore complex paths in the code
and perform complex actions by making precise decisions that cannot carry out using context-free grammar. However, it requires signiicant knowledge
of the input language grammar and may require the development of custom grammar for complex or proprietary input languages. Additionally, the
generated test cases may not always contain unexpected or malicious content, and further mutation or generation is required to increase the likelihood
of inding vulnerabilities and bugs.

Furthermore, the techniques accompanied in fuzzing to ind potential security vulnerabilities include coverage-

guided, symbolic, and concolic execution. These techniques have to augment the identiication of severe bugs

and explore the deeper code blocks in the target.

(1) Coverage-guided is a well-versed fuzzing technique that helps analyze the code coverage metric deeply, and it aids in measuring the quality of tests
that decides areas of code blocks that require a more profound test [109][127]. Besides, it automatically generates test cases or inputs that trigger bugs
or potential security threats in the target. We can call it a coverage-guided mutational fuzzing test since test cases are generated by mutating the
existing inputs. The mutation operations are carried out at the bit or byte level, lipping, deleting, duplicating, or adding random subsequences of bytes
into the inputs. The mutant version’s new inputs become interesting if it covers new code blocks or paths in the target. We save these interesting mutant
inputs and restart mutation operations on these interesting ones. Therefore, we must save this new coverage mutant input, termed coverage-guided in
its algorithm. However, if the input space is simple, high code coverage is assured, but it will miss the bugs that require complex inputs to trigger.
Furthermore, fuzzing may get stuck at the local minima of the code coverage, which means some paths will not get explored and limit its input space
exploration. If the input space is complex, converging on a bug will take a long time since it may have to create many test cases to trigger that bug.
Moreover, complex data structures, such as nested or linked lists, require complex inputs to trigger the bug.

(2) Another exciting technique in fuzzing is symbolic execution to gain maximal code coverage. In this case, we symbolically execute the inputs
and then collect the constraints (symbolic) on that inputs [180][155][173][9]. All the collected constraints get negated to generate new inputs that
help cover new code blocks that have not been observed so far during the execution of the target. It generates expressions that deine the program
manipulation over the symbolic inputs that resort to SMT solver queries [38]. It checks for both the directions from a branch condition and sets one
path that must hold true in each program state (true branch), and the negated condition gets added to the program state that holds false in each
program state (false branch). However, symbolic execution is computationally expensive since many constraints could be solved while exploring
multiple paths, leading to path explosion. Also, the limited support to solve the loating point arithmetic operations restrain symbolic execution in
fuzzing. Additionally, symbolic execution creates conlicts while handling system calls since it does not support modeling all possible system calls and
inter-process communication, such as pipes or sockets. Likewise, the non-deterministic behavior of system calls complicates the generation of inputs
that consistently trigger speciic paths.

(3) In the case of concolic execution, the symbolic constraints get analyzed with concrete values when the execution paths taken by the program run
over the speciic code blocks [155][177][9][30]. It is powerful since it uses concrete values. However, it can also sufer path exploration problems since
branch conditions have two paths (true and false branch or taken and not-taken branch conditions). Hence, the program state has to fork both paths
and demands exploration, which may go to an ininite state. However, path explosion can severely limit the scalability and handling of loating-point
arithmetic in concolic execution, leading to inaccuracies during constraint solving.

1.2 Paper Organization

The rest of the article is organized as follows: ğ2 outlines the existing fuzzing categorizations and surveys

conducted based on those categorizations, followed by the research gaps identiied, our contributions, and the
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research questions phrased. ğ3 & ğ4 discuss contemporary research on fuzzing in the absence of source code

and directed fuzzing in conjunction with static analysis. We have addressed the research questions phrased and

explained the concepts with the support of recent research works in fuzzing. In ğ5, we have conducted an in-depth

case study by shedding light on symbolic and concolic execution fuzzing. ğ6 reviews various fuzzers used for

interface and environment fuzz, and ğ7 inspects fuzzing for improving inding and ixing instrumentation errors.

Later, in ğ8 & ğ9, we discussed summary, challenges, and potential future directions.

2 ORGANIZATION OF EXISTING FUZZING WORK

For the last several years, fuzzing has been categorized as follows, and the state-of-the-art fuzzers are grouped

into each of the following classes. However, we can observe intriguing overlaps between these fuzzers irrespective

of their categorizations. Furthermore, we have extensively surveyed fuzzers based on the methods, types, or

techniques accustomed to and listed them in Table 1.

(1) Inluence-oriented fuzzers - White-box such as SAGE [65], KLEE [19], S2E [29], Black-box such as BeSTORM [12], Autodafé [119], Choronzon [22],
Dharma [124], and Grey-box such as AFL [122], libFuzzer [109], Honggfuzz [66].

(2) Mutation-oriented fuzzers such as AFL [122], libFuzzer [109], Honggfuzz [66].
(3) Semantic or Grammer-oriented fuzzers such as GWF [64], NAUTILUS [3], EVOGFUZZ [46], Superion [164], Pythia [5], G-EVOSUITE [130], GramFuzz

[73], Dharma [124].
(4) Feedback-oriented fuzzers - Directed-fuzzers such as DGF [14], Zipr [76], TaintScope [167], and Coverage-guided fuzzers such as AFL [122],

libFuzzer [109], Honggfuzz [66].

2.1 Outline and Survey Overview

We have summarized those surveys based on their applications, beneits and drawbacks, techniques, diferent

fuzzing tools, and methods as outlined in Table 1.

• The survey conducted by James Fell et al. [49] has examined various software vulnerabilities and detection

methods, such as static and dynamic analysis on software source code, and provided insight into fuzzing and

the form of instrumentation used to the target application.

• J. B. Crawford [83] has pointed out classic security vulnerabilities/crashes due to arbitrary code execution and

discussed the evaluation of software to discover the stability and security issues.

• The survey [104] summarized the recent advances in fuzzing and its improvement over the past couple of years

and discussed its types, giving importance to coverage-based fuzzing.

• The review [107] discussed the generic fuzzing framework and its categorizations such as black-, white-, and

grey-box. Furthermore, it provided an overview about the state of the art fuzzing mechanisms by exploring

typical fuzzers and their application areas.

• Yan Zhang et al. [181] have provided a quick overview of the inluence of symbolic execution in fuzzing and a

short analysis of directed grey-box fuzzing tools.

• The work [117] focused on the taxonomy of fuzzer concerning black-, white-, and grey-box with an insight

towards the instrumentation, test corpus selection, trimming, and generation.

• Gary J Saavedra et al. [148] have explored leveraging ML algorithms such as unsupervised, reinforcement, and

deep learning in generation-, mutation-, and evolutionary-based fuzzers.

• The survey [166] focused on a deep understanding of the grey-box fuzzing technique. It analyzes the metrics

such as edge coverage, seed prioritization, optimization, exploration and exploitation, mutation scheduling,

and data low graphs analysis.

• The review [63] presented fuzzing as a hunting software for discovering vulnerabilities by using black-box

random fuzzing, grammar-based fuzzing, and white-box fuzzing. The efectiveness of all the fuzzers is tested by

analyzing the applications fuzzed using test corpuses formats such as jpeg, png, manually-written grammars,

and XML or JSON dialects.
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• M. Böhme et al. [13] summarized the challenges in black- and grey-box fuzzers since they struggle to generate

inputs to bypass frequent paths visited, and discusssed the problems in white-box (symbolic) with constraint

solvers using Satisiability Modulo Theory (SMT) [38].

• The survey [168] systematically classiies and categorizes the ML algorithm distribution in fuzzing using

traditional ML, deep learning, and reinforcement learning, employing pre-processing methods from Natural

Language Processing (NLP) to transform input data into vector representations.

• The review [180] has conducted a short survey that presents the importance of hybrid fuzzing for automated

vulnerability mining in coverage-oriented fuzzing.

• The survey propounds by Xiaogang Zhu et al. [188] has provided an in-depth discussion on fuzzing, its features,

and various components that identify the gaps in defect detection by narrowing down the gap between test

case generation techniques.

Table 1. Summary on Prior Survey Articles

Ref. }: R1 [49], R2 [83], R3 [104], R4 [107], R5 [181], R6 [117], R7 [148], R8 [166], R9 [63], R10 [13], R11 [168], R12 [180], R13 [188]

Fuzzers }:

1-AFL [122], 2-SPIKE [37], 3-Honggfuzz [66], 4-libFuzzer [109], 5-Clusterfuzz [33], 6-PEACH [137], 7-Tscope [167], 8-AFLFast [17], 9-AFLGo [14],
10-REDQUEEN [4], 11-Driller [155], 12-QSYM [177], 13-T-Fuzz [140], 14-Angora [26], 15-Miller [158], 16-VUzzer [146], 17-KLEE [19], 18-SAGE [65],
19-Sulley [138], 20-FAIRFUZZ [103], 21-KATCH [118], 22-BUGREDUX [92], 23-MLFuzz [120], 24-S2E [29], 25-Sym. Path inder [145], 26-BFuzz [61],
27-Token-based [64], 28-CESI [116], 29-GANFuzz [79], 30-NEUZZ [152], 31-DEEPFUZZ [110], 32-VFuzz [106], 33-Skyire [163], 34-PANGOLIN [81].

While those surveys focus on theories/methodology concerning fuzzer types, we envisage and explore the

dimensions of fuzzing in a broader aspect concerning the application domains, techniques, and the target. For

simplicity, we use some of the recent fuzzing research works to address the research questions raised.
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2.2 Research Gaps Identified

Despite the efectiveness of various methods, types, test case generation, and techniques in fuzzing, several

research gaps still need to be addressed. Below are some technical research gaps in fuzzing:

(1) Instrumentation modiies the application’s source code or binary to accumulate supplementary data during runtime. However, most fuzzers are
not concerned with deserting the unreachable paths. Additionally, instrumenting code or binary may be diicult or impossible for speciic software
applications, such as those written in low-level languages like assembly.

(2) Generate appropriate inputs that trigger a complex bug in the code, for example, the bugs related to memory errors in the code. However, we still
encounter research gaps concerning identifying common coding mistakes, such as memory errors, bufer overlows, format string vulnerabilities, and
integer overlows, which are all potential targets for fuzzing.

(3) Improvising coverage paths by visiting the maximum paths irrespective of code deepness with targeted input generation.
(4) Despite having generic fuzzers, speciic application fuzzers must concentrate on sensitive code blocks based on their service. For example, fuzzers to

test irmware and emulation/OS kernel code must capture bugs or vulnerabilities during memory interactions, interconnections with sockets, pipes,
etc. However, fuzzing such interaction code hits several limitations, missing the bugs and earning reduced code coverage.

(5) Errors in instrumentation code introduce additional overhead. Hence, we need to detect/correct instrumentation code errors.

2.3 Scope, Contributions, and Research uestions

In light of the existing surveys and the research gaps identiied, we present a deep and thorough survey of fuzzing

and its counterparts by taking a holistic direction on various approaches. The following are the contributions of

this paper:

(1) We have presented this survey by endorsing diferent methods of fuzzing based on their application domains and techniques.
(2) We diferentiate the fuzzing approaches starting with in the absence of source code and in conjunction with static source code analysis.
(3) We have explored symbolic and concolic execution by taking a fuzzer as an example to investigate the bright and dark shades of fuzzing on real-world

applications in real-time.
(4) Later, we examined the speciic target fuzzing domains, such as interface and environment issues in irmware/kernel code. Additionally, we researched

fuzzers designed to address instrumentation errors.
(5) Furthermore, we have researched and examined some of the associated challenges.

We have framed the following Research Questions (RQ) based on categorizations in (2), (3), and (4).

RQ1: (a) What if the software source code is unavailable for instrumentation, and (b) if the commodity software is with closed source code, then how do
we conduct instrumentation? (c) Besides, if the applications with complex build systems do not support recompilation or recompilation tends to
cause multiple errors, how can it get fuzzed?

RQ2: (a) How does fuzzing work in conjunction with static analysis, and (b) comprehend the feasibility of using coverage-guided or mutation-based
fuzzing with static code analysis? (c) If yes, what are the beneits/limitations compared to existing methods?

RQ3: (a) How do we blend fuzzing with symbolic and concolic execution, and (b) realize the use of preconstraints to add constraints for symbolic
execution? (c) Once the constraints are added, how is it solved to explore the state space of the target source code?

