
TensorFuzz: Debugging Neural Networks with
Coverage-Guided Fuzzing

Augustus Odena
Google Brain

Ian Goodfellow
Google Brain

Abstract

Machine learning models are notoriously difficult to interpret and debug. This
is particularly true of neural networks. In this work, we introduce automated
software testing techniques for neural networks that are well-suited to discovering
errors which occur only for rare inputs. Specifically, we develop coverage-guided
fuzzing (CGF) methods for neural networks. In CGF, random mutations of inputs
to a neural network are guided by a coverage metric toward the goal of satisfying
user-specified constraints. We describe how fast approximate nearest neighbor
algorithms can provide this coverage metric. We then discuss the application of
CGF to the following goals: finding numerical errors in trained neural networks,
generating disagreements between neural networks and quantized versions of those
networks, and surfacing undesirable behavior in character level language models.
Finally, we release an open source library called TensorFuzz that implements the
described techniques.

1 Introduction

Neural networks are gradually becoming used in more contexts that affect human lives, including
for medical diagnosis [13], in autonomous vehicles [2, 7, 19], as input into corporate and judicial
decision making processes [4, 37], in air traffic control [23], and in power grid control [40].

Neural networks have the potential to transform these applications, saving lives and offering benefits
to more people than would be feasible using human labor. However, before this can be achieved, it is
essential to ensure that neural networks are reliable when used in these contexts.

Machine learning models are notoriously difficult to debug or interpret [27] for a variety of reasons,
ranging from the conceptual difficulty of specifying what the user wishes to know about the model in
formal terms to statistical and computational difficulties in obtaining answers to formally specified
questions. This property has arguably contributed to the recent ‘reproducibility crisis’ in machine
learning [9, 16, 24, 28, 30, 33, 34] – it’s tricky to make robust experimental conclusions about
techniques that are hard to debug. Neural networks can be particularly difficult to debug because even
relatively straightforward formal questions about them can be computationally expensive to answer
and because software implementations of neural networks can deviate significantly from theoretical
models. For example, ReluPlex [23] can formally verify some properties of neural networks but is
too computationally expensive to scale to model sizes used in practice. Moreover, ReluPlex works by
analyzing the description of a ReLU network as a piecewise linear function, using a theoretical model
in which all of the matrix multiplication operations are truly linear. In practice, matrix multiplication
on a digital computer is not linear due to floating point arithmetic, and machine learning algorithms
can learn to exploit this property to perform significantly nonlinear computation [10]. This is not to
criticize ReluPlex but to illustrate the need for additional testing methodologies that interact directly
with software as it actually exists in order to correctly test even software that deviates from theoretical
models.

Preprint. Work in progress.

ar
X

iv
:1

80
7.

10
87

5v
1 

 [
st

at
.M

L
] 

 2
8 

Ju
l 2

01
8



In this work, we leverage an existing technique from traditional software engineering—coverage-
guided fuzzing (CGF) [39, 46] —and adapt it to be applicable to testing neural networks. In
particular, this work makes the following contributions:

• We introduce the notion of CGF for neural networks and describe how fast approximate
nearest neighbors algorithms can be used to check for coverage in a general way.

• We open source a software library for CGF called TensorFuzz.1

• We use TensorFuzz to find numerical issues in trained neural networks, disagreements
between neural networks and their quantized versions, and undesirable behaviors in character
level language models.

Input CorpusInput Chooser

Mutator

Neural Network Input Corpus

Coverage

Seed Corpus

Objective ``Crashes’’
Function

Analyzer

The Fuzzer Process
Data: A seed-corpus of inputs to the

computation graph
Result: Test cases satisfying the objective
while number of iterations < N do

parent← SampleFromCorpus;
data← Mutate(parent);
cov,meta← Fetch(data);
if IsNewCoverage(cov) then

add data to corpus;
end
if Objective(meta) then

add data to list of test cases;
end

end

Figure 1: Coarse descriptions of the main fuzzing loop. Left: A diagram of the fuzzing procedure,
indicating the flow of data. Right: A description of the main loop of the fuzzing procedure in
algorithmic form.