RQ4: (a) Can modern fuzzers address the runtime interface and environment dependencies of fuzzing targets? and (b) if yes, any challenges?
RQ5: (a) Who will check the correctness of the instrumentation code, and (b) what if it possesses some errors (missed/redundant locations)? (c) Will

these instrumentation code errors afect the coverage feedback and accuracy, and (d) if yes, how profound is it, what are the ways to ix it, and
whether ixing beneits fuzzing?

We address each of the above research questions phrased in the following sections based on the categorizations

that we have articulated. To the best of our knowledge, this is the irst paper covering the survey on fuzzing

techniques by endorsing where it is getting applied.

3 FUZZING IN THE ABSENCE OF SOURCE CODE

In this section, we delve into the realm of fuzzing scenarios where access to the source code of the target

program is limited or unavailable. This perspective aligns with black-box and grey-box fuzzing methodologies,

which involve testing software behavior without complete source code knowledge. Notably, the efectiveness

of black-box fuzzing is recognized to have inherent limitations. As we explore strategies within this context,

we focus on leveraging coverage information to enhance the eiciency and efectiveness of fuzzing on binary

code, even when full access to source code is constrained. By adopting this approach, we aim to showcase the

potential for achieving signiicant results through fuzzing, even when more than comprehensive source code

understanding is feasible.
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Directly fuzzing the binary allows for far more accurate testing of the actual code that will run in production.

Additionally, the available debug information helps map the binary back to the code, often included in binaries,

making it easier to perform grey-box fuzzing on the binary-level. Besides, fuzzing the binary provides better

protection against reverse engineering. Also, the state-of-the-art fuzzing tools, such as AFL [122] and libFuzzer

[109], are designed to work with binary rather than code and ensure better coverage of program behavior,

including interactions with the operating system and other external resources. However, we also have techniques

that allow for grey-box fuzzing on the source code level, such as instrumentation-based or code coverage-guided

fuzzing. Nevertheless, these techniques may require additional setup andmay not be as widely used as binary-level

fuzzing. To address RQ1(a), we seek binary rewriting or instrumentation (instrumentation code inserted directly

into the binary). In the case of commodity software with closed source as in RQ1(b), we can follow binary

instrumentation at diferent levels; for example:

• Hardware-assisted such as PTfuzz [179], Intel PT [82], PTRIX [27], kAFL [150]; Dynamic binary instrumentation such as PIN [113], QEMU
[7], DynamoRio [123]; Static binary rewriting such as AFL-Dyninst [159][11], E9Patch [45], E9AFL [62].

• Exploring a scenario involving hardware-assisted fuzzing, we gather runtime traces while recording information about every executed state. So
it captures the runtime execution information using dedicated hardware, and all the runtime captured data get-through post-process to obtain
detailed coverage information. However, collecting runtime traces is expensive, requiring a minute strategic mechanism and substantial efort
to capture individual blocks at a high rate. In dynamic binary rewriting, the instrumentation gets performed during the execution. An example
scenario is using AFL-QEMU [122], one of the best attractive solutions for researchers to rewrite the binary of complex code commodity software
on the ly. So we have to trap the execution of individual basic blocks and proceed with binary writing while it gets executed. Yes, it is a sound
technique for binary instrumentation but at the cost of signiicant overhead due to heavyweight emulator conigurations using PIN [113] and
QEMU [7]. In the case of static binary rewriting, it disassembles and rewrites the binary before it gets executed. For example, AFL-dyninst [159]
gets performed oline, where we rewrite the binary before it starts execution. Since it is static, we can utilize complex source code analysis
techniques. Optimization methods can perform in memory and reduce the runtime overhead, similar to compiler-level optimations for the source
code instrumentation. Unfortunately, trampoline-based approaches in static binary rewriting have challenges, such as the separation of code data
interleaving and inlined data.

ğ3.1 will discuss various recent binary fuzzers that address RQ1(a), (b), and (c), which claim to have betterness

in identifying bugs, coverage of codes (block or edge), hit counts, etc. To address RQ1(c), we resonate with the

thoughts related to instrumenting a program at its source code level. In that case, creating a matching compilation

environment and building the source code with the modiied compiler (al-gcc, al-clang, or al-clang-fast) is

essential. The ability to recompile the target application with instrumentation or other modiications is often

helpful for enabling certain types of fuzzing techniques. However, creating a matching compilation environment

is a considerable task for applications with a complex build process, such as Firefox or Chrome. Also, modifying

the build system can lead to multiple fallacies. Likewise, there are situations where the target application

may have a complex build system, or recompiling the application, introduce errors, making recompilation

diicult or impossible. For example, in the case of binary instrumentation, recompilation is impossible. However,

binary instrumentation can modify the binary, enabling coverage-guided fuzzing or other advanced techniques.

Furthermore, suppose the target application has a well-deined protocol, API, or interface. In that case, protocol

and API-level fuzzing can be used to test the application without recompiling or modifying it. We have detailed

the answers for the research questions and showed speciically that RQ1(c) is better explainable using those

techniques based on the user’s need or fuzzer performance expected.

3.1 Recent Binary Rewriting Fuzzers

BEACON [80]. There is a presumption that performing reachability analysis on a speciied target can improve

the fuzzer to explore the bugs and vulnerabilities in a binary. However, the statement mentioned is partially

correct if we use the concept of directed white-box [75] or grey-box fuzzing [14] but at the cost of computational

resources. This contradiction arises since directed fuzzing does not prune the paths when it hits an instruction

that cannot reach the target. Furthermore, the paths that are reachable to the target at the cost of solving an
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unsatisied path condition also occur in directed fuzzing. Relying on symbolic [118] and concolic execution [19]

may reach the target. Still, it is equally expensive since many constraints are to be solved to acquire the target.

On the other hand, direct grey-box fuzzing relies on prioritizing the seeds based on the likelihood of reaching

a target, which depends on some meta-heuristics. Hence, it is essential to prune the do-not-contribute paths in

directed fuzzing. BEACON explored the essentiality of using static code analysis as pre-processing, which analyzes

the source code and computes abstract pre-conditions. At the same time, it is essential to ensure that static code

analysis will not create a signiicant overhead. They have carried out selective instrumentation that instruments

only two kinds of statements: branch and variable-deining. It reduces a signiicant amount of overhead that

could have occurred during static instrumentation on each Lines of Code (LOC) to identify the pre-conditions.

Furthermore, deciding on an interval domain is suitable since it is the most afordable method achieved through

lightweight static code analysis. For that, strategies called relationship preservation and bounded disjunction

are used. The former helps preserve the relationship among the variables to achieve better pre-conditions and

thus prune more do-not-contribute paths to the target. The latter provides a better boundary regarding the

values to be considered for a variable, avoiding unnecessary ininity-bound values during exhaustive path merges.

BEACON has been evaluated against benchmark programs such as libpng, libjpeg, lrzip, libxml, binutils, etc. The

observation is that BEACON had outperformed the state-of-the-art conventional coverage-guided fuzzers such

as AFL [122], AFL++ [52], and MOPT [114] concerning the reproduction of bugs, speedup, and identiication of

exciting CVE bugs.

E9AFL [62]. As discussed above, we go for binary rewriting if we do not have the source code to perform

instrumentation. E9Patch [45] is a state-of-the-art static fuzzing system that rewrites the binary. The trampoline-

based rewriting methodology combined with instruction punning gets used in E9Patch. Trampoline-based

approaches select instructions and replace them with jumps to trampolines. Instruction punning takes care of

initialization andmemory management without disturbing the application’s address space during instrumentation.

However, trampolines-based approaches break the code’s continuity, leading to signiicant fuzzing runtime

overhead (extra jumps to/from trampolines) and, later, to unnecessary page faults. To overcome such issues,

E9AFL is built on top of E9Patch, which introduces additional mechanisms such as trampoline ordering, instruction

selection, and bad basic block eliminations.

We must make the trampoline memory contiguous to reduce page faults and remove unnecessary trampolines.

The proposedmodel initially allocates the trampolines correctly to achieve such an optimization, and it will, in turn,

helps to address the page faults due to the trampoline break. Later, the model only selects the best instructions for

better trampoline ordering. The last step is eliminating all the bad blocks by identifying the redundant instructions

likely to cause page faults. For contiguous allocations of the trampoline, allocate trampolines in the same order

as in the patched instructions. This detailing helps map the code regions in the same trampoline memory and

reduce page faults. Regarding instruction selection, we know that AFL [122] instrument the code at the start of

each basic block by default. However, irrespective of considering the beginning of a basic block, we can insert

the instrumentation code anywhere inside the basic block. Such an efort will maintain the functionality of the

basic block. Hence, E9AFL uses an instruction selection algorithm that inds the instructions greater than ive

bytes in a basic block, thus allowing trampoline ordering in many basic blocks. If the instructions are less than

ive bytes, such basic blocks are considered bad, so trampoline ordering will not apply. All the optimized and

unoptimized basic blocks get represented with the help of Control Flow Graphs (CFG). Those with indirect jumps

or calls to targets are treated as bad basic blocks and eliminated. It achieves the best performance of al-gcc with

comparable speed and code coverage on various fuzzing benchmarks. Furthermore, E9AFL fuzzed the Google

Chrome binary to demonstrate its efectiveness and scalability.

STOCHFUZZ [182]. Static binary rewriting techniques assume that there is no inlined data. We may disable inline

data during compilation for performance analysis since inlining can make data diicult to interpret. However,
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such a default assumption leads to missing necessary code blocks if the compiler copies the code from one block

to another during a call instead of creating a separate set of instructions in the memory. Also, the indirect jumps

can overlap with other instructions. The virtual address space layout for the instrumented binary in E9Patch [45]

exposed enormous cache misses and extra overhead in process forking.

In most cases, static symbolization in static binary rewriting is challenging since it may have to convert

address-related immediate values in the binary to symbols much more frequently. Since fuzzing is a repetitive

process, it would be suitable to collaborate on an incremental and stochastical approach that piggybacks the

fuzzing routines. Here it relies on probabilities to model the uncertainty regarding the separation of code, data,

and inlined data. The model does not require an initial binary analysis in such a case, and instead, the model

conducts rewriting the binary based on the uncertain results. Since the technique encourages stochastic modeling,

it is not worried about the problems occurring in the initial stage of binary rewriting. Because in the repetitive

fuzzing process, the problematic code sections get identiied, and the model will rectify them in each subsequent

run. A probabilistic random determination approach earns the control to correct issues in the code sections

based on the sample generated in each run. Rewriting the bytes at some addresses is determined based on the

possibility that the address is an instruction or not. Therefore the model checks and computes the likelihood of

each instruction address, indicating whether it is data or code. However, it is evident that if too much rewriting is

required, fuzzing accuracy will decrease. So it was speciic that there should be little rewriting; otherwise, the

fuzzing process can become incompetent. Progression during this repetitive process is phenomenal in incremental

and stochastic fuzzing processes to identify vulnerabilities. STOCHFUZZ outperformed state-of-the-art binary-only

fuzzers, which were backward in soundness and overhead.

ZAFL [126]. In source code level fuzzers, it is transparent that the coverage gets collected via the instrumentation

code inserted in the target source code [122][66][109]. Hence, the coverage information invariably includes

the instrumented codes in the basic blocks. In most cases, such compiler-level instrumentations produced high

throughput with low or high overhead and improved the inding of many new bugs [122][66][109]. However,

compiler-level instrumentation is impossible if the target source code is unavailable. Thus, the option left behind is

to perform binary-level instrumentation. Even though we have many binary-level instrumentation fuzzers, it lacks

performance because of the diiculty of instrumenting the binary, high overhead, and the complexity of learning

semantics [7][113]. So far, binary-level fuzzing techniques concentrate on hardware-assisted fuzzing, which is

incapable of modifying the binary, and thus fails to achieve fuzzing enhancement on program transformation

[60][165]. Another option suggested is dynamic or static binary rewriting, which fails to achieve less overhead.

Analysis infers that the average overhead of dynamic binary rewriting tools such as AFL-QEMU [122] is more

than 600%, and DynamoRio [123] and PIN [113] reported an overhead between 10x to 100x, respectively. The

static binary rewriting tool DynInst [11] possesses an overhead of 500%, and RetroWrite [41] relies on AFL’s

assembly-time instrumentation, which is 10ś100% slower than compile-time instrumentation. Besides, RetroWrite

does not support any program transformation. Therefore, an open window exists that expects performance

enhancement fuzzers that help improve program transformations at the binary-level, maintaining the compiler-

level performance achieved in source code fuzzers.

The program transformation through ZAFL for fuzzing enhancement on real-world binaries are based on

contrasting factors, scope, complexity, and platform. ZAFL, extract the Intermediate Representation (IR) code from

the binary and performs optimization, which scans the target binary’s CFG to determine points of interest and

apply IR-level transformations. The altered control low of the IR demands analysis, and hence ZAFL checks the

liveliness of the registers involved and low-demands of the IR meeting the desired target point or not. Later,

determine the instrumentation points and apply compiler-based techniques on the IR. The current prototype of

ZAFL has achieved more unique crashes and test cases with a drastic reduction in overhead.
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HEXCITE [127]. Most fuzzers neglect the parameters such as edge coverage and hit counts since they mainly

target coverage of the basic blocks and identiication of bugs. However, in fuzzing, the need for edge coverage

and hit counts have equal importance as basic block coverage [125].

A basic block is a single entry and exit point between the instruction sequences representing the start and endpoint during the control low transfer.
In contrast, an edge represents the transition from one basic block to another and the number of respective paths covered during those transitions.
Regarding hit counts, it conveys the frequency in executing a block or an edge, which helps to observe whether the condition inside the basic block or
the edge transition leads to state exploration (for example, AFL [122] use bucketed hit count method). Therefore the term coverage-preserving should
guide basic block coverage, edge coverage, and hit count coverage while fuzzing a binary. For that, the researchers leverage the coverage-guided
tracing [52][41][125] technique in fuzzer, which assures high throughput by reducing the cost of coverage tracing if and only if a possibility of new
coverage exists. However, ensuring coverage-preserved fuzzing guidance on binaries is not as easy as coverage achievement on software source code.
Integration of coverage-guided routines to a binary is complex due to its semantically inadequate nature.

HEXCITE tries to improve this by giving adequate prominence to coverage preservation and tracing. Coverage-

guided tracing improves binary-oriented fuzzing by reducing coverage tracing expense to fewer test cases that

meet new coverage. HEXCITE proposed a concept, Jump mistargeting, to support edge coverage. Usually, the

fuzzers split the critical edges with some dummy blocks. Thus, additional instrumentation with too many new

instructions to be processed in each execution. This situation leads to high overhead, and fuzzing becomes slower

on the binary. Therefore, statically alter the jump instruction associated with the edge and redirect the edge to

some other points. Hence the unnecessary interrupt insertion in coverage-guided tracing gets bypassed, and it

permits signaling of the critical edge coverage without any need for many dummy instructions. The bucketed hit

count method of AFL [122] of libFuzzer [109] consumes much time by calculating hit counts for every loop block.

The new hit count coverage gets localized to loops such as while and for ; hence, an iteration count is tracked by

monitoring its induction variable and leads to expensiveness in terms of time consumption. Therefore a novel

technique called bucket unrolling in HEXCITE augments each loop header with sequential condition statements

that weigh the loop induction variable against the expected hit count bucket range. Therefore, each conditional

block gets assigned an interrupt to support coverage-guided tracing. Thus the target jump instruction inside

the conditional block gets directed to the loop body. It ensures that there is no change in the current bucket

range allowed. Also, the next sequential interrupt will signal an advancement to the next bucket. So HEXCITE

follows the AFL-style bucketed hit count method but can achieve acceptable performance since it has just one

instrumentation location per loop. HEXCITE has evaluated against UnTracer [125], Retrowrite [41], and Dyninst

[11] with 12 real-world binaries, gained better block and edge coverage and uncovered many known bugs.

The subsequent sections (ğ4 & ğ5) will delve into speciic methodologies that harness coverage information

to overcome the challenges posed by limited source code access. Notably, we will highlight the performance

upper bounds of the works referenced in this section to underscore the need for further discussions on these

techniques. Through this progression, we aim to comprehensively explore the strategies that enhance fuzzing

outcomes, contributing to a more nuanced understanding of efective fuzzing in diverse contexts.

4 DIRECTED FUZZING IN CONJUNCTION WITH STATIC ANALYSIS

Directed fuzzing with static source code analysis is a technique that incorporates the advantages of two testing

techniques to determine potential software bugs and vulnerabilities. In directed fuzzing, the fuzzer generates

inputs from the seed test cases. Some of them could be very speciic to distinct functionalities of the target

code rather than random inputs. Indeed, these input values generated are used to analyze the code and identify

potential vulnerabilities concealed or missedÐthe vast generation of inputs aimed to improve the accuracy and

efectiveness of static code analysis. Moreover, providing targeted inputs helps uncover deeply hidden code

vulnerabilities.

The answer to RQ2(a) addresses directed fuzzing and enhancement possibilities while using fuzzing with

static source code analysis. As mentioned earlier, directed fuzzing generates various input values conceived to

target speciic functionalities and components of the source code, unlike traditional fuzzing, which involves
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generating random inputs to test the target software. Directed fuzzing can enhance static code analysis by

providing a targeted approach to testing such speciic or sensitive components and functionalities that are likely

to be vulnerable. Two types of fuzzing techniques that can be used in conjunction with static source code analysis

are coverage-guided and mutation-based fuzzing.

Coverage-guided fuzzing helps generate inputs that maximize code coverage by targeting diferent parts of

the code with diferent inputs. The predominance of coverage-guided fuzzing has opened a broad window to

enhance the path coverage in fuzzing and identify new bugs and vulnerabilities [17]. Improvisation on such

fuzzers has been incredibly well, and good to continue inding the basic blocks or paths uncovered in the source

code examined. However, many state-of-the-art coverage-guided fuzzing methods become inefective after a

while [17] [14] [26] [52] [140] [109]. The signiicant diiculty experienced is covering the paths that are hard to

trigger code with the seed inputs provided or the existing mutation strategies. Here, we must be tricky enough to

elude inefective mutation bytes and inputs that do not contribute to path coverage. Therefore, Identify the areas

not well-covered by existing tests and then use static analysis to identify potential vulnerabilities using various

inputs generated by the fuzzing technique. Whereas mutation-based fuzzing helps make minor modiications to

existing inputs to test sensitive components and functionalities of the code. Mutation-based grey-box fuzzers

use evolutionary algorithms to prioritize the interesting test cases that uncover better path coverage [109] [17].

However, a concern to be raised here is regarding the mutation process of inputs. The mutated input generation

technique is purely random, limiting the generation of interesting test cases. We have many general-purpose

mutation-based fuzzers, such as Angora [26], Honggfuzz [66], QSYM [177], AFL [122], AFL++ [52], etc., that

have limitations in testing language processors. These fuzzers are unaware of the input format, and mutation

happens randomly using mathematical or logical operations on the bits and bytes. Here such fuzzers will miss

the ingenuity towards generating correct syntax-oriented inputs. Yet, fuzzers such as LangFuzz [78] and Superion

[164] add value towards high mutation in the Abstract Syntax Tree (AST) or the IR code of the programming

language, which guarantees the syntactic correctness but misses the semantic correctness. However, by modifying

inputs, we can identify potential vulnerabilities that may not be detected otherwise. Then, we use static analysis

to identify potential vulnerabilities using inputs generated by fuzzing.

The usage of coverage-guided or mutation-based source code fuzzing with static code analysis is feasible.

However, it requires careful consideration of several factors, and by answering this, we can address RQ2(b). One

key factor is the selection of appropriate fuzzers, and static code analysis tools are essential to ensure that the

results are accurate and reliable. We have various state-of-the-art coverage-guided and mutation-based fuzzers

that help us integrate with static source code analysis to improve the identiication of bugs and vulnerabilities.

Fuzzers such as AFL [122], libFuzzer [109], go-fuzz for Go [42], cargo-fuzz for Rust [128], JQF for Java [131],

jsfuzz [57], and jsfunfuzz for Javascript [88], pythonfuzz for Python[58], javafuzz for Java [56] that concentrates

on a particular programming language. The research community is also open to customizing fuzzers concerning

diferent programming languages to validate semantic correctness. We can also call it the language processor

fuzzer, such as CSmith [175], which performs heavy analyses to generate valid C programs without undeined

behaviors. C4 [172] is a compiler concurrency checker with a C4f fuzzer that adds random nontrivial control

low and redundant atomic actions to concurrent test cases. For Javascript engines, we have DIE [135], with two

mutation strategies, structure and type preservation, using a lightweight static and dynamic analysis technique.

FuzzIL [71] is another guided fuzzing approach for JavaScript interpreters. SQUIRREL [184] fuzzer identiies the

data dependency of SQL to generate valid queries to test database management systems.
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There are various static source code analysis tools in conjunction with fuzzing for static analysis. Tools such as AFLSmart [141] are designed to act
as a coverage-guided fuzzer and for static analysis of C/C++ source code. CodeSonar [161] is a commercially viable static analysis tool that detects
memory errors, null pointer deferences, data low errors, and many intriguing bugs. We can use it with fuzzing by generating various inputs for
identifying these bugs. Frama-C [35], a static analysis framework for the C programming language that can detect potential security vulnerabilities,
programming errors, and other issues in code. Frama-C analysis plugins can be used in conjunction with fuzzing to identify potential issues. We
also have LLVM [102], which acts as a collection of modular and reusable compiler and toolchain technologies for static analysis of C/C++ code and
includes several tools in conjunction with fuzzing, including Clang, a C/C++ compiler, and libFuzzer [109], a coverage-guided fuzzer. Another aspect is
the time and resources required to create the input values used in the fuzzing tests. It could be time-consuming and resource-intensive, particularly for
mutation-based fuzzing, which involves modifying existing input values. Additionally, the efectiveness of coverage-guided or mutation-based fuzzing
may be limited by the complexity of the target being tested.

To address RQ2(c), we have considered various latest source code fuzzers in the ğ4.1. Those works answer the

issues related to identifying bugs and getting better coverage. Furthermore, the beneits of using directed fuzzing

with static code analysis comprise targeting sensitive and speciic functionalities of the source code that are

likely to be vulnerable. Besides, directed fuzzing can generate many input values to test diferent functionalities

of the targeted based on the strategies rendered for each functionality. However, limitations such as time and

resources required to create the input values are computationally expensive and intensive. Furthermore, directed

fuzzing is only eicacious for identifying known or suspected vulnerabilities and may need to be more efective

for identifying new or unknown vulnerabilities.

ğ4.1 will discuss various recent source code fuzzers that address RQ2(a), (b), and (c), which claim to have bet-

terness in identifying bugs, coverage of codes (block or edge), hit counts, etc. We have detailed their methodology

and showed speciically that RQ2(c) is better explainable using those techniques based on the user’s need or

fuzzer performance expected.

4.1 Recent Fuzzers based on Directed Fuzzing with Static Analysis

ATTUZZ [187]. It highlights the importance of combining static source code analysis with fuzzing. It, in turn,

aids in improving the efectiveness of unknown vulnerability detection in the source code. Likewise, it equips

fuzzing to help generate better test cases that are more likely to trigger vulnerabilities. Later, static code analyses

can identify critical variables and data structures that must be targeted during fuzzing. Furthermore, the work

highlights the potential beneits of using dynamic program analysis with static analysis and fuzzing. The work

also lists the importance of static analysis as a complementary technique to fuzzing, which can help identify

critical code areas to target and generate more efective test cases. To achieve this, ATTUZZ focused on rewarding

the eicient seeds contributing to path coverage and bug identiication. Similarly, evaluated the mutation strategy,

which could continuously select and mutate the seeds’ using the more relevant bytes that open the window for

the uncovered paths. Indeed, such a strategy will help the fuzzing efectiveness despite deteriorating over time.

To contribute to such an efort, ATTUZZ used the concept of global source code analysis (a kind of lightweight

dynamic analysis) with the help of a deep learning model with an attention mechanism in ML. The proposed

method quantiies the reward of covering the basic block through this global analysis, and assigning the reward

is based on the probability of covering uncovered branches and their count. The attention model helps determine

the coverage of signiicant bytes, providing practical guidance on future mutations. They have, furthermore,

trained the corresponding mutators by using the attention model to learn and update the fuzzing data periodically.

ATTUZZ is written on top of AFL [122] by using the same techniques as AFL to generate inputs and record the

seeds. Once the fuzzer gets stuck or loops through the same paths after a dedicated time, its model gets activated.