2 Background

This section gives background on coverage-guided fuzzing for traditional software, then discusses
existing methods for testing neural networks before finally touching on how CGF relates to these
methods.

2.1 Coverage-guided fuzzing

Coverage-guided fuzzing is used to find many serious bugs in real software [1]. Two of the most
popular coverage-guided fuzzers for normal computer programs are AFL [46] and libFuzzer [39].
These have been expanded in various ways in order to make them faster or to increase the extent to
which certain parts of the code can be targeted [5, 6].

In coverage-guided fuzzing, a fuzzing process maintains an input corpus containing inputs to the
program under consideration. Random changes are made to those inputs according to some mutation
procedure, and mutated inputs are kept in the corpus when they exercise new “coverage”. What is
coverage? It depends on the type of fuzzer and on the goals at hand. One common measure is the
set of parts of the code that have been executed. By this measure, if a new input causes the code to
branch a different way at an if-statement than it has previously, coverage has increased.

CGF has been highly successful at identifying defects in traditional software, so it is natural to ask
whether it could be applied to neural networks. Traditional coverage metrics track which lines of code
have been executed and which branches have been taken. In their most basic forms, neural networks
are implemented as a sequence of matrix multiplications followed by elementwise operations. The
underlying software implementation of these operations may contain many branching statements but
many of these are based on the size of the matrix and thus the architecture of the neural network,

1 To be released upon publication.

2



so the branching behavior is mostly independent of specific values of the neural network’s input. A
neural network run on several different inputs will thus often execute the same lines of code and
take the same branches, yet produce interesting variations in behavior due to changes in input and
output values. Executing an existing CGF tool such as AFL thus may not find interesting behaviors
of the neural network. In this work, we elect to use fast approximate nearest neighbor algorithms to
determine if two sets of neural network ‘activations’ are meaningfully different from each other. This
provides a coverage metric producing useful results for neural networks, even when the underlying
software implementation of the neural network does not make use of many data-dependent branches.

2.2 Testing of Neural Networks

Methods for testing and computing test coverage of traditional computer programs cannot be straight-
forwardly applied to neural networks. We can’t just naively compute branch coverage, for example,
because of reasons discussed above. Thus, we have to think about how to write down useful coverage
metrics for neural networks. Though this work is the first (as far as we know) to explore the idea of
CGF for neural networks, it’s not the first to address the issues of testing and test coverage for neural
networks. A variety of proposals (many of which focus on adversarial examples [43]) have been
made for ways to test neural networks and to measure their test coverage. We survey these proposals
here:

Pei et al. [35] introduce the metric of neuron coverage for a neural network with rectified linear units
(ReLus) as the activation functions. A test suite is said to achieve full coverage under this metric
if for every hidden unit in the neural network, there is some input for which that hidden unit has
positive value. They then cross reference multiple neural networks using gradient based optimization
to find misbehavior.

Ma et al. [29] generalize neuron coverage in two ways. In k-multisection coverage, they take – for
each neuron – the range of values seen during training, divide it into k chunks, and measure whether
each of the k chunks has been “touched”. In neuron boundary coverage, they measure whether each
activation has been made to go above and below a certain bound. They then evaluate how well these
metrics are satisfied by the test set.

Sun et al. [41] introduce a family of metrics inspired by Modified Condition / Decision Coverage
[14]. We describe their ss-coverage proposal as an example: Given a neural network arranged into
layers, a pair of neurons (n1, n2) in adjacent layers is said to be ss-covered by a pair (x, y) of inputs
if the following 3 things are true: n1 has a different sign for each of x, y, n2 has a different sign for
each of x, y, and all other elements of the layer containing n1 have the same sign for x, y.

Tian et al. [44] applies the neuron coverage metric to deep neural networks that are part of self-
driving car software. They perform natural image transformations such as blurring, shearing, and
transformation and use the idea of metamorphic testing [8] to find errors.

Wicker et al. [45] perform black box testing of image classifiers using image-specific operations.
Concurrent with this work, Sun et al. [42] leverages a complementary approach called concolic
execution. Whereas our approach is analogous to AFL or libFuzzer, their approach is analogous to
CUTE [38].

2.3 Opportunities for improvement

It is heartening that so much progress has been made recently on the problem of testing neural
networks. However, the success of e.g. AFL and libFuzzer in spite of the existence of more
sophisticated techniques suggests that there is a role for an analogous tool that works on neural
networks. Ideally we would implement CGF for neural networks using the coverage metrics from
above. However, all of these metrics, though perhaps appropriate in the context originally proposed,
lack certain desirable qualities. We describe below why this is true for the most relevant metrics.

Sun et al. [41] claim that the neuron coverage metric is too easy to satisfy. In particular, they show
that 25 randomly selected images from the MNIST test set yield close to 100% neuron coverage for
an MNIST classifier. This metric is also specialized to work on rectified linear units (reLus) which
limits its generality.

3



Neuron boundary coverage [29] is nice in that it doesn’t rely on using reLus, but it also still treats
neurons independently. This causes it to suffer from the same problem as neuron coverage: it’s easy
to exercise all of the coverage with few examples.

The metrics from Sun et al. [41] are an improvement on neuron coverage and may be useful in the
context of more formal methods, but for our desired application, they have several disadvantages.
They still treat reLus as a special case, they require special modification to work with convolutional
neural networks, and they do not offer an obvious generalization that supports attention [3] or residual
networks [15]. They also rely on neural networks being arranged in hierarchical layers, which is
often not true for modern deep learning architectures.

What we would really like is a coverage metric that is simple, cheap to compute, and is easily applied
to all sorts of neural network architectures. Thus, we propose storing the activations (or some subset
of them) associated with each input, and checking whether coverage has increased on a given input
by using an approximate nearest neighbors algorithm to see whether there are any other sets of
activations within a pre-specified distance. We discuss this idea in more detail in Section 3.2.

3 The TensorFuzz library

Drawing inspiration from the fuzzers described in the previous section, we have implemented a tool
that we call TensorFuzz. It works in a way that is analogous to those tools, but that is different in
ways that make it more suitable for neural network testing. Instead of an arbitrary computer program
written in C or C++, it feeds inputs to an arbitrary TensorFlow graph. Instead of measuring coverage
by looking at basic blocks or changes in control flow, it measures coverage by (roughly speaking)
looking at the “activations” of the computation graph. In 3.1, we discuss the overall architecture of the
fuzzer, including the flow of data and the basic building blocks. In 3.2, we discuss building blocks in
more detail. In particular, we describe how the corpus is sampled from, how mutations are performed,
and how coverage and objective functions are evaluated. We pay extra attention to describing special
challenges associated with defining a coverage metric for neural networks and explain how these
challenges can be (at least partially) dealt with using approximate nearest neighbors.

3.1 The basic fuzzing procecure

The overall structure of the fuzzing procedure is very similar to the structure of coverage-guided
fuzzers for normal computer programs. The main difference is that instead of interacting with an
arbitary computer program that we have instrumented, we interact with a TensorFlow graph that we
can feed inputs to and get outputs from.

The fuzzer starts with a seed corpus containing at least one set of inputs for the computation graph.
Unlike in traditional CGF, we don’t just feed in big arrays of bytes. Instead, we restrict the inputs
to those that are in some sense valid neural network inputs. If the inputs are images, we restrict our
inputs to have the correct size and shape, and to lie in the same interval as the input pixels of the
dataset under consideration. If the inputs are sequences of characters, we only allow characters that
are in the vocabulary extracted from the training set.

Given this seed corpus, fuzzing proceeds as follows: Until instructed to stop, the fuzzer chooses
elements from the input corpus according to some component we will call the Input Chooser. For
the purpose of this section, it’s ok to imagine the Input Chooser as choosing uniformly at random,
though we will describe more complicated strategies in 3.2.

Given an input, the Mutator component will perform some sort of modification to that input. The
modification can be as simple as just flipping the sign of an input pixel in an image, and it can also be
restricted to follow some kind of constraint on the total modification made to a corpus element over
time - see 3.2 for more on this.