It then adopts deep learning with the attention mechanism to train the model and predict whether a particular

change in a signiicant byte during mutation can achieve any uncovered basic blocks. Nevertheless, it is well

aware of the expenses due to many uncovered paths and trains a model on each seed input to ind the signiicant

byte. However, to address that challenge, an abstraction of the source code is created well in advance using a

labeled discrete-time Markov chain. Later, they found the critical basic blocks and prepared separate fuzzing data.

The newly created fuzzing data aims to get the heat maps of the seed ile under diferent mutators to guide the
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selection of the more signiicant bytes in a seed ile. ATTUZZ tested against many state-of-the-art coverage-guided

fuzzers and detects new bugs in real-world programs such as mupdf, libjpeg, harfbuzz, libxml, etc., and LAVA

benchmarks [36].

AFLTeam [142]. Coverage grey-box fuzzing has received much attention in the research community of fuzzers

as discussed above. The reason behind such a statement arose from the increase in path coverage, meaning it can

uncover many unexplored or complex to trigger paths during the fuzzing process [13] [122] [109] [117] [33]. Still,

exploration in coverage grey-box fuzzing has more concentration towards single-mode fuzzing. The importance

of parallel-mode fuzzing is explored in various fuzzers, but the performance is not up to the mark [17] [103]. For

example, consider the case of AFL’s default parallel fuzzing mode (AFL-P) [122]. AFL-P employs collaborative

parallel fuzzing that uses the shared seed corpus directory. Suppose we have three instances of AFL running in

parallel mode. Let us assume that fuzzing instance 1 found an interesting seed corpus. The term interesting means

the mutated seed could ind some unexplored path in the source code during the fuzzing process. At the same

time, the other fuzzing instances 2 and 3 will also be periodically checking the shared seed corpus directory. The

fuzzing instances search for new interesting inputs in the seed corpus directory. If the fuzzing instances 2 and 3

ind the newly mutated interesting seed, they will copy that to their seed corpus queue. Here, some issues will

arise as follows:

• The dynamic information (favored/covered paths, new edges on, count coverage, etc.) supports single-mode fuzzing. Such data is not synchronized
with parallel-mode or, say, not simultaneously synchronized with other fuzzing instances.

• Task conlicts due to the same seed corpus usage by diferent fuzzing instances.
• If using the same seed corpus, fuzzing instances 2 & 3 visit the same paths explored or search for bugs in the program space.
• Using the same seed corpus produces identical test cases and causes deterioration in the performance of fuzzing processes.

Interestingly, the issues led to the importance of explicit task allocation strategies, dividing the tasks and

assigning them to each fuzzing instance. With a vision of addressing the issues mentioned, AFLTeam is proposed

and built on top of AFL [122]. Here, static analysis gets into conjunction while guiding the allocation of fuzzing

tasks in a collaborative parallel fuzzing system. A framework for distributed fuzzing that utilizes static analysis

to divide the target program into smaller, more manageable units of code, which can then be fuzzed in parallel

by multiple workers. Also, identify all the potential code paths likely to contain bugs or vulnerabilities. These

paths get divided into smaller units, assigned to individual workers for fuzzing. We can have an even workload

distribution by dividing the code into smaller units, and it reduces the risk of overloading worker nodes and

slowing the overall fuzzing process. Again, it helps determine which input types should be used to fuzz each

code unit. To attain this, a graph-partitioning task allocation mechanism produces an attribute call graph of

the program, which gets fuzzed. Later, the graphs get divided into many subgraphs, and each subgraph will be

assigned to each fuzzing instance. Each subgraph gets treated as a task, hence named Task Division. For example,

each fuzzing instance will focus on tasks such as handling the ile header, reading the data chunks, mutating the

data chunks, etc. Once a task is completed, the instance may merge with other tasks that are getting processed.

Furthermore, if some tasks consist of many branches of functions that are complicated, then it gets divided

into sub-tasks if necessary. Later, using a Task Dispatcher, they dispatch the completed tasks and initiate new

fuzzing instances. All the fuzzing instances know the tasks assigned (branches of functions). Using a monitoring

algorithm, track the statistical information such as the number of fuzzing instances, deine the moment where to

stop the instances, and request Task Division to assign new tasks. AFLTeam leverages graph-partitioning and

search methods to improve the path coverage while using collaborative coverage grey-box parallel fuzzing and

solving the issues present in the AFL’s default parallel fuzzing mode. They achieved higher code coverage on

benchmarks such as PNGImage, dJPEG, and discovered new zero-day bugs in FFmpeg and JasPer toolkits.

PATA [108]. As mentioned in ğ4, the mutated input generation technique is purely random, limiting the

generation of interesting test cases. PATA leveraged the beneits of taint analysis. It is already well-proven that

ACM Comput. Surv.



16 • Sanoop Mallissery and Yu-Sung Wu

taint analysis can observe the inluencing input bytes and solve complex constraints in the source code. They

have employed fuzzing in conjunction with static analysis to perform path-sensitive taint analysis. By analyzing

the code in advance and identifying potential paths that can get tainted, the framework can generate test cases

more likely to trigger vulnerabilities in those paths. For this, PATA utilized taint analysis to identify the relevant

data sources to each path, then performed input generation for the fuzzing. Additionally, static analysis guides

fuzzing by prioritizing the test cases more likely to trigger vulnerabilities.

In contrast, taint analysis has drawbacks such as over-tainting and under-tainting. These laws can occur in fuzzing, which limits the performance of
fuzzing. For example, consider using taint analysis in fuzzing as propagation-based [26], leading to over-tainting. Then each input byte will taint using
diferent labels and propagate these labels during the program’s execution. Here the propagation will fail to understand the multiple occurrences of
the same constraint variable, and hence it will visit the given constraint numerous times. Thus fuzzer needs clariication on when to change the
repetitious labels. Furthermore, in such a case, all the input bytes may get marked as inluencing bytes, and it will not make any progression in
mutation. If we consider taint analysis using inference-based [4] [177] [103] [59], it may lead to under-tainting. Randomly carrying out byte mutations
may alter the execution path and visit the same constraint multiple times. Even at the worst chance, it may never visit that constraint. Furthermore, it
may miss the bytes, afecting some particular occurrences due to only capturing constraint value once.

PATA realizes the importance of path-aware taint analysis to overcome above-mentioned drawbacks. The

concept of path awareness will distinguish between multiple occurrences of the same constraint in an execution

path. PATA takes care of path awareness during taint analysis to proceed for better mutation in fuzzing. It ensures

that all the representative variables in the constraints are collected and monitors the value changes when the

inputs are mutated. PATA mutates the inluencing input bytes to solve constraints in an execution path. PATA

tested on Google fuzzer-test-suite [69] and the LAVA benchmarks [36]. It outperformed state-of-the-art fuzzers

such as Angora [26] and GREYONE [59] in inding the unique paths, coverage of basic blocks and discovered forty

new bugs with twelve bugs conirmed as CVEs, and listed many new bugs on Google fuzzer-test-suite.

POLYGLOT [28]. It neutralizes the discrepancy in syntax and semantics of programming languages and can fuzz

language processors of nine programming languages. The framework employs fuzzing in conjunction with static

analysis to perform semantic validation of the source code. Semantic validation involves analyzing the code to

ensure that it conforms to the expected behavior of the language processor that is being tested. Hence, analyze

the syntax and structure of the code and the behavior of the language processor itself. By performing semantic

validation, the framework can identify potential vulnerabilities, later, generate more efective test cases and use

them for fuzzing the target software. It is achieved along with semantic analysis that helps identify the speciic

features and behavior of the language processor relevant to each test case. To balance the diferences between

each language, they have designed an IR to map the language-speciic features related to the syntax and semantics.

The IR does justice by generating a uniform format for any programming languages tested in this work. For that,

it is a must to know the BNF grammar of the language picked up and translate the source code to the IR format

with the support of the BNF format. The IR structure keeps track of the syntactic format of the source code; hence

reverse translation to the source code is feasible. To understand the semantics, an annotation format is designed

that describes the scope of functions, methods, and variables and their types and argument types. The description

generated using this annotation format gets encoded into the IR’s semantic properties and helps POLYGLOT repair

the semantic error during translation. Once POLYGLOT captures the language-grammar-speciic syntactic and

semantic features using the IR, then mutation can be carried out using the generated test cases irrespective of the

programming languages. To ensure the syntactic correctness of the generated test case, it is necessary to mutate

the IR based on the types acquired for the IR grammar structure and later use it for the semantic validation of the

unmutated section of the code. Therefore, the constrained mutator mutates the IR code to generate new IR code,

which might contain semantic errors. The semantic validator then ixes the new IR code-generated semantic

errors. Eventually, the fuzzer runs reverse-translated validated source code to identify bugs or vulnerabilities.

POLYGLOT applied to diferent real-world programming languages such as C, C++, Javascript, R, PHP, SQL, LUA,
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SOLIDITY, and PASCAL. Furthermore, POLYGLOT compared with AFL [122], QSYM [177], NAUTILUS [3], CSmith

[175], and DIE [135] fuzzers.

5 FUZZING WITH SYMBOLIC AND CONCOLIC EXECUTION ENGINE

Symbolic and concolic execution are prevalent techniques used in fuzzing to explore more paths in the source

code. We represent the program inputs and variables as symbolic expressions rather than concrete values. Later,

explore all possible paths using the given set of symbolic inputs. Whereas concolic execution in fuzzing sticks with

concrete execution and symbolic execution. In such as case, begin code execution with the concrete inputs and

hence gather information about the program behavior. Thus generating symbolic inputs by using the information

collected and exploring new paths. It helps realize complex condition branches and to explore new branches.

However, it is computationally expensive since it explores all the possible paths could be time-consuming.

Additionally, rendering concrete inputs demands specialized knowledge and expertise to generate satisfactory

symbolic inputs. We have some speciic fuzzers which use symbolic and concolic.

• QSYM [177], a state-of-the-art symbolic execution engine developed to improve the performance fuzzing by analyzing the application’s binary code and
generating a symbolic execution tree that represents all possible paths through the program. QSYM could handle complex input formats such as images,
network protocols, and compressed archives. Therefore, QSYM is a versatile symbolic execution engine. However, it possesses high-computational
overhead since it highly augments the use of computational resources and limited compatibility since it can run only binaries that can compile on x86
or x86-64 processors.

• AFLSmart [141] is an extension of the AFL [122] that contemplates a symbolic execution to explore new paths. However, it is computationally
expensive since it requires analyzing the inputs generated and thus yields symbolic inputs.

• In contrast, the KLEE [19] symbolic engine built on top of LLVM [102] lacks the models for system environments and sockets or multi-threading
programs. KLEE [19] requires LLVM IR [102] code to work with, and we cannot use it directly on binaries. We have tools such as S2E [29], which works
on binaries but possesses high computational overhead and requires more memory and CPU cycles to perform symbolic execution and exploration.
Therefore, scaling up will be challenging. Another tool is the FuzzBALL [54][55], a binary symbolic execution engine based on VINE and BitBlaze that
works on the VEX-based IR of binaries. Nevertheless, using VEX to translate binary code into an IR is complex and computationally expensive. Besides,
it lacks support to handle external libraries and system calls, limiting its ability to explore paths or identify vulnerabilities related to these interactions.

• SAGE [65] is also a symbolic execution engine, which uses a hybrid model consisting of dynamic taint analysis and symbolic execution to explore
program paths based on symbolic inputs. Hence, it has increased computational complexity.

Though techniques such as symbolic and concolic execution are heavyweight or sufer the path exploration

problem, it is well-explored in the vision of hybrid fuzzing. One of the best examples in this category is Driller

[155], which uses selective concolic execution. Driller is a hybrid vulnerability excavation tool leverages fuzzing

and selective concolic execution to help explore new paths and discover deeper bugs. Also, it explores the paths

found as interesting and generates inputs for the conditional branches that the fuzzer cannot satisfy. For that,

Driller leverages concolic execution, which reaches the deeper paths of a conditional branch and uses a feedback-

driven process to mitigate the path explosion problem. Therefore, Driller helps achieve higher code coverage

than any other symbolic and concolic engine that exists and maintains high scalability and speed. However, all

these fuzzers sufer from path explosion, which occurs when the number of paths to explore during symbolic

execution grows exponentially with the program’s complexity. This can result in computational overhead and

limit vulnerability identiication efectiveness.