Finally, the mutated inputs can be fed to the neural network. In TensorFuzz, two things are extracted
from the neural network: a set of coverage arrays, from which the actual coverage will be computed,
and a set of metadata arrays, from which the result of the objective function will be computed.

Once the coverage is computed, the mutated input will be added to the corpus if it exercises new
coverage, and it will be added to the list of test cases if it causes the objective function the be satisfied.

4



See Figure 1 for complementary overviews of this procedure.

3.2 Details of the fuzzing procedure

In this section we describe in more detail the components of the fuzzer.

Input Chooser: At any given time, the fuzzer must choose which inputs from the existing corpus
to mutate. The optimal choice will of course be problem dependent, and traditional CGFs rely on a
variety of heuristics to make this determination. For the applications we tested, making a uniform
random selection worked acceptably well, but we ultimately settled on the following heuristic, which
we found to be faster: p(ck, t) = etk−t∑

etk−t , where p(ck, t) gives the probability of choosing corpus
element ck at time t and tk is the time when element ck was added to the corpus. The intuition behind
this is that recently sampled inputs are more likely to yield useful new coverage when mutated, but
that this advantage decays as time progresses.

Mutator: Once the Input Chooser has chosen an element of the corpus to mutate, the mutations
need to be applied. In this work, we had to implement mutations for both image inputs and text inputs.
For image inputs, we implemented two different types of mutation. The first is to just add white noise
of a user-configurable variance to the input. The second is to add white noise, but to constrain the
difference between the mutated element and the original element from which it is descended to have
a user-configurable L∞ norm. This type of constrained mutation can be useful if we want to find
inputs that satisfy some objective function, but are still plausibly of the same “class” as the original
input that was used as a seed. In both types of image mutation we clip the image after mutation so
that it lies in the same range as the inputs used to train the neural network being fuzzed.

For text inputs, since we can’t simply add uniform noise to the string, we mutate according to the
following policy: we uniformly at random perform one of these operations: delete a character at a
random location, add a random character at a random location, or substitute a random character at a
random location.

Objective Function: Generally we will be running the fuzzer with some goal in mind. That is,
we will want the neural network to reach some particular state - maybe a state that we regard as
erroneous. The objective function is used to assess whether that state has been reached. When the
mutated inputs are fed into the computation graph, both coverage arrays and metadata arrays are
returned as output. The objective function is applied to the metadata arrays, and flags inputs that
caused the objective to be satisfied.

Coverage Analyzer: The coverage analyzer is in charge of reading arrays from the TensorFlow
runtime, turning them into python objects representing coverage, and checking whether that coverage
is new. The algorithm by which new coverage is checked is central to the proper functioning of the
fuzzer.

The characteristics of a desirable coverage checker are: we want it to check if the neural network is
in a ‘state’ that it hasn’t been in before, so that we can find misbehaviors that might not be caught by
the test set. We want this check to be fast (so we probably want it to be simple), so that we can find
many of those misbehaviors quickly. We want it to work for many different types of computation
graph without special engineering, so that practitioners can use our tooling without having to make
special adaptations. We want exercising all of the coverage to be hard, otherwise we won’t actually
cover very much of the possible behaviors. Finally, we want getting new coverage to help us make
incremental progress, so that continued fuzzing yields continued gains.

As alluded to in Section 2.3, none the coverage metrics discussed in Section 2.2 quite meet all these
desiderata, but we can design from first principles a coverage metric that at least comes closer to
meeting them.

A naive, brute force solution is to read out the whole activation vector and treat new activation vectors
as new coverage. However, such a coverage metric would not provide useful guidance, because most
inputs would trivially yield new coverage. It is better to detect whether an activation vector is close to
one that was observed previously. One way to achieve this is to use an approximate nearest neighbors
algorithm, (as used for Neural Turing Machine [12] memory by Rae et al. [36]). When we get a new

5



activation vector, we can look up its nearest neighbor, then check how far away the nearest neighbor
is in Euclidean distance and add the input to the corpus if the distance is greater than some amount L.

This is essentially what we do. Currently, we use an open source libarary called FLANN [31] to
compute the approximate nearest neighbors. In general, you may not need to see all the activations.
The set of activations to use is presently a matter for empirical tuning. We find it is often possible to
obtain good results by tracking only the logits, or the layer before the logits.

One potential optimization to note: you don’t actually need to know the nearest neighbor, you just
need to know whether there exists a neighbor within some range. For this, you can use a distance-
sensitive Bloom filter [25], but this will come at the expense of sometimes counting coverage as ‘not
new’ when it is new. If your fuzzing application is one in which this is acceptable, this could speed
things up for you. However, we leave the testing of this idea to future work.

3.3 Batching and nondeterminism

There are two other issues that are somewhat unique to TensorFlow graphs that merit a few words.
First, nearly all TensorFlow graphs that exist in practice have been engineered to take advantage of
hardware parallelism offered by e.g. modern GPUs2 For this reason, it could be wasteful to only fetch
the coverage and metadata for one mutated input at a time. Instead, we perform the mutations as a
batch and feed a batch of inputs to the computation graph, then we check the coverage and objective
function on a batch of output arrays. Second, computation graphs will often give nondeterministic
outputs - both because of instructions that execute nondeterministically (e.g. large accumulations
on GPUs) and because of fundamentally random operations built into the graph. For now, we have
chosen to deal with this in the most naive way possible: if we can feed the same input in twice and
get different coverage, we simply include the input twice in the corpus.

4 Experimental results

We briefly present a few different applications of the CGF technique to establish that it is useful in
general settings.

4.1 CGF can efficiently find numerical errors in trained neural networks

Since neural networks use floating point math [11], they are susceptible to numerical issues, both
during training and at evaluation time. These issues are notoriously hard to debug, partly because
they may only be triggered by a small set of rarely encountered inputs. This is one case where CGF
can help. We focus on finding inputs that result in not-a-number (NaN) values.

Numerical errors are important to find: Numerical errors, especially those resulting in NaNs,
could cause dangerous behavior of important systems if these errors are first encountered ‘in the
wild‘. CGF can be used to identify a large number of errors before deployment, and reduce the risk
of errors occurring in a harmful setting.

CGF can quickly find numerical errors: With CGF, we should be able to simply add check
numerics ops to the metadata and run our fuzzer. To test this hypothesis, we trained a fully connected
neural network to classify MNIST [26] digits. We used a poorly implemented cross entropy loss on
purpose so that there would be some chance of numerical errors. We trained the model for 35000
steps with a mini-batch size of 100, at which point it had a validation accuracy of 98%. We then
checked that there were no elements in the MNIST dataset that cause a numerical error. Nevertheless,
TensorFuzz found NaNs quickly across multiple random initializations. See Figure 2 for more details.

Gradient-based search techniques might not help find numerical errors: One potential objec-
tion to CGF techniques is that gradient-based search techniques might be more efficient than more

2 In fact, they’ve often been engineered to run on multiple GPUs, which suggests an obvious optimization to
TensorFuzz: unlike stochastic gradient descent, in which parallelism is limited by stale gradients [32], fuzzing
performance can theoretically scale linearly with hardware, assuming that the corpus does not need to be kept
perfectly synchronized.

6



Figure 2: We trained an MNIST classifier with some unsafe numerical operations. We then ran the
fuzzer 10 times on random seeds from the MNIST dataset. The fuzzer found a non-finite element
every run. Random search never found a non-finite element. Left: the accumulated corpus size of the
fuzzer while running, for 10 runs. Right: an example satisfying image found by the fuzzer.

randomized search techniques. However, it is not obvious how to specify the objective for a gradient
based search. There is not a straightforward way to measure how similar a real-valued output of the
model is to a NaN value.

Random search is prohibitively inefficient for finding some numerical errors: To establish that
random search is not sufficient and that coverage-guidance is necessary for efficiency, we compared to
random search. We implemented a baseline random search algorithm and ran it for 100,000 samples
from the corpus with 10 different random initializations. The baseline was not able to find a non-finite
element in any of these trials.