In this section, we use Driller as our testbed to address the research questions. To address RQ3(a), we must

generate interesting input test cases that satisfy the complex branch condition checks. It uses a concolic execution

engine such as angr1. The constraint-solving technique (Z3 solver based on SMT [38]) generates inputs to explore

the state space of the target for better code coverage and to identify potential security vulnerabilities. Figure 3

shows the worklow of Driller [155] with AFL [122] and angr. AFL generates an initial seed and places it in the

input directory. Each time a seed gets produced, its recording is saved in bitmap fuzz. During the execution of

AFL, it gets on to a stuck phase, from where the AFL fails to create any interesting paths or diversions. At the

same time, Driller can be invoked parallelly by providing the stuck seed and the current bitmap to the Driller. The

1https://angr.io
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Driller generator gets activated and starts its concolic execution. It initiates drilling with b'7/7' and then generates

seeds by mutating and adding redundant bits. Seeds are saved in a seed queue. As we can see from the igure, the

second drilling input is b'7/70000'. Driller used -d to drill repeatedly at regular intervals. We realize that to ind

the inal crash in b'7/42a8', Driller must receive an input seed b'7/42a'. Though it propagates back and forth for a

long time, it will reach the expected input for identifying the crash.

Fig. 3. Driller Workflow with AFL and angr

The Driller [155] source code for executing these parallel processes is shown in Figure 4. The seed, binary

executable, and bitmap iles are provided as parameters to the AFL [122]. The main() function of AFL reads

the seed ile and generates seeds by execution of the statement seed=seed+'0000'. Whenever the fuzzer fails in

traversing interesting or new paths, drill_generator() function is called along with save_input() function to save the

seeds that the Driller would generate. Also, there is a driller_callback() mechanism at a regular time interval. angr

tool aids AFL in invoking Driller and analyses the symbolic state of the path conditions. It creates preconstraints

for the evaluation against SimState and compares the result with the current valid input state. angr’s solver engine

helps generate concrete values (concolic) and provides it as input for further drilling. Wherefore, to address

RQ3(b) and (c), we have to apprehend the role of concolic execution and preconstraints.

Let us take an example2 code in Figure 5a. The key idea is to run the code concretely and record all the instruction

traces achieved. Next, use a preconstrainer to add constraints for symbolic execution in advance. The constraints

added by the preconstrainer can get removed later. The preconstrainer method sets the constraints for the ile and

sets the state.posix.stdin (i.e., the input in symbolic execution) to its input (i.e., the test case passed to Driller). In

this way, the test case is used as input to execute during subsequent execution, and the execution path of the test

case itself is determined. For example, generated_from_concrete=state.posix.stdin.load(0,state.posix.stdin.pos), which

generates x{generated_from_concrete}=22, and y{generated_from_concrete}=7. These values get provided as a precon-

strain for symbolic execution. In the Driller source code, it accepts as s.preconstrainer.preconstrain_ile(self.input,

2https://www.cis.upenn.edu/ mhnaik/edu/cis700/lessons/symbolic_execution.pdf
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Fig. 4. Walkthrough the Driller Source Code

s.posix.stdin, True), where s is the state. These recorded concrete values get evaluated against the inputs obtained

from the AFL [122] to ind interesting paths. Then Driller symbolically analyzes the trace, chooses one of the

branches, and negates it. This procedure will help generate new inputs, and we can restart fuzzing using the

new inputs found. When Driller comes upon a conditional control low transfer, it checks for any deviation in

the path recorded from the fuzzer. It then expands its capability by inverting the condition that would result in

discovering a new state transition. If it will, Driller produces an example input that will drive execution through

the new state transition instead of the original control low, x=2, and y=1. After producing the input, Driller

follows the matching path to ind additional new state transitions. When new possible basic block transitions

get discovered, Driller removes the preconstrainer. Thus it solves for an input that would deviate into that state

transition (Figure 5b).

Fig. 5. Example Scenario with Concolic and Symbolic Execution

As mentioned above, to solve the constraints in the example code in Figure 5 and to generate inputs, the Driller

[155] executes the statement generated_from_concrete=state.posix.stdin.load(0,state.

posix.stdin.pos). It will result in generating concrete values x{generated_from_concrete}=22, and y{generated_from_concrete}=7.

These values are saved in a preconstrain ile called SimileStream and further provided for symbolic execution.

The Driller’s concrete results get evaluated against the inputs obtained from the AFL [122]. As mentioned earlier,
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Fig. 6. Driller Finding New Entries and Adding to Bitmap

Driller extends its capability by negating the most recent path condition and drills to ind an input that will drive

execution through the new state transition instead of the original control low. Driller escalates its eiciency

in solving constraints by coupling angr into it. If any new interesting path or new basic block transitions, it

gets recorded in the bitmap and removes the preconstrain. Figure 6 illustrates the storage of preconstrain to

SimFileStream and shows the entry update in AFL-bitmap.

5.1 Recent Fuzzers based on Symbolic and Concolic Execution Engines

CONFETTI [100]. It is a tool that uses concolic execution and taint tracking to generate complex inputs and

detect hidden bugs in program logic through parametric fuzzing. In the traditional fuzzing approach, we integrate

white-box guidance with fuzzing using targeted hints, which directs the fuzzer to place speciic bytes at speciic

locations in speciic inputs. CONFETTI also uses targeted hints but introduces the concept of global hints, which

help overcome the limitations of dynamic taint tracking.While CONFETTI is not tied to any particular programming

language, it is implemented in Java. It can target applications written in languages that target the JVM, such as

Java, Scala, Kotlin, Groovy, and Clojure. CONFETTI claims it is more efective than any other fuzzing approach,

including a state-of-the-art grey-box Java fuzzer, covering more branches and inding more bugs. CONFETTI

fuzzed several open-source projects, including Apache Ant, BCEL and Maven, Google’s Closure Compiler, and

Mozilla’s Rhino engine. However, the performance overhead occurring in CONFETTI feels the heaviness of concolic

execution and taint trackingÐalso, the high-performance overhead limits its usage. The increased complexity due

to global hints makes it less attractive. It adds complexity to the fuzzing process and makes it harder to integrate

or maintain it with traditional fuzzers. Moreover, the limited applicability of CONFETTI limits its target that uses

JVM. CONFETTI is still a research prototype, meaning it must be thoroughly tested or optimized for all scenarios.

It may also need some of the features and stability of more established fuzzing tools.

FUZZOLIC [15]. It improved the eiciency of hybrid fuzzing by expediting diferent phases performed by concolic

executors. FUZZOLIC, the concolic framework, built on top of the binary translator QEMU [7]. The framework

enhanced the emulation performance and versatility compared to the state-of-the-art binary concolic executor

QSYM [177]. On the reasoning side, an approximate solver is introduced, FUZZY-SAT, which tests the satisiability

of symbolic queries generated by concolic engines without relying on expensive SMT solvers [38]. Instead,

FUZZY-SAT use fuzzing domain and performs informed mutations on the expressions in a symbolic query to

generate interesting inputs. Consequently, the approximate solver replaces classic SMT solvers in hybrid fuzzing.

To showcase the potential of FUZZY-SAT, they have integrated it into two binary-based concolic frameworks,
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FUZZOLIC and QSYM, and into the source-based concolic executor SYMCC [143]. FUZZOLIC tested on twelve

applications and LAVA-M benchmarks [36] and identiied new bugs.

6 INTERFACE & ENVIRONMENT ISSUES

The runtime dependencies of fuzzing targets consist of interface and environment dependencies. For example, a

device driver or irmware acts as an interface between the application and hardware and successively has access

to the user-space data. Direct access to a user-space pointer can lead to incorrect behavior. It depends on the

architecture, and the user-space pointer may not be valid or mapped to environment (kernel) space. Direct access

can also point to a kernel oops, where the user-mode pointer can refer to a non-resident memory area, or it may

lead to security issues. Therefore directly accessing the user-space data is inconceivable; hence, the interface’s

and environment’s issues should be attended to with utmost priority and made impeccable.

The number of IoT devices is increasing exponentially nowadays. However, many security issues arose along with the increase in interfaces used in
IoT devices. Recent botnet attack Mirai [94] is one example of accessing the live CCTV camera footage. FDA had conirmed that medical devices used
for the cardio examination could be hacked, and risk leads to recall the pacemakers in the market [53]. Therefore, we can undoubtedly say that IoT
devices are vulnerable to attacks since they communicate with the outside world through the Internet. Consequently, the attack surface becomes
more extensive than the traditional devices. It is necessary to have an assisting mechanism that tests the irmware code in detail to identify its laws.
Realizing the importance of coverage-guided feedback fuzzing on critical system applications has got enough attention in the research community. In
that case, we can indeed question the security related to the environment, such as a kernel. For example, the Linux kernel consists of around 28M LOC.
The Linux coding team uses the handwritten test suite called the Linux-test-project [16] to identify and eliminate the bugs in the kernel. However,
manual elimination of bugs on such a large-sized code is nearly impossible due to the rapid increase in the code size and the complexity possessed in
the code. Furthermore, any bugs present in the kernel code of an operating system will lead to severe security breaches such as the blue screen of
death, privilege escalation, information disclosure, etc. Therefore, inding bugs in the kernel code is intense since most fuzzers fail to do so. When we
analyze the reason for such failures, we can undoubtedly say that inding kernel code bugs is coupled with understanding syscall types and their
dependencies.

The answer to RQ4(a) is yes, and we can address the runtime interface and environment dependencies of

fuzzing targets and ind the bugs and vulnerabilities present in them. Let us consider irmware as the interface

and kernel as the environment. For example, a race condition can occur if the code has multiple concurrently

executing processes that try to access shared data, leading to a circular lock due to synchronization issues. Such a

code behavior can direct to an unresponsive kernel and result in a deadlock situation. It will trigger a bug in the

code, which could be a Denial of Service (DoS) or an escalation attack due to the priority assigned for the access.

These bugs are prevalent in kernel code and easily identiied using kernel fuzzing. However, as we say in RQ4(b),

we face many challenges, and it is inevitable. We cannot use state-of-the-art fuzzing software such as AFL [122],

libFuzzer [109], Honggfuzz [66], etc., since it faces some challenges while testing the interfaces in IoT devices’

irmware. The main reason is concerning the generation of input test cases. The message format requirements of

IoT devices vary much from standard desktop applications. Therefore the input test cases will get rejected at a

very early stage of fuzzing since it fails at the input validation and sanitizations stage. In such a case, the fuzzing

process cannot even enter the functionality stage of IoT device worklow. Also, it poses a challenge to insert

the instrumentation code since the irmware needs the support of the hardware. Thus, it is impossible to obtain

coverage information to evaluate the performance of the fuzzer. Furthermore, it is challenging to use traditional

grammar-based fuzzers such as GANFuzz [79], Skyire [163], LangFuzz [78], Gramatron [154], GramFuzz [73],

etc., on IoT devices irmware or kernels. It needs many learning materials to support the extraction of grammar

rules from the available irmware or kernel material. It can only support the available/known grammar format

depending on the learning materials collected, and in the case of IoT device irmware or kernels, it is a complex

task.
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In contrast, in environment fuzzing (for example, kernel fuzzing), we require some adaptions in the fuzzer executions. Let us take the example
of the state-of-the-art fuzzer AFL [122]. AFL has to perform fuzzing, adapting the features of QEMU [7]. QEMU can emulate a whole machine in
software without hardware virtualization support, and QEMU can also provide userspace API virtualization for Linux and BSD kernel interfaces.
Applying the QEMU patch, AFL++ [52] and TriforceAFL [87] have performed coverage-feedback fuzzing on the binary that QEMU can run. The patch
correspondingly managed to have an uplift from the user space to the kernel space, and hence it runs in the privileged mode and has direct access to
the machine hardware support. The combination of QEMU/AFL++ and QEMU/TriforceAFL has found several critical bugs in the Linux kernel. The
agents communicate with the virtual machine, check the messages received from the fuzzer, decode them to the system calls and make it interactive
with the kernel or direct generation of system calls with the initial parameter values also helps to get the test cases. The interesting test cases get saved
for another mutation from the execution trace.

While fuzzing the interface of an IoT device, many researchers have quoted the challenges as shown below

[93] [74] [50] [21] [32].