4.2 CGF surfaces disagreements between models and their quantized versions

Quantization [18] is a process by which neural network weights are stored and neural network
computations performed using numerical representations that consist of fewer bits of computer
memory. Quantization is a popular approach to reducing the computational cost or size of neural
networks, and is widely used for e.g. running inference on cell phones as in Android Neural Networks
API or TFLite and in the context of custom machine learning hardware – e.g. Google’s Tensor
Processing Unit [20] or NVidia’s TensorRT.

Errors resulting from quantization are important to find: Of course, quantization is not very
useful if it reduces the accuracy of the model too dramatically. Given a quantized model, it would
thus be nice to check how much quantization reduced the accuracy.

Few errors can be found just by checking existing data: As a baseline experiment, we trained an
MNIST classifier (this time without intentionally introducing numerical issues) using 32-bit floating
point numbers. We then truncated all weights and activations to 16-bits. We then compared the
predictions of the 32-bit and the 16-bit model on the MNIST test set and found 0 disagreements.

CGF can quickly find many errors in small regions around the data: We then ran the fuzzer
with mutations restricted to lie in a radius 0.4 infinity norm ball surrounding the seed images, using
the activations of only the 32-bit model as coverage. We restrict to inputs near seed images because
these inputs nearly all have unambiguous class semantics. It is less interesting if two versions of the
model disagree on out-of-domain garbage data with no true class. With these settings, the fuzzer was
able to generate disagreements for 70% of the examples we tried. Thus, CGF allowed us to find real
errors that could have occured at test time. See Figure 3 for more details.

Random search fails to find new errors given the same number of mutations as CGF: As in
Section 4.1 we tried a baseline random search method in order to demonstrate that the coverage-

7

 https://developer.android.com/ndk/guides/neuralnetworks/
 https://developer.android.com/ndk/guides/neuralnetworks/
 https://www.tensorflow.org/mobile/tflite/
https://developer.nvidia.com/tensorrt


Figure 3: We trained an MNIST classifier with 32-bit floats and then truncated the associated
TensorFlow graph to 16-bit floats. Both the original and the truncated graph made the same predictions
on all 10000 elements of the MNIST test set, but the fuzzer was able to find disagreements within
an infinity-norm ball of radius 0.4 around 70% of the test images that we tried to fuzz. Left: the
accumulated corpus size of the fuzzer while running, for 10 runs. Lines that go all the way to the right
correspond to failed fuzzing runs. Right: an image found by the fuzzer that is classified differently by
the 32-bit and 16-bit neural networks.

guidance specifically was useful in this context. The random search baseline was not able to find any
disagreements that didn’t already exist when given the same number of mutations as the fuzzer.

4.3 CGF surfaces undesirable behavior in character level language models

Given a trained machine learning model, we may be able to characterize certain of its behaviors as un-
desirable, even though incorporating this characterization into the training loss might be inconvenient
or even intractable. As an example, we train a character level language model of the type described
in Karpathy [21]. In particular, we modify the code from https://github.com/sherjilozair/char-rnn-
tensorflow to train a 2 layer LSTM [17] on the Tiny Shakespeare [22] dataset.

We then consider the application of sampling from this trained language model given a priming
string. One can imagine such a thing being done in an auto-complete application, for example. For
illustrative purposes, we identify two desiderata that we can approximately enforce via the fuzzer:
First, the model should not repeat the same word too many times in a row. Second, the model should
not output words from the blacklist.

We fuzz the model using for coverage the hidden state of the LSTM after the priming string has been
consumed. We sample from the model according to a softmax over the logits, using a fixed random
seed that we reset at every sampling. We use the mutation function described in Section 3.2.

We ran an instance of TensorFuzz and an instance of random search for 24 hours each. TensorFuzz
was able to generate repeat words, but so was random search. However, TensorFuzz was able to
generate six out of ten words from our blacklist while random search only generated one.

5 Conclusion

We have introduced the concept of coverage-guided fuzzing for neural networks and described how
to build a useful coverage checker in this context. We have demonstrated the practical applicability
of TensorFuzz by finding numerical errors, finding disagreements between neural networks and their
quantized versions, and surfacing undesirable behavior in RNNs. Finally, we are releasing along with
this paper the implementation of TensorFuzz, so that other people can both build on our work and
also use our fuzzer to find real issues.

8

 https://github.com/sherjilozair/char-rnn-tensorflow
 https://github.com/sherjilozair/char-rnn-tensorflow


Acknowledgments

We thank Dave Anderson for helpful comments on an early version of the draft. We thank Rishabh
Singh, Alexey Kurakin, and Martín Abadi for general input. We also thank Kostya Serebryany for
helpful explanations of libFuzzer.

9



References
[1] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya, and Meredith Whittaker.

Announcing oss-fuzz: Continuous fuzzing for open source software. Google Testing Blog, 2016.
[2] Anelia Angelova, Alex Krizhevsky, Vincent Vanhoucke, Abhijit S Ogale, and Dave Ferguson.

Real-time pedestrian detection with deep network cascades.
[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.
[4] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in

criminal justice risk assessments: the state of the art. arXiv preprint arXiv:1703.09207, 2017.
[5] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. Directed

greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2329–2344. ACM, 2017.

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based greybox fuzzing
as markov chain. IEEE Transactions on Software Engineering, 2017.

[7] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning
for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[8] Tsong Y Chen and Siu Ming Yiu. Metamorphic testing: a new approach for generating next
test cases. Technical report.

[9] William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir Mohamed,
and Ian Goodfellow. Many paths to equilibrium: GANs do not need to decrease a divergence at
every step. International Conference on Learning Representations, 2018.

[10] Jakob Foerster. Nonlinear computation in deep linear networks, 2017. URL https://blog.
openai.com/nonlinear-computation-in-linear-networks/.

[11] David Goldberg. What every computer scientist should know about floating-point arithmetic.
ACM Computing Surveys (CSUR), 23(1):5–48, 1991.

[12] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[13] Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunachalam
Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge Cuadros,
et al. Development and validation of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs. Jama, 316(22):2402–2410, 2016.

[14] Kelly J Hayhurst, Dan S Veerhusen, John J Chilenski, and Leanna K Rierson. A practical
tutorial on modified condition/decision coverage. 2001.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[16] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[18] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quan-
tized neural networks: Training neural networks with low precision weights and activations.
arXiv preprint arXiv:1609.07061, 2016.

[19] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayampallil, Mykhaylo
Andriluka, Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-Yue, et al. An empirical evaluation
of deep learning on highway driving. arXiv preprint arXiv:1504.01716, 2015.

[20] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance
analysis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium
on Computer Architecture, pages 1–12. ACM, 2017.

10

https://blog.openai.com/nonlinear-computation-in-linear-networks/
https://blog.openai.com/nonlinear-computation-in-linear-networks/


[21] Andrej Karpathy. The unreasonable effectiveness of recurrent neural networks. Andrej Karpathy
blog, 2015.

[22] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent
networks. arXiv preprint arXiv:1506.02078, 2015.

[23] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:
An efficient smt solver for verifying deep neural networks. In International Conference on
Computer Aided Verification, pages 97–117. Springer, 2017.

[24] Rosemary Nan Ke, Anirudh Goyal, Alex Lamb, Joelle Pineau, Samy Bengio, and Yoshua
Bengio, editors. Reproducibility in Machine Learning Research, 2017.

[25] Adam Kirsch and Michael Mitzenmacher. Distance-sensitive bloom filters. In 2006 Proceedings
of the Eighth Workshop on Algorithm Engineering and Experiments (ALENEX), pages 41–50.
SIAM, 2006.

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 1998.

[27] Zachary C Lipton. The mythos of model interpretability. arXiv preprint arXiv:1606.03490,
2016.

[28] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are GANs
created equal? A large-scale study. arXiv preprint arXiv:1711.10337, 2017.