(1) Fuzzing a irmware should be more transparent since cohesion exists in the model’s peripheral behavior and the driver code [93] [74] [50]. Essentiality
lies here to leverage the existing debugging tools of the embedded software development and thus to construct a suitable fuzzing framework. That
shows the dependency on hardware and IoT irmware. For example, an emulation environment may yield the highest throughput since IoT devices’
processing is slower than desktop environments. The real-time IoT device performance is far beyond the emulation environment compared with a
complete system emulation.

(2) The unavailability of obtaining and emulating IoT irmware makes fuzzing a irmware arduous [50] [21] [32]. Therefore, we experience restricted
access to the irmware ∝ retrieving the IoT device’s internal execution trace to inluence the fuzzing process.

(3) In terms of Fuzzing, we need a feedback-driven approach since we miss the feedback from the IoT device and, therefore, optimize the fuzzing seed
generation process [74] [50] [21]. Thus, retrieving the execution trace from the IoT device is not possible, and hence it is very challenging to fuzz the
IoT device irmware using network communication.

(4) The diversiied message formats in IoT device irmware are used to exchange network messages [93] [74] [50] [21]. IoT devices follow the strict
grammatical syntax for communication messages and use forms such as JSON, string, SOAP, key-value pairs, and custom bytes. Therefore, IoT fuzzing
software has to send random inputs or random formats of messages to the target IoT device since it does not know the type of communication message.
The random mutation strategy will break the expected syntax rule of the input format, and inputs will get rejected at the syntax validation stage.

(5) Therefore, the mutation strategy becomes expensive, time-consuming, and potentially misses the relevant ones. Furthermore, IoT devices possess extra
elements in the communication messages such as nonce, timestamps, signatures, and built-in module formats. These additional elements in messages
increase the randomness and hence lose the efectiveness of mutations.

Whereas in environment fuzzing, we have fuzzers such as Triforce Linux Syscall Fuzzer [86], Google’s Syzkaller

[43], Moonshine [133], SYZVEGAS [162], and StateFuzz [183]. All of them are kernel code testing fuzzers based

on coverage-guided feedback. Despite some drawbacks, it is feasible to use coverage-guided feedback-based

fuzzers to track the kernel states more extensively than the non-coverage-guided fuzzers. Triforce Linux Syscall

Fuzzer decoded the inputs from the fuzzer and communicated with the kernel. Syzkaller tracks the system call

description and arranges it in a sequence based on the appearance of system calls in the kernel code. Hence

the sequence of system call invocation is tracked and used for feedback analysis to reine the seed corpus in

the upcoming iterations. In contrast, Moonshine tried to extract the critical system calls based on the relevance

of those mentioned in the handwritten test suite called the Linux-test project. Then Moonshine guessed the

applicability of system calls’ read-write dependencies. Using this assumption, Moonshine generate the test cases

and further mutated them to create interesting ones.

ACM Comput. Surv.



Demystify the Fuzzing Methods: A Comprehensive Survey • 23

Indeed, recently there have been so many amendments to Google’s Syzkaller [43] by leveraging its unsupervised coverage-guided expertise to fuzz the
Linux kernel.

(1) SYZVEGAS [162] is a dynamic and adaptive fuzzer designed to improve kernel fuzzing eiciency. Traditional fuzzers rely on ine-tuned and
hard-coded parameters, limiting their adaptability to diferent environments and targets. SYZVEGAS addresses this issue by automatically adjusting
two critical decision points in Syzkaller, namely task selection and seed selection, using Multi-Armed Bandit (MAB) algorithms and a novel reward
assessment model.

(2) Whereas, StateFuzz [183] addresses limitations by proposing a state-aware fuzzing solution. StateFuzz models program states using state
variables and employ static analysis to recognize such variables. Target programs are instrumented to track the values of these variables and infer
program state transitions at runtime. State information is then used to prioritize test cases that can trigger new states, and a three-dimension
feedback mechanism ine-tunes the evolutionary direction of coverage-guided fuzzers. The objective of SYZVEGAS is to enhance kernel fuzzing
eiciency and bug detection by learning efective strategies over time with reinforcement learning, whereas in StateFuzz discovers bugs and
vulnerabilities in Linux drivers by realizing the impact of system call inputs on the driver’s state.

(3) Furthermore, we have PrIntFuzz [115], which is an engaging, eicient, and universal fuzzing framework designed to fuzz the Linux driver code
and extend the support to test IoT irmware, e.g., simulating peripherals of IoT devices and rehosting the irmware in an emulator (e.g., QEMU)
can test the overlooked driver code, including the PRobing code and INTerrupt handlers. It addresses the primary challenges of fuzzing IoT device
drivers, which stem from limited hardware support and the black-box nature of IoT software. PrIntFuzz extends DIFUZE [34] to work on the latest
kernel and collect system calls from driver interfaces. Thus comprises diferent methods like user interactions (system calls), interrupt injection,
and data injection. By orchestrating these methods in a speciic order, it thoroughly explores the attack surface of Linux drivers and the drivers in
IoT devices. This approach helps uncover vulnerabilities and potential security issues hidden in the black-box nature.

However, none have discussed the inluence relation between the system calls. It has yet to contribute to

analyzing the inluence of one system call with the execution behavior of the subsequent system calls while

generating and mutating the inputs. All the concerns mentioned above by various researchers have been addressed

with the implementation of HEALER [156]. They have analyzed the inluence relations between the subsequent

system calls for generating interesting test cases. ğ6.1 and ğ6.2 discusses recent irmware and kernel fuzzers that

address RQ4(a) and (b).

6.1 Recent Firmware Fuzzers

�AFL [105]. It is a feedback-driven fuzzing on ARM-basedMCU devices’ irmware to locate bugs in the low-level

peripheral drivers. The development of such a fuzzing solution is in the light of vulnerability identiication in

ESP8266 and ESP32 communication, WiFi co-processors, and FreeRTOS TCP/IP stack leading to remote code

execution and stealing private data. �AFL gave prominence to the concern where rehosting, that is, solutions that

expect a shift in their infrastructure services that cannot model the peripheral behavior and thus cannot fuzz the

driver code. Existing fuzzing solutions face challenges when applied to embedded device irmware. Most of them

concentrated on emulation-based rehosting methods, but it will become inaccurate when modeling the diverse

peripheral behavior. Recent works, Jetset [93], PRETENDER [74], �Emu [185], DICE [121], P2IM [50], Laelaps

[21], HALucinator [32], Ninja [129], USBFuzz [139], and Avatar [178] depend on symbolic execution, pattern

matching, and ML to learn embedded irmware’s extensive peripheral model behavior. However, inaccuracy

exists on rehosting-based solutions since we cannot boot irmware that possesses peripherals such as USB or

complex hardware devices.

This discrepancy is due to generating diferent execution traces on an emulator than booting it on an actual

device. It occurs when emulators use hardware-independent code related to device-irmware passes through

the booting process. �AFL, runs the irmware directly on the target device. Therefore it supports a full-stack

testing environment that assures high idelity and overcomes the issues of a rehosting-based solution. A fuzzing

manager on the user’s system will synchronize with fuzzing using a debug dongle. It acts as an intermediator

between the target device and the system where the fuzzing manager exists. The fuzzing manager retrieves all

the execution traces and decouples the execution engine from AFL [122]. Thus it uses the target-embedded board

to execute the test cases. The seed test cases are submitted to the target device board during execution through

the fuzzing manager, pulling all the code coverage and crash information.

Furthermore, the �AFL leverages Embedded Trace Macrocell (ETM) [2], which transparently traces every

executed instruction and provides unmatched insight into the target board’s activities. Hence �AFL is free from

code instrumentation which helps �AFL to free from rewriting the target device binary. Evaluation of �AFL
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conducted on NXP and STMicroelectronics board and identiied three zero-day bugs and eight CVE assigned

bugs.

SNIPUZZ [51]. Existing IoT fuzzing methods rely heavily on obtaining the irmware of the IoT device. Irrespective

of whether we use static or dynamic analysis, we must have the IoT irmware, but it is challenging to obtain. In

IoT device worklow, once it receives the input, it will send it to the sanitizer to perform input validation and then

forward it to the function switch, which triggers the corresponding functionalities. Then the related functions will

get evoked from the replier module, which will send the status of the execution back to the caller. SNIPUZZ acts

as a client that communicates with the IoT devices in real-time and deduces the message snippets (consecutive

bytes). These deduced message snippets mutate to produce more input test cases based on the responses from

the IoT device. In SNIPUZZ, the initial input seeds are collected from the IoT device’s API documentation and their

oicial Website. Later, mutate the seed byte-by-byte, send it to messenger, and communicate with the IoT device

to collect the responses.

Upon the reception of each new response, categorization has been performed. Therefore the inputs that

make interesting responses have been added to the seed pool. SNIPUZZ use the response from the IoT device as

feedback to guide the fuzzing process. However, it is impossible to directly extract the relationship between the

irmware execution and the response messages. Hence, if two inputs get two diferent response messages, then

the information low happens to two diferent irmware execution paths. The randomness in the communication

messages is due to the tokens or timestamps. It shows that the response messages get varied in their presentation.

Therefore it relies on similarity algorithms to circumvent the randomness in the response messages. They calculate

the similarity score based on the added distance, and then later, it gets normalized.

Dealing with numerous message formats in the IoT device responses, all input messages are considered byte-by-byte and mutated byte-by-byte.
Then the snippets are merged according to the responses. Concurrently, mutations on two diferent byte positions receive the same response. In that
case, the two-byte positions may be highly likely related to the same functionality in the irmware. Therefore those consecutive bytes with the same
response will merge into one snippet. Thus, each snippet in SNIPUZZ is considered a block of consecutive bytes, and this mutation strategy based on
snippets will help narrow down the search space to alter the probe messages. If two responses are semantically identical, they will be classiied into
one category, and hierarchical clustering will convert the response message into feature vectors and track the features from the responses.

SNIPUZZ is compared with four state-of-the-art IoT fuzzers such as Doona [48], IOTFUZZER [25], BooFuzz [95],

and NEMESYS [98] and observed that SNIPUZZ discovered many categories that exposed the most number of

bugs, including ive zero-day bugs.

6.2 Recent Kernel Code Fuzzers

SyzScope [189]. A known fact is that fuzzers can tirelessly discover bugs and vulnerabilities in an application.

However, coverage-guided fuzzing explores more code blocks and paths, but negligence exists to analyze the

security impact of the bugs found. For example, oss-fuzz software [70] continuously fuzzes the user-space

applications and reports new bugs in day-to-day software [70] [43]. Yes, it is good that we could ind more bugs,

but the challenge is the high rate of bug discovery than the rate of bug ixes. SyzScope addresses such a concern

so profoundly and uses the bug report as an input to build, extract and distill out the kernel, PoC, and system cal

bugs separately. Provide these bugs as targets to a kernel fuzzer to identify the read/ write impacts of each PoCs

using bug analysis and then perform taint analysis to verify the bugs. Later, with the help of symbolic execution,

explore the paths to each bug that has a profound impact and validate it to produce the new bug report based

on the predicted impact. Thus evaluated the impacts of the bugs identiied and facilitated prioritized bug ixing

with the help of static analysis and symbolic execution. For example, the UAF and heap OOB bugs may lead only

to a read-primitive. The bugs belonging to the warning, info, or GPF also got classiied in the low-risk impact

category.
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HEALER [156]. The concerns mentioned in RQ4(b) have been addressed more promptly in implementing

HEALER. It analyzes the inluence relations between the subsequent system calls for generating interesting test

cases. An example of the inluence relationship between system calls is in the case of the system call bind and the

subsequent system call listen. We know that bind assigns the address to the socket and then listen towards that

to accept the connection. The listen system call may end up early with an error, which indicates that the bind

socket connection is not proper because of not calling the bind system call at irst. This case happens because the

execution of a former system call can alter the subsequent system call’s execution path. An inluence relation

learning algorithm that assesses the inluence relationship between the system calls in the kernel code. This

awareness is injected into the fuzzer to get an acquaintance on which system call is present in the execution

path of another call. A static routine algorithm analyzes the relationship between the system calls based on the

initial input parameter types. Also, it checks the return types associated with the system calls. Furthermore, a

dynamic-routine check algorithm inds the inluence relations between the system calls. For that, generate a

minimized set of system call sequences and then run the fuzzer to get feedback from each system call. The sole

purpose of this minimization is to discard the system calls that do not contribute to generating interesting test

cases. The execution trace is stored and used as feedback for further iterations to evaluate the inluence relation

between the system calls. The dynamic-routine learning continuously updated the inluence relations table with

the information not captured in the system call descriptions.

HEALER generates interesting test cases that lean towards new bug discovery in the branch where system

calls are present. Later, HEALER uses the information regarding the inluence relations to guide the system

call sequence mutation and generation. A guided call selection algorithm decides whether to use the inluence

relation table and understand which calls to select based on information in the relations table. HEALER’s branch

coverage shows an outstanding improvement with an efective speedup compared to the state-of-the-art kernel

fuzzers Syzkaller [43] and Moonshine [133]. Furthermore, it resulted in identifying thirty-three new bugs in the

kernel code.

NTFUZZ [31]. The dependency between the system calls and nested behavior precludes the fuzzers from

generating meaningful test cases.

To an extent, Linux kernel fuzzers such as SyzScope [189], HEALER [156], kAFL [150], pe-AFL [112], Triforce AFL [87], Triforce Linux Syscall [86],
Google’s Syzkaller [43], and Moonshine [133] are doing justice towards inding bugs from the kernel code. Nevertheless, the stringency will increase if
the kernel is a Windows kernel, and none of those kernel fuzzers mentioned earlier are suitable for fuzzing the Windows kernel code. An exception is
Google’s Syzkaller, which has limited support for fuzzing the Windows kernel. However, Syzkaller can perform only on Windows API functions but
not on the system calls. It is due to the private and the undocumented nature of the system calls in Windows.

NTFUZZ used a static binary analyzer that deduces the details about the Windows systems calls present in

the "system binaries" at a large scale. "system binaries", represents the binaries that have documentation about

the Windows API functions and, their implementation is present in built-in core system libraries (DLL iles)

such as ntdll.dll, kernel32.dll, kernelbase.dll, win32u.dll, gdi32.dll, gdi32full.dll, user32.dll and dxcore.dll. "system

binaries" get converted to IR code and create the CFGs, and parse all the Windows API functions based on the

type information provided. They have used static analyzer to ind and analyze the syscall types by tracking

their reachability to the register and memory states. Therefore the static analyzer analyzes the binaries such as

kernel32.dll, kernelbase.dll, ntdll.dll, etc., and invokes the syscalls. Then deduce the information about the system

call that includes its argument types. It bridges the information gap between documented and undocumented

functions in Windows, known Kernel API functions, and the system calls by propagating the information between

the interfaces. NTFUZZ is compared with IOCTLFuzzer [44] and NTCall64 fuzzer [77]. However, both the fuzzers

had required code modiication since the development of NTFUZZ is to fuzz Windows 10. There is a signiicant

impact over inding bugs while fuzzing Windows 10 system binaries with NTFUZZ.
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HFL [97]. As discussed in the works mentioned above, kernel fuzzing is challenging since we must consider

the indirect control low transfers during syscalls, internal state matching via syscall, and tracking the nested

arguments as and when syscall invocation.

We know that random fuzzing gets stuck when branch conditions are complex [140] Ðthe savior at such a situation incorporating symbolic execution
[20] [9]. Likewise, symbolic executions sufer state explosion since it has to explore both taken and not taken branch branches, and the complexity
grows exponentially [19] [29] [155]. It will lead to a state explosion issue. In such a case, random fuzzing will act as a savior by pinpointing the
fuzzer to follow a speciic exploration path. Thus both of these methods stay hand-to-hand to mitigate the concerns sufered. Therefore, HFL, i.e.,
Hybrid Fuzzing, combines both random fuzzing and symbolic execution to assist kernel fuzzing. It is apparent that fuzzing kernels are not similar to
fuzzing an application using the hybrid fuzzing technique. Some existing kernel fuzzers, such as RAZZER [85], Digtool [134], and kAFL [150], ignored
the challenges mentioned above and used random fuzzing and symbolic execution as distinct methods. Using static analysis, kernel fuzzers such as
DIFUZE [34] and Moonshine [133] have only handled some challenges.

To tackle indirect control lows in the Linux kernel (for example, polymorphism due to many devices and

feature support, kernel relies on a function pointer table), HFL irst converts indirect to direct control lows. Here

we may argue that random fuzzing can understand indirect control transfers. However, random fuzzing will

only understand the indexing associated with the function pointer table if we are trying to fuzz a kernel with

many indirect control transfers to support polymorphism. For the conversion, HFL uses an oline translator,

which will not alter the semantics of conditional branches, i.e., the underlying code blocks are reachable through

direct control lows. It tracks the system call parameters propagation since the translator is not altering the index

variable related to a particular syscall parameter in the function pointer table. Consequently, the translator is

performing the inter-procedural data low analysis intact. HFL also performs a branch transformation by inserting

a conditional branch jumping to a corresponding function pointer, ensuring it will never miss tracking a branch.

HFL outperformed the kernel fuzzers such as Moonshine [133], Syzkaller [43], TriforceAFL [87], kAFL [150], and

S2E [29] by achieving a higher coverage and discovered twenty-four new bugs.

KRACE [174]. It is arduous to realize the inluence of multiple thread synchronization while accessing the shared

memory due to the high concurrency nature of kernel ile system design. It is prominent in the data race scenario

when multiple threads try to access the shared memory location without proper synchronization. However,

detecting data race is diicult since it shows fewer thread interleavings, triggering a complicated memory crash in

kernel ile systems. KRACE concentrates on data race or thread interleavings that can happen due to multi-threaded

system calls. KRACE design proposed alias instruction pair coverage, focusing on the concurrency domain. It used

RAZZER’s [85] conventional branch coverage approach to explore the code sequentially.

Developers commonly use the stress test to detect data race situations in source code [16]. Yet, the increased complexity in kernel code due to its
intensive workloads triggers distinctive thread interleavings, and the number of data races eventually increases. Fuzzer, like RAZZER [85], has proved
the prominence of kernel code fuzzing and reported that data race in a kernel is an erroneous bug, which critically afects the reliability and security of
the underlying system. RAZZER relies on static analysis and deterministic thread interleaving techniques to detect data race scenarios but is concerned
about the coverage issues rather than the data race due to concurrency. The sequential aspect of source code was treated well in RAZZER but focused
on something other than the concurrent execution aspect in source code. That means it focused more on single-thread system call executions than the
multi-threaded system call sequences, which may trigger many thread interleavings.

To comprehend the concurrent execution scenarios, it tracked all pairs of memory instructions, knowing that

threads may make interleavings in one another during execution. The sole responsibility of alias instruction pair

coverage was to count and track all covered interleaving locations. KRACE retains the details about the shared

memory access and ensures that at least one thread is a memory write access in a pair of threads. According to

the KRACE design, scheduling the threads is signiicant since it is pertinent to explore unexplored coverage paths.

During compilation, KRACE adds annotations to the kernel code. An LLVM instrumentation pass [102] and KRACE

library compilations extract the coverage path’s details and track the runtime. Furthermore, KRACE generates a

set of multi-threaded seeds and input test cases, executed in a QEMU emulator [7] and virtualizer environment to

augment fuzzing and detect the data races scenarios in kernel ile system code. KRACE has uncovered twenty-three

unexplored data races bugs in ext4/ btrfs ile systems.
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7 INSTRUMENTATION ERRORS

As discussed in all the recent works, the researchers have tried either to improve fuzzing coverage or the

performance of fuzzers to identify new bugs. Yes, it is not at all questionable. Improvement is always a need for

software like fuzzers since bugs are inevitable in manual-written programs. Those bugs or vulnerabilities in a

software source code can open up the attack surface for attackers.

7.1 Recent Fuzzer to Deal with Instrumentation Errors

InstruGuard [111]. A stand-alone tool that inds and ixes instrumentation errors during fuzzing. To address

RQ5(a), we know that instrumentation or coverage feedback is paramount for grey-box fuzzers. Unfortunately,

existing works believe that the instrumentation for getting coverage feedback is thoroughgoing and precise.

InstruGuard proved that it is a misconception. The developers must validate their belief in their instrumen-

tation completeness and accuracy. To answer RQ5(b), a thorough understanding of fuzzing instrumentation

completeness and accuracy is required. However, it is evident that if the instrumentation code possesses some

errors, it will relect in the fuzzed program and lead to unawareness of the hard-to-trigger coverage paths

and missing the bugs hidden in those blocks. We must have some novel methods to address missed/redundant

instrumentation locations. In InstruGuard, if instrumentation misses some necessary instrumentation locations,

then the fuzzer will not come to know about the missing part and bypasses the chance of inding vulnerabilities

in the lost fragment of code. Secondly, if redundant instrumentation happens on a particular block, the path

coverage depth will confuse the fuzzer depending on its execution time and depth. For example, in AFL [122], the

bitmap size is 64KB, where it stores the coverage feedback information. If the path depths increase due to the

redundant instrumentation location, bitmap collision occurs. For addressing RQ5(c), let us take the scenarios of

compiler-level instrumentation. The IR code is optimized by default during such instrumentations (for example,

LLVM [102] compiler-level instrumentation). Such optimizations usually merge some basic blocks. For instance,

consider the below-mentioned cases:

al-clang-fast: Instrument the code only at the beginning of a basic block. Due to the merge, the instrumentation misses some chances of code
instrumentation at some basic blocks. It leads to missed bugs or crashes at that location, afecting the coverage feedback due to the missed or redundant
instrumentation at that basic block. If it is assembly-level instrumentation, the binary created must have a modiied assembly-level basic block and
miss the instrumentation due to the error. The assembly-level instrumentation (al-gcc or al-clang) rule in AFL [122] deals with function/branch
destination labels or conditional jump instructions that adds instrumentation. Furthermore, AFL adds instrumentation at the actual assembly code of a
program (text section) or leaves the instructions below .p2align to reduce unnecessary instrumentation and afect the coverage-feedback. From all
these, we can address RQ5(d) that instrumentation errors turn to faulty coverage feedback and damage the fuzzing process.

InstruGuard disassembles the given program to the assembly code, checks each basic block, and instruments

their code if any missing or redundant instrumentation in the basic block is compared with the original IR or

assembly code. InstruGaurd rewrote the binary by adding or deleting the required code instead of the vanilla

binary created by the original instrumentation. The experimentation used six coverage-based grey-box and

white-box state-of-the-art fuzzers.

There is a signiicant diference in the instrumentation error rate and locations in the above-mentioned fuzzers.

AFL [122] produces the least number of instrumentation errors in compiler and assembly-level instrumentation,

and most errors are related to missing instrumentation. MemLock [170] modiies AFL code to acquire memory

information, leading to more redundant instrumentation errors. Angora [26] also edits the original code by

splitting the basic blocks with conditional statements and generating two basic blocks. This strategy can reduce

the overhead while solving the constraints. Still, it causes many instrumentation errors since only one basic block

will collect the instructions of the conditional statement. Hence redundancy and missing instrumentation errors

are quite more in Angora [26]. AFL++ [52] employs a diferent strategy, such as adding new basic blocks to the

original code while compiling the code. The newly added block gets loaded with mov and jmp instructions to

handle loading edge coverage identiication from its global memory. This attempt will cause many redundancy
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instrumentation code sequences in many locations, leading to unnecessary instrumentation errors and, later,

afecting the coverage.

REZZAN [8] and FIFUZZ [90]. Explicitly seeking, except InstruGaurd [111], no other fuzzer works speciically to

check for instrumentation errors. However, fuzzers such as REZZAN and FIFUZZ (applies static analysis) check

for memory errors and error-handling code by combining memory error sanitizer with fuzz testing. It detects

"silent" memory errors that often go unnoticed by the program, as it does not always cause immediate crashes

or other apparent failures. Instead, it leads to subtle, hard-to-detect bugs that may only manifest themselves

under certain conditions or after a signiicant amount of time has passed. For example, memory errors such as

out-of-bounds array access, null pointer dereference, use-after-free, uninitialized memory access, and memory

leaks go undetected in most cases. The memory error sanitizer design in REZZAN is optimized for fork-mode

grey-box fuzzing. We also have FIFUZZ, which tests the error-handling code and detects bugs. FIFUZZ applies

static analysis on code to pinpoint potential error sites. Users can select those most likely to fail from these sites

and trigger the error handling code. During runtime testing, FIFUZZ incorporates a context-sensitive Software

Fault Injection (SFI)-based fuzzing [90].