[29] Lei Ma, Felix Juefei-Xu, Jiyuan Sun, Chunyang Chen, Ting Su, Fuyuan Zhang, Minhui Xue,
Bo Li, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. Deepgauge: Comprehensive and
multi-granularity testing criteria for gauging the robustness of deep learning systems. CoRR,
abs/1803.07519, 2018. URL http://arxiv.org/abs/1803.07519.

[30] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural lan-
guage models. In Proceedings of the 6th International Conference on Learning Representations,
2018.

[31] Marius Muja and David G Lowe. Scalable nearest neighbor algorithms for high dimensional
data. IEEE transactions on pattern analysis and machine intelligence, 36(11):2227–2240, 2014.

[32] Augustus Odena. Faster asynchronous sgd. arXiv preprint arXiv:1601.04033, 2016. URL
http://arxiv.org/abs/1601.04033.

[33] Augustus Odena, Jacob Buckman, Catherine Olsson, Tom B Brown, Christopher Olah, Colin
Raffel, and Ian Goodfellow. Is generator conditioning causally related to gan performance?
arXiv preprint arXiv:1802.08768, 2018. URL http://arxiv.org/abs/1802.08768.

[34] Avital Oliver, Augustus Odena, Colin Raffel, Ekin D. Cubuk, and Ian J. Goodfellow. Realistic
evaluation of deep semi-supervised learning algorithms. CoRR, abs/1804.09170, 2018. URL
http://arxiv.org/abs/1804.09170.

[35] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated whitebox
testing of deep learning systems. CoRR, abs/1705.06640, 2017. URL http://arxiv.org/
abs/1705.06640.

[36] J. W Rae, J. J Hunt, T. Harley, I. Danihelka, A. Senior, G. Wayne, A. Graves, and T. P Lillicrap.
Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes. ArXiv e-prints,
October 2016.

[37] David Scarborough and Mark John Somers. Neural networks in organizational research:
Applying pattern recognition to the analysis of organizational behavior. American Psychological
Association, 2006.

[38] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine for c. In ACM
SIGSOFT Software Engineering Notes, volume 30, pages 263–272. ACM, 2005.

[39] K Serebryany. Libfuzzer: A library for coverage-guided fuzz testing (within llvm), 2016.
[40] Pierluigi Siano, Carlo Cecati, Hao Yu, and Janusz Kolbusz. Real time operation of smart grids

via FCN networks and optimal power flow. IEEE Transactions on Industrial Informatics, 8(4):
944–952, 2012.

[41] Y. Sun, X. Huang, and D. Kroening. Testing Deep Neural Networks. ArXiv e-prints, March
2018.

11

http://arxiv.org/abs/1803.07519
http://arxiv.org/abs/1601.04033
http://arxiv.org/abs/1802.08768
http://arxiv.org/abs/1804.09170
http://arxiv.org/abs/1705.06640
http://arxiv.org/abs/1705.06640


[42] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroening. Concolic Testing for
Deep Neural Networks. ArXiv e-prints, April 2018.

[43] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[44] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated testing of
deep-neural-network-driven autonomous cars. CoRR, abs/1708.08559, 2017. URL http:
//arxiv.org/abs/1708.08559.

[45] Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. Feature-guided black-box safety
testing of deep neural networks. CoRR, abs/1710.07859, 2017. URL http://arxiv.org/
abs/1710.07859.

[46] Michal Zalewski. American fuzzy lop, 2007.

12

http://arxiv.org/abs/1708.08559
http://arxiv.org/abs/1708.08559
http://arxiv.org/abs/1710.07859
http://arxiv.org/abs/1710.07859

	1 Introduction
	2 Background
	2.1 Coverage-guided fuzzing
	2.2 Testing of Neural Networks
	2.3 Opportunities for improvement

	3 The TensorFuzz library
	3.1 The basic fuzzing procecure
	3.2 Details of the fuzzing procedure
	3.3 Batching and nondeterminism

	4 Experimental results
	4.1 CGF can efficiently find numerical errors in trained neural networks
	4.2 CGF surfaces disagreements between models and their quantized versions
	4.3 CGF surfaces undesirable behavior in character level language models

	5 Conclusion