We have not related these fuzzers that checks for instrumentation errors. However, it is always applicable

to check for memory errors since instrumenting foreign code may attract memory errors [111]. In such a case,

tools such as REZZAN, and FIFUZZ have prominence and can point to the research question RQ5(d) to ix the

instrumentation errors for the beneit of better fuzzing results.

In addition to fuzzing scenarios, instrumentation techniques ind applications in various domains, such as software testing, dynamic analysis, program
proiling, and performance monitoring. Consequently, mitigating instrumentation errors becomes a major concern beyond the scope of fuzzing.
Several research eforts have been made to address these errors in diferent contexts. While the detailed exploration of these works is beyond the
scope of this survey, we briely highlight some relevant studies:

(1) Researchers have focused on mitigating instrumentation-induced overhead in software performance monitoring tools. The proposed techniques
reduces the impact of instrumentation on the overall system performance [72][171][147].

(2) In the context of dynamic analysis, some studies have addressed the challenges of instrumentation errors when monitoring program behavior.
They focuses on statistical approaches to identify and correct inaccuracies in instrumentation [18][149].

(3) Some research investigates instrumentation errors in the context of software testing and presents an automated method to detect and rectify
inconsistencies introduced during code coverage measurement [160][23][151][91].

While these studies demonstrate the importance of identifying the signiicance of robust instrumentation and

addressing instrumentation errors in diferent application domains, we emphasize the need for further research

and innovation to ensure reliable instrumentation across various contexts. We stress the necessity for continued

research and innovation in the realm of instrumentation error detection and prevention. The studies we have

reviewed provide valuable insights, but they also highlight the dynamic and evolving nature of instrumentation

vulnerabilities.

8 SUMMARY OF RECENT ARTICLES ON FUZZING

Table 2 shows an overview of the recent articles and a detailing of their classiications. We have also mentioned

the directions in those articles for improving fuzzing performance.

ACM Comput. Surv.



Demystify the Fuzzing Methods: A Comprehensive Survey • 29

The codes mentioned in the core techniques in Table 2 are as follows. å(a): Coverage guided fuzzer + Dynamic analysis + Mutation based deep
learning network with Attention mechanism,å(b): Coverage based grey-box fuzzer + Parallel fuzzing + Dynamic task allocation + Task aware fuzzing,
å(c): Mutation based grey-box fuzzer + Path awareness + Propagation and inference based taint analysis,å(d): Language-speciic fuzzer + Grammar
awareness + Constrained mutation + Semantic validation,å(e): Coverage-guided fuzzer + Bug impact awareness + LLVM based,å(f): Coverage-guided
fuzzer + Syscall inluence relation identiication + Relationship learning algorithm + Static and dynamic learning,å(g): Generation based + Coverage-
guided + Type aware fuzzer + Windows kernel fuzzing + Static binary analysis,å(h): Coverage-guided fuzzer + Symbolic execution + Indirect control
low transfer between Syscalls + Kernel sys call fuzzing + Static analysis,å(i): Coverage-guided fuzzer + Data race (concurrency) detection + Dynamic
analysis + Test case generation,å(j): Directed grey-box fuzzer + Static and precondition analysis + LLVM based,å(k): AFL + E9Patch + Static binary
rewriting + Trampoline-based rewriting,å(l): Coverage-based grey-box fuzzer (AFL) + Stochastic binary rewriting + Probabilistic inference problem,
å(m): Coverage-based grey-box fuzzer (AFL) + Static binary rewriting + ZAX transformation + Feedback enhancement, å(n): Coverage-guided
tracing + Coverage preservation + Static and dynamic binary analysis + LLVM based,å(o): AFL + Full stack testing + Dynamic binary rewriting
(Online trace collector) + Oline trace analyzer,å(p): Black-box fuzzer + Grammar based fuzzer + Syntax inference mechanism + Dynamic binary
analysis,å(q): White-box, Coverage-based grey-box fuzzer + hybrid analysis + taint tracking,å(r): White-box, Coverage-based grey-box fuzzer +
hybrid analysis + JIT compilation + path prioritization + optimal search strategy,å(s): Coverage-based grey-box fuzzer + Instrumentation error ind
and ix + Static binary analysis. The fuzzing analysis performed in each of the recent fuzzers are as ë(S), ë(K), ë(B), ë(F), ë(H), and ë(E) represent
source code, kernel, binary, irmware, hybrid (symbolic + concolic), and instrumentation errors, respectively. The numbers circled in the direction of
these fuzzers are as follows. ❶time and cost of analysis, ❷coverage or reachability analysis, ❸runtime overhead, ❹pre-condition inference, ❺bug detection,
❻complex bugs, ❼seed generation, ❽instrumentation errors, ❾parallel fuzzing, and ❿soundness. Furthermore, we have mentioned various benchmarks
used in these approaches.

Table 2. Summary of recent fuzzers categorized by technique, publication, and the fuzzing approach.

Fuzzer
Article and Year
of Publication

Core
Techniques

Fuzzing
Analysis

Open
Source

Direction
Compared
Fuzzers

ATTUZZ [187] CoRR’21 å(a) ë(S) ✗ ❶❺
AFL [122], Driller [155], Vuzzer [146], AFLFast [17],
NEUZZ [152]

AFLTeam [142] IEEE/ACM ASE’21 å(b) ë(S) ✓ ❶❷❺❾ AFL-P (Parallel) [122]

PATA [108] IEEE S&P’22 å(c) ë(S) ✗ ❷❺
AFL [122], Vuzzer [146], MOPT [114], Angora [26],
REDQUEEN [4], GREYONE [59], TortoiseFuzz [169]

POLYGLOT [28] IEEE S&P’21 å(d) ë(S) ✓ ❷❺❼
AFL [122], QSYM [177], NAUTILUS [3], CSmith [175],
DIE [135]

SyzScope [189] USENIX’22 å(e) ë(K) ✓ ❻
No comparison fuzzers (Comparison of Bug
efectiveness (low or high risk))

HEALER [156] ACM SOSP’21 å(f) ë(K) ✓ ❶❷❻ Syskaller [43], Moonshine [133]

NTFUZZ [31] IEEE S&P’21 å(g) ë(K) ✓ ❺❿
No comparison fuzzers
(Finding bugs from windows core .dll libraries)

HFL [97] NDSS’20 å(h) ë(K) ✗ ❷❺
kAFL [150], Moonshine [133], S2E [29],
TriforceAFL [87], Syskaller [43]

KRACE [174] IEEE S&P’20 å(i) ë(K) ✓ ❷❻❼ Syskaller [43], Razzer [85]

BEACON [80] IEEE S&P’22 å(j) ë(B) ✓ ❶❷❸❹
AFL [122], AFLGo [14], AFL++ [52], Hawkeye [24],
MOPT [114]

E9AFL [62] IEEE/ACM ASE’21 å(k) ë(B) ✓ ❶❷ AFL-gcc [122], AFL-dyninst [11], AFL-QEMU [122]

STOCHFUZZ [182] IEEE S&P’21 å(l) ë(B) ✓ ❺❿
AFL-gcc [122], AFL-clang-fast [122], AFL-QEMU [122],
PTFuzzer [179], E9Patch [45], RetroWrite [41]

ZAFL [126] USENIX’21 å(m) ë(B) ✗ ❶❷❺
AFL-dyninst [11], AFL-QEMU [122], DynamoRio [123],
Intel PT [82], PIN [113], RetroWrite [41]

HEXCITE [127] ACM CCS’21 å(n) ë(B) ✓ ❶❷❺ AFL[122], AFL-dyninst [11], RetroWrite [41]

�AFL [105] IEEE/ACM ICSE’22 å(o) ë(F) ✗ ❶❷❺ P2IM [50], Avatar [178], �Emu [185]

SNIPUZZ [51] ACM CCS’21 å(p) ë(F) ✓ ❺❼ IOTFUZZER, BooFuzz, Doona [48], NEMESYS [98]

CONFETTI [100] IEEE/ACM ICSE’22 å(q) ë(H) ✓ ❷❺❻❿ JQF-Zest [132]

FUZZOLIC [15] Comput. & Secur.’21 å(r) ë(H) ✓ ❷❺❻❼❿ AFL++, Eclipser, QSYM [48], SYMCC [143]

InstruGuard [111] IEEE/ACM ASE’21 å(s) ë(E) ✓ ❷❽
AFL [122], AFL++ [52], MemLock [170],
Angora [26], FAIRFUZZ [103], MOPT [114]

9 CHALLENGES AND FUTURE DIRECTIONS

Identiication of bugs and vulnerabilities are possible with a fuzzer, but conclusion on its application detecting

privilege escalation, remote code execution, and prone side channel attacks [13].
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• Smart detection. We want to pinpoint the sophisticated approach to detecting bugs than simple program crashes or anomalies. Thus identify speciic
types of bugs, such as memory leaks, bufer overlows, or other vulnerabilities that attackers could exploit. The methods discussed in this work, for
example, code coverage analysis, symbolic execution, and mutation/grammar-based fuzzing, can be considered smart. We address smart for generating
test inputs and the method used for detecting bugs. Generally, a smart fuzzing approach will combine both. A Fuzzer is eicient if it can ind vulnerabilities
by causing a crash. Nevertheless, it is required that fuzzing be intelligent to detect all possible unusual behaviors of source code under analysis. While
directed grey-box fuzzing is used for detecting and reproducing bugs along with patch testing, it sufers from performance reduction since additional
instrumentation and data analysis are required. Seeds in directed grey-box fuzzing are prioritized based on their proximity to the target sites, and
randomness in seed generation is another concern. However, when multiple targets exist, fuzzing does not address the interrelationship between the
targets. Spatial, state, and interleaving relationships that govern with positions, program state, and state transition maps, and shared threads of target
site variables for fuzzing multi-targets. It achieved better code coverage by reducing execution time, energy, and memory consumption [166].

• Interesting paths. Similarly, in the urge to ind interesting paths, coverage-based grey-box fuzzing, their power schedules assign more energy than
needed. In general, the generation of initial seeds has always been a concern for mutation-based fuzzers. Furthermore, ML techniques are used to
auto-generate seeds for analyzing programs that are GUI based and take pdf and HTML as input is the current thrust area of research. Another research
approach is utilizing reinforcement learning techniques to dynamically optimize fuzzing tasks and seed inputs in the context of kernel fuzzing [162].
This way of the process shows promising results in improving code coverage and crash detection while maintaining a low-performance overhead.
White-box fuzzing provides full path coverage, but program statements involving pointer arithmetic calls to the operating system and library functions
will partially make the path remain unexplored, reducing the fuzzer’s eicacy. SMT solvers [38] generate efective formulas, but the computational
overhead to solving the formulas is signiicantly high. However, complex constraints are still challenging to solve and computationally expensive.

• Identifying bugs. In an application, memory access errors, such as use before initialization, use after free, or stack or heap overlow, are considered
dangerous bugs. Similarly, bugs related to concurrency issues, speciically non-deadlock bugs and their categories on atomicity and order bugs, are more
common. Furthermore, a performance-sensitive code may possess bugs related to algorithmic complexity. Fuzzing is one of the best approaches to
inding all the above-mentioned bugs, but identifying the bugs associated with logical and privilege escalation is still a hardship. An empirical study
needs to be carried out in fuzzing as such unexplored distributed security vulnerabilities remain. Furthermore, there is a need to extend the fuzzing
capability to all programming languages as most of the present-day fuzzers revolve around C/C++ programming languages. The use of mutational
analysis or mutational score can have efectiveness instead of structural coverage measure to address the aforementioned challenges efectively [13].
Currently, there is no eicient mutational framework with optimized computational expense. Likewise, the frequent mutational score gets afected by
redundant/duplicate mutants and equivalent mutants, making the count of killable mutants high, making it diicult to evaluate the fuzzer. The concept
of an appropriate time budget based on the number of mutants can be considered to evaluate the trade-of between eiciency and efectiveness.

Assessing residual security risks after an unsuccessful fuzzing has been diicult. Thus future research directs

to develop methodical probabilistic frameworks to quantitatively measure accuracy in assessing such risks that

exist in black-, white-, and grey-box fuzzers with limitations in inding residual errors. Qualitative analysis of

fuzzing is conducted by feeding synthetic faults to the system. However, the relativeness of synthetic bugs with

real ones and the probability that it addresses all kinds of bugs must be well studied.
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